ASIB23i-Lecture 19
Rotentiall-\density pairs

Newton s gravity

Spherical systems
- Newtons theorems
- Gauss theorem as an integrated Poisson equation

Simple density distribution and their potentials

Dynamical time



[Below are large portions of Binney and Tremaine textbook’ s Ch.2.]

1 General results

Our goal is to calculate the force F(x) on a unit mass at position x that
is generated by the gravitational attraction of a distribution of mass
p(x). According to Isaac Newton’s inverse-square law of gravitation,
the force F(x) may be obtained by summing the small contributions

X —x xF—x
(SF(X) = Gl—xl—_—xlgém(x’) — Gmp(x')63x' (2-1)
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" to the overall force from each small element of volume §3x’ located at

! _Thus
2 S xl i .

If we define the gravitational potential ®(x) by

B(x) = —G / Ip(x') 3, (2:3) -
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to the overall force from each small element of volume §3x’ located at
%' Thus

Fx)=G ] ,%_’T"Pp(x')d%'. (2-2)

If we define the gravitational potéhtial ®(x) by

!/
B(x) = —G/l”( o (2:3)
and notice that ; ; |
x' —x . :

we find that we may write F as

Gp(X') 3
= / |X’—x|d : (2-5)

where for brevity we have dropped the subscript x on the gradient op-
erator V. Since the force is determined by the gradient of a potential,
the gravitational force is conservative (cf. Appendlx 1.D1).

The potential is useful because, being a scalar field, it is easier to
visualize than the vector force field. Also, in many situations the best
‘way to obtain F is first to calculate the potentlal and then to take its
‘gradient.



wwhere for brevity we have dropped the subscript x on the gradient op-
erator V. Since the force is determined by the gradient of a potential,
the gravitational force is conservative (cf. Appendix 1.D.1).

| The potential is useful because, being a scalar field, it is easier to
visualize than the vector force field. Also, in many situations the best
‘way to obtain F is first to calculate the potential and then to take its

If we take the divergence of equation (2-2), we find ‘ this page

el e not obligatory,
VR0 =6 [V (F55) e @0y

Now

fopeca oo s atnn - g

pEoRp) = [x" —x[°

When x’ — x # 0 we may cancel the factor |x’ — x|? from top and bottom
of the last term in this equation to conclude that

Vx-(ij—{—)=0 ' (o 50 (2-8)

[x" — x|’

Therefore, any contribution to the integral of equation (2-6) must
come from the point X’ = x, and we may restrict the volume of inte-
gration to a small sphere of radius h centered on this point. Since, for



If we substitute from equation (2-5) for V - F, we obtain Poisson’s equa-
tion relating the potential ® to the density p;

V2® = 47Gp. (2-10)

Equation (2-10) provides a route to ®, and then to F that is often more
convenient than equation (2-2) or equation (2-3). In the special case
p = 0 we have Laplace’s equation,

Ve =0. (2-11)

We may use Poisson’s equation to derive a useful generalization of
equation (2-8). A unit point mass at x’ has density p(x) = 6(x — x'),
where § is the Dirac delta function [eq. (1C-1)], and potential —G|x —
x’'|~1. Hence equation (2-10) yields

Xt

Vi( ! )=—47r6(x—x’) or vx.(

= —47H(x—x').
= ) = <t
(2-12)

If we integrate both sides of equation (2-10) over an arbitrary vol-
ume containing total mass M, and then apply the divergence theorem,

we obtain

Ix — x/|3

47G [ pd>x = 4rGM = / V2i®dix = / vd - d*S. (2-13)




This result is Gauss’s theorem, which may be stated in words as the
miegral of the normal component of V® over any closed surface equals
times the mass contained within that surface.

We have seen that the gravitational force is conservative, that is,

mration. Similarly, the work done against gravitational forces in assem-
bling an arbitrary continuous distribution of mass p(x) is independent
‘the details of how the mass was assembled, and is defined to be equal
0 the potential energy of the mass distribution or simply the potential
energy. An expression for the potential energy can be obtained by the
following argument.

- Suppose that some of the mass is already in place so that the density
and potential are p(x) and ®(x). If we now bring in a small mass ém
from infinity to position x, the work done is §m®(x). Thus, if we add a
small increment of density dp(x), the change in potential energy is

W = / §p(x)®(x)d>x. (2-14)

‘According to Poisson’s equation the resulting change in potential §®(x)
satisfies V2(6®) = 4wG(6p), and hence



SW = / §p(3) B (x)dx. (2-14)

According to Poisson’s equation the resulting change in potential 6®(x)

- 3 TS
satisfies V4(6®) = 4nG(6p), and hence S o rivation

: i e : : will not be,
SW = s /@V (6®) d”x. (2-15) ¢ you must

; understand the
Using the divergence theorem in the form (1B-43), we may write this as final result

= L 5 V1~ P _1_ ' 3
oW = 47FG/¢I>V(6<I>) d*S 47rG,/V<I> V(6®)d x, (2-16)

“where the surface integral vanishes because ® oc 7!, |[V§®| ’ ~%iag
r — 00, 80 the integrand o r—2 while the total surface area o r2. But

Vo (6<I>) 36|(V®)|*. Hence

W = —%5( / VO [2dPx ) (2-17)

If we now sum up all of the contributions W, we have a simple expres-
sion for the potential energy,

§ bt i 1 2 13
We / V®|2d%x. (2-18)
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Newton’ s 1st theorem: e
re-draw the picture

to highlight symmetry,

conclude that the angles theta

1 and 2 are equal, so masses of
pieces of the shell cut out by the
beam are in square relation to
the distances r1 and r.. Add two
forces, obtain zero vector.
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Figure 2-1. Proof of Newton’s first theorem.

To obtain an alternative expression for W, we may again apply the
divergence theorem and replace VZ® by 47Gp to obtain

W= %—/p(x)d)(x)d?’x. (2-19)
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Figure 2-1. Proof of Newton’s first theorem.

To obtain an alternative expression for W, we may again apply the
divergence theorem and replace V2® by 47Gp to obtain

W =21 / p(x)®(x)d>x. (2-19)

2.1 Spherical Systems

1 Newton’s Theorems

Newton proved two results that enable us to calculate the gravitational
potential of any spherically symmetric distribution of matter very easily.
We may state these as:

Newton's First Theorem A body that is inside a spherical shell of matter
ezperiences no net gravitational force from that shell.

Newton’'s Second Theorem The gravitational force on a body that lies
outside a closed spherical shell of matter is the same as it would be 1f all
the shell’s matter were concentrated into a point at 1ts center.




Figure 2-2. Proof of Newton'’s
second theorem.

Figure 2-1 illustrates the proof of Newton’s first theorem. Consider
he cone associated with an elementary solid angle df2 centered on the
oint r. This cone intersects the spherical shell of matter at two points,
t distances r; and 7o from r. Elementary geometrical considerations
sure us that the angles 01 and 02 are equal, a,nd therefore that the

e in the ratio §m;/éms = (r1/r2)%. Hence 6m2/r2 = émy/r{ and a
particle placed at r is attracted equally in opposite directions. Summing
sver all elementary cones centered on r, one concludes that the body at
F experiences no net force from the shell.<



ire in the ratio dm;/émo = (r1/72)?. Hence émo/r? = émy/r? and a
article placed at r is attracted equally in opposite directions. Summing
over all elementary cones centered on r, one concludes that the body at
T experiences no net force from the shell.<

An importa.nt corollary of Newton’s ﬁrst theorem is that the gra,v-

shell by calculatmg the mtecrral expression (2-3) for r located at any
Vterior point. The most convenient place for r is the center of the shell,
for then all points on the shell are at the same distance R, and one
immediately has

Is potential GM
per-unit-mass b= —

(2-20)

the test particle

The proof of Newton’s second theorem eluded Newton for more
’tha.n ten years. Yet with hindsight it is easy. The trick is to compare
the potential at a point p located a distance r from the center of a
“spherical shell of mass M and radius a (r > a), with the potential at a
- point p’ located a distance @ from the center of a shell of mass M and
‘radius r. Figure 2-2 illustrates the proof. Consider the contribution §6®
‘to the potential at p from the portion of the given sphere with solid
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angle 612 located at q’. Evidently

Sl el (2-21a)

p—q| 47"
But the contribution §®’ of the matter near q to the potential at p’ is
clearly

GM 6Q

p’ —q| 47

Finally, as |p — q'| = |p’ — q| by symmetry, it follows that 6® = 69/,

and then by summation over all points q and q' that ® = ®'. But

we already know that ® = —GM/r, therefore ® = —GM/r, which

is exactly the potential that would be generated by concentrating the
entire mass of the given sphere at its center.<

58 = (2-21b)

The Newtonian gravitational potentials of different spherical shells
add linearly, so we may calculate the gravitational potential at r gen-
erated by an arbitrary spherically symmetric density distribution p(r’)
in two parts by adding the contributions to the potential produced by
shells (i) with 7' < 7, and (ii) with ' > r. In this way we obtain

T

®(r) = —4nG [1 /OT p(r)r%dr' + /roo p(r')r'dr'] : (2-22)

Inner & outer shells

General
solution.
Works in all
the spherical
systems!
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From Newton’s first and second theorems or from equation (2-22)
it follows that the gravitational attraction of the density distribution
p(r’) on a unit test mass at radius r is entirely determined by the mass
interior to r:

L nd® TG M)
F(r) = T oy (2-23a)
where e
M(r)=4nr / p(r’)r'2dr'. (2-23b)
0

An important property of a spherical matter distribution is its
circular speed v.(r), defined to be the speed of a test particle in a
circular orbit at radius . Once we have ®(r) or F(r), we may readily

evaluate v, from
If you can, use the simpler 5 dd GM(r)
eq. 2-23a for computations Yc = 7'5 =r|F| =

. (2-24)

The circular speed measures the mass interior to r. A second important
quantity is the escape speed v, defined by

Potential in this formula mustbe  ,,_(r) = /2|®(7)|. (2-25)

normalized to zero at infinity!
A star at r can escape from the gravitational force field represented by

® only if it has a speed at least as great as v.(r), for only then does its
(positive) kinetic energy 3v2 exceed the absolute value of its (negative)
potential energy ®.
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2 Potentials of Some Simple Systems

It is instructive to discuss the potentials generated by several simple
~density distributions:

(a) Point mass In this case

o) =-2 ;. wm =y w=yZE s

‘Any circular speed that declines with increasing radius like r—1/2 jg
[frequently referred to as Keplerian because Kepler first understood that
e r—1/2 in the solar system.

(b) Homogeneous sphere If the density is some constant p, we
‘have M(r) = §nr®p and
| (rising rotation curve)

ok 4“3G 2 (2-27)

‘Thus in this case the circular velocity rises linearly with radius, and the
orbital period of a mass on a circular orbit is




27T 3T
T = — _— 5
. 1/ Gp’ (2-28)

mdependent of the radius of its orbit.

If a test mass is released from rest at radius r in the gravitational
feld of a homogeneous body, its equation of motion is

d%r GM (r) 47Gp
= ot (2-29)

‘which is the equation of motion of a harmonic oscillator of angular fre-
quency 27/T. Therefore no matter what is the initial value of r, the test
mass will reach r = 0 in a quarter of a period, or in a time

; el 3
WS T N 60,

(2-30)

- Although this result is only correct for a homogeneous sphere, we shall
~define the dynamical time of a system with mean density p by equation
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(2-30).} The dynamical time is approximately equal to the time required
for an orbiting star to travel halfway across a system of this mean density.

From equation (2-22) it follows that if the density vanishes for r > a,
the gravitational potential is

—27Gp(a® — 31°), 7<a

B = 3 2-31
(r) _47r§fa | s (2-31)

which can be used to compute the escape speed.
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, 7 »LO
observer

Figure 2-3. Projection of a
spherical body along the line

of sight.
_,'large.radii the density tends to
bM
p(r) = 2l (r>b). (2-36)

j_"odiﬁed Hubble profile The surface brightnesses of many
ptical galaxies may be approximated over a large range of radii by the
ble-Reynolds law Iy (R) [eq. (1-14)]. It is possible to solve for the

=y

srical luminositv density 7(r) that generates a given circularlv sym-



ptical galaxies may be approximated over a large range of radi by the
bble-Reynolds law Iy (R) [eq. (1-14)]. It is possible to solve for the
Berical luminosity density j(r) that generates a given circularly sym-
f"c brightness distribution I(R) (see Problem 2-10). However, the
sulting formulae for the luminosity distribution of a galaxy that obeys
e Hubble Reynolds law are cumbersome (Hubble 1930). Fortunately,
simple luminosity density

' Us Spatial density of light
; : F\2
In(r) = Jo [1+ (5) ] : (2-37)

shere a is the core radius, gives rise to a surface brightness distribution

Bat is similar to Iy (Rood et al. 1972). In fact, in the notation of Figure

23 we have that Surface density of light
on the sky

B =2 [~ = [ i+ (2)+ (2) ] e 9

Using the substitution ¥ = z/v/a? + R?, we obtain the modified Hubble
profile

270a £ dy 2j0a
A= (R,Laraf T 1+(R/a)2 o)
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Figure 2-4. Circular speed versus radius for a
body whose projected density follows the modified
Hubble profile (2-39). The circular speed v 18

plotted in units of /GjoTa?.

Thus In(R) ox R=2 at large R and I (R) — constant as R — 0, just as
in the Hubble-Reynolds law (1-14).

Since the brightness distributions of many elliptical galaxies are
fairly well fitted by the Hubble law, we conclude that the three-
dimensional luminosity densities of elliptical galaxies cannot be very
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much like a point mass at large r. The circular speed is shown in Figure
24. It peaks at r = 2.9a and then falls nearly as steeply as in the
Leplerian case.

e) Power-law density profile Many galaxies have luminosity
orofiles that approximate a power law over a large range in radius. Con-
sider the structure of a system whose mass density drops off as some
power of the radius:

o\ ¢
pr)=po ()" (2-42)
Fhe surface density of this system is

re (—L)(es3) Do you know
(R) = g;_ol( ?;; ! (2-43)  why?

Ve assume that o < 3, since only in this case is the mass interior to r
anite, namely

84
M(r) = 278 f(3-) (2-44)

From equations (2-44) and (2-24) the circular speed is



ST, LQLlITLY

M(r) = ———4; por: (800, (2-44)

om equations (2-44) and (2-24) the circular speed is

2(,'.) 41er0T0 (2 a)

i (2-45)

t Chapter 8 of MB we saw that the circular-speed curves of many

daxies are remarkably flat. Equation (2-45) suggests that the mass
fensity in these galaxies may be proportional to r=2%. In Chapter 4 we
sall find that this is the density profile characteristic of a self-consistent
ellar-dynamical model called the singular isothermal sphere.

Equation (2-44) shows that M(r) diverges at large r for all o < 3.
owever, when a > 2, the potential difference in these models between
adius 7 and infinity, is finite. Thus the escape speed v.(r) from radius
is given by

24 GM(T’) d?" 4t 871-Gp0?'g 7-(2_“)

L Y e

22(r) (2-46)
= Zac : (a > 2).

r the range 3 > o > 2, (v./v.)? rises from the value 2 that is charac-
istic of a point mass, toward infinity. Since the light distributions of

An empirical fact
to which we’ll
return...



ASTIB23- Lecture L20
Potential - density pairs (continued)

Flattened systems
- Plummer-Kuzmin
- multipole expansion & other transform methods

There is nothing more practical than theory:
- Gauss theorem in action
- using v = sqrt(GM/r)



Notice and

1 Plummer-Kuzmin Models remember how the
Consider the spherical potential A div grad
oM (nabla squared or
Op=———. (2-472) 1| Laplace operator in
Vit b2 |
eq. 2-48) is
By direct differentiation we find expressed
1 d d®p 3GMb? as two consecutive
2 =5 2 fsds 22 = . .y
L o ( dr ) T (r2 4+ b2)5/2° 2d8) differentiations over
: : radius! It s not just
Thus from Poisson’s equation we have that the density corresponding to
: : | the second
the potential (2-47a) is | SoEv
derivative.
IM r2\ 2
PEt) (47rb3) (1 b 5’5) : (D) Constant b is known

as the core radius.

Do you see that
ATLL L1 L. LIULLIEL USEU LIE POLENLId-UensIty palr tnat 1s aescribed | inside r=b

requations (2-47) to fit observations of globular clusters. It is therefore
own as Plummer’s model. We shall encounter it again in §4.4.3(a) as rho beco’r?n es
member of the family of stellar systems known as polytropes. constant’

Now consider the axisymmetric potential

s GM
Sx(R,z) = i (2-49a)




2 Logarithmic Potentials

Since the Plummer-Kuzmin models have finite mass, the circular speed
-associated with these potentials falls off in Keplerian fashion v, oc R™1/2
at large R. However, in §8-4 of MB it was shown that the rotation curves
of spiral galaxies tend to be flat or rising at large radii. If at large R, v, x

Vo, a constant, then d®/dR o« R~!, and hence ® o v3 In R + constant
in this region. Therefore, consider the potential

Z2

O = -é—vg In (Rf + R? + —q—2—> + constant, (2-54a)
®

where R, and vg are constants, and ge < 1. The density distribution to
which @ corresponds is
(R.7) ( v3 ) (2¢2 + 1)R2 + R? + 2(1 — 1¢3°)2?
iz = - :
PE drGq} (R2 + R2 + 22q3°)2

At small R and z, pr tends to the value pz(0,0) = (4nG)~'(2 +
q;2)(vo/Rc)2, and when R or |z| is large, py, falls off as R=2 or 272,

(2-54b)
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Figure 2-8. Contours of equal deunsity in the (R, z) plane for
pL [eq. (2-54b)] when: g = 0.95 (top); gp = 0.7 (bottom). In
each case the contour levels are 0.1v3 /(GR?) x (1,0.3,0.1,...).
When ¢gp = 0.7 the density is negative near the z-axis for
lz| 2 TR,.
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The equipotential surfaces of @, are ellipses of axial ratio g, but
Figure 2-8 shows that the equidensity surfaces are rather flatter. In
fact, if we define the axial ratio g, of the isodensity surfaces by the
ratio Zm/Rm of the distances down the z and R axes at which a given
isodensity surface cuts the z axis and the z or y axis, we find

. 1+4¢3

—tg _R
%= e <) =
or .
= (2 = q—g) (r >R (2-55b)
P

In either case the potential is only about a third as flattened as the
density distribution. pz becomes negative on the z-axis when g <

1/5/2.

The circular speed at radius R in the equatorial plane of @y is

(Log-potential) Vol
UC - .
VRZFR:

(2-54c)




The second part of the lecture is a repetition of the
useful mathematical facts and the presentation of
several problems
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