ASTB23 - Lecture 21
Relaxation in'stellar systems

Relaxation and evolution of globular clusters

The virial theorem and the negative heat capacity of
gravitational systems

Mass segregation, evaporation of clusters
Monte Carlo, N-body and other simulation methods



Why
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isn't galaxy bumpy?

3 The orbits of the stars
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Figure 3.3 The potential ®(x) of a stellar system, represented here by vertical height,
can be split into a smoothly varying averaged component and a steep potential well near
each star.

Similarly, we can think of the gravitational potential of the Galaxy as the sum
of two parts: a smooth component, averaged over a region containing many stars,
and the remainder, which includes the very deep potential well around each star
(Figure 3.3). The successive tugs of individual stars on each other, described by
the sharply varying part of the potential, cause them to deviate from the courses
they would have taken if only the smooth part of the force had been present: we
can think of these sharp pulls as ‘collisions’ between stars.

We will see in this section that stars in a galaxy behave quite differently from
air molecules. The cumulative effect of the small pulls of distant stars is more
important in changing the course of a star’s motion than the huge forces generated
as stars pass very near to each other. But except in dense star clusters, even these
distant collisions have little effect over the lifetime of the Galaxy in randomizing
or ‘relaxing’ the stellar motions. For example, the smooth averaged part of the
Galactic potential almost entirely determines the motion of stars like the Sun.

The physical collisions
between stars are very very
rare, but close approaches
are more frequent. We call
them “collisions”.



3.2.1 Strong close encounters

We can calculate the average time between strong encounters, in which one star
comes so near to another that the collision completely changes its speed and
direction of motion, as follows. Suppose the stars all have mass m and move
in random directions with average speed V. For the moment, we neglect the
gravitational force from the rest of the galaxy or cluster. Then if two stars approach
within a distance r, the sum of their kinetic energies must increase to balance the
change in potential energy. When they are a long way apart, their mutual potential
energy is zero. We say that they have a strong encounter if, at their closest approach,
the change in potential energy is at least as great as their starting Kinetic energy.
This requires

Gm? V2 2G
i =5 e , whichmeans r <r, = —m; (3.46)
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we call r; the strong encounter radius. Near the Sun, stars have random speeds of
V ~ 30kms™', and taking m = 0.5 M, gives ry ~ 1 AU.




3.2 Why the Galaxy isn’t bumpy: two-body relaxation
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Figure 3.4 During time ¢, this star will have a strong encounter with any other star lying
within the cylinder of radius r;.

How often does this happen? We know that the Sun has not had a strong
encounter in the past 4.5 Gyr; if another star had come so near, it would have
disrupted the orbits of the planets. As the Sun moves relative to nearby stars at
speed V for atime ¢, it has a strong encounter with any other stars within a cylinder
of radius ry, and volume 772Vt centred on its path (see Figure 3.4). If there are n
stars per unit volume, our Sun will on average have one close encounter in a time
t; such thatlnr? V¢t = 1| so the mean time between strong encounters is

V3

12 V W w NP n 5
e e yr(wkms-l) (Mo) (1pc—3) 34D




& 14 o XA X
bl & 10t L 4 Yoot . (347
T An G2m2n . yr(lOkms—l) (M@) (1PC_3) 24D

In Section 2.1 we found that n &~ 0.1 pc— for stars near the Sun; so #;, ~ 101
years. This is about ten million ‘Galactic years’, and it far exceeds the age of the
Universe. Gravity is a much weaker force than the electromagnetic forces between
atoms, and even though stars are by terrestrial standards very massive, they still
do not often come close enough for the gravitational attraction of one to cause a
large change in another’s orbit. Strong encounters are important only in the dense
cores of globular clusters, and in galactic nuclei.

3.2.2 Distant weak encounters

For molecules in the air, the electric and magnetic forces of distant particles
will tend to cancel each other, averaging to zero. Thus strong close encounters are
overwhelmingly more important in changing their speeds and direction of motion.
But gravity is always an attractive force; a star is pulled toward all other stars,
however far away. In this section we will see that the cumulative pull of distant
stars 1s more effective over time in changing a star’s direction of motion than are
single close encounters.



In a distant encounter, the force of one star on another is so weak that the stars
hardly deviate from their original paths while the encounter takes place. So we
can use the impulse approximation, calculating the forces that the stars would feel
as they move along the paths they would follow if they had not been disturbed.
We start with a star of mass M, moving at speed V along a path that will take it
within distance b of a stationary star of mass m (Figure 3.5). The motion of M
is approximately along a straight line; the pull of m gives it a small motion V|
perpendicular to that path. If we measure time from the point of closest approach,
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Figure 3.5 A weak encounter: star M moves at speed V past the stationary star m,

approaching to within distance b.

the perpendicular force is

GmMb | dVy
(b2 4+ V242312 dr

Bj=

(3.48)

Integrating over time, we find that long after the encounter, the perpendicular

speed of M is

2Gm

Ay = F
N f 1(#)de = v (3.49)

the faster M flies past m, the smaller the velocity change. In this approximation,



forward at times ¢ < 0 exactly balances that pulling it back when ¢ > 0. So the
path of M is bent through an angle

AV, 2
e L EOTD (3.50)
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Setting V = ¢ here shows that according to Newtonian gravity, light should be
bent by exactly half the angle that general relativity predicts, in Equation 2.21.

Momentum in the direction of F | must be conserved, so after the encounter
star m 1s moving toward the path of M at a speed 2GM/bV . The impulse ap-
proximation is valid only if the perpendicular motion does not change the relative
positions of M and m significantly over the time Az ~ b/V during which most
of the velocity change takes place. The perpendicular velocity of approach must

be small compared with V, so we need

2G(m + M)

(3.51)

Thus a weak encounter requires » to be much larger than r, the strong encounter
radius of Equation 3.46.

As star M proceeds through the Galaxy, many stars m will tug at it, each
changing its motion by an amount AV, but in different directions. If the forces
are random, then we should add the squares of the perpendicular velocities to find
the expected value of A Vf. During time ¢, the number of stars m passing M with




3.2 Why the Galaxy isn’t bumpy: two-body relaxation

separations between b and b + Ab is just the product of their number density #
and the volume V¢ -2 b Ab in which these encounters can take place. Multiplying
by AVf from Equation 3.49 and integrating over b gives the expected squared
speed: after time ¢,
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min
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After a time f1ax Such that (A Vf) = V2, the star’s expected speed perpendicu-
lar to its original path becomes roughly equal to its original forward speed; the
‘memory’ of its initial path has been lost. Defining A = (bmax/bmin), we find
that this relaxation time is much shorter than the strong encounter time #; of
Equation 3.47:
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It is not clear what value we should take for A. Our derivation is certain-
ly not valid if » < rg, and we usually take byin = 7y, and byax as equal to

frelax =




In an isolated cluster consisting of N stars with mass m moving at average

speed V, the average separation between stars is roughly half the size R of the
system. Equation 3.42 then tells us that
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i (3.54)
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The crossing time f.0ss ~ R/ V; since N = 4nmw R3 /3, we have
See book’s errata

Irelax £
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(3.35)

In a galaxy with N ~ 10'! stars, relaxation will be important only after about 10®
crossing times, much longer than the age of the Universe. Globular clusters contain
about 10 stars, so for the cluster as a whole tatax ~ 10%%0ss ~ 1010 yr. In an
apen cluster with N = 100, as we saw above, the two timescales are almost equal.

Computer simulations of galaxies generally use between 10* and 10° ‘stars’
attracting each other by their gravity, according to Equation 3.2. Galaxies are
centrally concentrated, and in the dense inner regions, crossing times are only
10°-107 years. Equation 3.55 shows that if the ‘stars’ are treated as point masses,
particles are pulled right off their original orbits on timescales frejax = 10%teross ~
10'° yr. These computations cannot be trusted to behave like a real galaxy for
longer than a gigayear or two; beyond that, relaxation is important. We can extend
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Figure 8-2. The distribution of median relaxation
time ¢ in years for 147 galactic globular clusters.
The results are based on the tabulation of Webbink
(1985), assuming a stellar mass m = 0.7Mg and
mass-to-light ratio T = 27.




Relaxation effects in real systems: in globular clusters
t,.=10°—10° yr

rix 3.2.3 Effects of two-body relaxation

While a star moves in the smoothed potential of a star cluster, its orbit does not
depend on whether it is heavy or light, but only on its position or velocity. If the
smoothed potential ®(x) does not change with time, Equation 3.25 tells us that
the energy of the star remains constant. By contrast, two-body ‘collisions’ allow
two stars to exchange energy and momentum in a way that depends on both their
masses; this is known as two-body relaxation.

Just as for the air molecules in a room, the exchanges on average will shift
the velocities of the stars toward the most probable way of sharing the available
energy: this is a Maxwellian distribution. The fraction f of stars with velocities v
between v and v + Av is given by fy (£) 4w v? Av, where

>
fu(€) o exp{—E/kpT) = exp {—[mcp(x) 5 %”—] / kBT} ; (3.56)

kg 1s Boltzmann’s constant. The ‘temperature’ 7 depends on the energy of the
system: the faster the stars are moving, the higher is 7. By integrating v fs(£)
over velocity (see Section 3.3 below, or a text on statistical mechanics), we find
that for stars of mass m, T is related to the average of the squared velocities by

1 3
-z—m(vz(x)) = EkBT. (3.57)



The virial theorem (p. ~105 of textbook)
refers to time averages of energies in a system in equilibrium:
E,., = total kinetic energy = sum of all 72 mv?
E,. = total potential energy
E = total mechanical energy = E,;, + E
Virial theorem:
2Ekin + Epot =0
2(E - Epot) + Epot =0 => Epot =2E
also E. = -E
Mnemonic: using, as we almost always do, E as specific energy
(en. per unit mass of test particle), the circular Keplerian motion
has Keplerian circular speed v, where
v2 = GM/r (derived from acceleration eq.: v°/r = GM/r?), thus
E..= Yv? =1 GM/r (kin. en. per unit mass)
E,.. = -GM/r (pot. en. per unit mass)

= -2 GM/r
thus E,, = 2E, E;= -E, and 2E,;, = -E;, i.e. virial relations!

pot



One interesting consequence of the Virial Theorem:

As you know, temperature is just a rescaled thermal (kinetic) energy:
E..="% Nm<v>> = (3/2) NkgT (gas of N atoms, molecules, stars,...)

According to the Virial Theorem, E=-E,, , so
dE/AT =-(3/2) Nkg <0
We call dE/T the specific heat in thermodynamics.

In gravitationally bound systems, specific heat is negative.
Removing energy from the system makes it hotter (i.e. higher T)!

We've seen this seeming paradox inside stars and gas clouds, too.
It's due to the gravity being always attractive: the potential wells are
negative-valued. Sinking into them leads to faster motions =
hotter system of particles, not colder like in laboratory
thermodynamics, where potentials are positive.



These stars leave the cluster; but after a time fjax, NeW stars are promoted
to these high energies, and escape in their turn. The cluster loses a substantial
fraction of its stars over an evaporation time

fevap ™ 136t re1ax- (3.60)

In the observed globular clusters, feyp is longer than the age of the Universe; any
clusters with very short evaporation times presumably dissolved before we could
observe them. For open clusters f.ysp is only a few gigayears. In practice, these
clusters fall apart even more rapidly, as evaporation is helped along by the repeated
gravitational tugs of the giant molecular gas clouds in the Galactic disk, and of
matter in the spiral arms.

Two-body relaxation also leads to mass segregation: heavier stars congregate
at the cluster center, while lighter stars are expelled toward the periphery. If initially
the cluster stars are thoroughly mixed, with similar orbital speeds, the more mas-
sive stars will have larger kinetic energy. But in a Maxwellian distribution, their
average kinetic energies are equal. Thus on average, a massive star will be moving
slower after a ‘collision’ than it did before. It then sinks to an orbit of lower en-
ergy; the cluster center fills up with stars that have too little energy to go anywhere
else. As the cluster becomes centrally concentrated, these tightly bound stars must
move faster than those further out, increasing their tendency to give up energy.

Meanwhile, the upwardly mobile lighter stars have gained energy from their
encounters, but spend it in moving out to the suburbs. Their new orbits require
slower motion than before, so they have become even poorer in Kinetic energy.
Mass segregation is a runaway process: the lightest stars are pushed outward into
an ever-expanding diffuse outer halo, while the heavier stars form an increasingly
dense core at the center. Pairs of stars bound in a tight binary will effectively
behave like a single more-massive star, sinking to the core. The X-ray sources in
globular clusters are binaries in which a main-sequence star orbits a white dwarf
or neutron star; they are all found near the cluster center.

In a globular cluster,
stars exceeding the
escape speed Vv,
leave the system, or
“evaporate”.

That’s consequence #1
of relaxation-driven
evolution.

Consequence #2 is the
formation of gradually
more compact and
dense core.
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Small, dense cores in globular clusters M15 and M4.
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Fig 3.7 (Pasquali, Fahlman, Pryor) ‘Galaxies in the Universe' Sparke/Gallagher CUP 2007



The red, initial density profile

— e S P

Evolution of a globular
cluster

Results of a semi-analytic
method using the so-called
Fokker-Planck equation.

Unlike the Monte Carlo
method, these results are not
subject to statistical noise.

Typical time of evolution before
core collapse is 20 trelax.

Core collapse is the name for
extreme compactification of the
stellar system’s core.

p~ [1+ (r/b)?]" or a similar, so-called, King model



2.0

Initial profile was a Plummer sphere.

Comparison of results of a exact
N-body simulations (symbols),
usually with N=150-350, with
semi-analytic Mte Carlo method
(line).

In Mte Carlo method, stellar orbits in
a smooth potential are followed with
occasional added jolts simulating
the weak and strong encounters.
Random number generators help

to randomize perturbations.

The results are subject to significant
statistical noise.

Upper lines show radius enclosing
90% of mass, middle lines 50%, and
the lower show 10% of total mass.



core collapse (suspected also in M15, but not common)

stars predict that after 12—-20 #,c1ax, the core radius shrinks to zero, as the central
density increases without limit: this is core collapse. A cluster that is near this
state should have a small dense core, and a diffuse halo, as we see for NGC 6293
in Figure 3.6.

What happens to a cluster after core collapse? In the dense core, binary stars

become important sources of energy. Just as two-body ‘collisions’ tend to remove
energy from fast-moving stars, so encounters between single stars and a tight
binary pair will on average take energy from the binary. The energy is transferred
to the single star, while the binary is forced closer. Depending on how many are
present, binaries may supply so much energy to the stars around them that the
core of the cluster starts to re-expand. s

Figure 8-7. A typic: n between a hard binary and
a field star (from Hu t & B h all 1983). A]] th: stars have
qalma.ssa.ndth orbits are plotted in the fmassfame
h binary, containing stars 1 and 2, enter: from the left; the
gl star (lbld3) nter: fom the ght The outcome of
th interactios thtta:2 capes, lea gla.nd3bhd
as a ew]y f orme: d binary. Re; p inted by permission from The
Astrophysical Journal.



Evolution of Spherical Systems
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Figure 8-7. A typical interaction between a hard binary and
a field star (from Hut & Bahcall 1983). All three stars have
equal mass and the orbits are plotted in the center-of-mass frame.
The binary, containing stars 1 and 2, enters from the left; the
single star (labeled 3) enters from the right. The outcome of
the interaction is that star 2 escapes, leaving 1 and 3 behind
as a newly formed binary. Reprinted by permission from The
Astrophysical Journal.

3-body interaction
a binary comes
from the left
encounters a single

and the components
trade places



ASTNB23 -ILecturer22
MilkysWayes
kinematics and structurne

Parallax and distance measurement
Luminosity and mass functions - a few basic facts
Kinematics of the solar neighborhood
Thin disk, thick disk
Open and globular clusters
- metallicity, age, distribution, motion
Infrared view
Galactic bulge and center
Rotation



Step number one:

llagher

Measure the parallax (the Hipparcos satellite, 1989-1993)
Measure the apparent magnitude m.

This could be done for 0.12 min bright stars,

with positional accuracy ~milliarcsec (1 milliarcsec = 1°/3600000)

Step number two:
Derive distance from (d/ 1pc) = (17 / parallax)

Derive the absolute magnitude M from distance modulus

m - M =5 log (d/10pc) = 5 log (0.1” / parallax).

Knowing M for certain classes of stars gave accurate distances
to a few hundered pc.



The most numerous stars in the Galaxy have mass 0.3-0.5 Msun
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Fig 2.5 (E. Moreau) 'Galaxies in the Universe' Sparke/Gallagher CUP 2007

Frequency of stars with different masses = a power-law with exponent (index) -2.35

Near the Sun, we find roughly
E(M) = oM™, (2.5)

where the constant & sets the local stellar density; this is called the Salpeter IME.
Figure 2.5 shows the observed numbers of stars at each mass in the Pleiades clus-

ter chown 1in Fionire 2 10 below Thic cliteter 1¢ only 100 Myt old en for maceec




Using the Galaxy-centred spherical polar coordinates R, ¢, z that were ihtro—

duced in Section 1.2, we often approximate the density n(R, z, S) of stars of a H H
particular type S by a double exponential form, Thin and thick

disks of the Galaxy

n(R, z, §) = n(0,0, S) exp[—R/hr(S)] expl—|z|/k,(S)], (2.8)

where A is called the scale length of the disk and £, is the scale height. Fig-
ure 2.7 shows that near the midplane, z, A2 300-350 pc for K dwarfs, while for more

massive and shorter-lived stars, such as the A dwarfs, it is smaller, /. < 200 pc. 63
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Fig 2.8 (Reid, Knude) 'Galaxies in the Universe' Sparke/Gallagher CUP 2007

Figure 2.7 Looking toward the south Galactic pole, filled circles show the density of
stars with 5 < My < 6; these are late G and early K dwarfs. Sloping dashed lines show
n(z) o exp(—z/325pc) (thin disk) and n(z) « exp(—z/1350 pc) (thick disk); the solid
curve is their sum. At z = 2 kpc, most stars belong to the metal-poor halo. A dwarfs (star
symbols) lie in a very thin layer — N. Reid, J. Knude.



2 Mapping our Milky Way

age

Table 2.1 Scale heights and velocities of gas and stars in the disk and halo

hz Ogr Ty o (U}-)
Galactic component (pc) (kms™1) (kms™!) (kms™!) (kms™!)
HI gas near the Sun 130 5 7 tiny
Local CO, H; gas 65 4 tiny
Disk stars: Z > Zg/4 (Fig. 2.8) small dispersion of velocity

T < 3 Gyr ~250 30 21 16 —11

3 <1 < 6Gyr ~300 36 25 19 -9

6 <t < 10Gyr ~350 38 2> 24 —16

T > 10Gyr 62 52 37 —21
Thick disk large dispersion of velocity

[Fe/H] = —0.8 ~1500 52 37 40 —35
Halo stars near Sun huge dispersion of velocity

[Fe/H] < —1.6 Z1kpc ~150 ~100 ~100 —210

v Halo stars at 2.5R, few kpc 80—-100 130-150 130-150 —220

Note: Gas velocities are measured looking up out of the disk (o, of HI), or at the tangent point
(o4 for HI and CO); velocities of thin disk stars refer to F stars of Figure 2.8.

Velocity vy is in the direction of Galactic rotation, relative to the local standard of rest, a circular
orbit at the Sun’s radius Ry, assuming v, o = Skms™1.

This quantity measures the spread of vertical velocities v



Vertical velocity w.r.t. sun (W) as a function of stellar age:
stars are born in a thin disk with small W; older stars are in a thicker disk
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Fig 2.9 'Galaxies in the Universe' Sparke/Gallagher CUP 2007

Figure 2.8 For nearby main-sequence F stars, velocity v, — v, ¢ is perpendicular to the

Galactic plane, measured relative to the Sun. Open circles show stars with less than 1/4
of the Sun’s iron abundance. Older stars tend to be moving faster; the average velocity
is negative, showing that the Sun moves ‘upward’ at 7-8 km g1 —’B. Edvardsson et al.,
A&A 275, 101; 1993.



Vertical velocity w.r.t. sun (W) as a function of stellar age:
stars are born in a thin disk with small W; older stars are in a thicker disk
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Figure 2.8 For nearby main-sequence F stars, velocity v, — v, ¢ is perpendicular to the

Galactic plane, measured relative to the Sun. Open circles show stars with less than 1/4
of the Sun’s iron abundance. Older stars tend to be moving faster; the average velocity
is negative, showing that the Sun moves ‘upward’ at 7-8 kms~' — B. Edvardsson et al.,
A&A 275, 101; 1993.



Open clusters - e.g., Pleiades, Hyades (Pop 1)
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Figure 2.11 Measured apparent magnitude my and color B — V for stars in
cluster; points show observed stars, and the solid line is an isochrone for s
old. The dotted line shows the same isochrone without correction for dust re

Figure 2.10 Central region of the Pleiades op¢n cluster; the brightest few stars easily
outshine the rest of the cluster — NOAO.

dashed line is an isochrone for age 16 Myr — J.-C. Mermilliod. FOreg rou nd
. gas nebulae
Table 2.2 Some nearby open clusters |
—Y
d l My, Ly color e o, age
Cluster (pc) [Fe/H]v (mag) UO° L) (B—V) (pc) (kms 1) (Myr)
Pleiades M45 130 0.11 —4.3 4.5 —0.05 1.5 =1 100
NGC 6705 MI11 1700 0.10 —6.1 24 0.17 0.7 1.2 200
Hyades 46 0.12 =2.7 1.0 0.40 2.7 0.3 625
NGC 2682 M67 870 —-0.10 —-3.3 2.4 0.65 1.1 0.6 4000

Note: d 1s the distance from the Sun; [Fe/H] = log,, Z/Zs; r. is the core radius; and o, is the
dispersion in the radial velocity V, of stars in the cluster’s central region.



47 Tucanae A large, bright globular cluster in
the Milky Way, also known as NGC 104

Two Micron All Sky Survey Image Mosaic: Infrared Processing and Analysis Center/Caltech & University of Massachusetts

47 Tucanae is the second
brightest globular cluster.
It contains ~1 min star.

It can only be seen from
the Southern Hemisphere.

This image is 34 arcmin
across, ~0.56 degrees
(comparable with Moon, Sun).

The infrared colors of all these
stars are very similar.



Globular clusters - e.g. omega Centauri, 47 Tucanae

Figure 2.12 o Centauri, the Milky Way’s most luminous known globular cluster— V-band
image from the CTIO Schmidt telescope.

(Pop II)
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Figure 2.14 Positions projected on the sky, as seen from Earth, of metal-rich globular
clusters (left), which lie close to the Milky Way’s disk, and metal-poor clusters (right),
with a more spherical distribution. The small circle marks 20° from the direction to the
Galactic center; the large outer circle is at 90°; the solid line is the Galactic equator.
Between the dashed lines, at b = +5°, clusters may easily hide behind interstellar dust.
47 Tucanae is a nearby disk cluster, which is only 3 kpc from the Galactic plane; although
metal rich, Palomar 12 is a halo cluster — R. Zinn.

Connection between kinematics and geometry: thick disk of high-metallicity

globular clusters (left-hand panel) is made of objects on low-inclination, nearly-circular
orbits <=> the system has some prograde rotation.

Spherical system (right panel) has completely disorganized motions, no rotation

on average; some clusters have prograde, some retrograde motion; orbits are highly
inclined. The same facts about rotation apply to individual stars in the Galaxy.
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Figure 2.13 Above, color-magnitude diagrams for globular clusters 47 Tucanae and M30;
all vertical scales coincide in absolute magnitude. Above left, the star sequence crossing
the main sequence near B — R, mg = (1.25, 19.5) is the red giant branch of the Small
Magellanic Cloud, seen in the background. Below, open circles show the central locus of
the main sequence and red giants; solid curves are isochrones; a model zero-age horizontal
branch is plotted along with the stars. Left, for 47 Tucanae, a metal-rich cluster, isochrones
for [Fe/H] = —0.83, and ages of 10, 12, and 14 Gyr; right, for M30, a metal-poor cluster,
isochrones with [Fe/H] = —2.31, and ages 12, 14, and 16 Gyr — T. Smecker-Hane.

Age, distance, metallicity
are varied in models until
the predicted H-R diagram
(below) matches the
observations (above).

For instance, 47 Tuc has
[Fe/H] = -0.83 and age
~12 Gyr

Cluster M30 has fewer
metals [Fe/H] =-2.31
and older age ~14 Gyr

One also uses RR Lyr variables
(pulsating low-mass stars with
L~50 Lsun) in glob. clusters

as standard candles



INFRARED & RADIO VIEW of our GALAXY

SPECTRAL WAVELENGTH TEMPERATURE
REGION (microns) (Kelvin) WHAT WE SEE
Near-Infrared 0.8 to5 740 to 5200 Cooler red stars,

Red giants, Dust is transparent

Mid-Infrared Sto 25 90 to 750 Planets, comets, asteroids
Dust warmed by starlight
Protoplanetary disks
Far-Infrared 25 to 350 10 to 100 Cold dust

Central regions of galaxies
Very cold molecular clouds

Sub-mm and mm 850-2000 10 to 30 Larger (~mm), cold dust grains
Radio e.g., 21 cm HI line Global structure of the Galaxy,
hydrogen clouds



Infrared view of the center of the Galaxy:

optical view 2MASS (2 micron all-sky) survey

Picture made from star counts
(not a direct image)

total of 250 min stars measured
in 2MASS.




Infrared view of the Galaxy: 2MASS (2 micron all-sky) survey




Infrared view of
the Galaxy

Using the Galaxy-centred spherical polar coordinates R, ¢, z that were ihtro—
duced in Section 1.2, we often approximate the density n(R, z, S) of stars of a
particular type S by a double exponential form,

n(R, z, 5) = n(0, 0, S) exp[—R/hr(S)] exp[—|z|/ k. (S)], (2.8)

where £y is called the scale length of the disk and %, is the scale height. Fig-
ure 2.7 shows that near the midplane, &, A~ 300-350 pc for K dwarfs, while for more
massive and shorter-lived stars, such as the A dwarfs, it is smaller, h, < 200pc.

hr = 2 to 4 kpc, both for the thin (hz~ 0.3 kpc) and the thick disk (hz ~ 1.5 kpc)

Beyond R=15 kpc, the disk density is rapidly declining. The brightness distributions of
other galaxies show similar downturns.



Infrared view of the Galaxy: 2MASS (2 micron all-sky) survey

20% of Galaxy’ s light from the bulge, R~1 kpc

Stars: few Gyr old, metal-rich unlike the metal-poor stars of the

galactic halo, the mner halo is also more round and does not'show rotation
N the he sun, but slower:

Galactic Nucleus

31

show that theMllky Way has a central bar ex endlng to }‘
R=2-3 kpc. Itis a Sbc galaxy or SABbc( r) - there can be no i
perfect agreement when looking at multi-wavelength datal! v

8 arcsec
. : T
The center of the Galaxy (nucleus) is a very exotic place,

with the Sagittarius A* radio source, surrounded by a torus (R=7 pc) of ,Iecular
gas, which flows in at a rate of 0.001-0.01 M./yr and formed dozens o

massive stars within the last 3-7 Myr. Nucleus (right panel, showing gas) is
much smaller than the black dot in the background picture.

A fairly dark and inactive, ‘starved’ black hole (m= 2-3 mIn Msun) lurks

in the center of Galactic Nucleus (white dot).




21 cm - line data are used to determine basic Galactic rotation

Leiden/Dwingeloo & IAR HI Surveys; b =0

180" 150" 120" 90" 60" 30 o 30" -60" -90" -120" -150" -180"
Galactic Longitude

Fig 2.20 (D. Hartmann) 'Galaxies in the Universe' Sparke/Gallagher CUP 2007

Figure 2.18 Inthe plane of the disk, the intensity of 21 cm emission from neutral hydrogen
gas moving toward or away from us with velocity Vjgg, measured relative to the local
standard of rest — D. Hartmann, W. Burton.




Rotation curve of Milky Way is approximately flat:
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ASTB23. Lecture L23
Rotation curves and spiral arms in galaxies -
observations and theory



5.3.2 Dark matter in disk galaxies

We can compare the rotation curve of Figure 5.20 with what we would expect
if the mass of the galaxy had been concentrated entirely in its stars and gas. For
the stellar disk and the bulge, we assume that the density of stars is proportional
to the R band light, and guess at the mass-to-light ratio M /L. For the gas disk,
the surface density is approximately 1.4 times that measured in HI, since helium
contributes a mass about 40% of that in hydrogen; see Section 1.5. We calculate
the contributions to the radial force from each component separately, and we add
them to find the total. Thus V?(R) for the galaxy is the sum of contributions from
the various parts.

Taking the bulge to be nearly spherical, we can find its inward force from
Equation 3.20. Because the stellar and gas disks are flattened, their force can point
either inward or outward. At R < 6 kpc, the force from the gas disk is outward,

making a negative contribution to V2(R)| In Figure 5.20, the ratio M /L has been

adjusted so that gas and luminous stars account for as much of the galaxy’s rotation

as possible: this is the ‘maximum disk’ modell If no other matter had been present,

we see from Figure 5.20 that the rotation speed should have begun to fall at around
20 kpc from the center. Like the Milky Way, this galaxy contains substantial mass
in regions beyond the visible stellar disk. The curve labelled ‘halo’ shows how a
spherical halo of dark matter could provide enough inward force to account for
the measured rotation speed; at least 75% of the total mass appears to be dark. The
outer reaches of this galaxy contain almost exclusively HI gas and unseen matter.

(superposition
principle for
gravitation)

(next slide)



Decomposition of the rotation curve of NGC 7331-
a Milky Way-like galaxy




Decomposition of the rotation curve of NGC 7331 giving the best

fit to the observations
VZ(R)  GM(<R)

R R?

radius (arcminutes)
~ 0 2 4 6 8
L AR N A RN TR
€ 250 F =
= : 1 If there are several
= o 1 7 subsystems (e.g. gas,
>iso b ] stars in a disk, halo)
ks f ] contributing to M(<R),
g 100 F: 7 then the rotation curve
< s b ] is a sum of squares
1SS 1 of several rotation
Big waigi-ke " curves.
o 0 10 20 30 40

radius (kiloparsecs)

Figure 5.20 Points give rotation curve of NGC 7331, as found from the HI map of Fig-
ure 5.13; vertical bars show uncertainty. CO gas (dotted), observed with a finer spatial
resolution, traces a faster rise. The lower solid curves show contributions to V(R) from
the gas disk, the bulge, and the stellar disk. A dark halo (dashes) must be added before
the combined rotation speed (uppermost curve) matches the measured velocities — K.
Begeman, Y. Sofue.



A spherically-symmetric dark halo density-velocity model
often used for spiral galaxies

- R?. - _1
— A0 |

Ph = Pp 1 ' -2 !
) ore
. R

Uh = 1, [l — R;;“ axcta.n(RC ),
' ore

max '4___ - DR2
Uh - \' ‘ 14 tocore

total rotation curve contributions sum up quadratically:

2 — 2 2
\Y total — V + V + V halo

stars as



PLOI 11.

The high-resolution Her rotation curves (filled circles, solid lines) and the H I rotation curves from BV
(open circles, dotted lines). The horizontal bar shows the FWHM beam size of the H I observations.
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Peak rotation speeds in spiral galaxies are usually 150-300 kms™'. They
rarely rise above 400 km s~ !, and the fastest measured rotation is about 500 km §4;
in the S0/Sa galaxy UGC 12591. Larger galaxies, with longer scale lengths A,
generally rotate more rapidly; these tend to be the Sa and Sb galaxies, rather than
the Sc, Sd, and Sm systems. The rotation curves of Sa and Sb galaxies initially
climb steeply, showing that relatively more of their mass is closer to the center.
In these systems, the luminous matter in the disk and the bulge is concentrated at
small radii, and the dark matter in the halo also becomes very dense there.

In Sd and Sm galaxies, the rotation speed increases more gradually. These
galaxies do not have large bulges, and Figure 5.8 showed us that their luminous
disks have low central surface brightness. The rotation curves show that the dark
halo also lacks central concentration; its core, where the density is nearly constant,
must be larger in relation to the galaxy’s stellar disk. Most low-surface-brightness
galaxies rotate slowly, with gently ascending rotation curves like those of Sd or Sm
galaxies; but there are some with higher speeds, and faster-rising rotation curves.

The proportion of dark matter required to explain these rotation curves varies
from about 50% in Sa and Sb galaxies to 80-90% in Sd and Sm galaxies. There
may be yet more dark material out beyond the last point where we have observed Hi

Notice how the three aspects of dark matter vary with galaxy type

Asymptotic
velocity

Gradual rise

of rotation curve:
a sign of large
core of DM halo

Dark matter
(DM) contents
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Figure 5.22 The Hi global profile for NGC 7331: radio power F), (in janskys) received .
. o e rotation speed
from gas moving at each velocity, measured with respect to the Sun; Vo = Vi, the

recession speed at the galaxy center — K. Begeman. Of d |Sk gaIaXieS

Brighter galaxies rotate faster on average, which tells us that they are more
massive. Brent Tully and J. Richard Fisher showed that the rotation speed of a
galaxy increases with its luminosity, roughly as L o V.., with @ ~ 4: this
is the Tully-Fisher relation. The observed values Tall closer {0 a SIngle curve
when L is measured in the red or near-infrared. The blue luminosity is more
likely to fluctuate over time, since young massive stars contribute much of the
light. In the blue, a galaxy that has recently had a burst of star formation will
temporarily be much brighter than it usually is, while Viya remains unchanged;
so the observed luminosities will scatter widely about their mean at any given
rotation speed.

Figure 5.23 plots the width of the global profile against the apparent magnitude
measured at K’ &~ 2.2 um for galaxies in the Ursa Major group; the luminosity
increases slightly slower than the fourth power of Viax. Another recent study,
measuring the galaxy light in the H band at 1.65 pm, found

Ly P Vi 3.8 e
3x100L g o 196 kms~! ' ’
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Figure 5.23 For galaxies in the Ursa Major group: from the HI global profile, width
W/sini ~ 2V, plotted against apparent K’-magnitude. Low-surface-brightness galax-
ies (open circles) follow the same relationship as those of high surface brightness (filled
circles). The solid line passing through L = 3 x 10!°L,, V.o = 205kms~! has slope
L o Vg . =M. Verheijen.
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A grand-design spiral: M51

Optical image, for comparison:
(not to scale)
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A typical radio-map of HI at 20cm

M51 20cm Total Intensity (VLA



Notice two different types of rotation curves

Table 5.1 The sequence of luminous disk galaxies

Characteristic S0-Sa Sbh-Sc Sd-Sm
Spiral arms absent or tight open spiral
Color red: late G star early G star  blue: late F star A —
B—-V 0.7-0.9 0.6-0.9 0.4-0.8
1550A -V  4t02 2t00 Oto—1
Young stars few relatively many
HII regions few, small more, brighter
Gas little gas much gas
M(HI)/Lg =0.05t0 0.1 ~0.25to >1
luminous less luminous
Lp (1-4) x10"L, (<0.1-2) x10'°L
1(0) high central brightness low central brightness
massive less massive
M(<R) (0.5-3) x 10" M, [/\A (<0.2-1) x 10" Mg
Rotation fast-rising V(R) »R slowly rising V(R)

Note: color 1550 A — V is defined as for 15 — V in Table 1.3, using flux-based
magnitudes at 1550 A measured by OAO and ANS satellites.



About 1/3 of spiral galaxies are very regular (so-called
grand design spirals)

~

Y a

NGC 2841

azy M 33

(cf. Fig 5.26 in textbook) | M

—
s CJO




Barred Spiral Galaxy NGC 1300 Most barred galaxies show regular spirals,

' R ':_ﬁ producing those spirals, according to theory,
= ' =0 yia the 8O- Called Lindblad resonances
.f- : 1 .' -~
: £ SR
-i.
‘ :-*.75? 5
= ,..9"
’l
Hubble
Heritage

NASA, ESA and The Hubble Heritage Team (STScl/AURA) » Hubble Space Telescope ACS ¢ STScl-PRC05-01



rotation

leading trailing

219

Figure 6-5. Leading and trailing arms.



One early idea was that the arms we see are

material spiral arms,

made of concentrations of stars and gas, which never leave the
arms. It has the winding problem: if the rotation curve is flat,
the angular speed is ~1/R, and the pitch angle decreases

as i~1/t toward /=0 too fast, in just several galactic

years (turns). time 3

time 2

time 1



A better idea: spirals as kinematic waves forming a steady pattern

It” s a nice idea but to make it work,
we would need to assure that all
the orbits precess (turn) at the
same rate: only an additional,
dynamical force can do this:
self-gravity! This effect can only be
properly calculated in a density

Figure 5.28 Left, oval orbits nested to form a two-armed spiral; the equation of the pat-
tern is R = Rg{140.075cos[2(5 —5R, + ¢)1}™", and 0.3 < R, < 1. Right, a one-armed wave theory
spiral, with R = R,{1+0.15cos[(5—5R, + ¢)I} "




The best idea: spirals = density waves, or traffic jams in which

new stars are born
Screech!

individual cars move through the traffic jam

incoming clouds
. -0 and stars
density wave R

gy E ‘

only the long-lived
stars make it out.

(enhanced gravity)

Spiral density waves are like traffic jams. Clouds and stars speed
up to the density wave (are accelerated toward it) and are tugged
hackward as they leave, so they accumulate in the density wave
(like cars bunching up behind a slower-moving vehicle). Clouds
compress and form stars in the density wave, but only the fainter
stars live long enough to make it out of the wave.



Hot O and B Regions of
« stars with star formation
H Il regions

association

.

Fast motion of .
interstellar gas and
Slow motion of dust - this material
spiral arm is compressed within =,
the spiral arm




Whirlpool Galaxy = MST

Hubble

| {L"Ii‘l}(t

NASA, ESA, S. Beckwith (STScl), and The Hubble Heritage Team (STScl/AURA) * Hubble Space Telescope ACS * STScl-PRC05-12a

Finally, galactic encounters can also generate grand-designs




Spiral pattern theery

Density wave theory
The WKB dispersion relation for waves in disks
Toomre stability (gravitational stability) of disks
4 possible types of waves in galactic disks
Density wave theory of Lin & Shu
Spiral pattern = Waves + Resonances (resonant cavity)
+ Wave amplification + Feedback
(or w/o amplification & feedback, if waves are driven by
external forces like the gravity of bars or by encounters)
Growing mode cycle theories (competing!):
1. WASER amplification scheme, a slow WKB wave growth
2. SWING amplification as non-WKB rapid amplification mode



Waves, stability and fragmentation of disks

In the gas-dynamics ap tellar “fluid’

Self-gravity, vel
and the epicyclic
effects governing the

eed in gas),
in physical



exp(iy) = cosy +isingy  Euler formula (all the math you' Il need
to understand the exponential notation below).

i =+-1 We write complex quantities, but remember to
take a real part of any result in the end. It pays off...

To study waves in disks, we substitute into the equations of

hydrodynamics the wave in a WKBJ (WKB) approximation, often used in
guantum mechanics. Assume that waves are sinusoidal, tightly wrapped,

or that kr >>1. All quantities describing the flow of gas in a disk, such as the
density and velocity components (let’ s call them X), are given by cosines as:

X(r,0,t)~ X, + X,(r)expli(mb +fk dr —wt)] (observed: real part!)
w = w(k) = frequency of the wave inertial frame

k = wave vector (k>0 is a trailing, k<0 a leading spiral)

Some history




40 I T T T T

,t)| = 2m. If the arms are tightly wound we may replace f(R+AR,1)
 f(R,t) + (0f/OR)AR so that (3f/0R)AR = 2m. In this case AR is
tical to the radial wavelength

27

AR, ) = 3 6-10
(B:9) = 57 R.n/oF] H10)
is also useful to introduce the radial wavenumber
_ 0f(R,t)
BB f)'= S, (6-11)

that A = 2x/|k|, but &k can be positive or negative. The sign of k
rmines whether the arms lead or trail. If we assume that the galaxy
tes in the direction of increasing ¢, then

leading arms < k£ <0 ; trailing arms < k > 0. (6-12)

pitch angle 7 is given by equation (6-2) as

cots = ‘EE S (6-13)
m

30 .
L] L2
. Lo ad .
20| . § - respectively
: oy haud
it g
10k o m ° | Figure 6-12. Measured pitch
SR, 3 3 angle as a function of Hubble type
& 3 o for 113 galaxies (Kennicutt 1981).
Bl o Reprinted by permission of The
1 1 1 1 .
Sa Sh Sc Astronomical Journal.
RSA TYPE

(2
A

= Notice the typical values of pitch angle

/ for Sa, Sb, Sc types of: 5°, 12°, and 15°-25°,

(...If you ever need to
find the wavelength

in the radial direction,
use this general formula,
binding wavelength and
wave number)



Example of a crest of the spiral
wave ~Xi1exp|...]

for k=const >0 , m=2,

and constant time frequency w

The wave-crest shape
and angular speed Q,
(trailing wave)

This spiral

pattern has a constant
shape and rotates

with a constant angular
speed, which we can

find by taking one point

r = const on a wave-crest

almost all
observed patterns
consist of trailng

(equation on the right), spirals
and looking at how the
azimuthal angle depends on time:
mé-wt=const.
0 =(w/m)t+const.= Q t+ const. im0 + ifk dr —iowt = const
€, = %1 The argument of the
which shows that the whole pattern exponential function is
rotates counter-clockwise at angular constant on the spiral

speed €2 , wave-crest



A dispersion relation is, as in all the physics, a relation
between the time and spatial frequencies, w = w(k)

The one describing a simple harmonic (sinusoidal) sound
wave in the air:

(don’ t use that

) = CU(k) = Ck = Zﬂ,’c/ﬂ, relation for galaxies,
it’ s only good for sound
A — wavelength Of the wave or other waves travelling

through uniform medium or
space at speed c!)

the waves in a non-rotating medium w/o gravity are simply pure
pressure (sound) waves.

The complications due to rotation lead to a spiral shape of
either a sound wave, or a fully self-gravitating pressure wave.



Dispersion Relation for non-axisymmetric waves in disks
tight-winding (WKB) local approximation

Doppler-shifted epicyclic self- disk pressure
frequency frequency gravity (or velocity dispersion)

(mQ-w)’ =k’ -2aG2 | k| +c’k’

m = number of arms (azimuthal number)

Q = angular orbital speed

w = frequency of the wave in the inertial frame

K = epicyclic frequency (natural radial freq.in disk)
2 = surface density of gas e g.‘\

¢ = soundspeed In Keplerian disks, i.e. disks
around point-mass objects

k = wave vector (length) K = Q2 = angular Keplerian speed



Dispersion Relation in disks with axisymmetric (m=0) waves
(m=0) o =x’-2aG2|k| +c’k’

w'—min < Jw =0 < |k

cr |_

G2/ ¢*

and if we plug the above most unstable (or critical) k,
 then the smallest @” is
w =K’ - (1G2)’/c’

Finally, w0 corresponds to the loss of stability §

KC '
O =——| Safronov — Toomre number 4
G2 (1960 - 1964) Alar Toomre (MIT)

decides about the stability : OQ <1 means gravit. instability

It turns out that even at Q~1.5 there are unstable nonaxisymmetric
global modes. They can be ‘grown’ numerically in an initially symmetric disk.
Observed galaxies have Q > ~ 1.6




Mayer, Quinn, Wadsley, Stadel (2003)

SPH =
Smoothed
Particle
Hydrodynamics

1 million particles

Isothermal disk’ s
gravitational
breakup

(fixed velocity
dispersion, a rather
unrealistic model of
a galaxy; stars not
gaining random
velocities from
encounters with
spiral arms.)




From: Laughlin & Bodenheimer (2001) _ _ _
PROTOSTELLAR DISK EVOLUTION Disk in this SPH (SmOOthed

Particle Hydrodynamics)
simulation initially had Q~1.8

The m-armed global

spiral modes of the form
expli(m@+ | k dr — ax)]

grow and compete with each other.
But the waves in a stable

Q~2 disk stop growing and do
not form separate objects

(baby galaxies).

The same applies to all real disks,
which stay at Q ~1.4 - 2.5,
as far as we can measure their Q
factors. Close to instability, but
safely stabilized by the heating effect
of the huge nonlinear waves

" (negative feedback effect).




Dispersion Relation for non-axisymmetric waves in disks

tight-winding (WKB) local approximation

Doppler-shifted epicyclic self- gas

frequency frequency gravity pressure

m’(Q-Q ) =k’ -272G3| k| +c’'k’




Modal theory of density waves in galaxies (Lin-Shu theory)
Quasi-stationary Spiral Structure hypothesis of C.C. Lin
and F. Shu (1964)

Frank Shu

(UC Berkeley,
1. Pattern rotates at constant speed: UC San Diego)
it is a growing mode of oscillations a well-know

2. Waves are of 4 types (S.T., S.L., L.T., L.L.) astro-dynamicist
3. They propagate in a part of the galaxy

bordered by resonances and/or turning-points which

deflect (refract) waves in a differentially rotating disk.

4. That part acts as a resonant cavity for waves

5. Waves are growing in the stellar disk, but do not reach large amplitude
(arm vs. interarm density contrast) before saturating (levelling off).

6. Saturation is due to the transfer of wave energy to gas disk

7. Gas disk is colder kinematically and responds much more vigorously

to the gravitational forces of the spiral wave in a stellar disk than that disk
itself. As a consequence, gas waves steepen into shock waves:

the non-linear, easily visible density waves that we see.

8. Waves grow between the Inner Lindblad Resonance and Corotational Res.
9. Waves can propagate beyond Corotation to Outer LR. LR’s kill waves.
10. CR region acts as an amplifier of waves due to over-reflection (see below)



Q Lindblad Resonance (LR)

‘}:‘ m(._Q.-—QP) =

1895-1965
Swedish theorist who ’ /\\

proposed an early version of .

the density wave theory  Thg Ieft-hand side is the frequency with € JDl ¢ fj 4 l\ G

which disk material (stars) encounters arms. / _

7

Sometimes called the Doppler-shifted driving ~ \g({/'
frequency

Q» LR = Inner LR
OLR = Outer LR

p

%
CR~ OLR

Schematic stellar motion w.r.t. spiral arm
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Table 5.1 The sequence of luminous disk galaxies

Characteristic S0-Sa Sbh-Sc Sd-Sm

Spiral arms absent or tight open spiral

Color red: late G star early G star  blue: late F star A —

B—-V 0.7-0.9 0.6-0.9 0.4-0.8

1550A -V  4t02 2t00 0to—1

Young stars few relatively many

HII regions few, small more, brighter

Gas little gas much gas

M(HI)/Lg =<0.05t0 0.1 ~0.25 to >1
luminous less luminous

Lp (1-4) x10"°Lg (<0.1-2) x10'°L

1(0) high central brightness low central brightness
massive less massive

M(<R) (0.5-3) x 10" M, [/\A (<0.2-1) x 10" M

Rotation fast-rising V(R) / »R slowly rising V(R)

=

Typically one (or two) ILRs typically no ILR




Situation typical for a rapidly rising rotation curves with a bend/knee
(like in a Plummer potential): there is one or two inner Lindblad resonances

450

400

350

300

250

km/s/kpc

200

150

100

50

Condition for ILR m(2-Q ) =+xK
I or Q =Q -kx/m
Density waves may exist
i in this ‘resonant cavity’
Q
Q+K/2
- Q-x/2 Al
. QLLE — ] €
[ILR OLR p
\ /l | 1 | 1 | l\ |
0 O.é\‘ / 1 1.5 2 25 < 3.5 4& 4.5 5
Distance(kpc)

Two ILRs, one inner and one outer. One OLR.



Just one ILR in a Soneira-Bahcall model of Milky Way

‘o
¥
~ -
1 loLR
g i D
~ | i
o : : t ; | : : : ; ! : \ .
; | OLR condition:
(5K bl m(Q-Q )=-K
1 ! L L | ! /1 | 1 Q ! Q /
0 5 10 or p = +K/m
R(kpe)

Similar pictures drawn for the m=3,4, 5, .. .. wave pattern generate much smaller radial
ranges supporting these patterns (compared with 1.5-12 kpc for m=2 in this example).

That explains why real galaxies select M=2 as their favorite mode. Creation of a mode
(any m) is an energetically favorable: material of the galaxy flows inward, lowering E.



The first type of amplification scenario, called SWING,
applies only to galaxies without ILR
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This is the SWING amplification mechanism (non-WKB)

proposed by Goldreich and Lynden-Bell (1965). The S.T. wave arriving at the
center passes through and reverses the sense of trailing (trailing to leading),
providing positive feedback for the interesting corotational wave amplifier.
The leading wave swings into a trailing one, and over-reflects by a large
factor, to satisfy the conservation laws; a 3rd wave is sent “tunneling” through
the evanescent zone surrounding CR, toward an OLR. (The Outer wave is weak.)



The WASER amplification and cycle of waves in Lin-Shu theory

(amenable to WKB analysis. WASER creates weaker spirals in Sa-Sb spirals)
ILR is present, but shielded from the resonant cavity by
the so-caller Q-barrier, where high values of Safronov-Toomre

Q parameter cause a rapid refraction (turning away) of incoming waves.
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The over-reflection factor at CR zone is smaller than in SWING,
and the stellar waves are growing to only ~5% amplitude (or density contrast)
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Most barred galaxies show regular spirals,
Barred Spiral Galaxy NGC 1300 often attached to the bar’ s ends. Bars are
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Summary of the origin of spiral patterns:

Spiral pattern = Waves + Resonances (resonant cavity)
+ Wave amplification + Feedback

(or w/o amplification & feedback, if waves are driven by
external forces like the gravity of bars or perturbing
galaxies during galaxy encounters)

Growing modes - cycles:
WASER amplification scheme: a slow wave growth

(obtained in WKB formalism)
SWING amplification: non-WKB rapid amplification mode

(WKB = short-wavelength approximation, or in other words, tightly wrapped
spiral approximation)



Summary of the origin of different spiral patterns:

Growth of spiral patterns (modes of density waves circulating in a
disk between the CR and LR resonances) causes the observed
spiral patterns

Explanation of clear progression of seemingly unrelated features in
Sa---Sb---Sc spiral subtype sequence:

Sa galaxies have bigger bulge - steeply rising rot. curve that
turns flat roughly where the bulge ends - WASER -
weaker and more tightly wrapped spirals

Sc galaxies have a small bulge & dark matter is more dominant -
gradually rising V(R) 2> SWING - strong and more open spirals

This explains the many correlated characteristics of Sa-Sc Hubble
classification (bulge-to-disk ratio, rotation curve, strength and shape of spiral
arms, presence of young stars in strong spiral arms)



