
ASTB23 (STARS, GALAXIES) PROBLEM SET #2. SOLUTIONS

Points in the square brackets give the relative weight with which the problems count toward the final score. If you
need any physical constants or stellar data such as solar mass, radius, and luminosity, you may find them in our textbook
or on the web. If you have obtained a solution by a somewhat different path and you have done a good job desribing how
you reached your conclusions, in principle you should get a full credit or almost a full credit. Also, remember that some
questions are estimate questions, where 10 percent difference with the solution below does not matter. If you think your
solution was misunderstood, please talk to the lecturer.

1 [25.] Eddington luminosity in a cold stellar envelope of a supergiant star

Please read section on Eddington luminosity limit in our textbook (p. 60). The derivation is based on a constant
Thomson scattering coefficient and mainly-hydrogen composition, κ = σT h/mH , but it is applicable as well to
the envelope of stars that have a higher opacity coefficient. Find the limiting luminosity of a red supergiant star
with κ = 120 cm2/g (due to molecules and even the condensed solid dust grains), and express it in units of solar
luminosity, if M = 3M�.

What happens when a supergiant exceeds this limiting L?
SOLUTION
LEdd = 4πGMmHc/σT h = 32000L�(M/M�) if opacity is assumed to be Thomson, κ = σT h/mH = 0.4

cm2/g. In our envelope opacity is, however, 120/0.4 = 300 times higher. Consequently, the Eddington luminos-
ity is 300 times lower: LEdd = 107L�(M/M�) = 320L�. Once L exceeds this value, the envelope gets blown
off. In reality, an oscillating envelope is shed nonuniformly in time, in the form of puffs of ”smoke” (opacity is
mostly due to solid grains of dust, like in a smoke).

2 [25p.] Polytropic gas laws of normal and ultrarelativistic gas

A gas law that connects pressure P and density ρ directly via an equation

P = Kρ
γ

is called a polytropic gas law. (A purists may say barotropic, most astrophysicists will say polytropic or adi-
abatic; it’s almost the same thing.) K is a constant, and γ is a nondimensional constant known as adiabatic
index.

Notice that the gas still independently obeys the ideal gas law variously called Clapeyron’s or Boyle’s gas
law, from which its temperature T can be obtained if needed, for any ρ or P. T is not seen in the P(ρ) formula
but is not constant; as a matter of fact T changes with density as T ∼ P/ρ ∼ ργ−1.

Adiabatic behavior is observed in a volume of gas that does not have external heat supply. Adiabatic laws
do not exactly apply to the core of the sun, which is subject to nuclear heating. Neverthelass, adiabatic law is
very important:

(i) it applies approximately outside the energy-producing core,
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(ii) surprisingly accurate models of other stars (brown dwarfs, white dwarfs, neutron stars) and even super-
jovian exoplanets, none of which produce energy in nuclear reactions, can be built using adiabatic relation
P∼ ργ (one example is the subject of next problem),

(iii) atmospheres tend to be approximately adiabatic,
(iv) the relationship applies to soundwaves and density waves in the sun and stars, and even the air in your

room – compression and decompression in a wave happen on a time scale shorter than the heat conduction time
scale, making the behavior of gas locally adiabatic.

Prove that the normal nonrelativistic (monatomic neutral or ionized) gas, has adiabatic index γ = 5/3.
In such a gas (as we already know) the pressure P equals 2/3 of the kinetic (thermal) energy density. Let’s
call such internal energy of disordered microscopic motions U (symbol used in gas thermodynamics), then
P = (2/3)U/V .

Also prove that in ultra-relativistic gas, where as we know P = (1/3)U/V , the adiabatic index equals
γ = 4/3.

To prove this, consider gas of particles in a thermally insulated tube of constant cross section A, ending with
a movable piston. The length of gas column is L, and can grow by a small amount dL in our thought experiment,
which will change both pressure and density. The proof should utilize two fundamental conservation laws.

Firstly, even if the gas volume V = AL and density ρ change, the mass of gas in the tube is constant.
Secondly, the 1st law of thermodynamics expresses conservation of energy, dQ = dE + dW . It says that

the amount of heat supplied (zero in adiabatic gas!) equals the change of internal kinetic energy of gas plus the
mechanical work dW done by the gas (also known as PdV ).

SOLUTION
From mass conservation, mass = ALρ = const, which we may simply write as L∼ ρ−1, as we just want to

get the scaling laws, not the constant coefficients.
First law of thermodynamics says that dU + dW = dU +PAdL = 0, because: force * displacement dL =

dW, and force = PA. In other words, dU = −PAdL = −PdV . From here on, you might have taken slightly
different paths to combine the conservation laws, the result is of course the same.

For instance, I consider the increment dV while you may have used the equivalent AdL. V = AL∼ L, so in
scaling laws L can replace V . Perhaps the shortest way is to express P as a known multiple of U right away.

We know that in two different cases of {non-relativistic, ultra-relativistic} gas, P = {2,1}
3

U
V . Therefore

dU =−{2,1}
3

U
V

dV,

dU/U =−{2,1}
3

dV
V

integration of which on both sides gives

lnU =−{2,1}
3

lnV + const.= lnV−{2,1}/3 + const.

(I mentioned in the lecture that the integration constant takes care of the problem of dimensional quantities
being the argumant of logarithm. E.g., if prior to integration we wrote dU/U = du/u, where u =U/U0 and U0

is arbitrary dimensional constant, we’d get nondimensional versions of variables such as u as arguments of ln.)

U ∼V−{2,1}/3
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which together with V ∼ ρ−1 and U = 3
{2,1}PV ∼ P/ρ gives

P∼ ρ
1+{2,1}/3 = ρ

{5,4}/3.

We usually write this scaling as P = Kργ with γ = 5/3 in nonrelativistic vs. 4/3 in ultrarelativistic gas.

3 [25p.] Lane-Emden equation

The hydrostatic equation of stellar structure reads

1
ρ

dP
dr

=−G
∫ r

0 4πx2ρ(x)dx
r2

(For extra clarity I made an explicit distinction between radius r and radius as an integration variable x.) The
integral gives mass inside radius r.

Multiply the equation on both sides by r2. Differentiate over r, to obtain an equivalent second-order ODE.
More than a century ago, Lane and then Emden successfully formulated that equation for gaseous objects
satisfying polytropic equation of state

P = K ρ
1+(1/n)

For historical reasons, instead of γ we use another constant n, given by the equation 1+(1/n) = γ .
You could substitute the polytropic relationship, and after changing the dependent variable from ρ to a

non-dimensional θ obeying ρ = ρcθ n, you would derive the so-called Lane-Emden equation valid for any n.
Alas, analytical solutions of Lane-Emden equation were only found for n = 0, 1, and 5. Fortunately, one of
those n’s (n = 1) happens to beautifully approximate the equation of state and the structure of neutron stars, as
well as some giant planets! So let us cut to the chase, so to say, and only consider n = 1 in this problem.

Assume that n = 1 (i.e., a polytropic gas with γ = 2). Simplify your 2nd order differential equation by the
change of variable from ρ to a similar but non-dimensional variable θ = ρ/ρc, where ρc = const. is the central
density of the star.

Derive the Lane-Emden equation for n = 1

1
ξ 2

d
dξ

(
ξ

2 dθ

dξ

)
=−θ

where ξ is a rescaled radius: ξ = r/α . (You may take a look at the general form of Lane-Emden equation on
wikipedia, and be surprised how little it varies from this equation.)

What is the expression for α , hiding constants G, K and so on?
Finally, demonstrate that the following function is a solution of n = 1 Lane-Emden equation

θ(ξ ) =
sinξ

ξ

Write the expression for ρ(r) in a star obeying P = Kρ2. What is the radius of such a star? Does it depend
on ρc? Does total mass of the star depend on central density? Formulate a conclusion about the R vs. M
relationship in n = 1 polytropes.
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SOLUTION

1
r2

d
dr

(
r2 1

ρ

dP
dr

)
=−4πGρ

Substituting P = Kρ2, we have (1/ρ)dP/dr = 2K dρ/dr (I hope you did not miss the inner derivative
dρ/dr!). Writing ρ as ρcθ , we get

1
r2

d
dr

r2 dθ

dr
=−2πG

K
θ ,

which is the n = 1 Lane-Emden equation

1
ξ 2

d
dξ

ξ
2 dθ

dξ
=−θ

if we substitute r = αξ , where
α

2 = K/(2πG).

The demonstration that θ = (sinξ )/ξ solved the differential equation is via simple differentiation and
simplification: ξ 2 dθ

dξ
= ξ cosξ − sinξ , and another differentiation and multiplication of that yields

ξ
−2 d

dξ
ξ

2 dθ

dξ
= ξ

−2 d
dξ

ξ cosξ − sinξ = ξ
−2(cosξ −ξ sinξ − cosξ ) =−sinξ/ξ =−θ ,

q.e.d. (Latin ”quid est demonstrandum” ≈ Eng. ”which was to be demonstrated”).
So the density is given by

ρ(r) = ρc
sin(r/α)

r/α

where α = [K/(2πG)]1/2. The sine function and the density hits zero value at such r =R that r/α = π , therefore

R = [πK/(2G)]1/2.

The radius R does not depend on the central density, but the mass of a star does (it is simply proportional to
ρc). This means that polytropes with n = 1 have a radius independent of mass.

4 [25p.] The p-p chain and its neutrinos

99% of energy production in the sun-like stars is from the so-called p-p chain thermonuclear reactions. Al-
though the story how the chain works is a bit complicated, the input and output quantities are neatly summarized
as

4p+ −→4 He+2e++2νe + some γ

4He is an alpha particle, or the nucleus of helium atom, consisting of 2 protons p+ and two neutral but simi-
larly massive neutrons. e+ are the positrons, or anti-electrons (they later anihilate with surrounding electrons,
releasing pure radiation in the form if γ rays).

This problem deals with the number of released very low-mass, weakly interactig particles called neutrinos
(νe, subscript follows from their being of electron neutrino variety, two other types are also known).

On average, Eν = 0.4 MeV of energy (check on wikipedia what unit of energy is eV and how many eV
are equal to 1 jule) is carried by each of the 2 neutrinos from the p-p chain reaction. In comparison, the total
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energy of about 27 MeV is released in other forms of radiation (mostly gamma) and eventually emitted from
the surface of the star as degraded-energy, more numerous visible light photons.

Knowing the luminosty of the sun, estimate to within one or two accurate digits the number of p-p chain
neutrinos, and the number per second of visible photons, leaving the sun. For a rough estimate, assume that
visible photons all have energy Eγ = hc/λ with λ in the middle of the wavelength range of the visible radiation.
(h = 6.626e-34 J s is the Planck’s constant, and c = 3e8 m/s is the speed of light in vacuum.)

Using this knowledge, calculate the number of neutrinos and photons passing through one cm2 (area com-
parable with your eye) every second.

SOLUTION
One reaction results in 2Eν = 0.8 MeV in form of 2 neutrinos (0.4 MeV per neutrino), and E = 27 MeV

in the form of visible photons. Each visible photon has according to quantum mechanics an energy of hν (the
frequency ν of visible photon equals ν = c/λ and can be computed assuming mean wavelength λ ≈ 0.5µm).

Energy is radiated away from the sun in the ratio 0.8:27, or something like 1:30, in neutrino and photon
forms. Assuming therefore that the luminosity of photons is (270/278)L�, while of neutrinos is only (8/278)L�,
we have the following rates of radiation of these particles by the sun: (270/278)L� /(hc/λ ) (photons per
second), and (8/278)L�/Eν neutrinos/s.

Numerically, after converting MeV to J, we get these numbers released per second:

ṅγ ≈ 1045/s

and
ṅν ≈ 3 ·1038/s

[NOTICE: There was a misprint in the original solution! Correct exponent 38 was mistakenly written as
36.]

Dividing by 4π(1AU)2 to obtain the flux at Earth, and multiplying it by 1 cm2 area, we get the number
of particles falling into your eye: ∼ 3 · 1017 photons (1/3 billion billions) per second, and around 1011 or one
hundred billion neutrinos per second. [Out textbook on page 155 makes a much bigger error than the misprint
in our original solution, in stating ”five million neutrinos pass through every cm2 of the detector per second”!]

We don’t see the less numerous neutrinos (they are also VERY weakly interacting with normal barionic
matter of the eye, and even won’t normally be stopped by the whole Earth), while the visible photons enter the
eye in sufficient quantity to blind us temporarily.

5 [25p.] Create your very own Sun (model)

Rewrite the program presented in the lecture and on the course page in Python, among others replacing all the
graphics with Matpliotlib graphics. Follow the same method as in the IDL script, for instance copy exactly the
somewhat arbitrary device to curtail the luminosity accumulating inside the star as it approached value of true
solar luminosity, as well as the same prescription of opacity.

Perform the integration and see if you obtain the same(?) graphs of the non-dimsionalized pressure, density
and temperature inside our nearest star.
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What happens if you change the central temperature or pressure by 5%? What changes and by how many
percent then?

NOTICE
There are 5 problems in this set. Solve any chosen 4 of them. Solutions of only the 4 first submitted

problems will be graded.
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