ASTC25

Perturbation theory of orbits:
General (analytical) perturbations
+ relativistic precession, solar salil
Special (numerical) perturbation theory
¢ Euler and RK methods of integration
Energy integral methods
3 Body Problem

Chaos in the solar system
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1st order perturbation theories
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Carl F. Gauss used the radial (R) and transversal (T)
components of perturbing forces (accelerations) to compute torque (r T)
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The relativistic precession of orbits
as one of the applications of general perturbation theory

< (we' Il cheat a little

by using Newtonian
dynamics with a modified
potential, approximating

the use of general
relativity; that kind of

cheating is quite
MERCURY OKI).
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(1879-1955)

”‘-Peri helion advances
2% per century.

(drawing not to scale, shape and the precession rate exaggerated!)
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R= £ 5in (Oi-l- @), T=fcos(0+a)

//F\\ true anomaly (orbital angle)
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*"'Ya +<— longitude of periastron

We will use solar sail problem
to illustrate three different

| approaches to celestial

y toward the sun  mechanics: two perturbation
theories and the energy method
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e(t) = sin(t/t,), where t, = (2na)/(3f)

Eventually, e —1 after time (n/2)t.. During this evolution, the

orbit’s orientation is perpendicular to the force from the sun!
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Jupiter’s rotational flattening is unmistakably seen here

the same image, rotated 90°

Saturn has a slightly larger flattening.
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L8 Special theory of perturbations
(numerical calculations)

Popular numerical integration methods for ODEs:
Euler method (1st order) & Runge-Kutta (2nd - 8th order)
Symplectic methods

Leonard Euler
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The Euler method

We want to approximate the solution of the differential equation

y (1) = fty(),  y(to) = vo, (1)
For instance, the Kepler problem which is a 2nd-order equation, can be
turned into the 1st order equations by introducing double the number of
equations and variables: e.g., instead of handling the second derivative
of variable x, as in the Newton’ s equations of motion, one can integrate the
first-order (=first derivative only) equations using variables x and vx = dx/dt
(that latter definition becomes an additional equation to be integrated).

Starting with the differential equation (1), we replace the derivative
y' by the finite difference approximation, which yields the following formula

! Ny(t+h')_y(t) ‘
which yields y(2) ~ h ) (2)

o(t+ 1)~ y(t) + hF(t y(t)) 3)

This formula is usually applied in the following way.




The Euler method (cont’ d)

y(t+ h) = y(t) + hf(t, y(t)) (3)-

This formula is usually applied in the following way.
We choose a step size h, and we construct the sequence {,
ty=1t, + h, t, =ty + 2h, ... We denote by y,, a numerical estimate of

the exact solution y(t,). Motivated by (3), we compute these estimates

by the following recursive scheme

.Vn+1 = .yn +h f(tmyn)'

This is the Euler method (1768), discovered but not
formally published 102 yr earlier by Robert Hook.

It's a first order method, meaning that \ !
the total error is ~h 1. It requires small time steps LY

& has mediocre accuracy, but it's very simple!

/




The classical fourth-order Runge-Kutta method
One member of the family of Runge-Kutta methods is so commonly used,

that it is often referred to as "RK4" or simply as "the Runge-Kutta method".
The RK4 method for the problem

y(t) = fty®),  wlto) = yo, (1)

is given by the following equation:

h, |
Yn+1 = Un + E(Al + ZAZ -+ 2'113 + :l»_;\

where . — £ ( =
ki = f (tn,Yn) The interval h in orbital
A A calculations is actually the
ky=f (z‘n + = 51 Yn + kl) timestep At.

h h
k- f (Z‘n + —,Un + A))

k-L - f (ltn + hayn + h'lt_’,)

Thus, the next value (y,.4) is determined by the present value (y,) plus the
product of interval h and an estimate of space & time-averaged full time
derivative of function y(t).



Runge-Kutta 4th order (continued)

Next value (y,.¢) is determined by the present value (y,) an estimated

average derivative or slope. That is a particular unevenly weighted average
ki + 2ky 4 2ky + ky

e Kk, is the slope at the beginning of the interval;  slope = 5
-
e k, is the slope at the midpoint of the interval, using

k, to determine the value of y at the point t, + h/2, using Euler's method
¢ k5 is again the slope at the midpoint, using improved slope k,
e k, is the slope at the end of the interval

The RK4 method is a 4t order method, meaning that the 1-timestep error is
~h%, and global error over a finite time is ~h*. It allows larger time steps &
better accuracy than 2" order methods. But RK4 produces a gradually
(slowly) increasing energy error, because it is not symplectic.

SYMPLECTIC METHODS

Leapfrog method is a 2" order symplectic method. It looks like Euler
method, but all the positions and velocities are separated in time by At/2 (so
the integration needs to be carefully started and ended), and velocity
component must be updated before position components.

Symplectic 4" order integrators exist (some require only 3, instead of 4 force
evaluations per timestep!). They should be used in long-term integrations of
Hamiltonian systems.



Solar sall problem reV|S|ted case A
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(Euler method, h = dt = 0.001 P)
Comparing the numerical results with analytical perturbation theory we see a
good agreement in case A of small perturbations, f << 1. In this limit,
analytical results are more elegant and general (valid for every f) than
numerical integration:
Reminder: e(t) = sin t/te, where te = (2 n a) / (3f), for arbitrary f, n, & a.



Solar sail problem revisited: B, C
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However, in cases B and C of large perturbations, f ~ 0.1...1. In this limit,
analytical treatment cannot be used, because the assumptions of the theory
are not satisfied (changes of orbit are not gradual). Eccentricity becomes
undefined after a fraction of the orbit (case B, C).

In this case, the computer is your best friend, though it requires a repeated
calculation for each f, and always introduces numerical errors of 2 or 3 sorts:
truncation (discretization) error, round-off error, and possible coding bugs.
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. Energy methods (Integrals of motion)
. Zero Velocity Surfaces (Curves)
. R3B problem and the Roche lobe

radius calculation

. Lagrange points and their stability

. Hill problem and Hill stability of orbits
. Resonances

. Chaos & stability in the Solar System
. Corotation Region’s width



Non-perturbative methods
(energy constraints, mtegrals of

| motlon)
in the -

3 Body problem -

Karl Gusta'v' Jacob |
Jacobi (1804-1851)




Solar sail problem again
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Energy criterion guarantees that a particle cannot cross the
Zero Velocity Curve (or surface), and therefore is stable
in the Jacobi sense (energetically).

However, remember that this is particular definition of stability
which allows the particle to physically collide with the massive
body or bodies -- only the escape from the allowed region
is forbidden! In our case, substituting v=0 into Jacobi constant,
we obtain:
ZVC -i-—, =
(x® +32)* +)('x 3=
Y=o > fo"-x+2=o
So(«dwns X>0 only of
JC < & = 0.0625
(no wwwahCal Slomudatbions necusmy [)
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Allowed regions of motion in solar wind (hatched) lie within the
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3-body problems have no known closed-form
(analytical) solution valid for all init. conditions

Y .

Restricted 3 Body Problem (3" body massless, m; = 0)

J N\

Eccentric Circular
(2 massive bodies m, , (2 massive bodies m, ,
on elliptic orbits) on circular orbits)
m5=0




Circular Restricted 3-Body Problem (CR3B)

We sometimes talk about CR3B problem but call it R3B for short.

of the massive binary
Q =n = (GM/a3)"2

L3

== = C.M. = origin of coord. sys.

287
(')}/ d\ (i\/) 0

Joseph Lows Lagrange (1736-1813) L5
[Giuseppe Lodovico Lagrangia]

“Restricted” because the gravity of particle moving around the two massive
bodies is neglected (so it's a 2-Body problem plus 1 massless particle, whose
5 equilibrium positions are shown in the figure by small colored dots.)
Furthermore, a circular motion of two massive bodies is assumed, so they
stand still in the rotating frame. This gives us some important advantages.



Restricted 3 Body, Circular problem

Center of rotating coordinates (x,y,z) is chosen as the center of
masses 1 and 2; mass parameter is h= my/M =m,/(m,+m,).

Third body has position vector r = (x,y,z)

3" massless body




The equation of motion of CR3B with r = (x,y,z) being
position of the 3" body in the frame rotating with two
massive bodies, and velocity vector v = r'=dr/dt, is
r =-vo +Q2r +2Qxv or

dvidt=-V® + Q?r +2QXv
acceler. = gravity + centrifugal + Coriolis acc.
f=-V® stands for the gravitational force field (per unit
mass of the test particle) due to bodies 1 & 2, derived from
time-independent, scalar, gravitational potential ®(r).
You can expand the above into 3 components
X ==d®/dx+ Q%x +2Q vy’
y ==d®/dy + Q% -2Q x°
z =-dd/dz
This is used e.g. in numerical solutions of the R3B equations.
Notice that r(t)=(x,y,z) is all we seek in this problem. Positions of

the massive bodies are known and unchanging, and Q is the known
angular speed of the binary, not of the 3 body (test particle).



The derivation of energy (Jacobi) integral in CR3B does not

differ much from the analogous derivation of energy

conservation law in non-rotating systems: we also form the

dot product of the equations of motion with velocity (ve...) and

convert the I.h.s. (vedv/dt) to full time derivative of specific

kinetic energy d(’z vev)/dt. But on the r.h.s. we now have two

additional accelerations (Coriolis and centrifugal terms)

due to non-inertial, accelerated frame. Luckily the dot product

of v and the Coriolis term, itself perpendicular to v, vanishes:

ve (2Q X v)=0.

The centrifugal term can be written as a gradient of a ‘centrifugal

scalar potential’ -2 Q2 r?, since -V(-Y2 Q?r¢) = Q2V (Y2 rer) = +Q%r,

which added to the sum ® = -Gm,/r;,—-Gm,/r, of the grav.

potentials of two bodies forms an effective (grav.+centr.) potential
b =—-Gm,/r; —Gmy,/ry -V2 Q2 12,

For historical reasons, the effective potential of the R3B is often defined

as a positive quantity —29_. . If someone is using “Jacobi constant” look

closely at the definition and if you see positive signs in +Gm,/r; terms
such as in the constant C below, then you know it’s the historic definition.



MORE DETAILS, if you want them: Direct proof that effective
potential is @ 4= P -2 Q27 = -GM(1-u)/r; -GMu/r, -2 Q?r?

where r*(1)=x?+y?+z?, r?({)=(x-x)*+y?+z* ,i.e. r(t)=[(x-x)*+y>+z°] /2
and x=const. is the x coordinate of body numberi = 1,2.

Let’s find (-®.5) . First, calculus gives full time derivative of 1/;
(1/r) © =-(1/r?) dr;/dt. Each r; changes because 3™ body
moves and x,y,z depend on time; dri/dt is a sum of 3 changes:
dr; /dt = dr;/dx dx/dt + dr;/dy dy/dt + dr;/dz dz/dt =
= ~(x/r) vy -(y/r) v, -(2/r;) v, = (-r/r)*v,  so we get

(1/r) " = (rlr3) ev = v *V(-1/r;}), because V(-1/r)) = rir3.
We have two such terms with different constants in (-®.)
-d® ¢ /dt, plus one that looks like

d['2 Q2r)/dt =2 d[Q?rer]/dt = = Q?r ev, so finally

(-Dp) = -veVD +veQ?2r = yeo[-VPeff]
Let’s copy that result to the next page and compare with the
equation of motion in R3B multipied (+) by v



('¢eff). = V-[-VCDeff]
while the eq. of motion reads

v=-VO +Q2r +2Qxv=-VO 4+ 2QXv.
Doing <v (on both sides) gives

[V2 vev] = -veVD_, the same as in the uppermost equation.
We conclude that (®4+%2 vev) = 0.

This proves that Jacobi integral or Jacobi enerqy, defined as
E,=®+%Vv? isaconstant, i.e. it’s independent of time.

E , has the physically intuitive interpretation (potential plus kinetic
energy per unit mass of test particle) and negative signs of
gravitational energy terms.

But, as mentioned, honoring the historical choice made long ago,
we define another form of the integral of motion,

Jacobi constant C, as C =-2E, =-2®_+ -v? = const.

The values of Jacobi constants depend on initial position and
speed of the 3 body, but are conserved afterwards.



Effective potential in R3B mass ratio = 0.2

Qo= +Gmy /r +Gmy/r +/2 Q2 r?,

The historical effective potential of R3B is defined as negative of the Jacobi
energy. Two gravitational potential wells around the two massive bodies thus
appear as chimneys, and the centrifugal potential hill as a bowl outside.






Lagrange points L1...Ls are equilibrium points in the circular
R3B problem, which is formulated in the frame corotating with
the binary system. Acceleration & velocity both equal zero there.

%‘f‘(u/

A

They are found at zero-gradient points of the effective potential
of CR3B. Two of them are triangular points L, s (extrema of potential).
The 3 co-linear Lagrange points L, ; are saddle points of potential.



Jacobi integral and the topology of Zero Velocity Curves in R3B

Fer = Wve 4 F}"W p=my /(m +m,)

= Roche lobe radius

(not uniquely defined, since there
are 4 such radii)

+ : Lagrange points



Sequence of allowed regions of motion (hatched) for particles
starting with different C values (essentially, Jacobi constant ~
energy in corotating frame)

/ /

High C (e.g., particle
starts close to one of

Low C (for instance,
due to high init.
velocity)

Medium C

c)%/
>

Notice a curious fact:
regions near L4 & L5

are forbidden. These

are potential maxima
(taking a physical, negative
gravity potential sign)

///?/// /%



Tutorial 4:

1. Compute the distance x, to “Lagrange” point in the solar sail problem

2. Compute the Jacobi constant at the saddle point of potential, at distance x,

3. Prove that f = (1/16) (GM/ry)"2 is the critical value allowing a passage through L pt.

4. Find the parameters (a,e) of the unperturbed and perturbed comet Dibiasky from movie “Don’t
look up”. Assume initial perihelion distance 100 AU and aphelion distance 100000 AU. Assume

the perturbation happens at the aphelium point and consistes of reduction of speed from v, to
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el ] (=3 o8

Mass ratio y = my/(m4+m,) = 0.1
C = R3B Jacobi constant with v=0
(.=
3.60, 3.69. 4.00

Roche lobes PUNDEERG FD NEREM  UTCSR

L ——

MU= _1 (=3 69 i
terminology:

MU=0_1 C=4_08
// Roche lobe ~
‘ Hill sphere ~
‘ sphere of influence
(though not really a sphere!)
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R3B problem. Mass ratio y = m,/(m,;+m,) = 0.1

=g | L=3 408

C=3.40
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R3B problem. Mass ratio y = m,/(m,;+m,) = 0.1

C=3.19

MUs@ | (=3 19
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Is the motion around Lagrange points stable?

Stable could mean many things.

Linear stability requires that equilibrium is stable

against infinitesimal perturbations.

Here, we’ll talk about Liapunov stability which is only

slightly different : a particle does not depart beyond a
certain small radius at any (even infinite) time. It does

not need to tend toward an equilibrium point, just not
to depart from it much.




Is the motion around Lagrange points stable?

Stability of motion near L-points
can be studied in the 1st order
perturbation theory
(with unperturbed motion
being state of rest at

A o ’\lr@ equilibrium point).
"
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Stability of Lagrange points

Although the L, L,, and L5 points are nominally unstable,

it turns out that it is possible to find stable and nearly-stable
periodic orbits around these points in the R3B problem.
They are used in the Sun-Earth and Earth-Moon systems for
space missions parked in the vicinity of these L-points.

By contrast, despite being the maxima of effective potential,
L, and L; are stable equilibria, provided M,/M, is

> 24.96 (as in Sun-Earth, Sun-Jupiter, and Earth-Moon cases).
When a body at these points is perturbed, it moves

away from the point, but the Coriolis force then bends the
trajectory into a stable orbit around the point.

The strange thing is, L, 5 are maxima of potential..



Observational proof of the stability of triangular equilibrium
points

(@) Greeks, L4
: (b) :
-y o S
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Fig. 3.23. (a) The distribution of asteroids in the vicinity of the orbit of Jupiter on
December 18, 1997 at 0" UT (Julian Date 2450800.5). The plot denotes the positions of
the asteroids projected onto the plane of the ecliptic. (b) The vertical distribution of the
same asteroids viewed along the Jupiter—Sun line. The dashed line denotes the plane of
Jupiter’s orbit.

From: Solar System Dynamics, by C.D. Murray and S.F.Dermott



Roche lobe radius depends weakly on R3B mass parameter
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Computation of Roche lobe radius from R3B equations
of motion (r_ = p,a, a = semi-major axis of the binary, G=M=1)
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Roche lobe radius depends weakly on R3B mass parameter
18173 M=m,/M=0.01 (Earth~Moon) r L=0.15a
rn=(%) "a o u=m,/M=0.003 (Sun-3xJupiter)r L=0.10 a
wu=m, /(m, +m,) =0.1 u=m,/M=0.001 (Sun-Jupiter) r L=0.07 a
e U =m,/M = 0.000003 (Sun-Earth) r L=0.01a
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Hill’s problem

A simplification of Roche problem or
Circular Restricted 3-Body problem
for p=my/(m+m,) <<1

; George W. Hill (1838-1914)

Received M.A. from Rutgers U.; loved living with his 8 siblings

in West Nyat, NY. Worked at Columbia U. and in Washington

iIn Naval Office but hated the place. Pioneer of work-from-home ©

Hill studied the small mass ratio limit in local Cartesian
coordinates attached to the planet (mass m, in general).

He ‘straightened’ the azimuthal coordinate by replacing it with a
local Cartesian coordinate y, and replaced radial coordinate r
with x. The problem can be written as 2D or 3D (we do 3D below).



-(p )+ Q°x +2Q y Egs. of motion of Hill

-(p), + Q%y - 2Q x° in a frame rotating
z ==(p), at ang. speed Q
() is the mean motion (QQ == n) of the binary system of

masses, and time derivatives are denoted by x* =dx/dt (x-

velocity) and x ~(x-acceleration), etc.
f=—-Wp stands for the linearized gravitational force field

(per unit mass of the test particle) due to bodies 1 and 2.
Hill's eqgs. are valid locally around m, body, e.g. x,y,z are
relative to planets position and all << a.

- UGM x/r’ + 3Q0°x + 2Q y-
- uGM y/r? -2Q x°
- uGM z/r? where r’=x?+y?+z?<< ag?

X
y
Z



Hill's eqgs. are valid locally around the smaller body.

Let's use Gm,/r3=uGM/r3 = uQ?(a/r)® (since GM/a3=0?)
and a definition of Roche lobe as a characteristic, small
distance defining the range of planet’s or secondary star’s
gravitational influence

rn=a(3” = rd=auy3 = alu=3r3

Then uQ?(a/r)® = 3Q2 (r,/r)3.

Changing the definition from dimensional x,y,z to
nondimensional ratios x = x/r_ y = y/r_ etc., we write

- 302 (x/r? - x) +2Q dy/dt
-302 y/ -2Q dx/dt
- 302 Z/r°,

where r= r/rL= (X2+y2+22)1/2

-
y--
z



Hill's non-dimensional equations can further be simplified by
introducing non-dimensional time t=Qt
X"==3x(r3-1)+2y’

Yy’ =-=3ylr 2 X where ’ = d/dt, ” = d?/dt?
zZ’=-3z/r

We can immediately see that the 2 Lagrange points in Hill’s
equations are at

x==1,y=0,z=0 (at r=1).

There, all second time derivatives (accelerations) vanish, if
velocities x’ = dx/dt and y’ = dy/dt vanish.

These two locations are thus equilibrium points.

The triangular L points are not there: they're much outside the
radius of validity of the Hill's local equations, and only exist in the
circular, non-local R3B.



Hill problem Here, you see the straightening of
b 2 the curve-linear equipotential lines

of the full and CR3B problem in the

local Hill coordinates. The lower

figure is in fact valid for any

mass ratio u, as long as p is small,

everything scales with Roche lobe

sizer,.
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In particular, the distance _ ‘ . : : _
from L, to L, becomes ! 0 -1

2r, . v
Fig. 3.28. The zero-velocity curves defined by the equation Cy = 2Uy in the vicinity
ol the Lagrangian points L and L, for a mass u = 0.1. Note that in the Hill’s
ipproximation the equilibrium points are now equidistant from the mass p, (denoted by
the cross at the origin).




Hill problem
b) 25

/

/ ! \ Fig. 3.28. The zero-velocity curves defined by the equation Cy = 2Uy in the vicinity
/ Ly \ i ol the Lagrangian points L and L, for a mass u, = 0.1. Note that in the Hill’s

3,68 3,08 Mpproximation the equilibrium points are now equidistant from the mass u, (denoted by
the cross at the origin).

v = (%)1/361
G.W. Hill applied his equations to the Sun-Earth-Moon problem, showing
that the Moon’ s Jacobi constant C=3.0012 is larger than CL=3.0009 (value of
effective potential at the L-point), which means that its Zero Velocity Surface
lies inside its Hill sphere and no escape from the Earth is possible:
the Moon is Hill-stable.
However, this is not a strict proof of Moon’ s eternal stability because:
(1) Circular orbit of the Earth was assumed (crucial for constancy of Jacobi’'s C)
(2) Moon was approximated as a massless body, like in R3B.
(3) Energy constraints can never exclude the possibility of Moon-Earth collision



COMPARISON OF DIFFERENT THEORIES WE'VE LEARNED
From the example of Sun-Earth-Moon system we find that:

@ Classical Lagrange-Laplace perturbation theory often has
non-convergent time series, useful for limited time only.
Analytical methods of Laplace and Lagrange were OK in their
time, when the biblical age of the Sun/Earth of 4000 yr was
accepted.

@ Integrals of motion guarantee no-escape from the allowed
regions of motion for an infinite period of time, which is better
than either the general or the special perturbation theory
but only if the assumptions of the theory are satisfied, and
that’s difficult to achieve in practice

@ We are usually interested in time periods up to Hubble
time or more. In late 1990s our computers and algorithms
became capable of simulating such enormous time spans.
Thus numerical exploration has supplanted the elegant
18th-century methods and is the preferred tool of a dynamicist

trying to ascertain the stability of the Solar System and its
ex0o-cousins.



Is the Solar System orbitally stable?

Yes, it appears so in practical sense (no orbit crossings,
ejections, collisions of major bodies for billions of years),
but we cannot be absolutely sure!

Semi-analytical and numerical simulations of the future of
Solar System show that chaos rules the orbits on long
enough time scales. Beyond a certain time (called
Lyapunov time), results become a statistics of various
possible outcomes rather than a unique prediction.

Chaos does not necessarily mean that orbits are crossing
or that there must come to a mayhem. The more massive
planets are always near their current places on timescale of
Hubble time (10 Gyr).

It may mean that we don’t know exactly the orientation and

eccentricity of an orbit, and the position along that elliptic
path.



So is the Solar System stable for sure?
There Is no certainty, now or ever.

The reason is that I|ke the weather on Earth, the detailed
@4 configuration of the planets after
= 1 Gyr, oreven 100 min yr is
impossible to predict or compute.

" B . chaos in weather systems (super-
- senS|st|V|ty to initial conditions,
§ too many coupled variables)

¢ In planetary systems, chaos is

R due to planet-planet
iy “*"‘ 3 gravitational perturbations

-
S

ad

e amplified by resonances.
B = Two or more overlapping
(it weakened unexpectedly fast) resonances can make the precise
predictions of the future futile.
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Asteroid Mathilde,
photographed by
spacecraft in 1997.

Size: 59 x 47 km

Rotates chaotically



ORBITAL RESONANCES - example: Astroid Belt between Mars and
Jupiter. Clearly visible are 1:1 resonant objects (Trojans and Greeks). Other
commensurabilities of mean motions (periods) are present but smeared out
by eccentric motion on
elliptical orbits.

"Trojans”

® Jupiter

“Greeks"



ORBITAL RESONANCES - visualizationof a and w
as polar coord. on the right.

“Trojans”

®Jupiter




Resonances are of different types, e.g., mean-motion
commensurabilities that we find in the so-called Kirkwood gaps:

Asteroid Main-Belt Distribution
Kirkwood Gaps
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Chaos in:
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Lorenz attractor



Hyperion a Saturnian satellite, the only satellite showing chaotic
rotation (light curve is aperiodic)
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In the Solar System, in 2-body resonances
resonant angles librate (i.e. oscillate)

388 8 Resonant Perturbations

Table 8.8. Known first- and second-order mean motion resonances involving planets or
satellites in the solar system. In each case the unprimed and primed quantities refer to
the inner and outer bodies respectively. All known planetary and satellite resonances are

included.
System Resonant Argument Amplitude Period (y)
Planets
Neptune—Pluto 3A =20 — o/ 76° 19,670
Jupiter
Io-Europa W' - ~w I -
Io-Europa 22 —A -’ 3" —
Europa-Ganymede 2. — A —w 37 —
Saturn
Mimas-Tethys @' -2.-Q' -Q 43.6° 71.8
Enceladus-Dione 21/ — A —w 0.297° 11.1

Titan—Hyperion 4\ - 3) - o’ 36.0° 1.75




8.15 Resonant Encounters in Satellite Systems 393

a b
58 (a) _ (b)
Rhea
5:3 54 Umbriel
5.6 Dione
S 3:2 2% 1 S
=) Tethys S >4 &0
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Enceladus 3.2
2:1
S2 imas Miranda
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Fig. 8.29. Sample changes in the semi-major axes (measured in km) of satellites in
(a) the saturnian and (b) the uranian system. A selection of first- and second-order
resonances between pairs of satellites is indicated on each plot.
Strong, non-chaotic resonances are present in satellite systems.
Also the planets exhibit such low-order (near) commensurabilities, the most
famous being the 2:5 Saturn-Jupiter one. (2:3 Pluto-Neptune resonance
does not prevent the chaotic nature of Pluto’s orbit.)



Example of a chaotic orbit due to overlapping resonances

(a) eccentricity
0.32
0.28
e
0.24
0.2/ |
100 200 3
Time (orbital periods)

a

0.7
0.68
0.66
0.64

(b) semi-major axis

100

200 3

Time (orbital periods)

Fig. 9.6. The time variability of (a) eccentricity e and (b) semi-major axis a for initial
values ap = 0.6984 and ¢y = 0.1967. The plots show a behaviour characteristic of
chaotic orbits. (Adapted from Murray 1998.)



Orbits and planet positions on them are unpredictable on a
timescale of 100 min yr or less (50 min yr for Earth).
For instance, let the longitudes of perihelia be denoted by w
and the ascending nodes as Q, then using subscripts E and M
for Earth and Mars, there exists a resonant angle

fue = 2((UM -(UE) - (QM -QE)
that shows the same hesitating behavior between oscillation
(libration) and circulation (when resonant lock is broken) as
in a double pendulum experiment.

But chaos in our system is long-term stable for a time of order
of its age. Orbits have the numerical, long-term, stability.

They don'’t cross and planets don't exchange places or get
ejected into Galaxy.

The only questionable stability case is that of Mercury & Sun.
Under the action of more massive planets, Mercury makes such
wide excursions in orbital elements that in some simulations

it drops onto the Sun in 3-10 Gyr.



Insertion Burn at 24.4 days (for 16 hrs)
ann il

Jacobi constant Cj=3.16

Earth-Moon
m2/(m1+m2)=0.01215

Zero Velocity Surface
Path of the body m3

S\ 0

Trajectories are often computable fairly precisely for small numbe“r of orbits
only. On long time scales they are chaotic. Re-entry into the Roche lobe of a
planet can occur occasionally.



There are indicators of chaos (so-called fast Lyapunov exponents)

that can map stable and unstable manifolds in parameter space (a,e)
for asteroids like Centaurs (in Jupiter-Neptune region). Centaurs use
overlapping resonances to travel fast (in a few million yr) from the outer
to the inner Solar System. Bright stripes are like highways for rapid
transport ofminor E)?dies
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Natasa Todorovic et al. The arches of chaos in the Solar System, Science Adv. (2020).



nghter = more chaotic (confusmgly called 'stable manifolds’ in the paper)
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https://phys.org/news/2020-12-accessing-arches-chaos-solar-fast.html

How wide a region is quickly destabilized
by a planet?
(We call it Corotational Region)

The gravitational influence of a small body (a planet around a
star, for instance) dominates the motion inside its Roche
lobe, so particle orbits there are circling around the planet,
not the star. The circumstellar orbits (usually in a disk), in the
vicinity of the planet’s orbit are affected, too.

To what radial extent?

Corotational region defines the ‘feeding zone’ of a growing

protoplanet. We will see how it is populated by tadpoles and
littered by horseshoes...



Hill stability of
circumstellar motion
_c. hear the planet

1/3
o =(5)"a

,"/ i 3
3,08 3,08

Bodies on “disk orbits” (meaning the disk of bodies circling
around the star) have Jacobi constants C

depending on the orbital separation parameter x = (r-a)/a
(r=initial circular orbit radius far from the planet, a = planet’ s
orbital radius). If x| is large enough, the disk orbits are forbidden
from approaching L1 and L2 and entering the Roche lobe by
energy constraint. Their effective energy is not enough to pass
through the saddle point of the effective potential.

Disk regions farther away than some minimum separation |x|
(assuming circular initial orbits) are guaranteed to be Hill-stable,
or isolated from the planet by Jacobi energy constrain.



It is easy to compute the marginal orbital spacing in the Hill
problem. In vector form v = dr/dt, and the Hills equations read,
using unit vector Q pointing in the vertical direction

d’r/dt? = -1 + 2(Q x v) =-F(gravity & tidal pot.) + Coriolis force
where the effective potential ® of combined planet’s gravity
and sun’s tidal force reads: &b =-3(1/r + x/2).

Taking a dot product with v of both sides, and using on r.h.s.
(Qxv)ev=0, we obtain Jacobi energy integral
E, =v%/2 + @ = const.
+ |ts value for a particle at rest in Lagrange pointatx=r=1, y =0
(one Roche lobe radius from planet) is equal E,= @ = -9/2.
+ Very far from planet, at r=+«, the Jacobi constant of a particle
travelling with x=const. & asymptotic speed dy/dt= -(3/2)x, equals
E,=+(3/2)°x%/2 -(3/2)x° = -(3/8)x.
From E, = E, we obtain x (in units of Roche lobe radius r,)
x =(12)"72= 243 ~ 3.5 (Half-width of Corot. Region in units of r,)



Hill stability in CR3B,
of circumstellar
motion near the

i = planet’s orbit

308 308

On a circular orbit with x = (r-a)/a, _rHN1/3
C=3+3x r,=(3)"a

C, =3+9(r, /a)’

Therefore, the Hill stability criterion C = C_ reads  y? = 12(7, /a)2

of x=2J3(r, /a)=3.5 1 /a

At the L, and L, points

Example: What is the radial extent of Hill-unstable

region around Jupiter, also called its ‘
Corotational Region (CR)? o
In this region we find tadpole and horseshoe orbits CRf



Hill stability in CR3B, of heliocentric motion near

planet Jupiter

x=2J3(r,/a)=3.5 1 /a

1/3
r=(5)"a

What is the extent of Hill-unstable region around Jupiter (half-width)?

Jupiter-Sun mass ratio equals y = 0.001,
x=3.5(u/3)"3 = 0.24

Since Jupiter is at a,= 5.2 AU, the outermost Hill-stable circular orbit is at

r=(1-x)a,=0.76 a, = 3.95 AU.

Asteroid belt objects are indeed found at
r<~4 AuU.

Hildas and Thule group at ~4 AU are

the outermost large groups of asteroids,
except for the Trojan and Greek asteroids
at Jupiter's a=a,=5.2 AU

Numbzr of asteroics
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