
Lectures L07-L08  ASTC25 

Elements of Celestial Mechanics

Perturbation theory of orbits:
L7 General (analytical) perturbations

w relativistic precession, solar sail
Special (numerical) perturbation theory
w Euler and RK methods of integration

L8 Energy integral methods 
3 Body Problem 

Chaos in the solar system



L7
General theory of perturbations
(analytical)

Joseph-Louis 
Lagrange (1736-1823)



philosophy:

perturbation (variables with 
index 1)  are evaluated along 
the unperturbed trajectory 
(index 0)

expanded as

Carl F. Gauss used the radial (R) and transversal (T)
components of perturbing forces (accelerations) to compute torque (r T)
and the orbital energy drain/gain rate (dE/dt  = force * dr/dt) to find 

along the unperturbed orbit          

1st order perturbation theories

1st order 
perturbation 
equations



(R, T) = time-dependent components of 
perturbing force  (acceleration)

n = ‘mean motion’ = mean 
angular speed, often 
denoted as  Ω
in other contexts

ellipse
Ω



(copying from the previous page)



(Derived like da/dt, from energy and angular momentum change)

change variables and use the equation of ellipse for r(θ):
r = a(1-e2) /(1+ e cosθ)



The relativistic precession of orbits
as one of the applications of general perturbation theory

(we’ll cheat a little 
by using Newtonian 
dynamics with a modified 
potential, approximating
the use of general 
relativity; that kind of 

cheating is quite 
OK!).

(drawing not to scale, shape and the precession rate exaggerated!)

(1879-1955)











to the sun

longitude of periastron

true anomaly (orbital angle)

toward the sun

We will use solar sail problem
to illustrate three different
approaches to celestial 
mechanics: two perturbation 
theories and the energy method



f

e(t) = sin(t/te), where te = (2na)/(3f)

Eventually, e 1 after time (π/2)te. During this evolution, the 
orbit’s orientation is perpendicular to the force from the sun!





J     Jupiter’s rotational flattening is unmistakably seen here

the same image, rotated 90o

Saturn has a slightly larger flattening.





L8     Special theory of perturbations
(numerical calculations)

1856-1927

Leonard Euler Carle Runge Martin Kutta

1867-1944

Popular numerical integration methods for ODEs:
Euler method  (1st order)         &   Runge-Kutta (2nd - 8th order)
Symplectic methods



The Euler method
We want to approximate the solution of the differential equation

For instance, the Kepler problem which is a 2nd-order equation, can be
turned into the 1st order equations by introducing double the number of 
equations and variables: e.g., instead of handling the second derivative
of variable x, as in the Newton’s equations of motion, one can integrate the 
first-order (=first derivative only) equations using variables x and vx = dx/dt
(that latter definition becomes an additional equation to be integrated).

Starting with the differential equation (1), we replace the derivative 
y' by the finite difference approximation, which yields the following formula

which yields

This formula is usually applied in the following way. 



The Euler method (cont’d)

This formula is usually applied in the following way. 

We choose a step size h, and we construct the sequence t0, 
t1 = t0 + h, t2 = t0 + 2h, ... We denote by yn a numerical estimate of 

the exact solution y(tn). Motivated by (3), we compute these estimates 

by the following recursive scheme

yn + 1 = yn + h f(tn,yn).

This is the Euler method (1768), discovered but not

formally published 102 yr earlier by Robert Hook.

It’s a first order method, meaning that 

the total error is ~h 1. It requires small time steps 

& has mediocre  accuracy, but it’s very simple!



The classical fourth-order Runge-Kutta method
One member of the family of Runge-Kutta methods is so commonly used, 
that it is often referred to as "RK4" or simply as "the Runge-Kutta method".
The RK4 method for the problem

is given by the following equation:

where

Thus, the next value (yn+1) is determined by the present value (yn) plus the 
product of interval h and an estimate of space & time-averaged full time 
derivative of function y(t). 

The interval h in orbital 
calculations is actually the 
timestep Δt. 



Runge-Kutta 4th order (continued)

• k1 is the slope at the beginning of the interval; 

• k2 is the slope at the midpoint of the interval, using 
k1 to determine the value of y at the point tn + h/2, using Euler's method

• k3 is again the slope at the midpoint, using improved slope k2

• k4 is the slope at the end of the interval 

The RK4 method is a 4th order method, meaning that the 1-timestep error is 
~h5, and global error over a finite time is ~h4. It allows larger time steps & 
better accuracy than 2nd order methods. But RK4 produces a gradually 
(slowly) increasing energy error, because it is not symplectic. 

SYMPLECTIC METHODS
Leapfrog method is a 2nd order symplectic method. It looks like Euler 
method, but all the positions and velocities are separated in time by Δt/2 (so 
the integration needs to be carefully started and ended), and velocity 
component must be updated before position components. 

Symplectic 4th order integrators exist (some require only 3, instead of 4 force 
evaluations per timestep!). They should be used in long-term integrations of 
Hamiltonian systems.  

Next value (yn+1) is determined by the present value (yn) an estimated 

average derivative or slope. That is a particular unevenly weighted average



f

A

B

C

C

B

y/a

x

Numerical integration                         
(Euler method, h = dt = 0.001 P)

Comparing the numerical results with analytical perturbation theory we see a  
good agreement in case A of small perturbations, f << 1.  In this limit, 
analytical results are more elegant and general (valid for every f) than 
numerical integration:     
Reminder:   e(t) = sin t/te, where te = (2 n a) / (3f),  for arbitrary   f, n, & a.

x/a

Solar sail problem revisited: case A

A 0.02
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A

B

C

C

B

y/a

x

Numerical integration                         
(Euler method, h=dt=0.001 P)

For instance, e(t) = sin (t/te), where te = (2na)/(3f), for all f, n, a.

x/a

Solar sail problem revisited: B, C

A

However,  in cases B and C of large perturbations, f ~ 0.1…1.  In this limit, 
analytical treatment cannot be used, because the assumptions of the theory 
are not satisfied (changes of orbit are not gradual). Eccentricity becomes 
undefined after a fraction of the orbit (case B, C).
In this case, the computer is your best friend, though it requires a repeated 
calculation for each f, and always introduces numerical errors of 2 or 3 sorts: 
truncation (discretization) error, round-off error, and possible coding bugs. 

0.02



INTEGRALS OF MOTION, STABILITY, 
CHAOS              

Lecture 8     ASTC25

1. Energy methods (Integrals of motion)
2. Zero Velocity Surfaces (Curves) 
3. R3B problem and the Roche lobe

radius calculation
4. Lagrange points and their stability
5. Hill problem and Hill stability of orbits  
6. Resonances
7. Chaos & stability in the Solar System
8. Corotation Region’s width



Non-perturbative methods
(energy constraints, integrals of

motion)
in the 

3 Body problem

Karl Gustav Jacob 
Jacobi (1804-1851)



A standard trick
to obtain energy 
integral

Solar sail problem again





Energy criterion guarantees that a particle cannot cross the
Zero Velocity Curve (or surface), and therefore is stable
in the Jacobi sense (energetically).

However, remember that this is particular definition of stability
which allows the particle to physically collide with the massive
body or bodies -- only the escape from the allowed region 
is forbidden! In our case, substituting v=0 into Jacobi constant,
we obtain:

here, f is given in units of GM/r2
0



f=0 f=0.051 < (1/16)

f=0.063 > (1/16) f=0.125

Allowed regions of motion in solar wind (hatched) lie within the
Zero Velocity Curve

particle cannot
escape from the
planet located at
(0,0)

particle can (but
does not always)
escape from the
planet
(cf. numerical 
cases B and C, where
f=0.134, and 0.2, much 
above the limit of f=1/16).



3 Body Problem  (any masses & orbits) 

Restricted 3 Body Problem  (3rd body massless, m3 = 0)

Eccentric                                 Circular
(2 massive bodies m1,2 (2 massive bodies m1,2
on elliptic orbits)                       on circular orbits)

m2

m1

m3=0.

m3=0

m2

m1

m2

m1

m3

3-body problems have no known closed-form 
(analytical) solution valid for all init. conditions



Circular Restricted 3-Body Problem (CR3B)

L1

L4

L5

L3 L2

“Restricted” because the gravity of particle moving around the two massive 
bodies is neglected (so it’s a 2-Body problem plus 1 massless particle, whose 
5 equilibrium positions are shown in the figure by small colored dots.)  
Furthermore, a circular motion of two massive bodies is assumed, so they
stand still in the rotating frame. This gives us some important advantages.  

Joseph-Louis Lagrange (1736-1813)
[Giuseppe Lodovico Lagrangia]

The frame rotation speed is the mean motion 
of the massive binary
Ω = n = (GM/a3)1/2 a

aa

a

We sometimes talk about CR3B problem but call it R3B for short. 

✜

✜ = C.M. = origin of coord. sys.



Restricted 3 Body, Circular problem

Center of rotating coordinates (x,y,z) is chosen as the center of 
masses 1 and 2;  mass parameter is μ= m2/M =m2/(m1+m2).
Third body has position vector r = (x,y,z) 

y

x
μa (1-μ)a

a

r1 r r2

3rd massless body

m1

m2



The equation of motion of  CR3B with r = (x,y,z) being 
position of the 3rd body in the frame rotating with two 
massive bodies, and velocity vector v = r˙= dr/dt, is

r¨ = −∇Φ + Ω2 r     + 2 Ω×v   or
dv/dt = −∇Φ + Ω2 r     + 2 Ω×v 

acceler. = gravity + centrifugal + Coriolis acc.
f = −∇Φ stands for the gravitational force field (per unit 
mass of the test particle) due to bodies 1 & 2, derived from 
time-independent, scalar, gravitational potential Φ(r).
You can expand the above into 3 components  
x¨ = −dΦ/dx + Ω2x  + 2Ω y˙
y¨ = −dΦ/dy + Ω2y − 2Ω x˙
z¨ = −dΦ/dz
This is used e.g. in numerical solutions of the R3B equations. 
Notice that r(t)=(x,y,z) is all we seek in this problem. Positions of 
the massive bodies are known and unchanging, and Ω is the known 
angular speed of the binary, not of the 3rd body (test particle).    



The derivation of energy (Jacobi) integral in CR3B does not 
differ much from the analogous derivation of energy 
conservation law in non-rotating systems: we also form the
dot product of the equations of motion with velocity (v�...) and 
convert the l.h.s. (v�dv/dt) to full time derivative of specific 
kinetic energy d(½ v�v)/dt. But on the r.h.s. we now have two 
additional accelerations (Coriolis and centrifugal terms) 
due to non-inertial, accelerated frame. Luckily the dot product 
of v and the Coriolis term, itself perpendicular to v, vanishes: 
v � (2Ω× v) = 0.
The centrifugal term can be written as a gradient of a ’centrifugal 
scalar potential’ -½ Ω2 r2, since -∇(-½ Ω2r2) = Ω2 ∇(½ r�r) = +Ω2r,
which added to the sum  Φ =  –Gm1 /r1 –Gm2 /r2 of the grav. 
potentials of two bodies forms an effective (grav.+centr.) potential

Φeff = –Gm1 /r1 –Gm2 /r2 -½ Ω2 r2 . 
For historical reasons, the effective potential of the R3B is often defined 
as a positive quantity –2Φeff . If someone is using “Jacobi constant” look 
closely at the definition and if you see positive signs in +Gmi/ri terms 
such as in the constant C below, then you know it’s the historic definition.



MORE DETAILS, if you want them: Direct proof that effective 

potential is    Φeff = Φ -½ Ω2r2 =  -GM(1-μ)/r1 -GMμ/r2 -½ Ω2r2

where r2(t)=x2+y2+z2, ri
2(t)=(x-xi)2+y2+z2  ,i.e. ri(t)=[(x-xi)2+y2+z2]1/2 

and xi=const. is the x coordinate of body number i = 1,2.

Let’s find (-Φeff)˙ . First, calculus gives full time derivative of 1/ri
(1/ri) ˙ = -(1/ri

2) dri /dt. Each ri changes because 3rd body 

moves and x,y,z depend on time; dri/dt is a sum of 3 changes:

dri /dt = dri /dx  dx/dt + dri /dy dy/dt + dri /dz dz/dt =    

= -(x/ri) vx -(y/ri) vy -(z/ri) vz = (-r/ri)�v, so we get       

(1/ri) ˙ = (r/ri
3) �v = v �∇(-1/ri),      because ∇(-1/ri) = r/ri

3 .

We have two such terms with different constants in (-Φeff)˙ =

-dΦeff /dt,  plus one that looks like    

d[½ Ω2r2]/dt = ½ d[Ω2r�r]/dt = = Ω2 r �v,    so finally

(-Φeff)˙ = -v�∇Φ +v�Ω2r = v�[-∇Φeff ] 

Let’s copy that result to the next page and compare with the 

equation of motion in R3B multipied (�) by v



(-Φeff)˙ = v�[-∇Φeff ] 
while the eq. of motion reads

v˙= −∇Φ + Ω2 r   +2Ω×v = −∇Φeff + 2Ω×v .
Doing �v  (on both sides)   gives

[½ v�v]˙ = −v�∇Φeff ,  the same as in the uppermost equation.
We conclude that   (Φeff +½ v�v)˙ = 0.

This proves that Jacobi integral or Jacobi energy, defined as
EJ = Φeff +½ v2   is a constant, i.e. it’s independent of time. 

EJ has the physically intuitive interpretation (potential plus kinetic 
energy per unit mass of test particle) and negative signs of 
gravitational energy terms. 
But, as mentioned, honoring the historical choice made long ago, 
we define another form of the integral of motion, 
Jacobi constant C, as  C = -2EJ = -2Φeff  -v2 = const.
The values of Jacobi constants depend on initial position and 
speed of the 3rd body, but are conserved afterwards.



Effective potential in R3B                                mass ratio = 0.2    

The historical effective potential of R3B is defined as negative of the Jacobi 
energy. Two gravitational potential wells around the two massive bodies thus 
appear as chimneys, and the centrifugal potential hill as a bowl outside.

-Φeff = +Gm1 /r +Gm2 /r +½ Ω2 r2 





Lagrange points L1…L5   are equilibrium points in the circular
R3B problem, which is formulated in the frame corotating with
the binary system.  Acceleration & velocity both equal zero there.

They are found at zero-gradient points of the effective potential 
of CR3B. Two of them are triangular points L4..5 (extrema of potential). 
The 3 co-linear Lagrange points L1..3 are saddle points of potential. 



rL = Roche lobe radius
(not uniquely defined, since there 
are 4 such radii)

+ : Lagrange points

Jacobi integral and the topology of Zero Velocity Curves in R3B
)/( 211 mmm +=µ



Sequence of allowed regions of motion (hatched) for particles 
starting with different C values (essentially, Jacobi constant ~ 
energy in corotating frame)

Highest C 

Medium C 

High C (e.g., particle 
starts close to one of 
the massive bodies) 

Low C (for instance, 
due to high init. 
velocity) 

Notice a curious fact:
regions near L4 & L5
are forbidden. These
are potential maxima
(taking a physical, negative
gravity potential sign)



Tutorial 4:   
1.  Compute the distance xL to “Lagrange” point in the solar sail problem 
2.  Compute the Jacobi constant at the saddle point of potential, at distance xL
3.  Prove that f = (1/16) (GM/r0)1/2 is the critical value allowing a passage through L pt.
4. Find the parameters (a,e) of the unperturbed and perturbed comet Dibiasky from movie “Don’t 

look up”. Assume initial perihelion distance 100 AU and aphelion distance 100000 AU. Assume 
the perturbation happens at the aphelium point and consistes of reduction of speed from va0 to 
va1



THE CONCEPT OF ROCHE LOBE

Eduard A. Roche (1820-1883)
lived and taught at the University 
in Montpellier, France 



Roche lobes

terminology: 

Roche lobe ~

Hill sphere ~

sphere of influence

(though not really a sphere!)

C = R3B Jacobi constant with v=0

Mass ratio μ = m2/(m1+m2) = 0.1



R3B problem.  Mass ratio μ = m2/(m1+m2) = 0.1



R3B problem.  Mass ratio μ = m2/(m1+m2) = 0.1



Stability of (motion around) the L-points

Is the motion around Lagrange points stable?

Stable could mean many things. 

Linear stability requires that equilibrium is stable 
against infinitesimal perturbations.

Here, we’ll talk about Liapunov stability which is only 
slightly different : a particle does not depart beyond a 
certain small radius at any (even infinite) time. It does 
not need to tend toward an equilibrium point, just not 
to depart from it much.



Is the motion around Lagrange points stable?

Stability of motion near L-points 
can be studied in the 1st order 
perturbation theory 

(with unperturbed motion 
being state of rest at 

equilibrium point).



Stability of Lagrange points

Although the L1, L2, and L3 points are nominally unstable,
it turns out that it is possible to find stable and nearly-stable
periodic orbits around these points in the R3B problem.
They are used in the Sun-Earth and Earth-Moon systems for
space missions parked in the vicinity of these L-points.

By contrast, despite being the maxima of effective potential,
L4 and L5 are stable equilibria, provided M1/M2 is 
> 24.96 (as in Sun-Earth, Sun-Jupiter, and  Earth-Moon cases).
When a body at these points is perturbed, it moves 
away from the point, but the Coriolis force then bends the 
trajectory into a stable orbit around the point.

The strange thing is, L4,5 are maxima of potential..



From: Solar System Dynamics, by C.D. Murray and S.F.Dermott

Observational proof of the stability of  triangular equilibrium
points

Greeks, L4

Trojans, L5



Roche lobe radius  depends weakly on R3B mass parameter

Lines are equipotential curves of the effective (gravity+centrif.) 
potential

μ = m2/(m1+m2) = 0.1

μ = m2/(m1+m2) = 0.01



L

L

Computation of Roche lobe radius from R3B equations
of motion (rL = ρ2 a,    a = semi-major axis of the binary, G=M=1)



= 0.1

= 0.01

)/( 211 mmm +=µ

)/( 211 mmm +=µ

Roche lobe radius  depends weakly on R3B mass parameter
μ = m2/M = 0.01   (Earth ~Moon)     r_L = 0.15 a

μ = m2/M = 0.003   (Sun- 3xJupiter) r_L = 0.10 a

μ = m2/M = 0.001     (Sun-Jupiter)    r_L = 0.07 a

μ = m2/M = 0.000003   (Sun-Earth)  r_L = 0.01 a

arL
3/1

3 )(
µ=



George W. Hill (1838-1914)
Received M.A. from Rutgers U.; loved living with his 8 siblings 
in West Nyat, NY. Worked at Columbia U. and in Washington 
in Naval Office but hated the place. Pioneer of work-from-home J

Hill studied the small mass ratio limit in local Cartesian 
coordinates attached to the planet (mass m2 in general). 
He‘straightened’ the azimuthal coordinate by replacing it with a 
local Cartesian coordinate y, and replaced radial coordinate r
with x. The problem can be written as 2D or 3D (we do 3D below).
· 

Hill’s problem 

A simplification of Roche problem or
Circular Restricted 3-Body problem  
for   μ = m2/(m1+m2) << 1



x¨ = −(∇φ )x+ Ω2x + 2Ω y               Eqs. of motion of Hill
y¨ = −(∇φ)y + Ω2y − 2Ω x˙              in a frame rotating
z¨ = −(∇φ)z at ang. speed Ω
Ω is the mean motion (Ω == n) of the binary system of 
masses, and time derivatives are denoted by x˙ =dx/dt (x-
velocity) and x¨ (x-acceleration), etc.

f = −∇φ stands for the linearized gravitational force field 
(per unit mass of the test particle) due to bodies 1 and 2. 
Hill’s eqs. are valid locally around m2 body, e.g. x,y,z are 
relative to planets position and all << a. 

x¨ = − μGM x/r3 + 3Ω2x + 2Ω y˙
y¨ = − μGM y/r3 − 2Ω x˙
z¨ = − μGM z/r3 where  r2=x2+y2+z2 << a2



Hill’s eqs. are valid locally around the smaller body. 
Let’s use Gm2/r3 = μGM/r3 = μΩ2(a/r)3 (since GM/a3=Ω2)
and a definition of Roche lobe as a characteristic, small 
distance defining the range of planet’s or secondary star’s 
gravitational influence
rL = a (μ/3)1/3 è rL

3 = a3 μ/3     è a3 μ = 3 rL
3

Then  μΩ2(a/r)3 = 3Ω2 (rL/r)3.

Changing the definition from dimensional x,y,z to 
nondimensional ratios x = x/rL y = y/rL etc.,  we write  

x¨ = − 3Ω2 (x/r3 - x) +2Ω dy/dt
y¨ = − 3Ω2  y/r3 −2Ω dx/dt
z¨ = − 3Ω2  z/r3,        

where   r = r/rL = (x2+y2+z2)1/2 



Hill’s non-dimensional equations can further be simplified by 
introducing non-dimensional  time  t = Ω t
x’’ = −3 x (r -3 –1) +2 y’
y’’ = −3 y/r3 -2 x’          where ’ = d/dt,   ’’ = d2/dt2
z’’ = −3 z/r3

We can immediately see that the 2 Lagrange points in Hill’s 
equations are at 
x = ±1, y=0, z=0   (at  r = 1).
There, all second time derivatives (accelerations) vanish, if 
velocities x’ = dx/dt and y’ = dy/dt vanish.
These two locations are thus equilibrium points.

The triangular L points are not there: they’re much outside the 
radius of validity of the Hill’s local equations, and only exist in the 
circular, non-local R3B.



Here, you see the straightening of
the curve-linear equipotential lines
of the full and CR3B problem in the 
local Hill coordinates. The lower 
figure is in fact valid for any 
mass ratio μ, as long as μ is small, 
everything scales with Roche lobe 
size rL. 

Hill problem

In particular, the distance
from L1 to L2 becomes 
2rL. 



G.W. Hill applied his equations to the Sun-Earth-Moon problem, showing
that the Moon’s Jacobi constant C=3.0012 is larger than CL=3.0009 (value of
effective potential at the L-point), which means that its Zero Velocity Surface 
lies inside its Hill sphere and no escape from the Earth is possible: 
the Moon is Hill-stable.
However, this is not a strict proof of Moon’s eternal stability because:
(1) Circular orbit of the Earth was assumed (crucial for constancy of Jacobi’s C)
(2) Moon was approximated as a massless body, like in R3B.
(3) Energy constraints can never exclude the possibility of Moon-Earth collision

arr LL
3/1

3 )(
µ=!

Hill problem



COMPARISON OF DIFFERENT THEORIES WE’VE LEARNED
From the example of Sun-Earth-Moon system we find that: 
Classical Lagrange-Laplace perturbation theory often has 
non-convergent time series, useful for limited time only.
Analytical methods of Laplace and Lagrange were OK in their 
time, when the biblical age of the Sun/Earth of 4000 yr was  
accepted.
Integrals of motion guarantee no-escape from the allowed
regions of motion for an infinite period of time, which is better
than either the general or the special perturbation theory
but only if the assumptions of the theory are satisfied, and
that’s difficult to achieve in practice
We are usually interested in time periods up to Hubble 

time or more. In late 1990s our computers and algorithms 
became capable of simulating such enormous time spans. 
Thus numerical exploration has supplanted the elegant 
18th-century methods and is the preferred tool of a dynamicist
trying to ascertain the stability of the Solar System and its 
exo-cousins.



Yes, it appears so in practical sense  (no orbit crossings, 
ejections, collisions of major bodies for billions of years), 
but we cannot be absolutely sure!

Semi-analytical and numerical simulations of the future of
Solar System show that chaos rules the orbits on long 
enough time scales. Beyond a certain time (called 
Lyapunov time), results become a statistics of various 
possible outcomes rather than a unique prediction. 

Chaos does not necessarily mean that orbits are crossing 
or that there must come to a mayhem. The more massive 
planets are always near their current places on timescale of 
Hubble time (10 Gyr).
It may mean that we don’t know exactly the orientation and 
eccentricity of an orbit, and the position along that elliptic 
path.

Is the Solar System orbitally stable? 



So is the Solar System stable for sure?
There is no certainty, now or ever.

The reason is that, like the weather on Earth, the detailed 
configuration of the planets after
1 Gyr, or even 100 mln yr is 
impossible to predict or compute.

On Earth, this is because of 
chaos in weather systems (super-
sensistivity to initial conditions, 
too many coupled variables)

In planetary systems, chaos is 
due to planet-planet 
gravitational perturbations 
amplified by resonances. 
Two or more overlapping

(it weakened unexpectedly fast)     resonances can make the precise
predictions of the future futile.

Hurricane Rita, 
Sept. 23, 2005

?



Asteroid Mathilde, 
photographed by 
spacecraft in 1997.

Size: 59 x 47 km

Rotates chaotically



ORBITAL  RESONANCES  - example: Astroid Belt between  Mars and 
Jupiter. Clearly visible are 1:1 resonant objects (Trojans and Greeks).  Other
commensurabilities of mean motions (periods) are present but smeared out

by eccentric  motion on
elliptical orbits.



ORBITAL  RESONANCES – visualization of   a   and   ω
as polar coord. on the right.



Resonances are of different types, e.g., mean-motion 
commensurabilities that we find in the so-called Kirkwood gaps:



Double pendulum

Chaos in: 

Lorentz attractor
(modeled after 
weather system 
equations by 
meteorologist Ed Lorenz)

oscillation

rotation



Lorenz attractor 



Hyperion a Saturnian satellite, the only satellite showing chaotic 
rotation (light curve is aperiodic)



In the Solar System, in 2-body resonances
resonant angles librate (i.e. oscillate)



Strong, non-chaotic resonances are present in satellite systems.
Also the planets exhibit such low-order (near) commensurabilities, the most 
famous being the 2:5 Saturn-Jupiter one. (2:3 Pluto-Neptune resonance 
does not prevent the chaotic nature of Pluto’s orbit.)



Example of a chaotic orbit due to overlapping resonances

eccentricity                            semi-major axis



Orbits and planet positions on them are unpredictable on a 
timescale of 100 mln yr or less (50 mln yr for Earth).
For instance, let the longitudes of perihelia be denoted by ω
and the ascending nodes as Ω, then using subscripts E and M
for Earth and Mars, there exists a resonant angle

fME = 2(ωM -ωE) - (ΩM -ΩE)
that shows the same hesitating behavior between oscillation 
(libration) and circulation (when resonant lock is broken) as 
in a double pendulum experiment.

But chaos in our system is long-term stable for a time of order 
of its age. Orbits have the numerical, long-term, stability. 
They don’t cross and planets don’t  exchange places or get 
ejected into Galaxy.

The only questionable stability case is that of Mercury & Sun.
Under the action of more massive planets, Mercury makes such
wide excursions in orbital elements that in some simulations 
it drops onto the Sun in 3-10 Gyr.



Trajectories are often computable fairly precisely for small number of orbits 
only. On long time scales they are chaotic. Re-entry into the Roche lobe of a 
planet can occur occasionally. 



There are indicators of chaos (so-called fast Lyapunov exponents)
that can map stable and unstable manifolds in parameter space (a,e) 
for asteroids like Centaurs (in Jupiter-Neptune region). Centaurs use 
overlapping resonances to travel fast (in a few million yr) from the outer 
to the inner Solar System. Bright stripes are like highways for rapid
transport ofminor bodies

Nataša Todorović et al. The arches of chaos in the Solar System, Science Adv. (2020).



https://phys.org/news/2020-12-accessing-arches-chaos-solar-fast.html

Lighter = more chaotic (confusingly called ’stable manifolds’ in the paper)

(a,e) – parameters of initial orbit 

Perturbed by all planets

Perturbed by Jupiter only

https://phys.org/news/2020-12-accessing-arches-chaos-solar-fast.html


How wide a region is quickly destabilized 
by a planet? 
(We call it Corotational Region)

The gravitational influence of a small body (a planet around a
star, for  instance) dominates the motion inside its Roche
lobe, so particle orbits there are circling around the planet,
not the star. The circumstellar orbits (usually in a disk), in the
vicinity of the planet’s orbit are affected, too. 

To what radial extent?

Corotational region defines the ‘feeding zone’ of a growing 
protoplanet. We will see how it is populated by tadpoles and
littered by horseshoes...
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Hill stability of
circumstellar motion 
near the planet 

Bodies on “disk orbits” (meaning the disk of bodies circling
around the star) have Jacobi constants C
depending on the orbital separation parameter x = (r-a)/a
(r=initial circular orbit radius far from the planet, a = planet’s 
orbital radius).  If |x| is large enough, the disk orbits are forbidden
from approaching L1 and L2 and entering the Roche lobe by
energy constraint. Their effective energy is not enough to pass
through the saddle point of the effective potential. 
Disk regions farther away than some minimum  separation |x|
(assuming circular initial orbits) are guaranteed to be Hill-stable,
or isolated from the planet by Jacobi energy constrain.

C
CL



It is easy to compute the marginal orbital spacing in the Hill 
problem. In vector form v = dr/dt,  and the Hills equations read, 
using unit vector Ω pointing in the vertical direction

d2r/dt2 = −∇Φ + 2(Ω x v)  = -∇ (gravity & tidal pot.) + Coriolis force
where the effective potential Φ of combined planet’s gravity
and sun’s tidal force reads:          Φ = -3(1/r + x2/2).

Taking a dot product with v of both sides, and using on r.h.s.
(Ω x v) � v = 0,  we obtain Jacobi energy integral 
EJ = v2/2 + Φ = const. 

w Its value for a particle at rest in Lagrange point at x = r =1, y = 0 
(one Roche lobe radius from planet) is equal  EL= Φ = -9/2.  
w Very far from planet, at r=+∞, the Jacobi constant of a particle 
travelling with x=const. & asymptotic speed dy/dt= -(3/2)x, equals 

EJ = +(3/2)2 x2/2  -(3/2)x2 =  -(3/8)x2.   
From EJ = EL we obtain x (in units of Roche lobe radius rL)
x = (12)1/2 = 2√3 ~ 3.5   (Half-width of Corot. Region in units of rL) 
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Hill stability in CR3B,
of circumstellar
motion near the 
planet’s orbit 

On a circular orbit with x = (r-a)/a,

At the L1 and L2 points

Therefore, the Hill stability criterion C = CL reads
or  

Example: What is the radial extent of Hill-unstable 
region around Jupiter, also called its 
Corotational Region (CR)? 
In this region we find tadpole and horseshoe orbits.

CR

CR
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Hill stability in CR3B, of heliocentric motion near 
planet Jupiter

What is the extent of Hill-unstable region around Jupiter (half-width)? 
Jupiter-Sun mass ratio equals μ = 0.001,  

x = 3.5 (μ/3)1/3  =  0.24 
Since Jupiter is at aJ = 5.2 AU, the outermost Hill-stable circular orbit is at     

r = (1 – x) aJ = 0.76 aJ = 3.95 AU. 

Asteroid belt objects are indeed found at 
r < ~4 AU.  

Hildas and Thule group at ~4 AU are
the outermost large groups of asteroids, 
except for the Trojan and Greek asteroids
at Jupiter’s  a = aJ = 5.2 AU

3.95 AU



3.95 AU


