
ASTC25 (PLANETARY SYSTEMS) PROBLEM SET #2. SOLUTIONS

1 [20p] Earth and Moon

One billion years ago the day on Earth lasted T0 = 20 hours. Given that the Earth’s mass is 81 times
larger than Moon’s mass, and that the mean distance between their centers is now a = 384400 km,

(i) how far was the Moon 1 Gyr ago (find a0 in units of a, and in km)?
(ii) how many days was the lunar month’s length P0 back then, and what is it now? (Calculate P,

don’t quote.)
Hints: On wikipedia, find and use the article about the non-dimensional moment of inertia. An-

gular momentum of Moon’s orbit is the Moon’s mass times the specific angular momentum that we
usually talk about (cf. lectures). Neglect the small eccentricity of lunar orbit. Earth’s radius is
RE = 6371 km, and mass ME =5.97e24 kg.

SOLUTION
(i) Spin angular momentum of the Earth was reduced from ξ MER2

E(2π/T0) to ξ MER2
E(2π/T )

now, where Earth’s nondimensional moment of inertia ξ = 0.3307, from wiki article. The difference
was transferred to the orbital angular momentum of the Moon, which changed by

(ME/81)
√

GME(
√

a−
√

a0),

We have
162πξ R2

E√
GME

(T−1
0 −T−1) =

√
a−
√

a0

Divide by
√

a to get √
a0/a = 1− 2 ·81πξ R2

E√
GMEa

(T−1
0 −T−1).

Let’s check the units: in S.I. the fraction has m2 in numerator and m2/s in denominator (specific
ang. mom.), and that gets divided by s, so units are ok. Don’t forget to convert all quantities to S.I.!

Plugging in the values, a0/a = 0.921, so a0 ' 354000 km.
(ii) A billion years ago the orbital period of the Moon (siderial moon month) was 2π

√
a3

0/(GME)=

24.3 days, and it is now 2π
√

a3/(GME) = 27.5 days.

2 [40p] Poynting-Robertson effect

J. Poynting and later H. Robertson studied an interesting general-relativistic effect, which can be
simply understood as aberration of light from a star, which causes radiation pressure vector to be
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tilted by about (v/c) radians, the ratio of circular speed to speed of light, with respect to the radial
direction away from the star’s center. (When a car travels, a vertically falling rain is seen on the side
window as streaks inclined to the vertical at the angle whose tangent function equals v/c, where v is
the car speed and c the speed of the falling rain. Read more on
https://en.wikipedia.org/wiki/Poynting-Robertson_effect

Radiation pressure falls off with the same second power of distance as gravity. A non-dimensional
β coefficient contains all we need to know about it; β depends on the size properties of a particle. A
gravel particle (4 mm diameter) can have β ≈ 0.01, a fine sand particle (0.4 mm diameter) can have
β ≈ 0.1, and dust particles even larger values.

Aberration causes a slight tangential component of the radiation pressure force (acceleration, re-
ally):

FPR =−v
c

βGM
a2

Here, a is the semi-major axis (we will only consider circular orbits, so we can replace distance r with
a everywhere; in fact one can show that eccentricity is damped by the Poynting-Robertson drag force,
which justifies that assumption). The force is directed against velocity vector v, thus it decreases both
energy and angular momentum of the orbital motion of the particle. This causes a very slow drift of
the particle: a decreases.

(i) Using the dependence of orbital energy on semi-major axis in Kepler problem, show that the
relative rates of change obey

Ė
E

=− ȧ
a
.

Substitute Ė from work-energy relationship dE/dt = F · v and present a formula for the radial drift
speed ȧ due to Poynting-Robertson effect.

(ii) Do the same using the angular momentum formula applied to circular orbits. As an interme-
diate result show that

L̇
L
=

1
L

dL
dt

=
ȧ
2a

.

(The dot above L is almost invisible.) Find L̇ from the torque formula L̇ = aFPR. Prove that both
methods result in the same equation for ȧ.

(iii) The formula for instantaneous time derivative of the distance is an ODE. Separate variables
and solve this differential equation, with the initial condition that at time t = 0 particle is at a = a0.
Prove that the rate of change of a2 is constant, and that the drift becomes therefore more vigorous as
the particle approaches the star. Find explicit solution for a(t) and make a sketch/plot. What is the
total time of the drift tPR, after which the particle is guaranteed to collide with the star (of perhaps
evaporate nearby). it should be proportional to a2

0/β . Evaluate tPR for a sand particle and a gravel
particle discussed earlier, starting from a0 = 1 AU from the sun. Is the P-R drift effective in dusting
off planetary systems?
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SOLUTION
(i) Since E = −GM/(2a), taking the natural logarithm and doing time derivative on both sides,

we get Ė/E =−ȧ/a, or

ȧ =−a
Ė
E

=
2a2Ė
GM

We now use

Ė = F ·v =−βGM
a2

v2

c
where v2 is the circular speed squared, equal to GM/a. We obtain

ȧ =−2β
GM
ca

Units check out ok in this ODE.
(ii) Since L = −

√
GMa on a circular orbit, taking the natural logarithm and differentiating both

sides we get L̇/L = ȧ/(2a). Substituting the specific torque L̇ = aFPR and simplifying we get

ȧ =
2a2FPR

L
=−2β

GM
ca

,

the same equation as in (i).
(iii) Separation of variables:

a da =−2β
GM

c
dt

allows an easy integration

a2−a2
0 =−4β

GM
c

t.

This form of an integration constant−a2
0 on the left-hand side satisfies the initial condition a(t = 0) =

a0. The solution has a graph that looks a little like ellipse where it hits the x-axis:

a(t) = a0
√

1− t/tPR

where

tPR =
a2

0c
4βGM

.

Checking units in these formulae; everything’s A-OK. The extremely rapid end-phase is due to the
steep increase of the product of two rapidly increasing factors, v(a)/c, and −1/a2, as a→ 0 near the
star.

Numerically, let’s evaluate the time of spiral drift of a gravel particle with β = 0.01 from 1 AU to
the sun:

tPR = (150e9)2(0.3e9)/[4(0.01)(6.674e-11) (2e30)] s = 1.264e+12 s ≈ 40100 yr.
The P-R time scale shortens by a factor of 10 to tPR = 4010 yr in case of a sand particle with ten

times bigger radiation pressure coefficient β . Neither of these times of removal of small meteoroids
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from the vicinity of the Earth’s orbit are long compared to the age of the solar system; in fact the dust-
ing off of our planetary system’s inner region is very quick. It’s a bit different (how much different?)
in the outer solar system.

As a final comment, we have neglected the fact that circular speed for particles pushed out by
radiation pressure force is somewhat smaller than the Keplerian value. In our problem this would
be a small correction to a small effect, but in general we might replace mass M of a star by a mass
effectively reduced to (1−β )M by the addition of radiation push, to obtain a better accuracy for β of
order 1.

3 [30p] Io’s tidal heating

The average outward heat flux due to tidal flexing from the surface of Io is Ftid = 2.25 W/m2. It
is caused by the eccentricity of the satellite’s orbit around Jupiter by moons such as Europa and
Ganimede, and by the viscous dissipation of tidal flexing of Io’s body.

Compare that flux with the insolation (flux of solar irradiation) calculated as the absorbed part of
the solar energy flux times the cross sectional area, spread over the whole surface of Io (not just its
sun-lit side). Assume that 63 percent of incoming solar radiation is scattered and 37 percent absorbed.
Draw conclusions as to what is heating Io more: tidal interaction with Jupiter or the irradiation by the
sun.

If its surface cools down according to Stefan-Boltzmann law (please read about it on wikipedia if
you are unfamiliar), and summing up the tidal and radiative (absorbed) fluxes, what is the expected
mean temperature T of Io’s surface? Compare T with the actual mean surface temperature given by
wikipedia.

SOLUTION
We will evaluate many quantities immediately, which is a departure from our typical procedure of

solving a problem.
Insolation flux on a perpendicular surface is Fsun = L

4πr2 , where r = 5.2 AU and L is the solar
luminosity (L� = 3.83e26 W). The units are W/m2, as can be seen from the formula. Substituting
numerical values (1 AU = 149.6e9 m), we get Fsun = 50 W/m2. This however is per meter-square
of cross-sectional area of the satellite, or a perpendicular flat plate, not yet per m2 of the spherical
surface; they differ by a factor of 4 (4πR2 surface of a sphere vs. πR2 its cross-section.)

Per unit surface area of the satellite, the time-average solar heating is (50/4) W/m2 = 12.5 W/m2.
Only 37 percent of this value, that is 4.63 W/m2, gets absorbed and heats the satellite surface. Thus
solar heating is bigger than tidal heating by a factor of 4.63/2.25 = 2 times.

Stefan-Boltzmann law reads Femit = σT 4 (flux emitted per unit area of Io’s surface is proportional
to fourth power of surface temperature). Femit equals the sum of tidal and radiative heating fluxes,
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i.e. 4.63 W/m2 + 2.25 W/m2 = 6.88 W/m2. Therefore T =(6.88/5.67e-8)1/4K = 105 K. The mean
temperature according to wikipedia is 110 K, which is different from our estimate by only 5%.

4 [20p] Gravity matters

A. The International Space Station has many microgravity experiments, in which objects are weight-
less while in orbit. Compute acceleration of the ISS due to Earth’s gravity in units of g and prove that
microgravity is a misnomer. The ISS orbits 400 km above the surface of Earth. Explain what’s going
on: how can a body’s weight disappear, while gravity is acting on it?

B. The Sun is 390 times further than the Moon, and its 1/q = 1/(3 · 10−6) times more massive
than Earth. Derive and evaluate the ratio of the accelerations with which the Sun and Earth are pulling
the center of mass of the Moon gravitationally.

The ratio may be surprising to you! It gives rise to the question: Why is the Moon a satellite of
Earth not Sun? In other words, why does it not depart from Earth to become a dwarf planet? Solve
the paradox.

SOLUTION to A
Earth’s gravity at altidude h = 400 km above its surface (Earth’s radius R = 6371 km) is [(R+

h)/R]−2g≈ (1−2∗400/6370)g = 0.874g, that is only 12.6% weaker than on the surface. Micrograv-
ity is a misnomer. In a frame that is accelerated (with acceleration a), we add −a to any acceleration
on the bodies (cf. PHYB54 mechanics). It’s simply a difference of accelerations on an object and
on ISS, that produces what we call weight. In ISS, this difference pretty much vanishes, hence the
weightlessness.

SOLUTION to B
It’s almost the same as in the ISS and a body inside it. Both are falling toward the Earth but the

relative acceleration not very unimportant. Well, more important than in the previous point, since ISS
really does not pull the body gravitationally, while the Earth is pulling the Moon.

Let us derive the ratio of accelerations, which is the ratio of attracting masses (1/q) divided by the
ratio of distances squared (3902):

FM�/FME = aM�/aME = 1/(3902q) = 2.19

In the subscript, we name the body (M,E,�) attracted first, and the body attracting second.
The Sun � is pulling the Moon much stronger than Earth, yet the Moon does not care and stays

around the Earth. The reason is that BOTH Earth and Moon are attracted by the Sun, which pulls
strongly on their center of mass, forcing it to orbit around the sun in 1 year. What could, in principle,

5



tear the Earth-Moon system apart is the DIFFERENTIAL acceleration the sun imparts to the bodies:
the tidal acceleration is a good name for it.

The maximum tidal effect due to the Sun happens when the Moon is in conjunction or opposition
with the Sun (i.e. on the Earth-Sun line). Let us call the Earth-Moon distance d and Earth-Sun
distance r. The difference of accelerations

∆a =− GM�
(r±d)2 +

GM�
r2

can be Taylor-expanded with error of order O(d2/r2) as

∆a =±2
GM�

r2
d
r
.

The numerical coefficient 2 comes from the power 2 in gravity law −1/r2.
As advertised, the tidal force is much smaller that Earth’s pull on the Moon (aME = GME/d2):

|∆a|
aME

= 2
M�
ME

(
d
r

)3

= 2/(3903q) = 0.0112

so there is no paradox! Moon’s motion relative to our planet is not affected strongly by the Sun.
We see that tidal effects increase with the distance from Earth’s center as d3, the cube of distance,

and decrease with the cube of the distance to the perturber (r−3). As a result, the relative perturbation
of Moon’s orbit is only 2/(3903q), not 1/(3902q) that the incorrect argument (the paradox) suggested,
i.e. almost 200 times weaker.
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