
ASTC25. PROBLEM SET #4. SOLUTIONS, HINTS.

1 [30p] Radial velocity of HD 2039

In 2002, Paul Butler and Geoff Marcy, using radial velocity variations of the star HD 2039, have discovered a
giant planet of 5 Jupiter masses orbiting on an fairly eccentric orbit.

1.1 Derive a general formula

for the radial velocity of the star of mass M, which has a planet of mass mp � M in orbit of eccentricity
0 < e < 1, semi-major axis a, and a negligible inclination to the line of sight. The argument of pericenter ω

is normally non-zero. We the observers are at nearly infinite distance on positive x axis. The periastron is
deflected by angle ω from the line of sight.

Differentiate in time the equation of ellipse, and use the angular momentum conservation law

L =
√

GMa(1− e2) = vθ r = const.

to derive both the radial (vr) and the azimuthal (vθ ) components of planet’s velocity relative to the star.
Hint: There are 3 angles useful for specifying the position of the planet on the ellipse. The first is the true

anomaly θ , found in the standard equation of ellipse r(θ). Historical designation was f but it may be confused
with force or acceleration, so you should perhaps stick with the name θ . The second is the mean anomaly (or
mean position angle) nt, the historical designation being a confusing letter M; n = Ω =

√
GM/a3 is called

the mean motion and t is time since pericenter. The third is the eccentric anomaly angle E (another confusing
designation, eh?). Derived by Johannes Kepler in his book ‘Astronomia Nova’ (1609), it has the form:

nt = E− esinE.

[Historians have found that Kepler’s equation was already formulated and solved in particular case some 750
years earlier by Habash al-Hasib al-Marwazi!].

The usual method of finding coordinates (r,θ) and from these where exactly the planet is at a given time
t, consists of first multiplying time by n to get nt, then iteratively solving Kepler’s equation to obtain eccentric
anomaly E. You can start with the first guess E = nt and iterate Kepler’s equation like so: E := nt +esinE [for
an iterative solution of Kepler’s equation, cf. his ‘Epitome of Copernican Astronomy’ (1621)]. You have to use
numerical calculation, because there is no explicit formula for E(nt), except for series expansions in the e� 1
case. Wikipedia tells you to iterate, but does not tell you how many times, in order to achieve good accuracy.
If about 10 accurate digits of E are sufficient (& why would anybody need more?), from my experience the
required number of iterations grows with eccentricity as Niter(e)≈ (5+10e)/(1− e).

There is a more efficient way to plot velocity curve as a function of time. You may create in Python a
numpy array of E values uniformly covering the interval 0...2π or, for a nicer plot, 0...3π with, say, 800 points.
Kepler’s equation will convert it into an array of corresponding nt values without the need to solve anything
iteratively. (In Python, algebra and trigonometry can be done element-wise on whole numpy arrays.) The only
inconveniece may be that your grid of time values is not covering time axis in uniform intervals (unless e = 0).
That is irrelevant for your present task, but if a uniform or some other non-uniform coverage of time axis is
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ever required (e.g. to compare with unevenly-sampled observation times), it may be obtained by numerical
interpolation, which would still beat the speed of the usual, iterative method.

Finally, convert E to θ through identity

tan
θ

2
=

√
1+ e
1− e

tan
E
2

and use θ(t) to obtain r(θ), angular speed dθ/dt = L/r2, and so forth. Remember that planet’s orbit is turned
by angle ω w.r.t. to the line-of-sight. Use trigonometry and dynamicsto derive the correct observed component
of Doppler-shifted stellar velocity!

1.2 For planet b of HD 2039

adopt a = 2.19 AU, argument of periastron ω = 223o, star’s mass M = 1.2M�, planet mass mp = 0.005M�, and
a high eccentricity e = 0.68.

Write your own script computing and plotting the component of star’s velocity observed via Doppler effect.
Express Vobs in m/s. Please write your own script, where you comment every important line, stating what is
being computed. It is best to either put comments before or in the same line as code. Discussing the methods
with fellow students is fine, but the implementation and computing must be your own.

For plotting, convert mean anomaly nt from radians to time in physical units by using Kepler’s 3rd law
giving period P of the planet (time from periastron in in the same units as P is equal t = (nt)P/(2π).

The final plot of the Vobs(t) (vertical axis in units of m/s) should have the horizontal axis labeled ’time
from periastron [yr]’, and a title including the name of the planetary system and your last name, or a least
your initials. Submit the description and the plot to Quercus. Please do not submit Jupyter notebooks. If you
use them, Jupyter can export them to PDF document, which you may separately submit to the assignments on
Quercus as a 2nd file.

SOLUTION
In elliptic motion, the planet has at any time t the true anomaly θ , and velocity vector in polar coordinates

equal to (vr,vθ ).
Differentiation of r(θ) equation for planetary elliptical orbit gives vr = dr/dt. After applying dθ/dt = L/r2

(ang. mom. conservation law) and cancellations:

vr = esinθ
vK√

1− e2

where vK =
√

GM/a is the Keplerian circular speed at distance a.
The other component follows directly from L-conservation:

vθ =
L
r
= (1+ ecosθ)

vK√
1− e2

.

What is the observed radial velocity of the planet? Let’s place the observer on the x-axis at +infinity.
The orbit (and all its velocity component vectors) must be turned turned ω radians in the counter-clockwise
direction.

The radial part of velocity vector is at an angle ω + θ to the x-axis, so we need to multiply the length of
the radial velocity (vr) of the planet w.r.t. its star by cos(ω + θ) to get the x-velocity of the planet, and by
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−(mp/M∗)cos(ω + θ) to obtain the contribution to x-velocity of the star. (The vector of stellar velocity is
−(mp/M∗) times the vector of planet’s velocity).

The azimuthal velocity component is at an angle ω+θ +π/2 to x-axis, and gives the following contribution
to the x-velocity of the star: −(mp/M∗)cos(ω +θ +π/2)vθ .

Now the final nuance is that the observed radial velocity is defined as positive when the star has a negative x-
velocity (runs away from the observer), not positive. It’s conventional definition in astronomy. Which requires
reversing the sign. Don’t worry! If you’ve only made the overall sign mistake in Vobs, this will be forgiven by
our TA.

Summing up the two contributions, and getting rid of the +π/2 in one argument of cosine by using the
identity cos(ψ +π/2) =−sinψ , we get the stellar, observed, radial velocity:

Vobs =−
mp

M∗

vK√
1− e2

[(1+ ecosθ)sin(ω +θ)− esinθ cos(ω +θ)]

Pretty complicated, eh? But Python loves such formulae.
The final chore is to express time not in radians, like phase nt, but in physical units, and evaluate the

vK(a) = 29780/
√

a/AU m/s. Period P = (M∗/M�)−1/2(a/AU)3/2 is helpful here.
Here is the script solving Kepler’s equation iteratively https://planets.utsc.utoronto.ca/

˜pawel/ASTC25/Vr.py and its results: https://planets.utsc.utoronto.ca/˜pawel/ASTC25/
HD2039b.png

You can see here that when we use the trick of not solving Kepler’s equation iteratively but algebraically
(sort-of in reverse), https://planets.utsc.utoronto.ca/˜pawel/ASTC25/Vr-noK.py then
the script is simpler and the graph stays exactly the same: https://planets.utsc.utoronto.ca/

˜pawel/ASTC25/HD2039-noK.png

2 [30p] A day at the extraterrestrial beach

https://en.wikipedia.org/wiki/Ontario_Lacus is the other Lake Ontario: a similarly shaped
and sized lake on Titan, on of many lakes on Saturn’s moon Titan, the largest of the 146 known moons of Saturn,
and second-largest moon in the Solar System after Jupiter’s Ganymede. It is the first extraterrestrial lake ever
found and the first river on the western shore of the lake. The northern shoreline features ∼1 km height hills,
and wave-swept shoreline. The lake was discovered in 2008 by the Cassini spacecraft. It is filled with methane,
ethane and propane (more or less a cigarette lighter fluid).

We want to go to the beach at Lake Ontario on Titan. Since Titan is about 9 AU from the sun, we need to
dress well for the occasion: it could be much colder than here. You will compute the atmospheric temperature
in an indirect way, from remote observations of density profile in the atmosphere.

(A) To establish the surface temperature, you will utilize the known structure of the dense, N2-dominated,
atmosphere of Titan (molecular mass µ = 28, pressure 1.45 atm is significantly larger than in the N2-dominated
air in your room). Function ρ(z) describing the vertical density profile of the atmosphere was obtained from
remote observations and can be approximated near the ground by

ρ(z) = ρ0 exp(−z/H)
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where H = 18.5 km is the exponential scale height, and ρ0 a surface density which, by the way, exceeds the
atmospheric density on Earth.

Assume for simplicity that the atmosphere is isothermal, i.e. p = (kT/µmH)ρ = c2
s ρ , where T = const.

is temperature, µmH is the mass of the dominant molecule, and k = Boltzmann constant, cs = const is the
isothermal soundspeed. Write and solve by variable separation an equation of the vertical hydrostatic force
balance in the atmosphere. Gravitational acceleration is in local balance with gas pressure gradient acceleration,
equal to −(1/ρ)d p/dz.

In computation of gravitational acceleration gT near the surface of Titan, you can assume that it is constant
in the whole atmosphere. Titan’s mass is M = 1.35e23 kg = 0.0225 Earth’s masses = 3.3 Moon masses, and its
radius is R = 2576 km, which is 2576/6371 of Earth’s radius (only 25% smaller than Mercury’s radius.)

Prove that the solution indeed is an exponential function of height z, and write the relation connecting H to
the constant temperature T near the surface. Then check the units and evaluate the temperature. [You should be
concerned, if that temperature is not somewhere between 70 and 100 K, since these are the typical temperatures
of satellites in the outer solar system.]

Knowing T , you now know how to dress for the beach-going. But more can be obtained from the observa-
tion of the atmospheric scale height.

(B) Write the equation for the temperature Te f f of a spherical body placed at distance r from the sun, having
an ideal absorption and emissivity of QIR = 1 in infrared, but non-zero scattering coefficient or Bond albedo A
in the visible. [Cf. problem set # 3]. Caused only partly by the reflecting surface, the albedo is mostly due to
Titan’s atmosphere, which is always hazy and scatters a significant fraction A of solar radiation back into space.
Scattering dominates over retention of infrared radiation, so much so the atmosphere is called anti-greenhouse
for its surface being colder than blackbody.

Using T computed in (A), estimate the mean albedo A of Titan. The Sun-Saturn distance during the obser-
vations was r = 9.12 AU. Google says that 1 AU = 149597871 km, I don’t believe the last digits are correct :-)
L� = 3.846 ·1026 W. Any other data can be found in wikipedia.

SOLUTION
It is interesting to know how many Earth g’s the gravity on Titan is:

gT = GM/R2 = g(M/ME)(R/RE)
−2 = 0.1376 g = 1.350 m/s2

where we’ve plugged the data from the problem to evaluate the ratios.
Denote as c2

s = kT/(µmH) the square of isothermal soundspeed. The equation of ideal gas reads p = c2
s ρ .

Hydrostatic equilibrium in z direction reads

−(1/ρ)d p/dz−gT = 0

or after substitution of p(ρ),
d lnρ

dz
=−gT/c2

s

The r.h.s. is a constant with a unit of 1/length (check it!). Let’s introduce a scale-height

H = c2
s/gT .
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so that the r.h.s. of the differential equation becomes −1/H = const. Integration gives

ρ(z) = ρ0 e−z/H ,

where ρ0 is the density at the surface. We see that the vertical profile of ρ(z) and p(z) = c2
s ρ(z) are indeed

exponential, q.e.d. We know that H = 18.5 km, from which we can find the temperature:

T =
µmH

k
gT H

The units are ok. We can substtitute the known values, such as hydrogen mass mH = 1.6727e-27 kg, µ = 28,
k = 1.3806e-23 in SI, and the end result is:

T = 84.7 K

This reasonably-looking estimate of surface temperature can now be used to estimate albedo. Albedo A is
present in the energy balance equation that we saw many times, for example in the lectures:

4σT 4 =
(1−A)L

4πr2

r = 9.12 AU is the Sun-Saturn during observations. From this,

A = 1−σT 4 16πr2

L

The fraction is inverse of the energy flux, and σT 4 is the energy flux, so dimensions are correct. It makes
no sense to plug in the formula for T we obtained before, because it contains different constants that will not
cancel with the constants in this equation for albedo. It is better to use T = 84.7 K directly. Numerically, we
have σ =5.6703e-8 in SI, L = 3.83e26 W, and we find a very reasonable estimate of Bond albedo

A = 0.28

There is a slightly different definition of albedo called geometric bolometric albedo.
https://www.sciencedirect.com/science/article/abs/pii/0019103574900360

states that T = 84±2 K (consistent with our T), and the bolometric geometric albedo of Titan is 0.21. For many
years wikipedia was saying A = 0.22, presumably citing the Bond albedo of Titan, but now (2024) when you
google ”albedo of Titan (moon)”, you get a much more satisfying answer: ”The bolometric Bond albedo, A ,
is then 0.27±0.04, giving an effective radiative temperature Te= 84±2oK.” Even though Google should know
that we never write kelvins as oK, just K.

3 [25p] Janus and Epimetheus - corotating satellites

Two satellites, Janus and Epimethus were found in 1980 to orbit Saturn on almost identical, nearly circular
orbits. Before the discovery of Epimetheus, only one satellite was thought to occupy Janus’ orbit (discovered
in 1966). On Dec 31, 2003, Epimetheus semi-major axis was aE = 151410± 10 km and its orbital period was
P = 0.694333517 days. Janus at the same time had the following orbit: aJ = 151460± 10 km, P = 0.694660342
days. Find the mass of Saturn, assuming the masses of both satellites are vanishingly small relative to the
planet’s mass.
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Approaching very slowly, at small distance Janus and Epimetheus exert non-negligible mutual gravitational
force, which modifies their orbits. The more distant satellite loses energy and angular momentum, which the
less distant gains. Tis decreases the semi-major axis of the outer moon and increases the semi-major axis of
the inner moon. Before they achieve conjunction, the moons cross the same value of semi-major axis, at which
point they stop approaching each other along the orbit. The gravitational interaction continues, with the slower
moon becoming faster and vice versa. After the swap, the corotational satellites start drifting apart, never being
physically closer than s = 10000 km apart.

Sketch the motion of the satellites in one of the possible rotating frames of reference, for instance the frame
of reference of the more massive Janus. Compute the synodic period Psyn of Janus and Epimetheus pair, defined
as the period at which the two bodies and the planet repeat their configuration (this could be opposition, i.e.,
when the moons are in one line with the planet, on opposite sides). Based on it, predict which of the moons is
closer to Saturn right now.

NOTE: https://www.planetary.org/articles/janus-epimetheus-swap. I mentioned
the opposition and not the conjunction (moons in one line with the planet on the same side), which is normally
used to define synodic period, because corotational satellites do not really have conjunctions. Even though s is
a small distance compared with the circumference of their orbits, please take it into account in the calculation
of synodic period: the moons’ relative angular position changes by less that the full 360 degrees in one synodic
period, because of the minimum distance s.

HINT: Use Kepler’s relationship for angular speed Ω as a function of radius, and assume eccentricities are
negligible. You may use expansion of any quantity like orbital frequency Ω or orbital period P with respect to
radius. For instance, Ω(a+x) =Ω(a)+(dΩ/dr)x, where (dΩ/dr) is evaluated at r = a, and equals (dΩ/dr) =
(−3/2)(Ω/a), in view of Ω∼ a−3/2). Here x is the difference of two similar a’s. Alternatively, you can use the
quantities aJ and aE as they are given, and do arithmetic in double precision.

SOLUTION
As discussed in one of the tutorials, to talk about synodic period we need to first evaluate the difference of

angular speeds of satellites Janus and Epimetheus. In fact we need the absolute value, since they swap places,
while preserving the orbital separation, so ∆Ω = ΩJ−ΩE changes sign. Then we need to consider that in the
frame of reference rotating with Janus (so that Janus is not changing the polar angle or azimuth, only changes
the radius during encounters with Epimetheus), the trajectory of Epimetheus looks like a narrow horseshoe.
The ”missing part” of a full cirle has length 2s = 20000 km, from the conditions of the problem. Subtracting
appropriate portion of circumference 2πaJ we come to conclusion that instead of 2π , in time of one synodic
period Epimetheus changes the polar angle by

∆θ = 2π

(
1− s

πaJ

)
The synodic period is therefore less than 2π/|∆Ω|, namely it equals

Psyn =
∆θ

|∆Ω|

What is ∆Ω? That we can obtain either using Ωx =
√

GM/a3
x for each satellite x = J,E separately, or by writing
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Taylor expansion of this Keplerian rotation equation and keeping the lowest order term only

|∆Ω| ≈ dΩ

da
|∆a|= 3Ω

2
|∆a|

a
, where |∆a| is the orbital separation of the pair (constant apart from brief exchanges). Units are ok, so we can
continue. Here it does not matter which a we use; it would be a very small, higher order correction, if we were
to distinguish aJ from aE here, or ΩJ from Ω or from ΩE . Let’s use aJ and ΩJ then.

The final answer is obtained by substitution of |∆a| and ∆θ into the formula for Psyn, and remebering that
2π/ΩJ is orbital period of Janus, PJ:

Psyn = 2π

(
1− s

πaJ

)
2

3Ω

aJ

|∆a|
= PJ

2aJ

3|∆a|

(
1− s

πaJ

)
Numerically, I got Psyn = 0.69466 ∗ (2/3) ∗ 3029 ∗ (1− 10000/π/151460) = 1373 days, or 3.76 yr ≈ 4 yr.
Synodic period is approximately 2000 times longer than the orbital period, due to extremely close orbits of the
two coorbital satellites.

The problem formulation asked for Saturn’s mass. But in the above derivation we never actually needed it.
It can be gotten from formula for Ω2, which is a Kepler’s law applied to Saturn satellites: GM = a3(2π/P)2.
Substituting the Janus’ PJ (convered from days to seconds!) and aJ in meters, as well as G = 6.674 · 10−11 in
SI, we get M = MS = 5.70551 ·1026 kg.

This is correct, since we know (or should know) that Saturn is about 3 times less massive than Jupiter.
What is the mass of Jupiter? We normally tend to approximate Jupiter-sun mass ratio as 0.001, and solar mass
as 2e30 kg, but in fact Jupiter mass is not 2e27 kg but 1.89813e27 kg. That gives mass ratio relative to Saturn of
1.89813e27/5.70551e26 = 3.327. The inverse of this ratio is 0.30059. It turns out that it is much more (50 times
more) precise to say that Saturn is 0.3 of Jupiter mass than to say that it is 3 times less massive than Jupiter.

4 [30p] Derivation of greenhouse effect

The subject of this problem is to model the greenhouse effect in a planetary atmosphere by assuming that it
has optical thickness zero (is transparent) to starlight, but large in infrared thermal radiation (IR). Starlight thus
heats the surface, which re-emits the entire obtained energy in IR. Before eventually leaving the planet, IR
radiation is temporarily trapped in opaque atmosphere, which affects the temperature profile in the atmosphere
and makes the ground warmer than in the absence of greenhouse gases.

The atmosphere will be assumed to transfer radiation only in vertical direction. It will be conceptually
divided into an integer number τ of plane, horizontal layers, each able to efficiently absorb and re-emit at IR
wavelengths. τ ≥ 0 is called the IR optical depth of the atmosphere. (Physically, absorption and re-emission of
IR is done by greenhouse gases.) By this assumption, each layer is heating only two neighboring layers (one of
which can be ground, or space, in case of the lowest/highest layer).

The ground and all the layers are in thermal equilibrium, i.e. at constant temperature Tn, where n= 0,1, ...,τ;
index 0 describes the ground. The layers neither store energy nor cool down faster than they are heated by
immediately neighboring layers (by layer 1 and the starlight, in the case n = 0).

Each atmosphere layer absorbs IR photons on upper and lower side and re-emits them in up and down
directions. The ground only has one side, and layer number τ only absorbs on lower side but emits from both
up and down-facing side equally.
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The one-sided fluxes of infrared energy emitted by a surface at temperature Tn can be written as blackbody
flux

Fn = σT 4
n

(power per unit surface area). Consider a unit area of surface, so that you do not have to multiply all the fluxes
by the same area (how large the area is does not matter for temperatures that we are seeking).

The ground receives some amount of starlight which for convenience will be written as flux F∗ = σT 4
∗ . The

T∗ can be considered a known quantity, although a particular value is not important here.
Your task is to find how the surface temperature T0(τ) under an atmosphere of IR optical thickness τ depends

on τ . How much higher will it be for τ = 1,2, ..., i.e. what are T0(1)/T0(0), T0(2)/T0(0), and T0(3)/T0(0)?
To find this, build a series of models for the atmospheres with optical depths τ = 0,1,2,3. The first model

has 1 equation, describing energy gain and loss by the ground only, as τ = 0 corresponds to no atmosphere.
Case τ = 1 is modeled by 2 equations (one for the ground and one for a single opaque layer), and so on. A
pattern will become obvious after you do the first few models, allowing you to write an expression for the
temperature valid for any τ . In fact, your result will be a good approximation for any real-valued τ as well.

HINTS
Make a sketch depicting the ground and all the layers of a given model, indicating by arrows energy transfer

routes. It is tedious to write the associated fluxes σT 4
n , so why don’t you label the arrows by the equivalent

name, Fn, and also use Fn when you write the set of τ +1 energy balance equations. After you find the values
of all Fn by algebra, you can express the final result as the ground temperature T0 = (F0/σ)1/4.

SOLUTION
It is perfectly OK to follow the instructions in the problem to set up first 1, 2 then 3 equations describing

the energy loss and gain in each layer. As long as after that exercise you have arrived at the conclusion that
F’s linearly grow in each model, starting from top layer that emits into space flux exactly equal to the flux the
planet receives from the sun, proportionally to the number of the layer counted from the uppermost (renamed
as 1), then you’ve got the right result. The temperatures grow as well, as 1/4-th power of this linear function,
so you should have seen the surface being (1+τ)1/4 times hotter than T∗. Let’s discuss and digress some more,
maybe allowing some deeper insight.

The statement about temperature of the top layer being T∗ follows from energy equilibrium of the planet as
a whole: only the top layer radiates IR into space, which the whole planet receives flux that we agreed to call
σT 4
∗ .
The statement that downward growth of F in each model must happen follows from consideration of energy

balance in one of the intemediate layers with number n. Incoming energies are IR fluxes from neighboring
layers n−1 and n+1; outgoing flux (two-sided cooling) is equal 2Fn, so

Fn−1 +Fn+1 = 2Fn

or
Fn−1−2Fn +Fn+1 = 0 .

Notice what happens when you have lots of layers. The above linear combination becomes better and better
approximation to the second derivative ∂ 2F/∂n2 or ∂ 2F/∂ z2, plus it says that the second derivative vanishes.
This is becuase
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∂ 2F
∂n2 ≈

[(
∂F
∂n

)
n+1/2

−
(

∂F
∂n

)
n+1/2

]
1

(n+ 1
2)− (n− 1

2)

while (
∂F
∂n

)
n+1/2

≈ (Fn+1−Fn)/1

(
∂F
∂n

)
n−1/2

≈ (Fn−Fn−1)/1

so that in the end on a grid of integer n’s we approximate

∂
2F/∂n2 ≈ Fn−1−2Fn +Fn+1

as advertised.
Why is this whole math important? Because of the heat diffusion equation that contains this second deriva-

tive over spatial coordinate z (here represented by number n). In unsteady situation, heat equation says that the
flux in each layer changes in time according to this PDE (partial differential equation)

∂F
∂ t

= const. · ∂ 2F
∂ z2

but in a steady (equilibrium) situation the time derivative is zero, and therefore relation Fn−1−2Fn +Fn+1 = 0
is satisfied (which simply says that whatever a layer gets from neighbors, it re-emits on two of its sides). So
our layer-by-layer calculation is a discrete case of a more general, continuos, differential equation of energy
diffusion, in the simple case of perfect thermal equilibrium.

If the second derivative of F(n) or F(z) is zero, then its first derivative over n or z is a constant, and that
means that these functions are linear functions of their respective arguments. That is what you have obtained as
a pattern emerging from a few low-N solutions, but as we see it is also valid in arbitrary, or even infinite, number
of layers (such as is represented by the PDE of heat diffution). When we traverse the whole atmosphere, the
whole optical thickness understood as an integer number of layers (excluding surface), on the surface of the
planet we find (using F = σT 4):

T0 = (1+ τ)1/4T∗

This formula is very similar, almost the same as a real radiation transfer theory derives, under certain assump-
tions. There, it is valid for a real, not only an integer τ; in this capacity it is very useful for the Earth and planets,
as most have a fractional τ .
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