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Preface

This book originally was intended to be a modest revision of my earlier
work, Dynamics of Flight—=Stability and Control, published in 1959. As the
task progressed, however, I found that the developments of the intervening
decade, and the shift in my own approach to the subject, made a “modest
revision” impossible. Thus this volume is virtually a new book, with organi-
zation and content substantially different from its predecessor. Two prineipal
factors caused this change: (1) the proliferation of vehicle types and flight
regimes, particularly hypersonic and space flight, and (2) the explosive
growth of machine computation.

The first factor compelled me to abandon the long-standing simplifying
assumption that the Earth’s surface could be represented by a plane fixed
in inertial space, and to include in the mathematical model all the com-
plications that arise from the curvature and rotation of the Earth.

The second factor had two profound effects. One was that since we are
no longer confined to primitive computation methods, it is commonplace
nowadays in industry to construct highly sophisticated mathematical
“simulations” of systems for the purpose of carrying out research and design
studies. The emphasis on simple approximations is thereby reduced, and the
need to set up accurate (even though complicated) mathematical models
increased. The other effect of the computing revolution (on me at any rate)
has been to produce a shift to modern algebra (vector/matrix analysis) as the
basic tool for analysis. This is ideally suited to digital computation. A
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tertiary effect has derived from the ready availability to me of sophisticated
computing machinery, which I have used for the computation of many
numerical examples, to illustrate both typical results and how to apply the
theory.

I have continued as in the previous book, to emphasize fundamentals
since, as I stated in the preface to Dynamics of Flight—Stability and Control,
“The art of airplane and missile design is progressing so rapidly, and the
configurations and flight regimes of interest are so varied that one is scarcely
justified in speaking of typical configurations and typical results. Each new
departure brings with it its own special problems. Engineers in this field must
always be alert to discover these, and be adequately prepared to tackle
them—they must be ready to discard long-accepted methods and assump-
tions, and to venture in new directions with confidence. The proper back-
ground for such ventures[and for such confidence] is a thorough understanding
of the underlying principles and the essential techniques.” To which T.
Hacker (ref. 1.11) appropriately adds that some doubt should leaven the
confidence and that “the effort for a thorough understanding of principles
and techniques should be completed by the desire to further . . . the former
and improve the latter.”

Chapters 2 and 3 review the foundation in mathematics and system theory
for the material that follows. Readers who are familiar with this material
will find it useful for review and reference. For readers whose background
has not included these topics, a study of these two chapters is essential
to understanding the rest of the book. Chapters 4 and 5 continue
with the building of a general mathematical model for flight
vehicles and contain many explicit variations of such models. The
aerodynamic side of the subject is explored next in Chapters 6 to 8, and
specific applications, with many fully worked numerical illustrations, are
given in Chapters 9 to 13. The example vehicles range from STOL to
hypersonic. I have omitted the rather extensive appendices of data that were
contained in the previous book, simply in the interests of economy. These
data are now available in the USAF Handbook of Stability and Control
Methods and the Data Sheets of The Royal Aeronautical Society. I also
omitted, on the grounds of time and economy, a planned chapter on the
dynamics of spacecraft entry into the atmosphere. However, the general
equations of Chapter 5 embrace this application.

This book is written for both students and practicing engineers. Chapters
2 to 5 are not especially suited for an introductory course, but are appro-
priate for the more serious student who wishes to qualify as a practitioner
in this field. The remaining chapters provide ample useful material for an
introductory course when used in conjunction with a less rigorous develop-
ment of the small-perturbation equations for the “flat-Earth’ case.
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Introduction

CHAPTER |

This book is about the motion of vehicles that fly in the atmosphere. As
such it belongs to the branch of engineering science called applied mechanics.
The three italicized words above warrant further discussion. To begin with
Jly—the dictionary definition is not very restrictive, although it implies
motion through the air, the earliest application being of course to birds.
However, we also say “a stone flies” or ‘“‘an arrow flies,” so the notion of
sustention (lift) is not necessarily implied. Even the atmospheric medium
is lost in “‘the flight of angels.” We propose as a logical scientific def-
inition that flying be defined as motion through a fluid medium or empty
space. Thus a satellite “flies” through space and a submarine “flies” through
the water. Note that a dirigible in the air and a submarine in the water are
the same from a mechanical standpoint—the weight in each instance is
balanced by buoyancy. They are simply separated by three orders of
magnitude in density. By vehicle is meant any flying object that is made up
of an arbitrary system of deformable bodies that are somehow joined together.
To illustrate with some examples: (1) A rifle bullet is the simplest kind, which
can be thought of as a single ideally-rigid body. (2) A jet transport is a more
complicated vehicle, comprising a main elastic body (the airframe and all
the parts attached to it), rotating subsystems (the jet engines), articulated
subsystems (the aerodynamic controls) and fluid subsystems (fuel in tanks).
(3) An astronaut attached to his orbiting spacecraft by a long flexible cable
is a further complex example of the general kind of system we are concerned
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with. Note that by the above definition a vehicle does not necessarily have
to carry goods or passengers, although it usually does. The logic of the def-
initions is simply that the underlying engineering science is common to all
these examples, and the methods of formulating and solving problems
concerning the motion are fundamentally the same.

As is usual with definitions, we can find examples that don’t fit very well.
There are special cases of motion at an interface which we may or may not
include in flying—for example, surface ships, hydrofoil craft and air-cushion
vehicles. In this connection it is worth noting that developments of hydrofoils
and ACV’s are frequently associated with the Aerospace industry. The main
difference between these cases, and those of “true” flight, is that the latter
is essentially three-dimensional, whereas the interface vehicles mentioned
(as well as cars, trains, etc.) move approximately in a two-dimensional
field. The underlying principles and methods are still the same however,
with certain modifications in detail being needed to treat these “surface”
vehicles.

Now having defined vehicles and flying, we go on to look more carefully
at what we mean by motion. It is convenient to subdivide it into several parts:

Gross Motion:
(i) Trajectory of the vehicle mass center.
(ii) “Attitude” motion, or rotations of the vehicle “as a whole.”

Fine Motion:
(i) Relative motion of rotating or articulated sub-systems, such as
engines, gyroscopes, or aerodynamic control surfaces.
(ii) Distortional motion of deformable structures, such as wing bending
and twisting.
(iii) Liquid sloshing.

This subdivision is helpful both from the standpoint of the technical
problems associated with the different motions, and of the formulation of
their analysis. It is surely self-evident that studies of these motions must
be central to the design and operation of aircraft, spacecraft, rockets,
missiles, etc. To be able to formulate and solve the relevant problems, we
must draw on several basic disciplines from engineering science. The re-
lationships are shown on Fig. 1.1. It is quite evident from this figure that
the practicing flight dynamicist requires intensive training in several
branches of engineering science, and a broad outlook insofar as the practical
ramifications of his work are concerned.

In the classes of vehicles, in the types of motions, and in the medium of
flight, this book treats a restricted set of all possible cases. Its emphasis is
on the flight of airplanes in the atmosphere. The general equations derived,
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l Aerodynamics {

Mechanics of rigid Vehicle
bodies design
Mechanics of elastic _D FLIGHT Vehicle
structures DYNAMICS operation
Human pilot Pilot
dynamics training
Applied mathematics,
machine computation I I
Performance Stability and control Aeroelasticity
(trajectory) (flying qualities, (control,
airloads) structural integrity)

Fre. 1.1 Block diagram of disciplines.

and the methods of solution presented, are however readily modified and
extended to treat the other situations that are embraced by the gemeral
problem. ‘

All the fundamental science and mathematics needed to develop this
subject existed in the literature by the time the Wright brothers flew.
Newton, and other giants of the 18th and 19th centuries, such as Bernoulli,
Euler, Lagrange, and Laplace, provided the building blocks in solid me-
chanics, fluid mechanics, and mathematics. The needed applications to aero-
nautics were made mostly after 1900 by workers in many countries, of whom
special reference should be made to the Wright brothers, G. H. Bryan,
F. W. Lanchester, J. C. Hunsaker, H. B. Glauert, B. M. Jones, and S. B.
Gates. These pioneers introduced and extended the basis for analysis and
experiment that underlies all modern practice.f This body of knowledge is
well documented in several texts of that period, e.g. ref. 1.4. Concurrently,
principally in the USA and Britain, a large body of aerodynamic data was
accumulated, serving as a basis for practical design.

Newton’s laws of motion provide the connection between environmental
forces and resulting motion for all but relativistic and quantum-dynamical
processes, including all of “‘ordinary” and much of celestial mechanics. What
then distinguishes flight dynamics from other branches of applied mechanics?

1 An excellent account of the early history is given in the 1970 von Karman Lecture
by C. D. Perkins (ref. 1.13).
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Primarily it is the special nature of the force fields with which we have
to be concerned, the absence of the kinematical constraints cemtral to
machines and mechanisms, and the nature of the control systems used
in flight. The external force fields may be identified as follows:

“Strong” fields:
(1) Gravity

(ii) Aerodynamic
(iii) Buoyancy

“Weak” fields:
(iv) Magnetic
(v) Solar radiation

We should observe that two of these fields, aerodynamic and solar radiation,
produce important heat transfer to the vehicle in addition to momentum
transfer (force). Sometimes we cannot separate the thermal and mechanical
problems (ref. 1.5). Of these fields only the strong ones are of interest for
atmospheric and oceanic flight, the weak fields being important only in
space. It should be remarked that even in atmospheric flight the gravity
force can not always be approximated as a constant vector in an inertial
frame. Rotations associated with Earth curvature, and the inverse square
law, become important in certain cases of high-speed and high-altitude
flight (Chapters 5 and 9).

The prediction and measurement of aerodynamic forces is the principal
distinguishing feature of flight dynamics. The size of this task is illustrated
by Fig. 1.2, which shows the enormous range of variables that need to be
considered in connection with wings alone. To be added, of course, are the
complications of propulsion systems (propellers, jets, rockets) and of com-
pound geometries (wing + body - tail).

As remarked above, Newton’s laws state the connection between force
and motion. The commonest problem consists of finding the motion when
the laws for the forces are given (all the numerical examples given in this
book are of this kind). However we must be aware of certain important
variations:

1. Inverse problems of first kind—the system and the motion are given
and the forces have to be calculated.

2. Inverse problem of the second kind—the forces and the motion are
given and the system constants have to be found.

3. Mixed problems—the unknowns are a mixture of variables from the
force, system, and motion.

Examples of these inverse and mixed problems often turn up in research,
when one is trying to deduce aerodynamic forces from the observed motion
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Parameters of wing aerodynamics
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{u, v, w, p, g, r]=const [u(), v(t), w(t), p(t), q(t), r(t)]

T I
Continuum Slip Free-molecule

[ T T 1

Uniform and Nonuniform and Uniform and Nonuniform and

- at rest at rest in motion in motion
(reentry) (gusts)

Fia. 1.2 Spectrum of aerodynamie problems for wings.

of a vehicle in flight or of a model in a wind tunnel. Another example is the
deduction of harmonics of the Earth’s gravity field from observed pertur-
bations of satellite orbits. These problems are closely related to the “plant
identification” or “parameter identification’ problem that is of great current
interest in system theory. (Inverse problems were treated in Chapter 11 of
Dynamics of Flight—Stability and Control, but are omitted here.)

TYPES OF PROBLEMS

The main types of flight dynamics problem that occur in engineering
practice are:

1.

IS O W

Calculation of “performance” quantities, such as speed, height, range,
and fuel consumption.

. Calculation of trajectories, such as launch, reentry, orbital and landing.
. Stability of motion.

. Response of vehicle to control actuation and to propulsive changes.

. Response to atmospheric turbulence, and how to control it.

. Aeroelastic oscillations (flutter).

. Assessment of human-pilot/machine combination (handling qualities).
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It takes little imagination to appreciate that, in view of the many vehicle
types that have to be dealt with, a number of subspecialties exist within
the ranks of flight dynamicists, related to some extent to the above problem
categories. In the context of the modern aerospace industry these problems
are seldom simple or routine. On the contrary they present great challenges
in analysis, computation, and experiment.

THE TOOLS OF FLIGHT DYNAMICISTS

The tools used by flight dynamicists to solve the design and operational
problems of vehicles may be grouped under three headings:

Analytical
Computational
Experimental

The analytical tools are essentially the same as those used in other branches
of mechanijcs. Applied mathematics is the analyst’s handmaiden (and some-
times proves to be such a charmer that she seduces him away from flight
dynamics). One important branch of applied mathematics is what is now
known as system theory, including stochastic processes and optimization.
It has become a central tool for analysts. Another aspect of this subject that
has received a great deal of attention in recent years is stability theory,
sparked by the rediscovery in the English-speaking world of the 19th
century work of Lyapunov. At least insofar as manned flight vehicles are
concerned, vehicle stability per se is not as important as one might suppose.
It is neither a necessary nor a sufficient condition for successful controlled
flight. Good airplanes have had slightly unstable modes in some part of their
flight regime, and on the other hand, a completely stable vehicle may have
quite unacceptable handling qualities. It is performance criteria that really
matter, so to expend a great deal of analytical and computational effort
on finding stability boundaries of nonlinear and time-varying systems may
~ not be really worthwhile. On the other hand, the computation of stability
of small disturbances from a steady state, i.e. the linear eigenvalue problem
that is normally part of the system study, is very useful indeed, and may well
provide enough information about stability from a practical standpoint.

On the computation side, the most important fact is that the availability
of machine computation has revolutionized practice in this subject over
the past ten years. Problems of system performance, system design, and op-
timization that could not have been tackled at all a dozen years ago are
now handled on a more or less routine basis.

The experimental tools of the flight dynamicist are generally unique to
this field. First, there are those that are used to find the aerodynamic inputs.
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Wind tunnels and shock tubes that cover most of the spectrum of atmospheric
flight are now available in the major aerodynamic laboratories of the world.
In addition to fixed laboratory equipment, there are aeroballistic ranges for
dynamic investigations, as well as rocket-boosted and gun-launched free-
flight model techniques. Hand in hand with the development of these general
facilities has gone that of a myriad of sensors and instruments, mainly
electronic, for measuring forces, pressures, temperatures, acceleration,
angular velocity, ete.

Second, we must mention the flight simulator as an experimental tool
used directly by the flight dynamicist. In it he studies mainly the matching
of the man to the machine. This is an essential step for radically new flight
situations, e.g. space capsule reentry, or transition of a tilt-wing VIOL
airplane from hovering to forward speed. The ability of the pilot to control
the vehicle must be assured long before the prototype stage. This cannot yet
be done without test, although limited progress in this direction is being
made through studies of mathematical models of human pilots. The prewar
Link trainer, a rudimentary device, has evolved today into a highly complex,
highly sophisticated apparatus. Special simulators, built for most new major
aircraft types, provide both efficient means for pilot training, and a research
tool for studying flying qualities of vehicles and dynamics of human pilots.
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Analytical tools

CHAPTER 2

2.1 INTRODUCTION

This chapter contains a summary of the principal analytical tools that
are used in the formulation and solution of problems of flight mechanics.
Much of the content will be familiar to readers with a strong mathematical
background, and they should make short work of it.

The topics treated are vector/matrix algebra, Laplace and Fourier trans-
forms, random process theory, and machine computation. This selection is a
reflection of current needs in research and industry. The vector/matrix
formalism has been adopted as a principal mathematical tool because it
provides a single powerful framework that serves for all of kinematics,
dynamics, and system theory, and because it is at the same time a most
suitable way of organizing analysis for digital computation.i The treatment
is intended to be of an expository and summary nature, rather than rigorous,
although some derivations are included. The student who wishes to pursue
any of the topics in greater detail should consult the bibliography.

T Most computation centers have library programs for the manipulation of matrices.
These are routine operations.

8
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2.2 VECTOR/MATRIX ALGEBRA

As has already been remarked, this book is written largely in the language
of matrix algebra. Since this subject is now so well covered in undergraduate
mathematics courses and in numerous text books, (2.1, 2.11) we make only
a few observations here.

In this treatment no formal distinction is made between vectors and
matrices, the former being simply column matrices. In particular the
familiar vectors of mechanics, such as force and velocity, are simply three-
element column matrices. For the most part we use boldface capital letters
for matrices, e.g. A = [a,,], and boldface lower case for vectors, e.g. v = [v;].
The transpose and inverse are denoted by superscripts, e.g. AT, A1, The
scalar product then appears as

and the vector product as
‘ uxv=uv

where i is a skew-symmetric 3 X 3 matrix derived from the vector u, i.e.

0 —u; u,
a=| u, 0 —u
—Uy Uy 0

As usual the identity matrix is denoted by
I= [61'5]

in which d,; is the Kronecker delta.

2.3 LAPLACE AND FOURIER TRANSFORMS

The quantities with which we have to deal in physical situations usually
turn up naturally as functions of space and time. For example, the state or
motion of a flight vehicle is a function of time, and the velocity of the atmos-
* phere is a function of three space coordinates and time. It has been found
to be very advantageous in many problems of analysis to abandon this
“natural” form of the functions, and to work instead with certain “integral
transforms” of them,
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Table 2.1

Fourier Series

Fourier Integral®

Fourier Transform?

One-Sided
Laplace Transform

x(t) defined —T<t<T —0 <t < oo —0o <t < w 0<t< o
in domain
w, [T ) 1 [® . ® .
Transform = 2 z{t)e i@t dt | C(w) = — x(t)e—tot dt X(w) = z(t)e=t@t dt Llx(t)] = &(s)
2 _p 27 J_o o ©
= f z(t)e %t dt
(i
(2.3,1) (2.3,3) (2.3,5) (2.3,7)
@0 i 0 1 oe] 1
Inverse z(t) = Z Cetn@ot 2(t) = C(w)e®t dw z(t) = — X(w)e®t do 2(t) = — | #(s)eSt ds
n=—c o 27 o 2wt J,
(2.3,2) (2.3,4) (2.3,6) (2.3,8)

@ No real distinction is made in the literature between Fourier integrals and Fourier transforms. The convention adopted here makes
the inverse of the former the limit of the Fourier series as T' — o0, and the latter a special case of the one-sided Laplace transform in
which the domain is altered and s is imaginary.
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DEFINITIONS

Table 2.1 presents the common one-dimensional transforms of a function
z(t) and the companion “inversion formulae” or “reciprocal relations’ that
give the “natural” function in terms of its transform.

Multidimensional transforms are formed by successive application of these
operations. (An example of this is given in Chapter 13.)

Before proceeding further with the discussion of Table 2.1, it is expedient
to introduce here the step and impulse functions, which occur in the following
tables of transforms.

The unit step function is (see Fig. 2.1)

wlf) = 1(t — T) (2.3,9)
1(t-T)
L S
0 T ¢

Fic. 2.1 Unit step function.
It has the values
2(t) =0, t<T
x(t) =1, t>T
The impulse function or delta function (more properly, the Dirac “dis-

tribution”) (see Fig. 2.2) is defined to bet

8(t — T) =1lim f(e, ¢, T) (2.3,10)

€0
where f(e,t, T') is for € > 0 a continuous function having the value zero
except in the interval 7' <<t < T + € and such that its integral is unity, i.e.

T+e
flet, TYdt =1
T

F The limit in (2.3,10) has a rigorous meaning in the sense of distributions, despite the
fact that it does not exist in the classical sense.
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flet, T)

o

I
T+e

Fia. 2.2 The impulse function.

It follows that

and hence that

When the 7' is omitted from (2.3,9) and (2.3,10) it is assumed to be zero

fté(t —Tydt = 1(t — T)

6(t-—T):%l(t—~T)

(as in Table 2.2, item 2).

Table 2.2
Some Fourier Transform Pairs
z(t) X (w)
1 3t — T e—toT
2 a(t) 1
3 et 2 O{w — Q)
4 1 % ()
5 cos ¢ alé(w + Q) + (o — Q)]
[3 sin Q¢ (o + Q) — 8(w — Q)]
7 Tsgnt 1
iw
1
8 1) ot 6(w)
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In the first column of Table 2.1 is given the complex form of the Fourier
series for describing a function in the finite ra',nge —T to T, in terms of
fundamental circular frequency w, == w/T. The coefficients C, are related
to those of the real Fourier series

z(t) =Y (4, cos nwgt -+ B, sin nwgt) (@)
n=0 (2.3,12)
by 0,=1%4,—1B) n >0 5
C,= 4, +1B,)) n <0 ®)
and the coefficients 4, and B, are given by
1 [T
== f z(t) cos nwyt dt {c)
TJ-7
1 T
B,=- f 2(t) sin neowyf dt (d)
T )1

The amplitude of the speetral component of frequency nw, is
(4,2 + B2¥ =20, (e)

When 7' — oo, the Fourier series representation of a function x(f) passes
over formally to the Fourier integral representation, as given in the second
column. In this limiting process

NWy —> O, and C(w) =lim Co (2.3,13)

w00 (Vg
The Fourier transform that follows in the third column is essentially the
same as the Fourier integral, with trivial differences in notation and the
factor 1/27. In some definitions, both the transform and its inverse have

the factor 1 /\/ 27. Some useful Fourier transforms are presented in Table 2.2.

From one mathematical viewpoint, C(w) and X(w) do not exist as point
functions of w for functions «(t) that do not vanish at oo. This is evidently
the case for items 3 to 8 of Table 2.2. However, from the theory of distri-
butions, these transform pairs, some of which contain the singular § function,
are valid ones (see ref. 2.3). Items 1 and 2 are easily verified by substituting
z(t) into (2.3,5) and items 3 to 6 by substituting X(w) into (2.3,6). Formal
integration of x(f) in item 7 produces the X(w) shown plus a periodic term
of infinite frequency. The latter has no effect on the integral of X(w), which
over any range dw > 0 is (1/iw) dw. Item 8 is obtained by adding item 7 to
1 of item 4. The one-sided Laplace transform, in the fourth column of Table
2.1, is seen to differ from the Fourier transform in the domain of ¢ and in
the fact that the complex number s replaces the imaginary number iw.
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The two notations shown in (2.3,7) are used interchangeably. The curve ¢ on
which the line integral is taken in the inverse Laplace transform (2.3,8) is an
infinite line parallel to the imaginary axis and lying to the right of all the
poles of Z(s). If its poles all lie in the left half-plane then ¢ may be the imagi-
nary axis and (2.3,8) reduces exactly to (2.3,6).

ONE-SIDED LAPLACE TRANSFORM{}

The Laplace transform is a major conceptual and analytical tool of system
theory, and hence we explore its properties in more detail below. Table 2.3
lists the Laplace transforms of a number of commonly occurring functions.
It should be noted that (i) the value of the function for ¢ < 0 is not relevant
to Z(s) and (ii) that the integral (2.3,7) may diverge for some 2(t) in combi-
nation with some values of s, in which case Z(s) does not exist. This re-
striction is weak, and excludes few cases of interest to engineers. (iii) When
the function is zero for t << 0, the Fourier transform is obtained from the
Laplace transform by replacing s by w.

TRANSFORMS OF DERIVATIVES

Given the function x(t), the transforms of its derivatives can be found
from (2.3,7).
z de =f e‘”d—x di
dt 0 dt

o0
=f eStdy = ze!

=0

e}

+ sf xeStdt
0

=0

When 2e5¢ — 0 as t — o0 (only this case is considered), then
z[%f] = —(0) -+ sE(s) (2.3,14)

where 2(0) is the value of x(f) when ¢ = 0.} The process may be repeated
to find the higher derivatives by replacing «(f) in (2.3,14) by Z(¢), and so on.
The result is

d"x d" a7 % ‘
Zl—| = — 0) —s——(0) — --- "z 2.3,15
I:dt":l e (0) Sdt"_z (0) + "z ( )

1 In the two-sided Laplace transform, the lower limit of the integral is — oo instead
of zero.

+ To avoid ambiguity when dealing with step functions, { = 0 should always be
interpreted as ¢ = 0T,



Table 2.3

Laplace Transforms

x(t) x(s)
1 4(t) 1
2 &t — T) T
1
3 1or 1(¥) -
s
e—sT
4 1¢ - 1T)
s
5 | ft — ™1 —T) T f(6)]
1
6 t 2
2 1
4 (n — 1) e
8 eat 1
s —a
9 in at a
in o _—
s s? 4 a?
10 ¢ °
cos a. T e
1
11 te®t ——
(s —a)?
1 1
12 — ot -
(n — 1! (s —a)*
18 e%? gin bt ——b————
(s —a)? 4 b2
s —a
14 e%t cos bt —_—
(s — a)® + b®
. a
15 sinh at T
s
16 cosh at m
. b
17 e®* ginh bt ——
(s —a) — b
at s —a
18 € COSh bt (—s——_—m
19 Z(z) sx(s) — x(0)
20 e%tx(t) E(s — a)
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TRANSFORM OF AN INTEGRAL

The transform of an integral can readily be found from that derived above
for a derivative. Let the integral be

y=fx(t)dt

and let it be required to find §(s). By differentiating with respect to ¢, we get

dy _
dt @)
whence #(0) = #[ 5] = s716) — 0
11
and §(8) = =7(s) + - 9(0) (2.3,16)

EXTREME VALUE THEOREMS

Equation (2.3,14) may be rewritten as
o0

—z(0) -+ s7(s) =J eSti(t) dit

0

T
=lim | e™*%(¢)dt
T—w JO
We now take the limit ¢ — 0 while 7T is held constant, i.e.

T
—2(0) + lim sz(s) = lim | lim e *%#(¢) di

80 T->wJo 50

= lim T.?Z(t) dt = lim [2(T) — %(0)]

T+ J0 -
lim sz(s) = lim (7
Hence a0 x( ) T oo ( ) (2.3’17)

This result, known as the final value theorem, provides a ready means for
determining the asymptotic value of z(¢) for large times from the value of its
Laplace transform.
In a similar way, by taking the limit s — co at constant 7', the integral
vanishes for all finite £(}) and we get the ¢nitial value theorem.
lim sF(s) = %(0) (2.3,18)

S0
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2.4 APPLICATION TO DIFFERENTIAL EQUATIONS

The Laplace transform finds one of its most important uses in the theory
of linear differential equations. The commonest application in airplane
dynamies is to ordinary equations with constant coefficients. The technique
for the general case is given in Sec. 3.2. Here we illustrate it with the simple
but important example of a spring-mass-damper system acted on by an
external force (Fig. 2.3). The differential equation of the system is

&+ 20w, + w2 = f(t) (2.4,1)

2{w,, is the viscous resistance per unit mass, ¢/m, w,? is the spring rate per
unit mass, k/m, and f(f) is the external force per unit mass. The Laplace

‘/Equilibrium position

=

Z k I 2F .
%\/\ /\/\/\/‘{ A m % —Viscous damper, ¢
| ir

ke
Fie. 2.3 Linear second-order system: m& = F — kx — ci.

transform of (2.4,1) is formed by multiplying through by e—* and integrating
term by term from zero to infinity. This gives

LNE] + 200, L8] + 0,2Lx] = L[f(#)] (24,2)
Upon using the results of Sec. 2.3, this equation may be written
$F + 2Lw,5% + 0,5F = f + #(0) + s2(0) + 2{w,2(0)  (2.4,3)

el

The original differential equation (2.4,1) has been converted by the trans-
formation into the algebraic equation (2.4,3) which is easily solved (2.4,4)
to find the transform of the unknown function. In the numerator of the
right-hand side of (2.4,4) we find a term dependent on the excitation (f),
and terms dependent on the initial conditions [#(0) and x(0)]. The denomi-
nator is the characteristic polynominal of the system. As exemplified here,
finding the Laplace transform of the desired solution z(f) is usually a very
simple process. The heart of the problem is the passage from the transform
Z(s) to the function z(¢). Methods for carrying out the inverse transformation
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are described in Sec. 2.5. Before proceeding to these, however, some general
comments on the method are in order.

One of the advantages of solving differential equations by the Laplace
transform is that the initial conditions are automatically taken into account.
When the inverse transformation of (2.4,4) is carried out, the solution
applies for the given forcing function f(#) and the given initial conditions.
By contrast, when other methods are used, a general solution is usually
obtained which has in it a number of arbitrary constants. These must sub-
sequently be fitted to the initial conditions. This process, although simple in
principle, becomes extremely tedious for systems of order higher than the
third. A second convenience made possible by the transform method is
that in systems of many degrees of freedom, represented by simultaneous
differential equations, the solution for any one variable may be found
independently of the others.

2.5 METHODS FOR THE INVERSE TRANSFORMATION

THE USE OF TABLES OF TRANSFORMS

Extensive tables of transforms (like Table 2.3) have been published (see
Bibliography) which are useful in carrying out the inverse process. When the
transform involved can be found in the tables, the function z(t) is obtained
directly.

THE METHOD OF PARTIAL FRACTIONS

In some cases it is convenient to expand the transform Z(s) in partial
fractions, so that the elements are all simple ones like those in Table 2.3.
The function () can then be obtained simply from the table. We shall
demonstrate this procedure with an example. Let the second-order system
of Sec. 2.4 be initially quiescent, i.e. 2(0) = 0, and £(0) = 0, and let it be
acted upon by a constant unit force applied at time ¢ = 0. Then f(t) = 1(t),
and f(s) = 1/s (see Table 2.3). From (2.4.4), we find that

1
(8% 4 2lw,s + ©,2)

Z(s) (2.5,1)

Let us assume that the system is aperiodic: i.e. that { > 1. Then the roots
of the characteristic equation are real and equal to

Mo=mnt o (2.5,2)
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where n = —{w,
o = w,({* — 1)%
The denominator of (2.5,1) can be written in factored form so that

1
z(8) = ———————— (2.5,3)
8(s — 4)(s — 2p)
Now let {2.5,3) be expanded in partial fractions,
B C
-+ -
(6—24) (s—4)

By the usual method of equating (2.5,3) and (2.5,4), we find

(s) = é + (2.5.4)

4-1
Ai2s
1
(A — 2p)
0——__1
As(Ay — 4y)
Therefore
Z(s) = Yty + Ya(h — 1) 4 1/2y(As — &)
s s — M §— Ag

By comparing these three terms with items 3 and 8 of Table 2.3, we may
write down the solution immediately as

1 1 1
a(t) = —— + — i i
ks MlAy — Ay) A(Ay — 4s)
1 n— 0 . n-+o' (.
= —]1 o plntenyt (n—0’)t 2.5’5
wnz[ + 200’ ‘ 20’ ¢ ] ¢ )

HEAVISIDE EXPANSION THEOREM

When the transform is a ratio of two polynomials in s, the method of
partial fractions can be generalized. Let

LG

z(s) Dia)
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where N(s) and D(s) are polynomials, and the degree of D(s) is higher than
that of N(s). Let the roots of the characteristic equation D(s) = 0 be a,, so
that

D(s) = (s —a))(s — @) - (s — a,)

Then the inverse of the transform is

« [(8 = a)N(E) o
) = 3 { e L=a,€ (2.5.6)
The effect of the factor (s — @,) in the numerator is to cancel out the same
factor of the denominator. The substitution s = @, is then made in the reduced
expression.

In applying this theorem to (2.5,3), we have the three roots a, = 0,
ay = Ay, @3 = A5, and N(s) = 1. With these roots, (2.5,5) follows immediately
from (2.5,6).

REPEATED ROOTS

When two or more of the roots are the same, then the expansion thecrem
given above fails. For then, after canceling one of the repeated factors from
D(s) by the factor (s — a,) of the numerator, still another remains and
becomes zero when s is set equal to a,. Some particular cases of equal roots
are shown in Table 2.3, items 6, 7, 11, and 12. The method of partial fractions,
coupled with these entries in the table, suffices to deal conveniently with
most cases encountered in stability and control work. However, for cases
not conveniently handled in this way, a general formula is available for
dealing with repeated roots. Equation (2.5,6) is used to find that part of
the solution which corresponds to single roots. To this is added the solution
corresponding to each multiple factor (s — a,)™ of D(s). This is given by

|:(8 _' ar)zN(s):l te“’t + {_‘_i__ [(8 — ar)zN(s):I} etrt for m=2

D(S) s=a, ds D(s)
(2.5,7)
and by
m—1 n . m m—n—1
z {d_ (8 ar) N(S) } ¢ ea,t for m> 2
n— |ds" D(s) s=a, nl(m — n — 1)!

2.6 RANDOM PROCESS THEORY

There are important problems in flight dynamics that involve the response
of systems to random inputs. Examples are the motion of an airplane in
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atmospheric turbulence, aeroelastic buffeting of the tail when it is in the
wing wake, and the response of an automatically controlled vehicle to random
noise in the command signal. The method of desecribing these random
functions is the heart of the engineering problem, and determines which
features of the input and the response are singled out for attention. The
treatment of such functions is the subject matter of generalized harmonic
analysis. It is not our intention to present a rigorous treatment of this
involved subject here. However, a few of the more important aspects are
discussed, with emphasis on the physical interpretation.

STATIONARY RANDOM VARIABLE

Consider a random variable «(t), as shown in Fig. 2.4. The average value of
u(t) over the interval (¢, — T') to (t; + T) depends on the mid-time £;, and

u(t)
v(t)
1
N /S Lo M/\ I\ r
T - T Al ~ \V4 I
'\/ N } \adl T ! v
! | i(t, T) |
| } | !
I 1 [
on ' i ‘
| ! }
Fi¢. 2.4 Random variable.
the interval width,
N (2.6,1)
aity, T) = — u(t) di .0,
{t, T) o7 J:‘l—T

The function is said to have a stafionary mean value # if the limit of (¢, T')
as T — oo is independent of #;: i.e.

1 4H+T
% = lim —f wu(t) di (2.6,2)
7-0 2T Jt,—1

If, in addition, all other statistical properties of u(t) are independent of #,,
then it is a stationary random variable. We shall be concerned here only with

such functions, and, moreover, only with the deviation v(t) from the mean
(see Fig. 2.4). The average value of v(f) is zero.
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ENSEMBLE AVERAGE

In the above discussion, the time average of a single function was used.
Another important kind of average is the ensemble average. Imagine that
the physical situation that produced the random variable of Fig. 2.4 has
been repeated many times, so that a large number of records are available
as in Fig. 2.5.

Sample 1
uy(t)

J&Mf\vum RTANY AW

2
ua(t)

un(t)

. y M\
\V v U ST

0 m t

F1c. 2.5 Ensemble of random variables.
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The ensemble average corresponding to the particular time ¢, is expressed
in terms of the samples u,(t,) as

@(t) =lim (ulty, m) =lim = [uy(t) + wylty) - u ()] (2.6,3)
n-=ow nroo N

If the process is stationary, (u(f;)) = (u), independent of #,. The process is

said to be ergodic if the ensemble and time averages are the same, i.e. (u) = 1.

This will be the case, for example, if the records are obtained from a single

physical system with random starting conditions. In this book we are con-

cerned only with stationary ergodic processes.

HARMONIC ANALYSIS OF v(t)

The deviation »(t) may be represented over the interval —T to T' (¢,
having been set equal to zero) by the real Fourier series (2.3,12), or by its
complex counterpart (2.3,2). Since v(f) has a zero mean, then from (2.3,12¢)
A, = 0. Since (2.3,12d) shows that B, also is zero, it follows from (2.3,12b)
that Cy = 0 too. The Fourier series representation consists of replacing the
actual function over the specified interval by the sum of an infinite set of
sine and cosine waves—i.e. we have a spectral representation of x(t). The
amplitudes and frequencies of the individual components can be portrayed
by a line spectrum, as in Fig. 2.6. The lines are uniformly spaced at the interval
wy = 7T, the fundamental frequency corresponding to the interval 27'.

The function described by the Fourier series is periodic, with period 27,
while the random function we wish to represent is not periodic. Nevertheless,
a good approximation to it is obtained by taking a very large interval 27'.
This makes the interval w, very small, and the spectrum lines become more
densely packed.

If this procedure is carried to the limit 7' — oo, the coefficients 4., B, C,
all tend to zero, and this method of spectral representation of x(f) fails. This
limiting process is just that which leads to the Fourier integral (see
2.3,4 to 2.3,6) with the limiting value of C, leading to C(w) as shown by
(2.3,13). A random variable over the range — oo <t << oo does not satisfy
the condition for C(w) to exist as a point function of w. Nevertheless, over
any infinitesimal dw there is a well-defined average value, which allows a
proper representation in the form of the Fourier-Stieltjes integral

v(¢) =f eidc (2.6,4)
It may be regarded simply as the limit of the sum (2.3,2) with nw,— ®
and C, — dc. Equation (2.6,4) states that we may conceive of the function
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¥Fic. 2.6 Line spectra of a function.

(t) as being made up of an infinite sum of elementary spectral components,
each of bandwidth dw, of the form e?, i.e. sinusoidal and of amplitude de.
If the derivative de/dw existed, it would be the C{w) of (2.3,4).

CORRELATION FUNCTION

The correlation function (or covariance) of two functions »,(t) and v,(f) is
defined as

Byp(1) = (1 (f)va(t + 7)) (2.6,5)

ie. as the average (ensemble or time) of the product of the two variables

with time separation 7. If v,(f) = v,(t) it is called the autocorrelation, otherwise
it is the cross-correlation. If + = 0 (2.6,5) reduces to

Ry5(0) = (vy25) (2.6,6)
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and the autocorrelation to

Ry(0) = (0®) = o (2.6,7)
A nondimensional form of R(7) is the correlation coefficient
A R
Rlz(T) = =]2=(T) (26,8)
CCH

where 7 indicates the root-mean-square (rms) value, \/ 2. Tt is obviously
true from symmetry considerations that, for stationary processes, Ry (7) =
R,,(—7), i.e. the autocorrelation is an even function of =. It is also generally
true that for random variables, Ryy(7) — 0 as 7 — c0.

It is clear from the definition (2.6,5) that interchanging the order of »;
and v, is equivalent to changing the sign of 7. That is

Rys(7) = Ryy(—7) (2.6,8a)
If R, is an even function of 7, then R ,(7) = Ry,(—7) and RB,,(7) = Ry (7).
If it is an odd function of 7, then R,,(7) = — R,,(—7).
The most general case is a sum of the form
RlZ(T) = Rlz(T)even + RIZ(T)odd (2678b)
whence R21(T) = R15(T)even — Bi1a(T)oaa

SPECTRUM FUNCTION

The spectrum function is by definition the Fourier integral of R;,(7), i.e.

1 (= )
(I)m(w)zz—f Ryo(r)e " dr (2.6,9)

ks ©

and exists for all random variables in view of the vanishing of R as 7 — 0.
It follows from the inversion formula (2.3,4) that

Rio(7) =f D (w)e" dow (2.6,10)

To obtain the physical interpretation of the spectrum function, consider a
special case of (2.6,10), i.e.

Ryy(0) = f Byy(e0) deo
or by virtue of (2.6,7) '

v? = f ®1y(w) deo (2.6,11)
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P11(w)

Fie. 2.7 Spectrum function.

Thus the area under the curve of the spectrum function gives the mean-
square value of the random variable, and the area ®(w)dw gives the con-
tribution of the elemental bandwidth dw (see Fig. 2.7).

In order to see the connection between the spectrum function and the

harmonic analysis, consider the mean square of a function represented by a
Fourier series, i.e.

A(T) =L f e
207 J-r

T
21T ( ZGA cos nwgt + B, sin nwot)

x ( S A, cos myt + B, sin mwot) dt
m=0

Because of the orthogonality property of the trigonometric functions, all
the integrals vanish except those containing 4,2 and B,2, so that

1)2=

%(A + B2 (2.6,12)

||M8

From (2.3,12b), 4,2 + B,2 = 4 |0n|2, whence

R =23 |0, = Ser= 3 ot (2.6,13)

n=0 n=—on n=—0o0
where the * denotes, as usual, the conjugate complex number.
The physical significance of |C,|? is clear. It is the contribution to »?

that comes from the spectral component having the frequency nw,. We may
rewrite this contribution as

8,0° = 2y, (2.6,14)
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Now writing w, = dw and interpreting 62 as the contribution from the
band width (n — })w, < 0 < (n 4+ })w,, we have
— *
8,0t = nCn dw (2.6,15)
Wy
The summation of these contributions for all » is '0—2, and by comparison
with (2.6,11) we may identify the spectral density as

. cxC
D, (w) =lim —= (2.6,18)
wy—=0 Wy

More generally, for the cross spectrum of »; and v;;

e,
D, (w) =1lim == (2.6,17)
@=0 Wy

Now in many physical processes v* can be identified with instantaneous
power, as when v is the current in a resistive wire or the pressure in a plane
acoustic wave. Generalizing from such examples, v%(f) is often called the

instantaneous power, v® the average power, and ®,,(w) the power spectral
density. By analogy @;,(w) is often termed the cross-power spectral density.

From (2.6,9), and the symmetry properties of R,, given by (2.6,8b), and
by noting that the real and imaginary parts of ¢*“" are also respectively
even and odd in r it follows easily that

Dy5(0) = @3 (w) (2.6,17a)
The result given in (2.6,17) is sometimes expressed in terms of Fourier trans-
forms of truncated functions as follows. Let v,(¢; T') denote the truncated
function
v () = v,(t) for|t| <T
v, (t;T) =0 for |t| > T (2.6,18)

0

T
and let Viw;T) =f v(¢; Te™t dt =f v(t)etdt (2.6,19)
o —r

be the associated Fourier transform. Comparing (2.6,19) with (2.3,1) in
Table 2.1 (v = nw,) we see that

in

C; =20V (nwy; T) (2.6,20)
27
Hence from (2.6,17) we get

D) =lim =2 V¥(nwy; T) - V(nw,; T) (2.6,21)

w07
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On substitution of w, = 7/T" and ® = nw,, this becomes finally,

D, () = lim —— V¥Xw: TV (w; T) (2.6,22)
The special case of power spectral density is given by
() = lim —— |V (03 T)J* (2.6,220)

CORRELATION AND SPECTRUM OF A SINUSOID

The autocorrelation of a sine wave of amplitude ¢ and frequency Q is

given by
a® (T
R(r)=lim — | sin Q¢sin (Qt 4 Qr) dt

T~w 2T -7
After integrating and taking the limit, the result is the cosine wave

a2
R(T) = 5‘ cos QT (2.6,23)

It follows that the spectrum function is 1/27 times the Fourier transform of
(2.6,23), which from Table 2.2 is

D(w) = %1—2 [6(w + Q) + d{w — Q)] (2.6,23a)

i.e. a pair of spikes at frequencies +-Q.

PROBABILITY PROPERTIES OF RANDOM VARIABLES

An important goal in the study of random processes is to predict the
probability of a given event—for example, in flight through turbulence, the
occurrence of a given bank angle, or vertical acceleration. In order to achieve
this aim, more information is needed than has been provided above in the
spectral representation of the process and we must go to a probabilistic
description.

Consider an infinite set of values of v(¢,) sampled over an infinite ensemble
of the function. The amplitude distribution or probability density of this set
is then expressed by the function f(»), Fig. 2.8a, defined such that the
Lm f(v) Av is the fraction of all the samples that fall in the range Av.

Av—0
This fraction is then given by the area of the strip shown. It follows that

fwf(v) dv=1 (2.6,24)
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fw)
(a) Av v
F(v)
1.0 —
P
(@] vy v
(b)

F1e. 2.8 Distribution functions. (@) Probability density function. (b) Cumulative
distribution.

The cumulative distribution is given by

F(v) =f f) dv (2.6,24a)

and is illustrated in Fig. 2.8b. The ordinate at P gives the fraction of all
the samples that have values v < »;. The distribution that we usually have
to deal with in turbulence and noise is the normal or Gaussian distribution,
given by 1 o2
V)= ——¢eX —_—— 26,25
S0 = p( 202) (2.6,25)

where ¢ is the standard deviation or variance of », and is exactly the rms
value used in (2.6,8) S (2.6,26)

Note that ¢ can be computed from either the antocorrelation (2.6,7) or the
spectrum function (2.6,11).
MEAN VALUE OF A FUNCTION OF v

Let g(v) be any function of ». Then if we calculate all the values g, associated
with all the samples v, (t,) referred to above we can obtain the ensemble
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mean (g). Now it is clear that of all the samples the fraction that falls in the
infinitesimal range g, <g¢ <g¢, + Ag corresponding to the range of »
v, < v <v; + Av is f(v,) Av. If now we divide the whole range of ¢ into
such equal intervals Ag the mean of ¢ is clearly

@ =lim 3 g.f () Av

Avp—0i=1
or @ =f_ g(v)f (v) dv (2.6,27)

Equation (2.6,27) is of fundamental importance in the theory of probability.
From it there follow at once the formulae for the moments of the distri-
butions:

{v) =fwvf(v) dv = 1st moment of f (2.6,28a)
or % = f °ovzf(v) dv = 2nd moment of f (2.6,28b)
™) =J‘w v"f(v) dv = nth moment of f (2.6,28¢)

For the particular case we have been discussing, (») = 0 and (»%) = ¢2.

JOINT PROBABILITY

Let »,(¢) and v,(t) be two random variables, with probability distributions
Si(vy) and fy(v,). The joint probability distribution is denoted f(v,, v,), and is
defined like f(¥). Thus f(v,, v,) AS is the fraction of an infinite ensemble
of pairs (v, v,) that fall in the area AS of the v;, v, plane (see Fig. 2.9).
If v, and v, are independent variables, i.e. if the probability f(»,) is not
dependent in any way on v,, and vice versa, the joint probability is simply
the product of the separate probabilities

J(v1, v3) = f1(vy) fo(ve) (2.6,29)
From the theorem for the mean, (2.6,27) the correlation of two variables can
be related to the joint probability. Thus

=)
B,y = (vyvy) :ffvl'vzf(vp v,) dvy dvy (2.6,30)
For independent variables, we may use (2.6,29) in (2.6,30) to get

By, :fw”1f(vl) dv; X J“’ vof (v,) do,
= <'”1><7’2>
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Fi16. 2.9 Bivariate distribution.

and is zero if either variable has a zero mean. Thus statistical independence
implies zero correlation, although the reverse in not generally true.

The general form for the joint probability of variables that are separately
normally distributed, and that are not necessarily independent is

J0, 050 v,) = (—3m;,0,) (2.6,31)

i
2m) MY

where |M] is the determinant of the matrix of second moments:

M= [m;;1
Mmy; = {V0;)
N = [n;;] = M

For two variables this yields the bivariate normal distribution for which
o> Ry,
M=
Ry, o)

1 0'22 —Ry
M (2.6,32)
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and  f(vy,0,) = 3 21 5 ©Xp (_ 1 03", _22R212”1”2 “; 0'12?)22)
277'(0'1 0'2 -_ _R12 )A 2 0,°0,° — R12
If v, and v, are the values of v(f) at two times, e.g.
v = (1)
vy = ot + 7)

Then 0,2 = 6,2 = 6%, Ry, = R(7) [see (2.6,5)] and the joint probability is a
function of the parameter r, viz.

1 1 6%(v,® 4 v,t) — 209,B(7)
YV, Vg T) = ————————eXp [ — =
T o) = o By P ( 2 o' — R(r)® )
(2.6,33)
The inverse relation, from the theorem for the mean value is
R(r) = J f vy0f (0, 03 7) dvy dsy (2.6,34)

As shown in Fig. 2.9, the principal axes of the figure formed by the contours
of constant f for given R(r) are inclined at 45°. The contours themselves
are ellipses.

JOINT DISTRIBUTION OF A FUNCTION AND ITS SLOPE

We shall require the joint distribution function f(v, ¥; 0) for a function
v(t) that has a normal distribution. The correlation of v and ¥ is
T

R,,(r) = lim — [ o(eyote + ) dt

T-o0 2T J-1
In particular, when + =0

1 (T dv
0) =lim — v—di
E,;(0) ey ) Iy

T

=lim 1 1dv® = lim L XTI — v*(—1] (2.6,35)
T-0 2T )1 7w 47

which is zero for a finite stationary variable. It follows therefore from (2.6,33)

that f(v, 9; 0) reduces to the product form of two statistically independent
functions, i.e.

f(0,9;0) = f(0) - fo(?)

2 .2
R S (_ 2 ”_2) (2.6,36)

2700, 20,8 20,
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To evaluate f we need only the two variances. 6; = ¥ we have pointed out
previously can be found from either R, (7) or ®y(w). To find o, = 7 we
have recourse to the spectral representation (2.6,4), from which it follows that
® s
9(t) = twe de (2.6,37)
W=—00

From this we deduce that the complex amplitude of a spectral component
of ¥ is 4w times the amplitude of the same component of ». From (2.6,15) it
then follows that the spectram function for ¢ is related to that for v by

D (0) = 0’D,,(w) (2.6,38)

o

and finally that

ot = (&%) =fw(l)v.é(w) dw =fww2®w(w) dow (2.6,39)

Thus it appears that the basic information required in order to calculate
f(v, 9) is the power spectral density of », @, (w). From it we can get both
(v*) and (¥%) and hence f(v, 9; 0).

The autocorrelation of ¥ can be related simply to that of v as follows.
Consider the derivative of R(7)

d

dr
Since the differential and averaging operations are commutative their order
may be interchanged to give

Rm)(T) = d"—i; (U(t)v(t + T)>

9oy = o) Lot 7))
g7 Bl = (O ot +) )

= ((t)i(t + 7))
Now let (t + 7) = u, so that

d% () = (o — ()

We now differentiate again at constant u, to get

a 2 i — )
C;:ZRW(T) - \31- v(u T)U(u)/
= —(d(u — 7)d(u))
= _‘Rﬁ,}(T)

d2

ie. R, (1) = — — R,(7) (2.6,40)
dr*
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ORDINATE-CROSSING RETURN PERIOD

With reference to Fig. 2.10, let us define an “‘event” as a crossing of the
random curve through the strip Av at v. The time At associated with a single
event that has a slope in the range A7 is
A

9]

At

During a total time 7 — oo, the portion spent in the domain A, A of the
(v, ¥) space is

AT = Tf(v, 9) Av Av

Hence, the total number of events with slopes in the range A9 in the time T

v

Fic. 2.10 Upward crossing at level ».

must be AT[At, and the average number per unit time is

dN(v, 3) = 1,} AA—Q; = [6] f (v, 9) AD

On passing to the limit Av — 0 and integrating we get
[eo]
N(v) :J f(v,9)|v]| do (2.6,41)
When (2.6,36) is substituted into (2.6,41) the result of integration is:

N(@v) = 102 ot
T oy
and Noy—=12 (2.6,42)

™ 0y

whence N(v) = N(0)e"2’
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Fig. 2.11 Return period.

Since N(v) includes both upward and downward crossings, the average
number of upward crossings, or “‘positive events’ is

N (v) = IN(v) = 1 %2 otz (2.6,43)
27 0,

The average interval between positive events is called the return period.

= 27 2 20" (2.6,44)

W=y s

which is plotted in Fig. 2.11.

DISTRIBUTION OF PEAKS

It is observed that for the larger values of » most, but not all, local maxima
are immediately preceded by a positive event as defined above. This is
illustrated in Fig. 2.4 where the events are defined by the line I. Thus (2.6,43)
can also be interpreted as a good approximation to the number of peaks per
unit time that are greater than ». It follows that the distribution of peaks
per unit time is given approximately by

folv) == — AN 4 (v) _ 1o pev" 120" (2.6,45)
dv 27 6,°

and has the form shown on Fig. 2.12.
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Fic. 2.12  Distribution of peaks per unit time.

PROBABILITY OF A POSITIVE EVENT DURING TIME ¢,

We now wish to find the probability that a positive event, as defined above,
will oceur in a given time #,. Let #, be divided into a sequence of equal intervals
At such that the following two conditions are met

() At < r(v)

(ii) The probability of an event during any particular interval At is in-
dependent of whether an event has occurred in any previous interval.
(See below for discussion of this condition.)

Since N, (v) gives the average time density of events, then the probability
of an event in Af is (for At — 0)
At
p(v, At) = AiN_ (v) = — (2.6,46)
7(v)

and the probability that there will be no event in At is
o, A)=1—p=1—" (2.6,47)

Hence the probability that there is no event in n successive intervals is, by
virtue of condition (ii) above,

q(v, nAAt) = (1 — ﬁ)n
r{v)
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If a positive event is identified with “failure” of a system, then clearly
g(v, n At) is the probability of “survival”t for a'time ¢, = n A, i.e.

q(v, §) = (1 _h )n (2.6,48)
nr{v)

Hence the probability of failure is

o) =1 —qlo, ) =1 — (1 _ 4 ) (2.6,49)
nr(v)

For large times ¢, (the usual practical case) » may be very large and the term
in parentheses may be represented by its limit

lim (1 - 9)" — (2.6,50)
R n
so that the survival probability is
q(v, ;) = e t/7® (2.6,51a)
and the failure probability is
P, ty) =1 — e~h/7®) (2.6,51b)

This result is general, and can be applied for any stationary random process.
If the process is the Gaussian one previously discussed, then 7(v) is given
by (2.6,44), and (2.6,51b) becomes

plo,t) = 1 — exp | — b g’ (2.6,52)
)

Equations (2.6,515) and (2.6,52) are plotted in Fig. 2.13. It should be noted
that the probability of failure associated with &, = r is (1 — 1/e) or 0.63,
and that the curves in (b) fall rather steeply over a fairly narrow range of v.
Equation (2.6,51a) is a particular case of the Poisson distribution, for zero
events in a time ,.

§ A more rigorous treatment of survival probability covering nonstationary and
non-Gaussian processes is given by Rice and Beer (ref. 2.8) and is applied to launch
vehicles by Beer and Lennox (ref. 2.9).
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DISCUSSION OF CONDITION (ii)

We return now to the condition of statistical independence of adjacent
intervals. This implies that the joint probability f(v,, v,) = f(v,)f(v,) where
v, and v, are values of the variable during two adjacent intervals A;¢ and
A,t, as illustrated in Fig. 2.14. We saw [following (2.6,30)] that statistical
independence implies zero correlation. In the present context we may infer
statistical independence from zero correlation. Thus we require that

By py = V105 =0 (2.6,53)

the average being taken over the range 0 <<t' < Af. Now if we define a
characteristic correlation time by

=t f “R(r) dr (2.6,54)
@) Jo
t t

/\WVAVf \/\W A\JJ\U,\V/\W/J..A ;
vi(t’) A ~ va(t') \,

At Agt

Fia. 2.14
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T* Fia. 2.15 Characteristic correlation time.

as illustrated in Fig. 2.15, and require that At > 7%, then it is evident that
condition (2.6,53) will be satisfied. Since the present results will normally
be of interest only for large » and large #,, this condition can be met while
still keeping » very large.}

2.7 MACHINE COMPUTATION

This section deals with a topic that does not belong to the theory of flight
dynamies, but is of transcendent importance, overshadowing all else, when
it comes to application of the theory. That topic is the use of computing
machines for the solution of equations and the simulation of systems.
Without them modern aerospace vehicles and missions could probably not
be designed and analyzed at all within practical limitations; with them there
is virtually no practical problem in flight dynamics that cannot be solved.

Except when the most extreme simplifications are employed, the equations
of flight dynamics are quite complicated, and considerable labor must be
expended in their solution. The labor is especially heavy during the design
and development of a new vehicle, for then the solutions must be repeated
many times, with different values of the parameters that define the vehicle
and the flight condition. The process is more or less continuous, in that, as
the design progresses, changes are constantly made, improved estimates of
the aerodynamic parameters become available from wind-tunnel testing,
aeroelastic calculations are refined, and testing of control-system and guidance
components provides accurate data on their performance. Recalculation is
required at many stages to include these improvements in the data. The
number of computing man-hours involved in this procedure for a modern

+ For example, when applied to flight through turbulence, ¢; corresponds to the total
distance flown, and * corresponds to the “‘scale’ of the turbulence.
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aerospace vehicle would be astronomical if all the computations had to be
performed by hand (i.e. with slide rule or desk computer).

In addition to merely making it posstble to carry out the minimum amount
of analysis that is essential to the achievement of a successful design, the
great speed and flexibility of computing machines have led to other important
advantages. With them it is feasible to conduct elaborate design studies in
which many parameters are varied in order to optimize the design, i.e. to
find the best compromise between various conflicting requirements. Another
advantage is that the analysis can be much more accurate, in that fewer
simplifications and approximations need be made (e.g. more degrees of
freedom can be retained).

Among the most important points in this connection is the possibility of
retaining nonlinearities in the equations. Adequate analytical methods of
dealing with nonlinear systems either do not exist or are too cumbersome
for routine application. By contrast, computing machines permit the intro-
duction of squares and products of variables, transcendental functions,
backlash (dead space), dry friction (stick-slip), experimental curves, and
other nonlinear features with comparative ease. They go even further, in
making possible the introduction into the computer setup of actual physical
components, such as hydraulic or electric servos, control surfaces, human
pilots, and autopilots. This technique is, of course, superior in accuracy
to any analytical representation of the dynamic characteristics of these
elements. The ultimate in this type of “computing” involves the use of the
whole airplane in a ground test, with only the airframe aerodynamics
simulated by the computer. A human pilot can be incorporated in such
tests for maximum realism. A related development is the flight simulator
as used for pilot training and research on handling qualities (see Chapter 12).
It is basically a computer simulation of a given airplane, incorporating a
replica of the cockpit and all the confrols and instruments. The pilot “flying”
the simulator experiences in a more or less realistic fashion the characteristic
responses of the simulated vehicle. Such simulators or trainers have been
used to great advantage in reducing the flight time required for pilot training
on new vehicle types.

Digital machine computation is, of course, part of the training of all
engineering students, and we assume the necessary background in that sub-
ject. Analog computation however is not so universally taught, and many
students who come to the study of flight dynamics have had no prior ex-
perience with it. These we refer to refs. 2.6, 2.7, and 2.12. As a further aid,
one example of analog computation is presented rather fully in Sec. 10.2.
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System Theory

CHAPTER 3

3.1 CONCEPTS AND TERMINOLOGY

The branch of modern engineering analysis known as system theory is
highly relevant to the study of the flight of vehicles in the atmosphere and
in space. The word system has long been current in such applications as
“control system,” ‘“navigation system,” and “hydraulic system.” In our
present context we identify the vehicle itself as a system, of which the
above examples are subsidiary systems, or associated systems.

We do not attempt to offer here a precise definitiont of a system—suffice
it to say that it is an element, or an interconnected set of elements that is
clearly identifiable and that has a stafe defined by the values of a set of vari-
ables that characterize its instantaneous condition. The elements may be
physical objects or devices, or they may be purely mathematical, i.e.
equations expressing relationships among the variables. In the case of a
physical system, the governing equations may or may not be known. A
set of equations that constitutes a mathematical model of a physical system,
is a mathematical system that is a more or less faithful image of the physical
system, depending on the assumptions and approximation contained therein.
The set of » variables that defines the state of the system is the stafe vector,

t See for example ref. 3.1, Sec. 1.10.
42
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and the corresponding n-dimensional space is the state space. Some or all
of the state variables, or quantities derived from them, are arbitrarily termed,
according to the circumstances of the experiment or analysis, as outputs.
The exact specification of a system is usually arbitrary, as will be seen in
the following example; the “boundary” of the system under consideration
in any given circumstance is chosen by the analyst or experimenter to suit
his purpose.

In addition to the state variables, there is usually associated with a system
a second set of variables called inputs. These are actions upon the system
the physical origins of which are outside the system. Some of these are
independent of the state of the system, being determined by processes
entirely external to it; these are the nonautonomous inputs. Others, the
autonomous inputs, have values fixed by those of the state variables them-
selves, owing to internal interconnections or feedbacks, or a as result of
environmental fields (e.g. gravity, aerodynamic, or electromagnetic) that
produce reactions that are functions of the state variables. An output of one
system may be an input to another, or to itself if there is a simple feedback.
The state variables are unique functions of the nonautonomous inputs and
of the initial conditions of the system. A system with only autonomous
inputs is an autonomous system.

Every system has, as well as its state variables and inputs, a set of system
parameters that characterize the properties of its elements—e.g. areas
masses, and inductances. When these are constant, or nearly so, it is con-
venient to consider them as a separate set. On the other hand, if some of
them vary substantially in a manner that depends on the state variables,
they may usefully be transferred to the latter set. The problem of system
design, after the general configuration has been established, is primarily one
of optimization in the system parameter space. Still another set of parameters
is that associated with the environment—e.g. atmospheric density, gravi-
tational field, and radiation field. In adaptive systems, some system parameters
are made to be functions of the state variables and/or environmental param-
eters in order to achieve acceptable performance over a wider range of
operating conditions than would otherwise be possible.

The following example will serve to illustrate some of the above concepts.

EXAMPLE

Tigure 3.1 shows a system S comprising a planar arrangement of rigid
bodies m,, massless springs k;, viscous damper ¢, and an inductive displace-
ment transducer 7'. (Its voltage is e(f) = const. z,.) The midpoint g of m,,
and mass my, are constrained to move vertically. The system, bounded by
the dashed line, is made up of all these separate elements. The nonautonomous
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F1q. 3.1 An example of a system.

inputs are the arbitrary external forces f; and f, acting on the masses and
the state variables are the coordinates of the joints, x,(t), their velocities
v,(t) = &;, and the voltage e(t) of the transducer. Any of this set might be
taken as outputs. Here, however, the output happens to be e(f). If f; and f,
were zero, the system would be autonomous and capable only of free vibration
associated with nonequilibrium initial conditions. The external reactions
at the points of connection to the fixed base, @, b, d, b, and ¢ are functions
of the state variables x;, and v,, and hence are autonomous inputs. The
parameters of the system are the masses of m,, the stiffnesses of k,, the
damping constant of ¢, the transducer constant, and the geometrical di-
mensions. It should be pointed out that although there is a minimum number
of coordinates (state variables x; and v,} required to specify the state of the
system, eight in this example, this number may be arbitrarily increased by
redundant variables if it is convenient to do so. For example, we might
add the transducer output, the four accelerations o, = ¥,, and the forces in
the springs, even though they are, by virtue of the physical laws governing
the system, not independent of the z; and v,. (Indeed the mathematical
statement of this dependence is the main ingredient in the formulation of
the system equations.) The minimum number of state variables required is
the order of the system.

The arbitrariness of the choice of system, and its dependence on the aim
of the investigation is illustrated by the fact that we might choose as a
gystem for study any of the individual elements of S, or any of the subsystems
obtained by combinations of them. Furthermore, the set of state variables
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might be still further augmented by adding such items as the stresses and
strains in m; and m,.

Finally, the release of simplifying approximations such as rigidity of the
bodies, and masslessness of the springs, would require further elaborate
additions to the state variables.

BLOCK DIAGRAM

The input/output system relations are conveniently illustrated by the
use of block diagrams, as in Fig. 3.2. Figure 3.2a is the overall system diagram
showing inputs f, and f, and output ¢ and Fig. 3.2b is the combined block
diagram of the subsystems, showing the sort of interconnections and feed-
backs that are typically encountered in real systems.

f1———n
S b e
f 9 !
(a)
sS4 v3 T | e
m3 x3
l 1
53 k3 Th
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Fic. 3.2 Block diagram. (a) Complete system. (b) Detailed block diagram. s; = spring
forces. d = damper force. r; = reaction forces.
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LINEARITY AND TIME INVARIANCE

A system is linear if its governing equations are linear in the state variables.
In that case the time functions giving the state variables are simply pro-
portional to the magnitude of nonautonomous input functions of given shape
when the initial conditions are zero, and to the initial conditions if there
are no nonautonomous inputs. If the parameters of the system and of the
environment are constants, then the system is fime invariant. The simplest
class of systems is that which has both these properties—linearity and time
invariance—and these can be completely analyzed by the available methods
of linear mathematics. We shall denote these as linearfinvariani systems.
Departure from either of these conditions leads to mathematical problems
for which there may be no general methods of solution apart from numerical
computation.

EQUILIBRIUM, CONTROL, AND STABILITY

Equilibrium denotes a steady state of the system, one in which all the
state variables are constant in time. The “motion” corresponding to equilib-
rium is represented by a point in the state space. The nonautonomous
inputs associated with equilibrium must be zero or constant, the zero case
preferably corresponding to the equilibrium point at the origin. The usual
way of changing the equilibrium state, i.e. of exercising control over the
system is by means of the nonautonomous inputs, the appropriate subset
of which can hence be termed the control vector, and the associated space the
control space. The result of applying control is to cause the equilibrium point
to move away from the origin in state space, and the locus of all its possible
positions defines a region that is a map of the domain of the control vector
in control space. The control is adequate only if this region contains all the
desired operating states of the system (e.g. orientation angles and speeds of
a flight vehicle).

Stability embraces a class of concepts that, while readily appreciated
intuitively, are not easily defined in a universal way. In the past, a common
view of system stability has been that it is a property of the equilibrium
state, as follows. Let a system be in equilibrium, and for convenience let
the equilibrium point be chosen as the origin of state space. Now let the
initial state for the autonomous system be at a point P (see Fig. 3.3a) in the
immediate neighborhood of O. Three possibilities exist for the subsequent
motion, illustrated by the three trajectories @, b, and ¢ in the figure.

(@) The state point moves back to the origin.
(b) It remains finite but >0 for all subsequent time
(¢) It goes off to infinity.
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The trajectory will of course, for a given system, depend on the direction
of OP in state space. For example, Fig. 3.3b shows the equilibrium of a ball
on a saddle surface. It is evident that displacement in the x direction leads
to a type (c) trajectory and displacement in the y direction (in the presence
of damping) to one of type (a). In this view of stability, the equilibrium
point would be said to be stable if only type (@) trajectories could occur
regardless of the direction of OP, and unstable if type (c) trajectories could
occur. The saddle point is therefore an unstable equilibrium. The question
of the magnitude of OP must be considered as well. If the system is linear,
the conclusion about stability is independent of the magnitude of OP, but
if it is not the size of the initial disturbance (i.e. of OP) does matter. It may
well be that the system is stable for small disturbances, but unstable for
large ones, as illustrated in Fig. 3.3¢. The initial states for which the origin is
stable in such a case lie within some region Z of the state space as illustrated
in Fig. 3.3a, and this is the “region of stability of 0.”

More recently, the rediscovery of the work on stability by Lyapunov
(vef. 3.2) (see also Sec. 3.5) has had a great influence on this subject. In the
Lyapunov viewpoint, we speak not of the stability of a system, but of the
stability of a particular solution of a system of equations. The solution may
be quite general, for example the forced motion of a nonlinear time-varying
system with particular initial conditions. Equilibrium is a special case of
such a solution. In this special case the Lyapunov definition is as follows.
Let 6 and e be the radii of two hyperspheres in state space with centers at
the equilibrium point, symbolically represented in two dimensions in Fig.
3.3d. These surfaces are such that for all initial states lying inside S, the
subsequent solution lies for all time inside S,. Then the origin is a stable point
if there exists a d > 0 for all € > 0, no matter how small € becomes. That is,
the solution can be made arbitrarily small by choosing the initial conditions
small enough. If the solutions tends ultimately to zero, then the origin is
asymptotically stable. 1f, when 0 is asymptotically stable, there exists a
region Z such that all trajectories that originate within it decay to the
origin, then £ is a finite region of stability. This notion is identical with that
previously described. If # is an infinite sphere then the origin is globally
stable. Note that if a linear system is asymptotically stable it is also globally
stable. This fact is somewhat academic since in nature “linear’” systems
always become nonlinear for “very large” state vectors.

The Lyapunov condition for a region of stability & will be met whenever
the solution is a “well-behaved” function of the initial conditions—that is,
if 0x,(7')[0x,0) is finite in Z for all ¢, j and T where x is the state vector.
In particular this must hold in the limit as 7' — oo.

A striking illustration of this point of view is afforded by the unstable
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Region of no solutions

x

x2

/ (@) (b
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]
Fre. 3.3 Stability of equilibrium. (a) Trajectories in state space. (b) Saddle point.
(¢) Finite region of stability. (d) Lyapunov definition of stability. (e) Illustrating
discontinuity in solutions. (f) Limit cycle.

system of Fig. 3.3e, in which a particle is free to slide without friction along
a horizontal pointed ridge. The sides are infinite in the x and y directions.
One solution, of course, is uniform rectilinear motion at speed U on the
ridge (trajectory a). If a small initial tangential velocity v in the downhill
direction be added, the motion is a trajectory such as b. In the limit as v — 0,
the limiting trajectory is one like ¢, tangent to Oz at the origin. Thus there
is a gap between a and ¢ that contains no solutions at all for the given U
even for finite times. If the top of the ridge were rounded off instead of
pointed the solutions for all finite ¢ would be continuous in »v. However

even in that case, as t — oo the lim y/v — o0, so that y(o0) is not a continuous
»—0

function of », and hence the basic solution a is unstable.
When the solution to be investigated is not the simple one discussed above,
i.e. equilibrium, the stability criterion is still that of continuity, as above.
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Alternatively, the general case can be reduced to the particular case as
follows. Let the system equation be

% = f(x, ) 3.1,1)

and let the particular solution be x,(¢). Now let the variation from x, asso-
ciated with a change in the initial condition only be

Y = x(t) — x,(t) (3.1,2)
Hence y = x(t) — x,(t)
= f(x, t) — £(x,, )
or Y = £y + xo(t), t) — £(xo(t), ?) 3:1,3)
Since x,(#) is presumed known, then (3.1,3) is an equation of the form
Yy =8(y. %) (3.1.4)

for which y = 0 is the solution corresponding to x(t) = x,(¢). Thus (3.1,4)
defines a system that has an equilibrium point at the origin, and the discussion
of its stability has already been given. In this way the stability of any tran-
sient solution is reduced to that of stability of equilibrium.

A particular kind of solution that is of interest is the limit cycle, illustrated
again in two dimensions, in Fig. 3.3f by the closed curve C. It may be
orbitally stable, in which case neighboring trajectories such as (b) are
asymptotic to it, or unstable, in which case neighboring trajectories such as
(@) starting arbitrarily close to C, never come back to it.

Finally, we should remark that Lyapunov’s definition is concerned only
with variations in the initial conditions of a solution. Clearly there are two
other important practical cases: (1) stability with respect to perturbations
in the input, and (2) stability with respect to system or environmental
parameters. Stability with respect to perturbations in the input or the system
parameters can be defined in a manner quite analogous to that with respect
to the initial conditions.

3.2 TRANSFER FUNCTIONS

System analysis frequently reduces to the calculation of system outputs
for given inputs. A convenient and powerful tool in such analysis is the
transfer function, a function G(s) of the Laplace transform variable s that
relates a particular input 2(f) and output y(2) as follows,

G(s) = ‘@ (3.2,1)
(s)
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where (~) denotes the Laplace transform (see Sec. 2.3). So long as x(t) and
y(¢) are Laplace transformable the transfer function defined by (3.2,1) exists.
However, it will in general be a function of the initial values of y and its
derivatives, and moreover, for nonlinear and time-varying systems, of the
particular input () as well. Such a transfer function is of relatively little
use. We can however obtain a unique function G(s) if (i) the system is linear
and time invariant, and (ii) it is initially quiescent, i.e. at rest at the origin in
state space with no inputs. We shall therefore restrict ourselves in the
following to this special situation. (A companion concept, the describing
function, useful for nonlinear systems is described in Sec. 3.5.) With a
unique transfer function, the output y(¢) for any input =(¢) is found by taking
the inverse Laplace transform of

g(s) = G(s)Z(s) (3.2,2)

The transfer function is thus seen to be the mathematical embodiment of
all the system characteristics relevant to the particular inputfoutput pair.
For linear/invariant systems, we shall see below that the computation of
G{(s) is always possible in principle, and usually in practice.

When, as required above, x(f) and y(¢) are zero for ¢ < 0, the Laplace
and Fourier transforms are simply related, i.e. Z(tw) = X(w). It follows that

)

G(iw) X@)

(3.2,2a)
Sometimes it is G(¢w) that is called the transfer function.

With a multivariable system, there is more than one input/output pair.
In that case, let G;(s) be the transfer function that relates the output y,(¢)
to the input x,(t). All the input/output relations are then given by

Fils) = E G,5(8) 2,(s) (3.2,3a)
or -
y(s) = Gx(s) (3.2,3b)
where
G = [Gi5(s)] (3.2,3c)

is an n X m matrix associated with n outputs and m inputs. It need not be
square since one output can be influenced by any number of inputs and
vice versa. Note from (3.2,3a) that

¢ _ %

= 3.2,3d)
' oz, (
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STATIC GAIN

Consider the output y(f) that results from the unit-step input z(f) = 1(f).
From Table 2.3, item 3, the transform of the input is

T(s) = il—
)
and hence

7(s) = 22
$

The final value theorem (2.3,17) therefore gives
lim y(#) = lim s7(s) = lim G(s)
[2ad <] $0 s—0
This limit is the static gain, K, so that
K = lim G(s) (3.2,4)

§-0

EXAMPLE

Let us find the transfer function of the second-order system of Fig. 2.3.
The governing differential equation is (2.4,1), in which f(t) is the input and
z(t) is the output. The Laplace transform is (2.4,3). Since the initial con-
ditions x(0) and %(0) are specified to be zero, then

F(s)(s? + 2{w,s + w,2) = f(s)
or from (3.2,1)
G(s) = a_:-(_s_) = 1 (3.2,5)
) 8+ 2w,s + o,

The static gain K is found to be

1
2
n

K =1lim G(s) =
adi] w

(3.2,6)

SYSTEMS IN SERIES

When two subsystems are in series, as in Fig. 3.4, the overall transfer
function is

5 = 1) _ E0) 560
z(s)  gls) %(s)

whence Q(s) = Gy(s) * Gy(s)
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Fic. 3.4 Systems in series.

Similarly, for » subsystems in series, the result is
G(s) = Gu(s) * Gy(8) - - - G(s) (8.2,7)

SYSTEM WITH FEEDBACK

Figure 3.5 shows a general feedback arrangement, containing two sub-
systems. When used as a feedback controller, ¢ is called the actuating signal,t
G(s) the forward-path transfer function and H(s) the feedback transfer
function. As indicated ¢ is the difference between x and z, so

E=T—Z
=067
Z=Hy

whence it follows easily that the overall transfer function is

g_. _q (3.2,8)
z 14+ GH

and the actuating-signal transfer function is
1 (3.2,9)

H(s)

Fic. 3.5 General feedback system.

1 The designation error is reserved for the difference 2 — y, the aim of such a control

system being to force y to be equal to .



54 Dynamics of atmospheric flight

TRANSFER FUNCTIONS OF GENERAL LINEAR/INVARIANT SYSTEM

The transfer functions of a physical system that exists and is available
for testing can be found from experiment, by making suitable measurements
of its inputs and outputs. Here we are concerned with obtaining the transfer
function by analysis. The experimental method is based in any case on the
analytical formalism that we develop in the following. The procedure begins,
of course, with the application of the appropriate physical laws that govern
the behavior of the system. When the complete set of equations that express
these laws has been formulated, it will, for linear/invariant systems, usually
appear as a set of coupled differential equations of mixed order. A partic-
ularly simple example (the second-order system) was given above, and it
demonstrates what may be called the direct method of finding transfer
functions. That is, form the Laplace transform of the system equations, just
as they naturally occur, and solve for the appropriate ratios. We give a
further illustration below for a pair of coupled second-order equations (a
fourth-order system), such as might arise in the analysis of a double pendulum,
or two massive particles on a stretched string, or two coupled L-R-C circuits,
ete. The example equations are

&4 af + ap® - agx - ay = f;

. . . (3.2,10)
&+ byg + by + byr + by = [
On forming the Laplace transforms, with
2(0) = y(0) = #(0) = §(0) = 0 (3.2,11)
the result is F(s? A aps + ag) + Flas® + a,) =
2 3 la, ) =J1 (3.2,12)

Z(s2 + by) + F(bys? + bys + by) = f

which can readily be solved for the four required transfer functions.
We rewrite (3.2,12) as
gl [F
BH — [1} (3.2,13)
) J

l:(sz + ags + a3) (a:5* + ay) jl
(s* + by) (bys® + bys + by)

where B =

and the solution is [ } = G[fl} (3.2,14)
7

fa



System theory 55

af. G:cf
where G=B"'1= : 2 (3.2,15)
Gyfl Gvf2

is the matrix of the four transfer functions that relate = and y outputs to
f1 and f, inputs. There are however two other state variables, making the
required total of four, and consequently there are four more transfer functions
to be found. The additional variables are the two rates

T=u
. (3.2,16)
g=v
The transforms of (3.2,16) with zero initial values are
ST =1
sy =17
whence the four additional transfer functions are [see (3.2,3d)]
G = 6_1_1, =8 Q:Tc: = sG,; (3.2,17)
oh Oh '

and similarly
Gvfl = SGyfl; Guf2 = Sfoz; Gvf2 = SGyfz

An alternative procedure for finding the matrix of system transfer functions
consists of putting the equations in the standard first-order form. Any nth-
order system of linear equations can be expressed as a set of n first-order
equations. Consider (3.2,10) for example. By using (3.2,16) they become

4+ ap = —au — azx — ay + fy

. . (3.2,18)
W+ b= —byw — byx — by + f,

which together with (3.2,16) are the required four first-order equations.
They are not yet in the standard form, however. For that, one first solves
(3.2,18) for % and 9, which are linear functions of u, v, z, y, f;, and f,. Combining
the result with (3.2,16) yields a matrix equation of the form

G}

x X

Y1 —al? +C[f1} (3.2,19)
% u fa

? v

where A is a 4 X 4 matrix, and C is a 4 x 2 matrix. (The determination of"
A and C is left as an exercise for the reader.)
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Equation (3.2,19) is an example of the canonical form, which for the
general linear system is
y = Ay 4 €x (3.2,20)

where y is the state n-vector and x the nonautonomous input r-vector.
A (ann X nmatrix)and € (ann X 7 matrix) may in general be time depend-
ent. Here however, we are confining the discussion to invariant systems, and
hence the Laplace transform of (3.2,20) is simply, for y(0) = 0

sy = Ay 4 Cx
(3.2,21)
or (sT — A)y = Cx
where I is the identity matrix. It follows that
y = (sI — A)Cx (3.2,22)
From (3.2,3b) we can therefore identify G as |
G = (sl — A)C (3.2,23)

It can in principle be evaluated whenever A and € are known.

3.3 AUTONOMOUS LINEAR/INVARIANT SYSTEMS

The general equation for linear/invariant systems is (3.2,20). When the
system is autonomous and hence has zero input it reduces to

y = Ay (3.3,1)
When the initial state vector is y(0), the Laplace transform of (3.3,1) is

57 = AT + y(0)
or (sT — A)y = y(0) (3.3,2)
Define
B(s)=sI— A
[s —ay O —ay, |

= : ’ (33.3)

L Oy (8 - aﬂn)._.
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in which a;; are the elements of A. B is called the characteristic matriz of the
system. Equation (3.3,2) then becomes

B(s)y = y(0)

whence y = B1(s)y(0) (3.3,4)
iB

where B! = a?]‘;l (3.3,5)

By virtue of the definition of the adjoint matrix (ref. 2.1) it is evident that
the elements of adj B and of [B| are polynomials in s. |B| is called the char-
acteristic determinant, and its expansion

B} = f(s} (3.3,6)

is the characteristic polynomial. It is evident from (3.3,3) that f(s) is of the
nth degree. Hénce

J(8) = s+ epas™ 4+ g
=E— A=) (s—4) (3.3,7)
where 4, - - - 1, are the roots of f(s) = 0, the characteristic equation. We now
rewrite (3.3,4) as
— adj B(s
yls) = 2y B(s),
f(s)

The inversion theorem (2.5,6) can be applied to (3.3,8) for each element of
¥, and the column of these inverses is the inverse of y(s), i.e.

¥(0) (3.3.8)

r=1

< (8 - }'7‘) &dj B(S)
1) = A a4
OESD) { I

} y(0)e* (3.3,9)
s=Ar
We now define the vector
y = {(s — 2,) adj B(s)
' f(s)

and hence can write the general solution of (3.3,1) that satisfies the initial
conditions as

} ¥(0) (3.3.90)
s=A,

y(t) = 3 yelt (3.3,10)
r=1

n
It follows that y(0) = > y,. Note also that by setting t = 0 in (3.3,9) the
r=1

summation therein is shown to be equal to the identity matrix I.
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COMPACT FORM OF SOLUTION

A more compact form of the solution is available. Define the exponential
function of a matrix M by an infinite series (like the ordinary exponential
of a scalar), i.e.}

ML MW | (33,11)
1t is evident then that .
d o _ @ 1 400
—eA=— T+ At 4+ — A% cee
dt dt ( A 21 + )

=A—|—A2t—}—2—1;A3t2+---
= AeAl (3.3,12)
Thus it can be verified by substitution that
y(t) = eXy(0) (3.3,13)

is a solution of (3.3,1) that has the initial value y(0).

EIGENVALUES AND EIGENVECTORS

The roots 4, of the characteristic equations are known as eigenvalues, or
characteristic values. Corresponding to each of them is a special set of initial
conditions that lead to a specially simple solution in which only one term of
(3.3,10) remains, i.e.

y(t) = u,et (a)

where YO =u, (B (3319

Since the solution of the autonomous system corresponding to a given set
of initial conditions is unique, then if (3.3,14a) is a possible solution (and
we shall show that it is), then (3.3,145) gives the unique set of initial con-
ditions that produce it. The general solution (3.3,10) is seen to be a super-
position of these special solutions. u, is the eigenvector corresponding to 4,,
and (3.3,14a) is the associated eigenfunction. Substitution of (3.3,14) into
(3.3,1) gives

AI— A, =0 (a)

or B(1)u, =0 () (3.3,15)

¥ For a discussion of the practical computation of éM see Appendix D-8 of ref. 3.1.
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Since the expansion of (3.3,15) is a set of homogeneous algebraic equations
in the unknowns u; a nontrivial solution exists only if the determinant
equals zero, i.e. if

IB(A,)] =0 (3.3,16)

However, the 1, are the roots of the characteristic equation [B(s)| = 0, and
hence the condition (3.3,16) is automatically met. The vectors u, are then
any that satisfy (3.3,15). It should be noted that since the r.h.s. of (3.3,15)
is zero, the multiplication of any eigenvector by a scalar produces another
eigenvector that has the same “‘direction” but different magnitude. To find
u, we observe that, from the definition of an inverse (3.3,5),

adjB = B~!|B| (3.3,17)
Premultiplying by B yields
Badj B = |BIf = f(s)1 (3.3,18)
For any eigenvalue A,, we have f(4,) = 0, and hence

B(4,)adjB(4,) =0 (3.3,19)
Since the null matrix has all its columns zero, then it follows that each
column of adj B(A,) is a vector that satisfies (3.3,15b). Hence any nonzero
column of adj B(4,) (if there are more than one, they differ only by constant
factors) is an eigenvector corresponding to A,.. The eigenvalues and eigen-
vectors are the most important properties of autonomous systems. From
them one can deduce everything required about its performance and stability.
This is illustrated in detail for flight vehicles in Chapter 9.

The » eigenvectors form the eigenmatriz

U=[wu,- - u,] = [u;]

in which u,, is the sth component of the jth vector.

ORTHOGONAL EIGENVECTORS

‘When the matrix A is symmetric (not, unfortunately, a common oceurrence
in the equations of flight vehicles) the system is called self-adjoint, and
the eigenvectors have the convenient special property of being orthogonal,
or normal. That is, the scalar product of any vector with any other is zero,
ie.,

uwlo,=u,-u,=0 i) (3.3,20)

In more general cases, when the system is not self-adjoint, and A is an
arbitrary n X n matrix, the eigenvectors are neither real nor orthogonal.
However, there still exists a reciprocal basis of the eigenvectors, i.e. a
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set of » vectors v; orthonormal to the set u,, i.e. such that
v,u; = [6;,]
Thus the matrix V of the vectors v, evidently satisfies the condition

ViU =1
and clearly VI =107

i.e. the columns of V are the rows of U~L. The question now naturally arises
as to what system (the adjoint system) has v, as its eigenvectors, and
whether its matrix, B say, has any relation to A. It can be shown that
(ref. 3.1) B = AT, ie. that the matrix of the system adjoint to A is AT
and its eigenvectors are orthogonal to those of A.

COMPUTATION OF EIGENVALUES AND EIGENVECTORS

For low-order systems, the characteristic determinant can be directly
expanded and the characteristic equation (3.3,7) written out. If n < 4,
analytical solutions exist for the roots. For large-order systems the eigen-
values and eigenvectors are computed from the system matrix A by digital
machine methods (refs. 3.3, 3.4). A discussion of these methods and of their
recommended spheres of application is beyond the scope of this volume.
Suffice it to say that practical methods and computing routines are available
in most computation centers for extracting the eigenvalues and eigenvectors
for systems of very large order, even for » > 100.

It is worthwhile describing one fairly direct approach to computation of
eigenvectors. Consider (3.3,15b) as a homogeneous set of scalar equations
with 1, known and the n components of u, as the unknowns. Now divide
through all the equations by any one of the unknowns, say «,,,, so that there
results » equations for (n — 1) ratios w,,/u,,.. By dropping any one of the
equations and transposing the coefficients of ,,, to the r.h.s., a complete set of
(rn — 1) equations is obtained for the (» — 1) ratios. These can be solved by
any conventional method to yield the ratios of all the components of u, to u,,,.
The equations will of course have complex coefficients for complex eigen-
values, and real coefficients for real eigenvalues. This process for a third-
order system would go as follows:

bu(lr)ulr + bya( 4,00, 4 big(A, )y, = 0
_b21(l7‘)ulr + baa(A, )y, + bag(A,Jug, = 0
bay (A Uy, + b32(l7‘)u2r + by(4,Yts, = 0
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After dividing by u,, and dropping the third equation we get

Ugy

u
1r —
bll - _l_ b12 - _b13
Usp Usy
Uy Uy
b21— + b22_ - "_b23
Usy Ugy

The solution of this set of equations gives the two required ratios in terms
of which the eigenvector is [u,,/us,, 4y, [Us,, 1]. There are two difficulties
associated with this method. The first is that if u,, turns out to be very small
relative to u,, and w,, the equations will be ill-conditioned, and a different
choice for the component to divide by has to be made. The second is that
when A is complex, there are really two sets of equations to be solved for
the real and imaginary parts of the ratios.

Clearly the eigenvector corresponding to the conjugate eigenvalue A% will
be itself the conjugate of %,, so only one of the pair need be calculated.

REPEATED ROOTS

When the procedure given in the foregoing is applied to calculate eigen-
vectors for cases of multiple roots of the characteristic equation, additional

possibilities occur. (See refs. 3.3 and 2.2.) Let the multiple root occur at
s=1,

(i) If adj B(4,) is not a null matrix, then its nonzero columns give a
single eigenvector, just as for distinct eigenvalues. In that case there
is only one eigenvector for the multiple root.

(ii) If adj B(4,) is null, and its first derivative d/ds adj B(s)|s=,1p is not,
then there are two linearly independent columns of the latter that
give two independent eigenvectors.

(iii) If the first derivative is also null, then higher derivatives will yield
successively larger numbers of eigenvectors.

EQUATIONS IN NONSTANDARD FORM

It is not necessary, nor always more convenient, to work with the system
equations in standard first-order form, as was done above. The characteristic
equation can be found directly from the equations as they are initially
formulated, the “natural” form. Consider (3.2,10) for example. The autono-
mous equations are

&+ a9 + as% - azx 4 ay =0 (3.3,21)
& + by + byl + byz + by =0 B
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Assume there is an eigenfunction solution like (3.3,14), i.e.

-
y (0) "

When (3.3,22) is substituted into (3.3,21) the result is
I:(lz + axd + a,) (0,22 + a,) :l [x(o):l
=0 (3.3,23)
(22 + &) (6322 +- byd + b,) | | 9(0)

The square matrix of (3.3,23) is exactly the same as B in (3.2,13), A replacing
s. Since (3.3,23) are homogeneous equations the determinant of B must be
zero. Expanding it leads exactly to the correct characteristic equation, just
as would be obtained from the standard first-order form. Equation (3.3,23)
is of the same form as (3.3,156) and the same argument for finding an
eigenvector applies—i.e. a column (2(0), ¥(0)) that satisfies (3.3,23) is any
nonvanishing column of adj B. To complete the eigenvector we need (0)
and 3(0). These are simply, from (3.3,22),

£(0) z(0)
. =2 (3.3,24)
4(0) %(0)

where 1 is the appropriate eigenvalue.

CHARACTERISTIC OR NATURAL MODES

Solutions of the kind given by (3.3,14) describe special simple motions
called natural modes or simply modes of the system. If the eigenvectors are
orthogonal, the modes are normal or orthogonal modes. When 1 is real,
the modes are exponential in form, as in Fig. 3.6a and b—increasing in magni-
tude for 4 positive, and diminishing for 1 negative. Thus 1 <C 0 corresponds
to stability, usually termed static stability in the aerospace vehicle context,
and A > 0 corresponds to static instability, or divergence. The times to double
or half of the starting value illustrated in the figure are given by

693
tdouble = 2 ? A >0
(3.3,25)
.6
bpatt = — % > A<0

‘When one 4, is complex, for real matrices A, there is always a second that
is its conjugate, and the conjugate pair, denoted (letting r = 1, 2)

Mg =n 1+ iw
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F16. 3.6 Types of natural mode.

define an oscillatory mode of period T = 27/w as we shall now show. The
sum of the two particular solutions (3.3,14) corresponding to the complex
pair of roots is

y = ule(n+ia))t + uge(n—im)t
where u, and u, are the eigenvectors for the two A’s. On factoring out e”*
we get

¥ = €™, et 4 u,e ™) (3.3,26)

If the elements of the system matrix A are real, then the corresponding
elements of u, and u, always turn out to be conjugate complex pairs, i.e.

Y
Uy = Uy
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and (3.3,26) becomes
y = e™(a cos wt + b sin wt) (3.3,27)

where a = u; + uf and b = i(u, — uf) are real vectors. Equation (3.3,27)
describes, for any particular state variable y,, an oscillatory variation that
increases if n > 0 (dynamic instability, or divergent oscillation) and decreases
(damped oscillation) if n < 0—see Fig. 3.6c and d. The initial condition
corresponding to (3.3,27) is

y(0) = a =u, + uf (3.3,28)

With reference to Fig. 3.6¢ and d, some useful measures of the rate of
growth or decay of the oscillation are:

Time to double or half:
693  .693
tdouble OF by = ITI = Iglwn (@) (3.3,29)
Cycles to double or half:
® Vi—g
N souvte ©F Ve = -110 l—n—l = .110 T )
Logarithmic decrement (log of ratio of successive peaks):
ni
é =logei— = —nT = 27r—z——
en(t—i—T) \/ 1 — CZ
= — 693/N e or  693/N,. . (c)

In the above equations,
o, = (0? -+ 2%, the “undamped” circular frequency
{ = —n|w,, the damping ratio

One significance of the eigenvectors is seen to be that they determine the
relative values of the state variables (the “direction” of the state vector in
state space) in a characteristic mode. If the mode is nonperiodic, the eigen-
vector defines a fixed line through the origin in state space, and the motion
in the mode is given by that of a point moving exponently along this line.
If the mode is oscillatory, the state vector is given by (3.3,27), and the locus
of y is clearly a plane figure in the (a, b) plane through the origin. If n = 0, it
is an ellipse, otherwise it is an increasing or decreasing elliptic spiral. The
vectors a and b are twice the real and imaginary parts respectively of the
complex eigenvector associated with the mode. It should be emphasized
that these modes are special simple motions of the system that can occur if
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the initial conditions are correctly chosen. In them all the variables change
together in the same manner, i.e. have the same frequency and rate of growth
or decay. It is instructive to consider the Argand diagram corresponding to
(3.3,26). For any component 3, we have

Yp = U™ 4 ute ) (3.3,30)

which is depicted graphically in Fig. 3.6, where u, = [u,] ¢’”. The two
vectors are conjugate, i.e. symmetric w.r.t. the real axis, and rotate in opposite
directions with angular speed w. The real value y,(t) is given by their sum,
the vector OP. As they rotate, the two vectors shrink or grow in length,
according to the sign of n.

Once again it is necessary to consider separately the case of repeated
roots. Let us treat specifically the double root, i.e. m = 2 in (2.5,7). Then
(3.3,14) is no longer the appropriate particular solution. Instead, we get from
(2.5,7) a particular solution of the form

() = u et 1 v tetrt 3.3,31)
y T r

where u, and v, are constant vectors, u, being the initial state u, = y(0).
On substituting (3.3,31) into (3.3,1), and dividing out ¢**, we find

(Au, +v,) + vt = Au, | Avg (3.3,32)

Since this must hold for all #, we may set ¢ = 0, obtaining

(;l'rur +v,) = Aur (a)
(3.3,33)
or v, = (A — AI)u,
= "'B(}'r)ur (b)
where B is given by (3.3,3), and (3.3,31) becomes
y(t) = (I — B(4,)t)u,e™ (3.3,34)
After substituting (3.3,33a) in (3.3,32) a second relation is obtained, i.e.
Av,t = Avgt
valid for all ¢, and hence
(AI— Ay, =0 (3.3,35)

Equation (3.3,31) will be a solution of (3.3,1) as assumed, if there exist a
A, and a v, that satisfy (3.3,35), and if u, given by (3.3,33b) is not infinite.
The first of these conditions requires that the original characteristic equation
be satisfied, i.e.

(A — A] =0



66 Dynamics of atmospheric flight
It will now, because of the double root, be of the form
fA)= @4 —24)%(2) =0  g(4)#0 . (3.3,36)

and this condition is of course satisfied. The second condition is met by any
eigenvalues found as described previously for repeated roots. Finally, the
value of u, can be shown to be given by

d
== 3,37
u, (dl V(l))/l:% 3 )

where v(A) is the column of adj B that gives the eigenvector v,.

CHARACTERISTIC COORDINATES

In this section we show how the given system of simultaneous, or coupled,
real differential equations can be transformed into a new set of separate or
uncoupled equations, one for each of the new variables. This decoupling is
produced by in effect selecting the eigenvectors as the coordinate system
for the state space instead of the original coordinates, the y,.

Let the » X » matrix formed of the » eigenvectors be

U= [uu,---u,) (3.3,38)

Now let us define a new set of system variables (state space coordinates) g,
by the transformation
y=Ug; q=Uly (3.3,39)

(Recall that for self-adjoint systems, U is an orthogonal matrix and U7 =
U-1; the above transformation is then orthogonal. In general, however,
this is not the case.) It follows from (3.3,39) that

¥(t) = jzluiq,(t) (3.3.40)

i.e. that the state vector is a superposition of » vectors parallel to the eigen-
vectors. The ¢,(t) are the characteristic coordinates. Comparison with (3.3,10)
shows that they must be of the form «** where o, are arbitrary constants.
Substitution of (3.3,39) into the differential equation of the system, (3.3,1)
then yields
Uq = AUq

or, premultiplying by U1,

q = U1AUq (3.3,41)

We must now examine the matrix U-1AU. Using (3.3,38) we have
AU = Afuu, - - - u,]
= [Au;Au, - - - Au,] (3.3,42)
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But the defining condition on the eigenveectors is

Au, = A,
whence AU = [w,4upd, - - - w, A, ]
=TUA (3.3,43)
(2 0 0 - 0]
0 4
0
where A= . . (3.3,44)
o - - < A
is a diagonal matrix of the eigenvalues. It follows from (3.3,43) that
UAU = A (3.3,45)
and that (3.3,41) becomes
q=Aq (3.3,46)

This is the desired transformed system of differential equations, and since
A is diagonal, each contains only one of the ¢’s. The ith member is
4 = Aq; (3.347)
from which we get at once that
g; = ¢,(0)e*
and hence (3.3,40) becomes

- n =
¥ = 3 u,q,(0)* (3.3.48)
=1
Since q(0) = U~1y(0) from (3.3,39), then (3.3,48) is seen to be a practical
form for the solution of autonomous linear/invariant systems. An alternative

form for (3.3,48) is

et 0 0 T
0 Mt
yoy=1| 0 : q(0)
Ant

= U Uy (0) (3.3,49)
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where, as can be verified by direct expansion, exp At gives the diagonal
matrix of the exponential coefficients. Comparison of (3.3,49) with (3.3,13)
shows that

et = UM (3.3,50)

The usual situation in vehicle dynamics is that some of the eigenvalues
and eigenvectors occur in conjugate complex pairs. Thus some members of
(3.3,46) will correspondingly be complex pairs. These may be transformed into
a set of second-order equations, one for each complex pair of ¢,. Thus let
¢; and g;,, = ¢¥ be such a pair. The corresponding equations are

4; = A4;
. 3.3,561
i = A} -
Let
g;=o; +1f;
and A=, + i, (3.3,52)

The «; and f; are now real linear combinations of the original variables y,
that can be calculated by expanding (3.3,39). The pair of conjugate equations
are now expanded by means of (3.3,52) to give

& + if; = (n; + iw;)(e; + ;)
&; — @ﬂ, = (n; — 1) (o; — ;)

Taking real and imaginary parts of either of the above leads to the alternative
pair of first-order coupled equations

by = no; — w;f;
B; = w;a; + 0, (3-3,53)

Finally, by eliminating «; or f; we get a pair of uncoupled real second-order
equations
&; — 2na; + (0 4 oPa; =0

B, — 2nf; + (0 + 0¥, =0 (3.3,54)
These equations for the «, § replace the original pair of complex first-order
equations (3.3,51). However, the number of arbitrary constants in the
solutions of (3.3,54) is still only two, i.e. o;(0) and B,(0), since (3.3,53) fix
the inital values of &, and §;.

STABILITY CRITERIA

As noted in the foregoing, the stability of a linear/invariant system is
determined by the roots of the characteristic equation. A characteristic mode
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will be divergent if its real part is positive, and convergent if the real part is
negative, the latter denoting asymptotic stability. It is not necessary,
however, actually to solve the characteristic equation in order to find whether
the roots have positive real parts. This can be determined from its coefficients
alone. The conditions on the coefficients that must be satisfied were first
stated by Routh (ref. 3.5), who derived them from a theorem of Cauchy. Let
the characteristic equation be

C8"F 68" Tt =0 (¢, >0) (3.3,55)
The coefficient ¢, can always be made positive by changing signs throughout,
so the requirement ¢, > 0 is not restrictive. The necessary and sufficient
condition for asymptotic stability (i.e. that no root of the equation shall be
zero or have a positive real part) is that each of a series of test functions shall
be positive. The test functions are constructed by the simple scheme shown
below. Write the coefficients of (3.3,55) in two rows as follows:
CnlpgCpyg”""
Cn1Cn3Cn5"""
Now construct additional rows by cross-multiplication :
Pgy Pgy Py -+
Py Py Py

Py -+
ete.
where
Py =€y 1Cp g — €xlp s Pgy = 0, 1654 — €:Cps, otC.
and
Py = Py, 3 — Pye, g, Py = Py, 5 — ¢, 1Py, ete.

Py = Py Py, — Py Py, ete.

The required test functions Fy -+ F, are then the elements of the first
column, ¢,, ¢,_;, Py -+ + P, .. If they are all positive, then there are no
unstable roots. The number of test functionsis n -+ 1, and the last one, #,
always contains the product ¢, ¥, ;. Duncan (ref. 3.6, Sec. 4.10) has shown
that the vanishing of ¢, and of F,_, represent significant critical cases.
If the system is stable, and some design parameter is then varied in such a
way as to lead to instability, then the following conditions hold:

(a) Ifonly ¢, changes from + to —, then one real root changes fromnegative
to positive; i.e. one divergence appears in the solution (Fig. 3.6).

(b) If only F, ; changes from + to —, then the real part of one complex
pair of roots changes from negative to positive; i.e. one divergent oscillation
appears in the solution (Fig. 3.6).
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Thus the conditions ¢, =0 and ¥, ;=0 define boundaries between
stability and instability. The former is the boundary between stability and
static instability, and the latter is the boundary between stability and a
divergent oscillation.

TEST FUNCTIONS FOR A CUBIC
Let the cubic equation be

A+ B2 +-Cs4- D=0 (4>0)
Then

F,=4, F,=B8, , = BC — AD, s = D(BC — AD)

The necessary and sufficient conditions for all the test functions to be positive
are that 4, B, D, and (BC — AD) be positive. It follows that C also must
be positive.

TEST FUNCTIONS FOR A QUARTIC
Let the quartic equation be

As* + B+ Cs> + Ds+ E =0 (4> 0)

Then the test functionsare Fy = A4, F, = B, F, = BC — AD, F; = F,D —
B2E, F,= F,BE. The necessary and sufficient conditions for these test
functions to be positive are

A,B,D,E>0

and D(BC — AD) — B*E >0 (3.3,50)

It follows that C also must be positive. The quantity on the left-hand side
of (3.3,50) is commonly known as Routh’s discriminant.

TEST FUNCTIONS FOR A QUINTIC
Let the quintic equation be

As® + Bst 4-Cs® + Ds* + Es + F =0 (4 >0)

Then the test functions are Fy=A, F; =B, F,= BC — 4D, F; =
F,D — B(BE — AF), F,= Fy(BE — AF) — F2F, Fy = F,F,F. These
test functions will all be positive provided that

AyBsD:F’F2)F4>O

It follows that ¢ and E also are necessarily positive.
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COMPLEX CHARACTERISTIC EQUATION

There may arise certain situations in which some of the coefficients of the
differential equations of the system are complex instead of real, and conse-
quently some of the coefficients of the characteristic equation are complex
too. The criteria for stability in that case are discussed by Morris (ref. 3.7).

3.4 RESPONSE OF LINEAR/INVARIANT SYSTEMS

As remarked in Sec. 3.2, one of the basic problems of system analysis is
that of calculating the system output for a given input, i.e. its response.
This is the problem of nonautonomous performance, in contrast with the

x y
0 7 66 0 <_— ¢
(03]
x y
o) e 0 ¢
2
x k4
JO/\\//;\ GGs) /—\\O// ¢
3
AN 2\ G(s) |—= /f’"\\_rm

et NP
Aol P~ VES A

@

Fic. 3.7 The four basic response problems. (1) Impulse response. (2) Step response.
(3) Frequency response. (4) Response to random input.
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autonomous behavior treated in the preceding section. The former is associ-
ated with nonzero inputs and zero initial conditions, whereas the reverse
holds for the latter.

It is evident that the transfer function defined in Sec. 3.2 supplies all that
is required for such response calculations—and provided that the input and
transfer function are not too complicated, the whole procedure can be
carried out analytically, leading to closed-form results. The method, of
course, is to calculate the Laplace transform of the input, and then carry
out the inverse transformation of 7(s) = G(s)Z(s). When this is not practical,
it is necessary to resort to machine computation to get answers.

The major response properties of linear/invariant systems can be displayed
by considering four basic kinds of input, as illustrated in Fig. 3.7. These
are treated individually in the sections that follow. Before proceeding to
them, however, we shall first digress to consider a useful interpretation of
the transfer functions of high-order systems.

INTERPRETATION OF HIGH-ORDER SYSTEM AS A CHAIN

The transfer function for any selected inputfoutput pair can be found as
an element of G given by (3.2,23), i.e.

G =B"C

where B = sI — A, as in Sec. 3.3 and A and € are the constant matrices

that define the system. In view of the definition of the inverse matrix we

see that G is given by

_adjB
f(s)

where f(s) is the characteristic polynomial (3.3,7). As already pointed out

in Sec. 3.3 the elements of adj B are also polynomials in s. It follows from
(3.4,1) and (3.3,7) that each element of & is of the form

G Y (3.4,1)

¢, = N(s) (3.4,2)

(s —A)(s — )+ - (s — 4,)
where N(s) is some polynomial. Now some of the eigenvalues 4, are real,
but others occur in complex pairs, so to obtain a product of factors containing

only real numbers we rewrite the denominator thus

m 1i(ntm)
fls) = Hl (s—2) II ) (s® + a,s + b,) (3.4,3)
= r=m+

Here A, are the m real roots of f(s) and the quadratic factors with real co-
efficients @, and b, produce the (n — m) complex roots. It is then clearly
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evident that the transfer function (3.4,2) is also the overall transfer function
of the fictitious system made up of the series of elements shown in Fig. 3.8.
The leading component N(s) is of course particular to the system, but all
the remaining ones are of one or other of two simple kinds. These two,
first-order components and second-order components, may therefore be
regarded as the basic building blocks of linear/invariant systems. It is for
this reason that it is important to understand their characteristics well—the

1
1 1 1 -—
E — L] = - Ll 2 .
j—> N(s) > = S| oy —— s2+a,,,+1s+b,,,“ > s +a,,;ms+bn;,n Y,
1 | ]
m first-order 1/2 (n — m) second-order components

components

Fic. 3.8 High-order system as a ‘‘chain.”

properties of all higher-order systems can be inferred directly from those of
these two basic elements.

IMPULSE RESPONSE

The system is specified to be initially quiescent and at time zero is sub-
jected to a single impulsive input

() = 6(t) (34.4)
The Laplace transform of the ¢th component of the output is then
CFuls) = Giyls) 8(s)
which, from Table 2.3, item 1, becomes
Gils) = Gyls)

This response to the unit impulse is called the impulsive admittance and is
denoted h;(t). It follows that

hyi(8) = Gy(s) (@)

ie. G(s) is the Laplace transform of A(t)
o]
@,(8) = { hy(etdt  (b) (3.4,5)
0
From the inversion theorem, (2.3,8) %;;(#) is then given by

aslt) = — f G (s)e ds (3.4.6)
2me Je
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Now if the system is stable, all the poles of G,;(s) lie in the left half of the
s plane, and this is the usual case of interest. The line integral of (3.4,6)
can then be taken on the imaginary axis, s = iw, so that (3.4,6) leads to

hyy(8) = L f €96, (1w) do (34,7)
27 )
i.e. it is the inverse Fourier transform of G;(iw). The significance of G ;(iw)
will be seen later.

For a first-order component with eigenvalue A the differential equation is

g—ly== (3.4,8)
for which we easily get
G(s) = h(s) = (3.4,9)
s — A
The inverse is found directly from item 8 of Table 2.3 as
h(t) = e ‘
For convenience in interpretation, 4 is frequently written as 4 = —1/7,
where T is termed the time constant of the system. Then
R(t) = e VT (3.4,10)

A graph of A(z) is presented in Fig. 3.94, and shows clearly the significance
of the time constant 7'.

For a second-order system the differential equation is (2.4,1) from which it
easily follows that
1

) =h{s) = ——————— 34,11
=) = sy (3.411)
Let the eigenvalues be 4 = » + iw, (cf. 2.5,2) where
n = —{ow,
w == wn(l - CZ)%
then %(s) becomes
hs) = __
(s —n — tw)(s — n + iw)
1 (3.4,11a)
(82— ) + o
and the inverse is found from item 13, Table 3.3 to be
h(t) = 1 e™sin wt (3.4,12)

w
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F1e. 3.9 Admittances of a first-order system.

For a stable system » is negative and (3.4,12) describes a damped sinusoid
of frequency w. This is plotted for various { in Fig. 3.10. Note that the
coordinates are so chosen as to lead to a one-parameter family of curves.
Actually the above result only applies for { < 1. The corresponding ex-
pression for { > 1 is easily found by the same method and is

h(t) = l, €™ sinh o' (3.4,13)
®

where
® = w,(2 —1)“%

Graphs of (3.4,13) are also included in Fig. 3.10, although in this case the
second-order representation could be replaced by two first-order elements in
series.
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Fie. 3.10 TImpulsive admittance of second-order systems.

RELATION BETWEEN IMPULSE RESPONSE AND AUTONOMOUS
SOLUTION

It follows from (3.4,5a¢) that the matrix of impulse response functions
H = [h,;] is related to that of the transfer functions by

H(s) = G(s) (3.4,14)

Furthermore, from (3.2,23) we have that G(s) = B1(s)C, so that
H(s) = B-Y(s)C (3.4,15)
or B1(s) = H(s)C? (3.4,16)

Now in the autonomous case we have (3.3,4)

y(s) = B s)y(0) (3:3:4)
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Substitution of (3.4,16) into (3.3,4) yields the result for the autonomous
solution with initial condition %(0), i.e.

y(s) =H(s)C1y(0)

or y(t) = H($)Cy(0) (3.4,17)

STEP-FUNCTION RESPONSE

This is like the impulse response treated above except that the input is the
unit step function L(¢), with transform 1/s. The response in this case is
called the indicial admittance, and is denoted o ;;(t). It follows then that

As) = Gy)i(s) = Gl () (34,18)
S
or T s) = M) ()
S

Since the initial values (at ¢ = 07) of A,(f) and o7 ,(¢) are both zero, the
theorem (2.3,16) shows that

o ;4(t) =fthij(1) dr (@)
0
(3.4,19)
_dol4(t)
or hys(8) = % (b)

Thus o7 ;(¢) can be found either by direct inversion of (3.4,18b) (see examples
in Sec. 2.5) or by integration of k,(¢). By either method the results for first-
and second-order systems are readily obtained, and are as follows (for a
single input/output pair the indicial subseript is dropped):

First-order system:

L) =T — T (3.4,20)
Second-order system :

H(t) = Lz |:1 — e™(cos wt — Zsin wt)], <1 (3.4,21)

(4379 w

and for { > 1, &7(f) is given by the r.h.s. of (2.5,5).
Graphs of the indicial responses are given in Figs. 3.95 and 3.11.
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Fi1c. 3.11 Indicial admittance of second-order systems.

FREQUENCY RESPONSE

When a stable linear/invariant system has a sinusoidal input, then after
some time the transients associated with the starting conditions die out,
and there remains only a steady-state sinusoidal response at the same
frequency as that of the input. Its amplitude and phase are generally different
from those of the input, however, and the expression of these differences is
embodied in the frequency-response function.

Consider a single input/output pair, and let the input be the sinusoid
a; cos wt. We find it convenient to replace this by the complex expression
x = A,¢*?, of which a; cos wf is the real part. 4, is known as the complex
amplitude of the wave. The output sinusoid can be respresented by a similar
expression, y = A4,¢”?, the real part of which is the physical output. As
usual,  and y are interpreted as rotating vectors whose projections on the
real axis give the relevant physical variables (see Fig. 3.12a).
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From Table 2.3, item 8, the transform of x is

Therefore

The function G{(s) is given by (3.4,2) so that
N(s)
H(s — i) f(s)

The roots of the denominator of the r.h.s. are

jg=4 (3.4,22)

Ay Ay do

so that the application of the expansion theorem (2.5,6) yields the complex

output
nil A)N (s) At
— A PR LA A T
¥l = gl[s—w»f(s} ’
_ I[N‘“”) ¢ | goht L cpes - +c,,el"‘] (3.4.23)
f(iw)

Since we have stipulated that the system is stable, all the roots 4;--- 4,
of the characteristic equation have negative real parts. Therefore e*rt — 0
as ¢ — oo, and the steady-state periodic solution is

N(w) o
=A,———¢ s t—
y(t) If(ia)) 0
or
y(t) = A,G(iw)e™?
= A,
Thus
A, = A,G(iw) (3.4,24)

is the complex amplitude of the output, or

G(iw) = —4—2

1

(3.4,25)

the frequency response function, is the ratio of the complex amplitudes. In
general, Q(iw) is a complex number, varying with the circular frequency w.
Let it be given in polar form by

Gliw) = KMe'e (3.4,26)
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where K is the static gain (3.2,4). Then
As _ garee (3.4,27)
1
From (3.4,27) we see that the amplitude ratio of the steady-state output
to the input is [4,/4,| = KM : i.e. that the output amplitude is a, = KMa,,
and that the phase relation is as shown on Fig. 3.12. The output leads the
input by the angle ¢. The quantity M, which is the modulus of G(iw) divided
by K, we call the magnification factor, or dynamic gain, and the product
KM we call the total gain. It is important to note that M and ¢ are frequency-
dependent.

Im

o | —oT = e 10 Re
wl'=0

Locus of Mei
{semicircle}

owl'=1

F16. 3.13 Vector plot of Me®? for first-order systems.

Graphical representations of the frequency response commonly take
the form of either vector plots of Me?® (Nyquist diagram) or plots of M and
@ as functions of frequency (Bode diagram). Examples of these are shown in
Figs. 3.13 to 3.17.

EFFECT OF POLES AND ZEROS ON FREQUENCY RESPONSE

We have seen (3.4,2) that the transfer function of a linear/invariant
system is a ratio of two polynomials in s, the denominator being the char-
acteristic polynomial. The roots of the characteristic equation are the poles
of the transfer function, and the roots of the numerator polynomial are its
zeros. Whenever a pair of complex poles or zeros lies close to the imaginary
axis, a characteristic peak or valley cceurs in the amplitude of the frequency-
response curve together with a rapid change of phase angle at the corre-
sponding value of . Several examples of this phenomenon are to be seen in
the frequency response curves in Figs. 10.3, 10.11, and 10.12. The reason for
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this behavior is readily appreciated by putting (3.4,2) in the following form:

P R G LRI Ct
(=) (s— ) (s—4)
where the 4, are the characteristic roots (poles) and the z; are the zeros of
G(s). Let

(s — ) = puei®s

(s — Ag) = 1™

where p, r, «, f§ are the distances and angles shown in Fig. 3.12b for a point
s = i on the imaginary axis. Then

16 =11 ps }_Ilrk

k=1
m n
(ngak_;ﬁk

When the singularity is close to the axis, with imaginary coordinate w’ as
illustrated for point S on Fig. 3.12b, we see that as w passes through o', a
sharp minimum oceurs in p or 7, as the case may be, and the angle « or
increases rapidly through approximately 180°. Thus we have the following
cases:

1. For a pole, in the left half-plane, there results a peak in |G| and a re-
duction in ¢ of about 180°.

2. For a zero in the left half-plane, there is a valley in |¢| and an increase
in ¢ of about 180°.

3. For a zero in the right half-plane, there is a valley in |G| and a decrease
in @ of about 180°.

FREQUENCY RESPONSE OF FIRST-ORDER SYSTEM

The first-order transfer function, written in terms of the time constant T
is

1
G(s) = 3.4,28
() Y7 ( )
whence
K=lim@s)=T
s=0

The frequency response is determined by the vector G(iw)

T

Q(iw) = KM = ————
1 4 10T
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whence
Me = 11—;% (3.4,29)
From (3.4,29), M and ¢ are found to be
M= m—lsz)% (3.4,30)
—p = tan™! T

A vector plot of Me? is shown in Fig. 3.13. This kind of diagram is sometimes
called the transfer-function locus. Plots of M and ¢ are given in Figs. 3.14a
and b. The abscissa is fT' or log w7 where f = w/27, the input frequency.
This is the only parameter of the equations, and so the curves are applicable
to all first-order systems. It should be noted that at @ =0, M =1 and
@ = 0. This is always true because of the definitions of K and G(s)—it can
be seen from (3.2,4) that G(0) = K.

FREQUENCY RESPONSE OF A SECOND-ORDER SYSTEM

The transfer function of a second-order system is given in (3.4,11). The
frequency-response vector is therefore

602

n (3.4,31)

M =
(wnz - w2) + 21{(/),&0

From the modulus and argument of (3.4,31), we find that

M= 1
{1 — (0fw, ) + 403(w)w,)?
-~ (3.4,32)
T ~1 n
7= R T e

A representative vector plot of Me, for damping ratio { = 0.4, is shown in
Fig. 3.15, and families of M and ¢ are shown in Figs. 3.16 and 3.17. Whereas
a single pair of curves serves to define the frequency response of all first-
order systems (Fig. 3.14), it takes two families of curves, with the damping
ratio as parameter, to display the characteristics of all second-order systems.
The importance of the damping as a parameter should be noted. It isespecially
powerful in controlling the magnitude of the resonance peak which occurs
near unity frequency ratio. At this frequency the phase lag is by contrast
independent of {, as all the curves pass through ¢ = —90° there. For all
values of {, M — 1 and ¢ — 0 as w/w, — 0. This shows that, whenever a
system is driven by an oscillatory input whose frequency is low compared to
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the undamped natural frequency, the response will be quasistatic. That is,
at each instant, the output will be the same as though the instantaneous
value of the input were applied statically.

The behavior of the output when { is near 0.7 is interesting. For this value
of {, it is seen that ¢ is very nearly linear with w/w,, up to 1.0. Now the phase
lag can be interpreted as a time lag, + = (¢/2m)T = @/w where T is the
period. The output wave form will have its peaks retarded by = sec relative
to the input. For the value of { under consideration, @f(w/w,)== m/2 or
olo = 72w, = 3T',, where T, = 27/w,, the undamped natural period.
Hence we find that, for { = 7, there is a nearly constant time lag = = 17,
independent of the input frequency, for frequencies below resonance.

The “chain” concept of higher-order systems is especially helpful in re-
lation to frequency response. It is evident that the phase changes through
the individual elements are simply additive, so that higher-order systems
tend to be characterized by greater phase lags than low-order ones. Also
the individual amplitude ratios of the elements are multiplied to form the
overall ratio. More explicitly, let

G(s) = Gy(s) - Gy(s) * * * G(s)
be the overall transfer function of » elements. Then
Giw) = G4(iw) - Ay(iw) - - - G, (iw)
= (K,M,-K,M,---K, ]Vln)ei(¢1+"’2+""”")

= KMe*®
so that KM =11KM, (o)
™ (3.4,33)
¢ = Zl Pr (b)
On logarithmic plots (Bode diagrams) we note that
log KM = > log K, M, (3.4,34)

r=1
Thus the log of the overall gain is obtained as a sum of the logs of the com-
ponent gains, and this fact, together with the companion result for phase
angle (3.4,33) greatly facilitates graphical methods of analysis and system
design.

RELATION BETWEEN IMPULSE RESPONSE AND FREQUENCY
RESPONSE

We saw earlier (3.4,7), that A(t) is the inverse Fourier transform of G(iw),
which we can now identify as the frequency response vector. The reciprocal
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Fourier transform relation then gives
Glio) = j “h(t)e—ttds (3.4,35)

i.e. the frequency response and impulsive admittance are a Fourier transform
pair.

An alternative to (3.4,7) that involves the integration of a real variable
over only positive w can be derived from the properties of k() and G(iw).
Since w is always preceded by the factor ¢ in G(iw), it follows that G*(iw) =
G(—iw) where ( )* denotes the complex conjugate. Hence

ht) = 1 f ' (iw) dow = 1 f [€9'G(iw) + e G*(iw)] dw

27 J-w 27 Jo

— E_f {ez’th(w)eitp(w) + e—ith(w)e—i(p(w)} deow
27 Jo
K (*® . N

- M feilet+o) ettty 4
o [t 1 ooy

=I—{f M cos (wf + @) dow
7w Jo

K[> Kf° . .
=_—| Mcoswicos pdw — = M sin wisin ¢ dw . (3.4,36)
7 Jo a Jo

Since h(t) = 0 for ¢ << 0, then the second term on the r.hs. of (3.4,36) is
equal to the first term for ¢ < 0. But the second term is an odd function of
t whereas the first is even. Hence the two terms are equal and opposite for
¢ < 0 and equal for ¢ > 0. Thus

h(t) = g KfooM(co) cos @(w) * cos wf dw (3.4,37)
T Jo

which is the desired result.

SUPERPOSITION THEOREM (CONVOLUTION INTEGRAL, DUHAMEL'S
INTEGRAL)

The theorem of this section facilitates the calculation of transient responses
of linear systems to complicated forcing functions. The general response
appears as the superposition of responses to a sequence of steps or impulses
which simulate the actual forcing function.

Let Z,(s) be the transform of ()

and Zp(s) be the transform of x,(t)
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Then the function x;(f) whose transform is the product T; = 7%, is

wy(t) = f t @y (7)ot — 7) dr (3.4,38)
=0

Proof:
g = f ey (u) du Xf € xy(v) dv
0 0

where u and v are dummy variables of integration. This is equivalent to the
double integral

Ty(s) = f f e~ () (v) du do
s

where S is the area of integration shown in Fig. 3.18¢. Now let the region of

v t
S
oru
o) u 0
(a)

Sl
t
(%)
Fic. 3.18 (a) The (u, v) plane. (b) The (¢, 7) plane.

T
o]
T

integration be transformed into the ¢, 7 plane by the substitution

u+v=1
V=17
Then Zy(s) = f f eyt — T)my(r) dS’
J;

where 8’ is the region shown in Fig. 3.18b. Integration first with respect to

T gives w .

Z5(s) =f &5t dtf 2y(t — T)xs(7) d7
=0 =0

Therefore, by definition (2.3,7)

t

Bt) = x(t — 7)xe(r) dr Q.E.D.

=0
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We now apply this result when the system G{s) is subjected to an arbitrary
input z(¢). The response is given by

g(s) = G(s)Z(s)
Now we saw earlier that G(s) = k(s) (3.4,5a), so

(s) = h(s)(s) (3.4,39)
whence (3.4,38) yields
t
y(t) = f Wt — e dr (@)
- (3.4,40)
or y(t) :f k(r)a(t — 1) dr (b)

=0

The preceding equation applies to a single input/output pair. For a multi-
variable system we would obviously have as the extension of (3.4,40a)
(and similarly for 3.4,40b)

t

y,(t) = Z byt — t)x,(7) dr (@)
7 (3.4,41)
or y&) = H(E— 7)x(r)dr (b)
=0

where H is the rectangular matrix of impulse response functions.
By considering a slightly modified form of (3.4,39) we can obtain a com-
panion result involving .o7(¢) instead of 2(t). We may write (see 3.4,18b)

76 =" e
— T (L] + =(0)}
— T + F(5)0)
Again applying (3.4,38) we get
90 = S0 + [ A=t d (@

r=0

t (3.4,42)
or v = Ln(0) + [ it —rir )
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As with the impulse response, the matrix form of (3.4,424) for example,

for a multivariable system, is

y(¢) = A (t)x(0) + t At — 7)X(1) dr (3.4,43)

=0

SOLUTION INCLUDING INITIAL CONDITIONS

The general solution of (3.2,21) for arbitrary y(0) and arbitrary x(¢) is
obtained by superposition of the complementary funection (3.4,17) and the
“particular integral’’ (3.4,41 or 43). Thus in general

y(t) = H(H)C y(0) + ' H(t — 7)x(r) dr (3.4,44)
=0

The physiéal significance of (3.4,40a) and (3.4,42a) for example is brought
out by considering them in the one-dimensional case as the limits of the
following sums

y(t) = 2 h(t — 7)x(7) Ar (@)
y(t) = LW)2(0) + 3 Lt — T)E1) At (B) (3.4,45)

Typical terms of the summations are illustrated on Figs. 3.19 and 3.20.
The summation forms are quite convenient for computation, especially when
the interval Ar is kept constant.

h
x(t)
x(7) Ar = impulse applied at time 7
AT
Ay
’ #// t
T L [
t

Fi1c. 3.19 Duhamel’s integral—impulse form.
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x(t)

Ax = z(1) AT
“Staircase’ representation of x(t)
l j LAT

F<—AT

t

Fic. 3.20 Duhamel’s integral—indicial form.

RESPONSE TO A SET OF STATIONARY RANDOM INPUTS

We now consider the case when the system response is a sum of responses
to a set of random inputs. An example of this situation is the roll response
of an airplane flying through a turbulent atmosphere, when there is a multiple
input associated with the three components of the atmospheric motion, each
contributing to the output via a different transfer function. Figure 3.21
shows an example in which a number of inputs combine to form a single out-
put. More generally, for » inputs and m outputs related by an (m X n)

y1(t)

A S AN G1(9) N
t t
S Gy 1229

T )——>y(t)

Sy Pl P %Y Apnp

Fic. 3.21 Response to a set of random inputs.
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transfer function matrix G(s)
¥(8) = G(s)x(s)

By virtue of (3.2,20) the transfer function matrix likewise connects the
Fourier transforms of the inputs and outputs,

Y(0) = G(tw)X(w) (@) (3.4,46)
or with reference to truncated functions, see (2.6,19),
Y(w; T) = Gliw)X(w; T') ®)
Now the cross-spectral density of two componenfs (y; and y,) of y is given by
(2.6,22) 1
®,, =lim — Y¥ow; TV (0;T) (3.4,47)
T rs0 4T
The matrix of ®

vy 15 therefore

R 1
P, = lim 7 Y¥ew; 7)Y (0; T)

T—w

—1lim [G(iw)X(w; T)HG(i0)X(w; T)]T
T-w© 4:T

— lim ZIQF G+ (i) X (o3 T)XE (03 T)GZ (600)

T
- G*(iw)[lim L ¥ T)XT(00; T) | 6% (i)
T— 4T

or &, — 6P 6T (3.4,48)

From (3.4,48) it follows that the power spectral density of y, (a diagonal
element of @) is

(D?!z"!i(w) Z E "w)q)a:kx, )G, (i) (3.4,49)

k=11=1
and that if the input cross spectra are zero

D, (@) = EI (i) D, , (o) (3.4,50)

This is a very important result for application to flight dynamics since it
provides a way of calculating the output power spectral density from a
knowledge of all the input cross spectra and the relevant transfer functions.
An important special case is that in which there is only one input, x(f) and
one output, y(¢). Then (3.4,50) reduces to

D, (w) = |G(iw)}? D, (w) (3.4,51)
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This is the most commonly used input/output relation for random processes.
It will be recalled (see Sec. 2.6) that most of the interesting probability
properties of y(t) can be deduced from @, (w).

A USEFUL THEOREM CONCERNING MEAN-SQUARE RESPONSE

In some calculations, it is not required to have the spectrum of the output,
its mean-square value being all the information wanted. In such cases the
desired result may be obtained more simply than by first caleulating @,
and then integrating it. The method is given in ref. 3.12 for single and dual
inputs. We present below only the theorem for a single input.

Let the system, with transfer function G(s), be subjected to a transient
input z(¢), with corresponding transient output y(t). The integral square of
the output is given by Parseval’s theorem (see ref. 2.4, Sec. 120).

E :jmyz(t) dt = L Y¥w)Y(w) do (3.4,52)
o

277 —o0

where Y(w) is the Fourier transform of y(f). Now the Fourier transform of
the output is given by (3.2,2a) as

Y(0) = G(io)X(w)

and hence
E = 1 ooG(iw)G"‘(iw)X(w)X*(w) dw
_ 2i f ® | Gliw)|? | X (@) do (3.4,53)

Now we also have from (3.4,51) that if the input is a random function, the
mean-square output is

gt = f O, () dew

_ f " 16G0) [ B (o) deo (3.4,54)

By comparing (3.4,53) and (3.4,54), we see that 32 = E if
om0, (o) = | X(@)|? (3.4,55)

That is, if one can find a transient z(t) whose Fourier transform is related by

(3.4,55) to the power spectrum of the given random function, then —y—z can
be calculated from the output of the transient. This may prove to be a much
easier and more economical computation, whether an analog or digital com-
puter is used. In particular, for spectrum functions like those of atmospheric
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turbulence (the “Dryden’” spectra) the following are suitable transients:

Spectrum Function @, (w) Equivalent transient z(¢)
1 42 .
— = Ae™v (3.4,56)
27y° 4+ o
A% b 4 ?

—_ Al — (@ — b)t]e™ 3.4,57

P [l — (a — )] (3.4,57)

The advantages for analog computation are that no random function

generator is needed, and that the computation using a single transient input
takes much less time.

3.5 TIME-VARYING AND NONLINEAR SYSTEMS

In the preceding sections we have presented the methods for analysis
of linearfinvariant systems. These systems are the simplest kind and the
methods of analysis are in effect omnipotent, in that in principle they provide
complete exact solutions for all such systems. Only sheer size provides
limits to practical computation.

On the other hand, linear time-varying systems (linear systems with non-
constant coefficients) and nonlinear systems present no such comfortable
picture. Their characteristics are not simply classified and there are no
general methods comparable in power to those of linear analysis. In the
aerospace field, nonlinearities and time variation occur in several ways.
The fundamental dynamical equations (see Chapter 5) are nonlinear in the
inertia terms and in the kinematical variables. The external forces, especially
the aerodynamic ones, may contain inherent nonlinearities. When the flight
path is a transient, as in reentry, rocket launch, or a landing flare, the aero-
dynamic coefficients are time-varying as well. In the automatic and powered
control systems so widely used in aerospace vehicles, there commonly occur
nonlinear control elements such as limiters, switches, dead-bands, and others.
Finally, the human pilot, actively present in most fight-control situations,
is the ultimate in time-varying nonlinear systems (see Chapter 12).

Although completely general methods, apart from machine computation
of course, are not available for analyzing the performance and stability of
time-varying and nonlinear systems, there are nevertheless many important
particular methods suitable for particular classes of problems. This subject is
much too large for a comprehensive treatment here. The reader is referred
to refs. 3.8-3.10 for treatises devoted to the subject.

It should be pointed out that even when a flight vehicle system is essentially
nonlinear, much may be learned about it by first carrying out a linear analysis
of small disturbances from a reference steady state or reference transient.
This normally provides a good base from which to extend the analysis to
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include nonlinear effects, as well as a limiting check “point” for subsequent
computation and analysis. Of the particular methods available for studying
nonlinear systems, we consider two sufficiently relevant to flight dynamics
to present brief introductions to them below.

DESCRIBING FUNCTION

In the simplest terms, a describing function of a system is a transfer function
that linearly connects an input/output pair approximately—i.e. it provides
a linear approximation to the actual system that is best in a certain sense.

r(t)
x(t) N o] ® /\l\-'- ()
Sl AN y

Nonlinear system

Fi¢. 3.22 Model of nonlinear system.

Figure 3.22 shows a nonlinear system with a particular input x(¢) and output
y(¢). The output is presumed to be made up of the sum of a part y,(¢) lineary

related to the input ~ _
e 7ils) = N(s)E(s) (3.5,1)

and a remnant r(t) that makes up the difference. Clearly, if r(f) is “‘small”
enough compared to y(t), then y,(t) provides a useful evaluation of the system
performance. When an appropriate measure of r(f) is minimized, N(s)
becomes the corresponding describing function. For transient inputs, a
suitable measure would be § 72 dt; for steady-state inputs, periodic or sto-
chastic (the usual case treated), 72 is the quantity minimized. It is seen
that a different describing function is obtained for every input to a given
system—i.e. the describing function, unlike the transfer function of a linear
system, is a function of the input.

STEADY-STATE DESCRIBING FUNCTION

The relations implied by Fig. 3.22 can be reinterpreted as in Fig. 3.23.
Now applying (3.4,50) we get the spectral density of r(t)

D, (0) = D, () — N(iw)D,,(0) — N*¥(i0)D,,(0) + N*(iw)N(i0)D,,(w)
(3.5,2)
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¥(t) g 1 -
+
O———r0
+
—
3 = V(
0 gl 0]

F1a. 3.23 Alternative model of nonlinear system.

Since @, = DF, by (2.6,15b), then

D,,(0) = D, (w) — [D,, ()N (1) + (D, (0)N(iw))*] + N* (i) N (i0) D, ()
(3.5,3)

We now wish to find the particular function N(iw) that minimizes 7% =
J%% ®@,,(») dw. This can be done by the classical method of variational
calculus, as follows.
Let us assume that N (za)) is not exactly that which minimizes 72 but differs
from it slightly, i.e.
N(iw) = N(iw) + <f(io) (3.54)
where N(iw) is the optimal function sought, f (¢w) is an arbitrary continuous

function, and ¢ is a small parameter. Then N(ie) is given by the solution of

0

— (I) Aw) do)

Pl s ()
When (3.5,4) is substituted into (3.5,3) and the Lh.s. of (3.5,5) is evaluated,
the result is

=0 (3.5,5)

=0

[ 1t io) + @301

+ O, ()N *(iw) f (tw) + f*(E0)N(iw)]} do» = 0
or

[ 0@ fo)*(io) — @1

+ F¥E) D) N (i) — OF ()]} dww =0 (3.5,6)

Since f (tw) is an arbitrary function, the integral can only be zero if the two
expressions in square brackets are both zero. Since one is simply the conjugate
of the other they are simultaneously zero, and the required condition is

N(iw) = N(iw) = Do) (3.5,7)
@, (0)
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SINUSOIDAL DESCRIBING FUNCTION

When a stable linear system has a sinusoidal input z = 4,¢** the steady-
state output y(t) after the initial transients have decayed is a sinusoid of
the same frequency, and the input/output relation is given by (3.4,20). A
“well-behaved’” nonlinear system with such an input will have a steady-state
output that is also periodic, but not sinusoidal, other harmonics being present.
‘Whereas the input spectrum is a “spike,”” the output spectrum is a “‘comb.”
Other behavior is conceivable, but the above describes the usual situation;
we assume it to be the case here. Since the mean product of sinusoids of
different frequency is zero, the only Fourier component of the output that
has a nonvanishing correlation R, with the input is the fundamental, i.e.
the component that has the same frequency Q as the input.

Since ®,, is the Fourier integral of R,,, it follows that only the funda-
mental component y, of y contributes to @,,. From (2.6,22) we have

.1 . .
o, :;1_1'120 EX*(%O; Y (105 T)

. (3.5,8)
D, = lim — X*iw; T)X(lo; T)
T 4:T
The ratio (3.5,7) then leads simply to
Niiw) = L42) (3.5,9)

X(iw)
where Y ,(iw) and X(iw) are the Fourier transforms of the sinusoids, given
in Table 2.2. Now if these sinusoids are described by
xr = Aleiﬂt; yf — A2eiQt

where 4; and 4, are the complex amplitudes of the input and output
fundamental, respectively, we get, using item 3, Table 2.2,

N(iw) = 4, (3.5,10)
4,
which is identical with the frequency-response function given by (3.5,20)
provided that we regard the fundamental as the total output.
Evidently the sinusoidal describing function leads to a remnant made up
of all the lower and higher harmonics of the output.

TWO-INPUT DESCRIBING FUNCTIONS

If two inputs to a nonlinear system contribute to the output y, as in Fig.
3.24 we may define two describing functions by the same principle as used
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r(t)
+
x(t) Ni(s) ¥(8)
+j/+
x2(t) Na(s)

Nonlinear system

F16. 3.24 Nonlinear system with two inputs. '

above for one input. The method is basically the same, but the details are a
little more involved. The result for N, is
_ OxyDxx, — Oy, x,

N,(iw) = 3.511
1{te0) Oz, Dwyr, — |Day2,)° ( )

and that for N,(iw) is obtained by permuting the subscripts 1 and 2. Note
that if z; and a, are uncorrelated, so that the cross-spectral density ®
then (3.5,11) reduces to (3.5,7), the formula for a single input.

iy 0,

LYAPUNOV STABILITY THEORY

The second general method for treating nonlinear systems is Lyapunov’s
theory.

The stability of linear/invariant systems was shown in Sec. 3.3 to be com-
pletely determined by the eigenvalues, and certain criteria were presented
that could be applied to the characteristic equation to predict the stability
properties of the roots. In that case we may say that we have investigated
the stability by studying the properties of the solutions. This is possible of
course only because we have an adequate theory for the solutions. For more
general systems, this approach may not be possible since the solutions are not
in general known. A method of treating the stability of equilibrium for any
gystem, which does not require a knowledge of the solutions, has been given
by Lyapunov (refs. 3.2, 3.8). We present below a brief outline of the main
concepts but refer the reader to refs. 3.2 and 3.8 for a fuller treatment and
for the methods of finding the appropriate Lyapunov functions.

We begin with a simple analogy by considering a ball at the bottom of a
cup of arbitrary shape. The bottom is a position of stable equilibrium with
respect to all disturbances small enough that the ball is not projected over
the rim. This stable condition can be viewed from the standpoint of the
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total energy E of the ball. If E is less than the potential energy .., assoei-
ated with the height of the lowest point on the rim, then escape is impossible,
and the system is stable. Note that the lowest point in the cup is a point of
minimum potential energy, and that the minimum of E corresponds to
equilibrium there. In any real case, there will be frictional dissipation, so
that E is negative whenever there is motion, and if the ball is started any-
where in the cup with £ < B, it will eventually come to rest at the bottom.

The Lyapunov theory is basically nothing more than a generalization of
the above concept, and indeed for some physical systems, the energy itself
is a suitable Lyapunov function. More generally, a Lyapunov function
V(x, - - * x,) is any positive definite function of all the state variables x, that
is zero at the origin (an equilibrium state) and that increases monotonically
within a region & of state space as one proceeds along the vector grad V =
V7V, i.e. it is a “cup-shaped” function with its “bottom’ at the equilibrium
point the stability of which is to be investigated. The critical question is
whether V is positive, negative or zero in . If positive, the state point
“climbs up the V hill” proceeding ever farther from the origin, indicating
instability. If negative, the state point descends continuously until it comes
to rest at the origin, and the system is asymptotically stable. If ¥ = 0, then
the only motion possible is an orbital trajectory in which the state point
remains on the surface V = const. These cases are illustrated in Fig. 3.25
for a two-dimensional state space. The essence of the problem is of course
to find a suitable ¥V function. Ideally one wants that function that gives the
exact stability boundary in state space. This ideal is not usually achieved

\x\z
Trajectory for V>0

Trajectory for V=0

V increasing

V = constant

Trajectory for V<o

N .

¥16. 3.25 Trajectories in state space.
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for other than linearf/invariant systems, or simple mechanical ones such as
the ball in the cup.

The great advantage of this approach is that ¥ can be calculated directly
from the differential equations, no solutions of them being needed. Let the
equations be given by

x = f(x, t)
or in component form
&y = fi(=;, f)
i:n = f'n(xi’ t)
Then
ar . av .
V - 5;; &, + ax” xn
oV ov
= 5;:]”1 + 6_m,,f"
=grad V.f

Since both ¥ and f are known ¥ can be calculated directly, and the stability
properties inferred from how its sign varies with position in state space.
The main disadvantage of the Lyapunov approach is that the functions
V are to a certain extent arbitrary, and hence can in most cases only provide
a conservative estimate of stability. For example, if it is found that the limit
of the monotonically increasing ¥V for negative V is a certain surface S in
state space, then it can be said that the system is stable for disturbances
sufficiently small that the initial state point lies within S, but it is not known
whether it may be stable beyond 8, since a different ¥ function might have
produced a larger domain of stability. It should be pointed out that for
some problems in mechanics, as distinct from control systems (which have
been the principal object of applications of Lyapunov theory) the Hamiltonian
of the system can be a useful Lyapunov function (see Pringle, ref. 3.11).
The previous discussion has related to the stability of an equilibrium
point (the origin in state space). However there are many important situations
in the flight of aircraft and spacecraft when there is no steady state, as in
the take-off and landing of aircraft, and the launch and reentry of spacecraft.
If the state vector in such transient situations changes “slowly’ with time
(what constitutes “‘slowness’ must be determined in each case), then a
point-by-point stability analysis may be useful. In that case, each point on
the trajectory is treated as a constant reference state (equilibrium) and the
stability of disturbances from it is investigated in thé manner discussed
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above. When the transient is “rapid,” i.e. when the characteristic times (e.g.
periods and damping times) of the disturbance motions are long enough that
large changes can occur in the reference transient during these time intervals,
then the “quasi-steady’’ analysis may be meaningless. In this case the stability
analysis of the transient can be transformed into that of an equilibrium point
as explained on p. 50, and the Lyapunov analysis for equilibrium again
applied.

A general comment about the usefulness of stability analysis in aerospace
systems is in order. It is a fact that stability is neither a necessary nor a
sufficient condition for the successful performance of aerospace missions.
A stable airplane may have unsatisfactory handling qualities, and vice versa;
and an unstable flight path for a lifting entry vehicle may be perfectly
acceptable within the tolerances on initial conditions that are practically
available. Thus the determination of stability boundaries of nonlinear and
time-varying systems does not appear to be an objective to which a great
deal of effort should be applied. Of more direct import are appropriate
performance criteria. These may take many forms depending on the vehicle
and mission—for example, pilot rating in aircraft and terminal errors for
reentry vehicles.
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Reference frames and

transformations

CHAPTER 4

When formulating and solving problems in flight dynamics, a number of
frames of reference (coordinate axes) must be used for specifying relative
positions and velocities, components of vectors (forces, velocities, acceler-
ations etc.) and elements of matrices (aerodynamic derivatives, moments
and products of inertia, etc.). The equations of motion may be written from
the standpoint of an observer fixed in any of the reference frames, the
choice being a matter of convenience and preference, and formulae must be
available for transforming quantities of interest from one frame to another.
For example, in an interplanetary space flight mission, one might need Earth-
fixed axes, target-fixed axes, vehicle-fixed axes, and axes fixed to the distant
stars. In atmospheric flight, we commonly use Earth-fixed axes, vehicle-fixed
axes, trajectory-fixed axes, and atmosphere-fixed axes. The references frames
needed for subsequent analytical developments are defined in the following,
and a suitable system of notation is introduced.

4.1 NOTATION

Let F, and F, be two right-handed reference frames, with coordinate
axes denoted as in Fig. 4.1. Note that two alternative systems are used:
(z, ¥, 2) or (), 2, z,), the choice at any time being governed by custom and

104
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ua
Yb» Xby
P Fp
Op
Yar %, ub 25, %5, 8
Xp, Xp,
Fy
Xas Xq
0. B

Za, Xag

Fia. 4.1 Notations for coordinate axes.

convenience. In general the two frames have relative motion, both linear
and angular.

Consider now the description of a typical vector which does not depend
on the motion of the frame of reference. For example let F, be the Earth, F,
a moving rigid vehicle, and the vector in question be the gravitational force
exerted by the former on the latter, represented by g in Fig. 4.1. The vector
g is the same for observers in both F, and F, in the sense that they would
both find it to be of the same magnitude, and of the same orientation relative
to any third frame. The components of g along the axes of F, and F, are of
course in general different, and we denote them by

Iy Ga,

L= |9y, | = | Y.

P 1 9a, |
4.1,1)

9y v,

o= |Gy, | = | Jo,

192, | 90, |

(How to calculate one set of components from the other is treated in Sec.
44.)

A more complicated situation arises when we consider vectors that do
depend on the motion of the reference frame, i.e. that are not the same for
two observers, one in F, and the other in F,. For example, consider the veloc-
ities of a point P relative to F, and ¥,. These are two different vectors, each
of which may have its components given in the directions of either set of
axes, leading to four sets of components.



106 Dynamics of atmospheric flight

The practice followed in this text is to use different symbols for physically
different vectors, or appropriate subseripts or superscripts. Thus w usually
represents the angular velocity of a reference frame relative to inertial space,
and a superscript identifies the rotating frame. For example ¥ is the angular
velocity of an Earth-fixed frame F. Again, v, and v, give the inertial veloci-
ties of points 0 and C, the frame of reference for components being identified
with a further subscript, so that v, is the column matrix of the components of
v, along the axes of Fy, (wind axes).

In the example of Fig. 4.1, we may let u® be the velocity of P relative to
F, and w® its velocity relative to F,. The four sets of components are then

ua

a b b
) A and u?, u,

a
each being a column matrix as in (4.1,1).

It should be emphasized that the transformation that transforms u® into
uw® is quite different from that which transforms w,® into u,%, and the two
should not be confused (see Sec. 4.6).

Notwithstanding the above general rules, certain exceptions to this form
of notation are made in the subsequent treatments. These are in conformity
with a long tradition of usage in flight dynamics, and bring the main equations
derived into harmony with most past and current North American literature
on the subject.

4.2 DEFINITIONS OF REFERENCE FRAMES USED IN
VEHICLE DYNAMICS

The principal reference frames used in vehicle dynamics are defined below,
and illustrated in Figs. 4.2 to 4.7.

4.2.1 INERTIAL REFERENCE FRAME F; (INERTIAL AXES, O;x;y,z;)

In every dynamics problem there must be an inertial reference frame,
either explicitly defined, or lurking implicitly in the background. This frame
is fixed, or in uniform rectilinear translation, relative to the distant stars;
in it Newton’s second law is valid for the motion of a particle, in the sense
that if f be the sum of all exfernal forces acting on the particle, and a its
acceleration relative to F;, then f = ma. If a is acceleration relative to a
reference frame that has rotation, or acceleration of its origin, this equation
does not hold, and additional terms that depend on the motion of the reference
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frame must be added to the equation (see Sec. 5.1). The velocity of the vehicle
mass center relative to F; is denoted V7,

422 EARTH-FIXED REFERENCE FRAME, F, (EARTH AXES
OrXzYrZg)

In many problems of airplane dynamics, the rotation w? of the Earth
relative to F'; can be neglected, and any reference frame fixed to the Earth
can be used as an inertial frame. In hypervelocity and space flight this is
generally not the case, however, and the angular velocity of the Earth must
usually be included in the analysis. Two Earth-fixed frames are of interest,
as illustrated in Fig. 4.2. F is the ‘“Earth-center” frame with origin at the
center of the Earth and axis directions fixed by a reference point on the
equator and the Earth’s axis. This frame is useful when the Earth’s rotation
must be considered. F is an Earth-surface frame, with origin near the
vehicle if possible, and with Ogzy directed vertically down. O gy, is the
local horizontal plane, Oy, points north, and Oy, east.

N
QP w¥

—_——

Reference
meridian

F1e. 4.2 Earth axes. (4, u) = latitude, longitude.
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42.3 VEHICLE-CARRIED VERTICAL FRAME, F, (AXES Opypzp)

This is a reference frame in which the origin O is attached to the vehicle,
usually at the mass center C, and in which Opz, is directed vertically
downward, i.e. along the local g vector. The directions of the remaining
axes can be specified in any convenient way. We chocse Op x4 to point to
the north, and O,y east. In many applications the origin of Fy is near
enough to the vehicle that Earth curvature is negligible, and then F'y has
axes parallel to Fp, as illustrated in Fig. 4.3.

Xy

Trajectory, or flight path
*E

Fic. 4.3 The local (F'g) and vehicle-carried (Fy )
Or e vertical reference frames.

Since Fy and F are both chosen so that their respective x axes point
north, then F, can be made parallel to '} by the two consecutive rotations

(i) —AZ around Ogyy
(i) Ap around Ogezge

where Al =1 — g
Ap=p— pg
and (A, ) are latitude and longitude of 0,

(g, ug) are latitude and longitude of Op.

The angular velocity of F, relative to Fy is w”.
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424 ATMOSPHERE-FIXED REFERENCE FRAME, F, (AXES 0.y,

Since the relevant velocity for aerodynamic forces in atmospheric flight
is that of the vehicle relative to the local atmosphere, it is essential to be
concerned with the motion of the latter. When the atmosphere is, or is
assumed to be, at rest relative to the Earth, then F, and Fy are the same.
If the atmosphere is in uniform motion relative to Fg, with velocity W,
then F , is convected relative to Fy with that velocity.

If the motion of the atmosphere is nonuniform in time or space (as is in
reality always the case) then F , is so chosen that the space and time averages
of the motion of the atmosphere relative to F 4 taken over the space-time
domain of concern in the problem, are zero. The motion of ¥, relative to
Fy is in this case also a constant velocity W. (A treatment of flight in a
turbulent atmosphere is given in Chapter 13.)

The velocity of the vehicle mass center relative to F , is denoted by V
so that its velocity relative to Fy is

VE=V4+W (4.2,1)

42.5 AIR-TRAJECTORY REFERENCE FRAME F;; (WIND AXES,
OwXwYwazw)

This reference frame has origin fixed to the vehicle, usually at the mass
center C, and the Oy 2y axis is directed along the velocity vector V of the
vehicle relative to the atmosphere. The axis Opzy lies in the plane of
symmetry of the vehicle if it has one, otherwise is arbitrary. If the atmosphere
were at rest, then Oy, would trace out the trajectory of the vehicle relative
to the Earth, and Opzy- would be always tangent to it. The frame Fy,
has angular velocity w” relative to F;. Although by doing so we depart
from the general scheme, in the interest of simplicity we shall denote the
components of w” in Fy, by [y, ¢y 13771

4.2.6 BODY-FIXED REFERENCE FRAME F, (BODY AXES, Oxyz)

Any set of axes fixed in a rigid body is a body-fixed reference frame. If
the body is not rigid, i.e. if it has articulated parts such as control surfaces,
or elastic motions, then the body axes are chosen to be those for which the
resultant linear and angular momenta of the relative motions of articulation
and elastic distortion vanish. This choice is always possible (see Sec. 5.1).
The origin of the body axes is usually the mass center C. A particular set
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of body axes with special properties are principal axes of inertia, denoted
Fp.

Flight vehicles almost invariably have a plane of symmetry (to a good
approximation); this plane is chosen to be Cxz, with z directed “downward.”

Body axes play an especially important role in flight dynamics, and there
is a tradition of notation associated with them. This is given in Fig. 4.8.
Note that the subscript B is dropped when there is no possibility of con-
fusion. The angular velocity of Fp relative to F; is w (p, ¢, r), and the
components of Vg are (u, v, w).

42.7 STABILITY AXES Fy (OgXeyeZs)

Stability axes are a special set of body axes used primarily in the study
of small disturbances from a steady reference flight condition. If the reference
flight condition is symmetric, i.e., if V lies in the plane of symmetry, then
Fyg coincides with the wind axes Fyy in the reference condition, but departs
from it, moving with the body, during the disturbance. If the reference
flight condition is not symmetric, i.e. with sideslip, then Ogrg is chosen to
lie on the projection of V in the plane of symmetry, with Ogzg also in the
plane of symmetry.

Trace of
horizontal
plane

Projection of V on
plane of symmetry

Projection of g on
plane of symmetry

- — e

Fig. 4.4 Plane of symmetry—Cazxz; L = lift vector.
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x Y

‘X,X L,p Vv

C

B

~ION, r

Z, w

z

Fic. 4.8 Notation for body axes.

L = rolling moment p = rate of roll

M = pitching moment g = rate of pitch

N = yawing moment r = rate of yaw
[X, Y, Z] = components of resultant aerodynamic force

[u, v, w] = components of veloeity of C relative to atmosphere

4.3 DEFINITION OF THE ANGLES

THE VEHICLE EULER ANGLES

The orientation of any reference frame relative to another can be given
by three angles, which are the consecutive rotations about the axes z, y, # in
that order that carry one frame into coincidence with the other. This is a
particular case of Euler angles. In flight dynamics, the Euler angles used
are those which rotate the vehicle-carried vertical frame F, into coincidence
with the relevant axis system. Only two sets are commonly used, those for
the body axes Fg, and for the wind axes Fp;,. The angles are denoted (v, 0, )
for body axes, including the special case Fg, and (yy, Oy, dyr) for wind
axes. Figure 4.9 shows the sequence of rotations.

(i) A rotation ¢ about Opzp, carrying the axes to Opwyyyz,. w is the
azimuth angle

(ii) A rotation © about Opy,, carrying the axes to Opwgy,z;. 0 is the
elevation angle
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Fia. 4.9 The Euler angles.

(iii) A rotation ¢ about Opx;, carrying the axes to their final position
Opyz. ¢ is the bank angle.

In order to avoid ambiguities which can otherwise result in the set of
angles (y, 0, ¢) the ranges are limited to

—nm<yp<7 or O0<yp<2x

<0 <

20|y

T
2
—r<d<m or O0<¢<2m

The Euler angles are then unique for most orientations of the vehicle,}
although it should be noted that in a continuous steady rotation, such as
rolling, the time variation of ¢ for example is a discontinuous sawtooth
function.

As shown in Fig. 4.7, the angle 6y, is also commonly denoted by y, called
the angle of climb for an obvious reason.

t There is an ambiguity for the angles defining a vertical dive, since (y, 8, ¢) =
(@ + b, —7[2, —a) gives the same final orientation regardless of @. @ = 0 would be the
natural choice, and this special case does not seem to cause any difficulties.
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THE AERODYNAMIC ANGLES

The linear motion V of the vehicle relative to the atmosphere can be
given either by its three orthogonal components (u,,w) in a body-axis
system (see examples in Figs. 4.4 to 4.7), or alternatively by the magnitude
V and two suitably defined angles. These angles, which are of fundamental
importance in determining the aerodynamic forces that act on the vehicle,
are defined thus:

Angle of attack (see Fig. 4.4):

Ay = ta,n_I% —r <, <7 (4.3,2)
Sideslip angle (see Fig. 4.5):

B = sin_l% —r<f<m (4.3,3)

It is most important to note that o, as here defined will be the same as
that commonly used in aerodynamic theory and in wind-tunnel testing only
if the body axis Cx is parallel to the basic aerodynamic reference direction,
i.e. the mean aerodynamic chord or the zero-lift line.} Otherwise it differs by a
constant. When the body axes used are stability axes Fg, the latter will
normally be the case. It follows that the velocity components in the body

axes are
u =V cos f§ cos a,

v=Vsinp 4.3,4)
w =V cos Bsin o,

It will be observed that, in the sense of Euler angles, the aerodynamic
angles relate the two frames Fy;; and Fp by the rotation sequence (—f, a,, 0)
which carry the former into the latter.

4.4 TRANSFORMATION OF A VECTOR

Let v be a vector with the components

Vs, Uy,
Vo= |, | in F, and v, = |7, | in F,
v, v,

3

+ The symbol « is reserved for the angle of attack of the zero-lift line of the vehicle
when its controls are in neutral position.
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Xag

Component of vz, on xp;

xp,

F1c. 4.10 Component of vector.

The component of v, in the direction of z,, is v,, cos (6;) where 0,; denotes
the angle between Oy, and O, (see Fig. 4.10). Thus by adding the three
components of v, in the direction of z, we get

3
vy, =2 ¥, 1=1---3 (4.4,1)
where
l,; = cos (0,;) (4.4,2)

are the nine direction cosines. Equation (4.4,1) is evidently the matrix
product

vy = LV, (a)
where (44,3)

Ly, = [14] (b)
and constitutes the required transformation formula. Its inverse readily
reverses the transformation to give

Vo = Lggv, = Ly, (4.4,4)
where

Lab = L;a}

PROPERTIES OF THE L MATRIX

Since v, and v, are physically the same vector v, the magnitude of v, must
be the same as that of v, i.e. ¢® is an invariant of the transformation. From
(4.4,3) this requires

T T

—_ T T —
Vo =1V, Lba Lbava =V,

It follows from the last equality of (4.4,5) that

=, v, (4.4,5)

L,,TL,, = I (4.4,6)
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Equation (4.4,6) is known as the orthogonality condition on L,. From (4.4,6)
it follows that 5
[Lpel* =1

and hence that |L,,| is never zero and the inverse of L, always exists. In view
of (4.4,6) we have, of course, that

LbaT = Lba,—l = Lab (44’7)

i.e. that the inverse and the transpose are the same. Equation (4.4,6) together
with (4.4,3b) yields a set of conditions on the direction cosines, i.e.

8
3 by = 8, (4.4,8)

It follows from (4.4,8) that the columns of L,, are vectors that form an orthog-
onal set (hence the name “orthogonal matrix”’) and that they are of unit
length.

Since (4.4,8) are a set of six relations among the nine /;;, then only three
of them are independent. These three are an alternative to the three inde-
pendent Euler angles for specifying the orientation of one frame relative to
another. '

45 THE L MATRIX IN TERMS OF ROTATION ANGLES

The transformations associated with single rotations about the three
coordinate axes are now given. In each case F, represents the initial frame,
F, the frame after rotation, and the notation for L identifies the axis and

Frc. 4.11 The three basic rotations. (a) About z, . (b) About z,,. (c) About z,,.
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the angle of the rotation (see Fig. 4.11). Thus in each case
Yy = Li(Xi)va (45’1)

By inspection of the angles in Fig. 4.11, the following matrices are readily

verified.. 1 0 0

L(X)=1]0 cosX; sinX,
|0 —sinX; ocos X, |
[cos X, 0 —sin X, ]
LyX,) = 0 1 0 (4.5,2)
[sin X, 0 cosX, |
" cos X; sin X; 0]
LyXg) =] —sinX; cosX; O
0 0 1]

The transformation matrix for any sequence of rotations can be constructed
readily from the above basic formulas. For the case of Euler angles, which
rotate frame F} into Fp as defined in Sec. 4.3, the matrix corresponds
to the sequence (X, X,, X,) = (v, 0, ¢), giving

Lpp = Ly(¢) - Ly(6) - Ly(y) (4.5,3)
[The sequence of angles in (4.5,3) is opposite to that of the rotations, since

each transformation matrix premultiplies the vector arrived at in the previous
step.] The result of multiplying the three matrices is

cos 0 cos cos 0 sin y —sin 0
sin ¢ sin & cos y sin ¢ sin 0 sin y sin ¢ cos 0
Ly = —cos¢dsiny + cos ¢ cos (4.5,4)
cos ¢ sin 0 cos p cos ¢ sin § sin cos ¢ cos 0
+ sin P sin p — sin ¢ cos p

We shall also wish to make use of the matrix for transforming vectors
from the frame Fy, to Fp, and this corresponds to the sequence of rotations
(X5, Xy, X;) = (—8, o, 0) whence

Lgp = Ly(at,) * Ls(—f)
or
cos a,cos B —cos a, sin f —sin o,

Lpgyp = sin cos 8 0 (4.5,5)

sin o, cos f  —sin o, sin f  cos a,
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4.6 TRANSFORMAT[ON OF THE DERIVATIVE OF A
VECTOR

Consider a vector v that is being observed simultaneously from two
frames F, and F, that have relative rotation—say F, rotates with angular
velocity « relative to F,, which we may regard as fixed. The rotation does
not invalidate the argument of Sec. 4.4, so that

=1L,v 4.4,3)

ba"a

The derivatives of v, and v, are of course

kM &p
V= | Y, and vy = |9, 4.6,1)
vz 7”’2‘

where 9, = (d/dt)(ku), ete. It is important to note that v, and v, are not
simply two sets of components of the same veetor, but are actually two
different vectors.

Now because F, rotates relative to F,, the direction cosines [;; are changing
with time, and the derivative of (4.4,3) is

Vy = LoV, +- i‘bava (4.6,2)
or alternatively .
‘.Ta = Labv.b + Labvb

the second terms representing the effect of the rotation.

Since L must be independent of v, the matrix L,, can readily be identified
by considering the case when v, is constant, see Fig. 4.12. For then, from the
fundamental definitions of derivative and cross product, the derivative of v
as seen from F, is readily shown to be

dv

— =wx 4.6,3

y7 v (4.6,3)
The matrix equivalent of (4.6,3) is

v, = @,v, (4.6,4)
where

0 —w,, Wy,

®,=| o, —o,,
—y,, O 0



Reference frames and transformations 119

dv _
FEOXY

Fq

Fia. 4.12 Rotating vector of constant magnitude.

The corresponding result from (4.6,2) is
v, =L, (4.6,5)
It follows from equating (4.6,4) and (4.6,5) that
Labvb = @V,
(4.6,6)

or
Lyvy = ®,Lyv,

for all v;,. Whence .
Lab = G)aLab

and
Finally if the above argument be repeated with F, considered fixed, and F,
having angular velocity —w», we clearly arrive at the reciprocal result
(4.6,7)

Ly, = — &Ly,
From (4.6,6) and (4.6,7), recalling that & is skew-symmetric so that &T =
—@, the reader can readily derive the result
(4.6,8)

wa = Labwaba
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From (4.6,2), (4.6,6), and (4.6,7) we have the alternative relations

‘;b = Lba‘;a - (I)bvb
v, = L,v, + &, (4.6,9)

with two additional ‘permutations made possible by (4.6,8). A particular
form we shall finally want for application is that which uses the components
of v, transformed into F,, viz.

LV, = v, + &,v, (4.6,10)

4.7 TRANSFORMATION OF A MATRIX

Equaﬂion (4.6,8) is an example of the transformation of a matrix the
elements of which are dependent on the frame of reference. Generally the
matrix of interest A occurs in an equation of the form

v=Au (4.7,1)

where the elements of the (physical) vectors u and v and of the matrix A
are all dependent on the reference frame. We write (4.7,1) for each of the
two frames F, and F,, ie. '

v, = A, (@)

v, = A, )] (4.7,2)
and transform the second to

Ly, = Ay,
Premultiplying by L., we get

Vo = I‘abAbLbaua (47:3)

By comparison with (4.7,2a) we get the general result

A =L, AL 4.74
a ab - oba
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General equations of
unsteady motion

CHAPTER S

The basis for analysis, computation; or simulation of the unsteady motions
of flight vehicles is the mathematical model of the vehicle and of its sub-
sidiary systems, i.e. their general equations of motion. Although a useful
first step is to treat the vehicle as a single rigid body, and many important
results can be derived from this model, we cannot in general avoid facing
up to the reality of the situation, which is that vehicles are deformable and
contain articulated or rotating subsystems such as control surfaces and
engines. Furthermore the external forces and couples that act on aircraft
and spacecraft are in general complicated functions of shape and of motion.
This is especially true of the aerodynamic forces in atmospheric flight which
are known only approximately. The attention that must be devoted to
their representation dominates the formulation of the mathematical model.
The forces and couples provided by the space environment (gravitational,
magnetic, radiation pressure) are generally not so uncertain, and the problem
of deriving an adequate mathematical model is consequently less difficult
for spacecraft during extra-atmospheric operation.

In the following sections, we first treat the general motion of a particle
over the rotating Earth, then derive the dynamical and kinematical equations
for an arbitrary deformable vehicle in flight. Finally the equations for
small disturbance from steady flight are presented in both dimensional and
nondimensional form.

121
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5.1 VELOCITY AND ACCELERATION IN AN
ARBITRARILY MOVING FRAME

All of the reference frames with which we are concerned, except F; of
course, are in motion relative to inertial space. Fy, and Fg in particular
have quite arbitrary motion, including acceleration of the origin, and rotation.
Since in many applications, we want to express the position, inertial velocity,

2

xr

Fia. 5.1 Moving coordinate system.

and inertial acceleration of a particle in components parallel to the axes of
these moving frames, we need general theorems that allow for arbitrary
motion of the origin, and arbitrary angular velocity of the frame. These
theorems are presented below.

Let F,,(Oxyz) be any moving frame with origin at O and with angular
velocity w relative to F;. Let r = r, 4 r’ be the position vector of a point P
of F'), (see Fig. 5.1). Then the velocity and acceleration of P relative to F;
are

Vi=T1 (5.1,1)
a; =¥,

We want expressions for the velocity and acceleration of P in terms of the

components of ¥’ in ¥,,. Expanding the first of (5.1,1)
V=1, 41

Pt (5.1,2)

=V, + ry

where v, = ¥, is the velocity of O relative to F;. The velocity components in
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Fyr are given by
Var =L vy = Lyylv,, + i',z) =V, + LMli"I
From the rule for transforming derivatives (4.6,10)
Lyt = Fyr + @t (5.1,3)

whence

Var = Vo, + Ty + Oyt (5.1,4)
The first term of (5.1,4) is the velocity of O relative to F';, the second is
the velocity of P relative to F,,, and the last is the “transport velocity,”
ie. the velocity relative to F; of the point of F,, that is momentarily
coincident with P. The total velocity of P relative to F'; is the sum of these
three components. Following traditional practice in flight dynamics, we
denote

P X
o')M —3 q s r’l” = y (5.1,5)
r Z

(When necessary, subscripts are added to the components to identify
particular moving frames.)
The scalar expansion of (5.1,4) is then
V=9, +&+qz—ry
v, =0, +y+re—pz (5.1,6)
v, =9, + 2+ py—gqx
These expressions then give the components, parallel to the moving coordinate
axes, of the velocity of P relative to the inertial frame.
On differentiating v; and using (5.1,4) we find the components of inertial
acceleration parallel to the F;, axes to be

ay =Ly vy =V + &yvy
= Vou + Fag + ®ar¥' + Basay + gV, + Byt + B uty
= 8o, + For + GaFar + 200 + Bu®uty (8.1,7)
where a, =7V, + &V, = L;,v, isthe acceleration of O relative to F.
The total inertial acceleration of P is seen to be composed of the following
parts:
a,: the acceleration of the origin of the moving frame
i': the acceleration of P relative to the moving frame
ér': the “tangential” acceleration owing to rotational acceleration of
the frame F,,
“26r’: the Coriolis acceleration
®or': the centripetal acceleration
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Three of the five terms vanish when the frame F,; has no rotation, and only
#’ remains if it is inertial. Note that the Coriolis acceleration is perpendicular
tow and ©’, and the centripetal acceleration is directed along the perpen-
dicular from P to w. The scalar expansion of (5.1,7) gives the required inertial
acceleration components of P as

@y = @, + &+ 2¢2 — 2r§ — x(¢® -+ 7%) + y(pq — ) + 2(pr + §)
ay = @, + § + 2rd — 2pi + a(pq + ) — y(»* + %) + 2(gr — p) (5.1,8)
a,=a, + %+ 2py — 2q3 + x(pr — §) + ylgr + p) — =(p* + ¢%)

52 ANGULAR VELOCITIES OF THE SEVERAL REFERENCE
FRAMES

Since the formulae for velocity and acceleration given above involve the
angular velocity of the moving frame, we need convenient expressions for
the angular velocities of the frames we shall be using. These expressions are
developed below.

ANGULAR VELOCITY w? OF Fy AND Fpo

The motion of the Earth consists of a superposition of rotation on its axis,
precession and nutation of its axis, rotation in its orbit around the sun,
and additional motions of the solar system and the galaxy. Although any of
these may be significant for problems of space flight, only the first-mentioned
is likely to be of any importance for atmospheric flight, and even that one
is often negligible We shall assume therefore that the Earth’s axis is fixed
in inertial space, and that its motion is one of constant rotation at speed
w® on this axis. Its angular velocity vector is (see Figs. 4.2 and 5.2)

0 cos A cos A
wlo=0|; ofy= 0 |of; wf = 0 |of (5621
of —sin Ag —sin 4

where w” is the rate of rotation, one revolution per day, or 7.27 X 10-5 rad/
sec, Az is the latitude of O, and A is the latitude of 0.

ANGULAR VELOCITY " OF Fp

Let the origin of F;, be at (4, ) at time £, and let it, in time 8¢, undergo
infinitesimal displacement to (1 -~ 64, u 4 du). It can be carried from its
initial to its final positions by the two rotations (i)}—d4 around an axis
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Reference
meridian

Fic. 5.2 Geocentric polar coordinates.

through the Earth center parallel to Opy, and (i} du around Ogczgc-
Hence the angular displacement relative to Earth is given approximately
by the vector

o= —j, 64 + kg ou (5.2,2)

where j;» and ko are unit vectors on Opyy and Oy 2ge, respectively. The
angular velocity of Fy, relative to Fy, is then exactly

V — wf =lim on_ —jrh + Egopt (5.2,3)

st—0 OF

w

On taking components of (5.2,3) in Fy,, and using (5.2,1) we get
(0F + 1) cos A

W'y = —2 (5.2,4)
—(w® 4~ 1) sin A

The components of w” in Fy, or Fy, are, of course, obtained by premultiplying
(5.2,4) by Lypp or Ly, respectively.

ANGULAR VELOCITIES w", w OF Fyy, Fy

The orientation of the moving frames Fy, and Fj are given relative to F,
by the Euler angles v, 0, ¢ (Sec. 4.3). Subscript W denotes Fy, and no sub-
script denotes Fp. The result is derived below for Fp, that for Fp, being
similar.

With reference to Fig. 4.9, let 1, j, k be unit vectors of Fy, the subscripts
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V, 2, 3 denoting the directions of the axes shown in the figure. By an argu-
ment identical with that for (5.2,2) and (5.2,3) we have the relative velocity

w—w =ij+jf + k¢ (5.2,5)

By applying (4.5,2) (an exercise for the reader), the components of i, js,
and k, in Fp are found to be

1 0 —sin 6
i=|0 Ja= ] cos¢ k, = | cos Osin ¢ (5.2,6)
0 —sin ¢ cos 0 cos ¢
It follows that w — " is given by
P é — sin 0
(w—)=|Q|=10cosd + 9 cosfsin ¢ (5.2,7)

R 1 cos f cos ¢ — O sin

where capital letters denote the components of the relative angular velocity.
When " and w? are both negligible, then [P, @, R] = [p, g, r], the angular
velocity of Fg relative to F;. Equation (5.2,7) can be written as the matrix
product

P $
Q| =R|6 (@) (5.2,8)
R ¥ '
where
1 0 —sin 6
R=]0 cos¢ singcost _ ®)

0 —sing¢ cosdcosb
Inverting (5.2,8¢) we get the Euler angle rates as
) 1 sindtanf cos ¢ tan 0[P
6l=1]o cos ¢ —sin ¢ Q (5.2,9)
P 0 sin¢gsech cosdsectH]||R

Adding the subscript W in (5.2,8) and (5.2,9) to [P, @, R], ¢, 0, y] gives
the corresponding wind-axes equations, Note that these are transcendental
differential equations for the Euler angles, and as such have exact analytical
solutions only in special simple cases. Note also that the transformation
matrix R, unlike L, is not orthogonal.
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Equations (5.2,9) can be used to calculate the Euler angle rates from the
relative angular velocities (P, @, R). The latter can in turn be found from
the “absolute’ rates (p, ¢, r) by the first equality of (5.2,7), and (5.2,4), i.e.

P P (w? + ) cos 2
Q|=|q|—-Ly -1 (5.2,10)
R r ~—(wF + @) sin 2

with a similar equation for wind axes obtained by adding the subscript W
and substituting Ly, for Lg;.

THE DIRECTION COSINE RATES

When the direction cosines of the moving frame are used instead of the
Euler angles to define its orientation relative to F,, then the differential
equations needed follow directly from (4.6,7). Let Lp, = [I;;] (the same
treatment holds for Ly ;). Then from (4.6,7)

ln Z12 113 Y —R Q@ lu l12 l13
lz1 lzz lzs =—| R 0 —P l21 lzz lza (5.2,11)
Zal laz lss —Q P 0 l31 laz l 3

These constitute nine differential equations for the nine 1;;. Actually only
three of the nine are independent (a rigid body has only three rotational
degrees of freedom), and the additional six equations provided by (4.4,8)
reduce the number of independent I;; to three. In the force equations given
later, the direction cosines that would replace the Euler angle terms are
those for the angles between the moving axes of Fy, and zp,, ie. (with [
now denoting components of Ly,;,) U3, by, and l3;. The differential equations
for these are, from (5.2,11), '

lw = Rlza - Qlas
lza = —Rly3 + Plyy (5.2,11a)
lss = Qlls — P lza

and for some problems only these three direction cosines are needed. Whether
direction cosines or Euler angles are preferable in any particular application
depends on the situation, and on the kind of computing machinery to be used.
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THE AERODYNAMIC ANGLE RATES

We shall find it convenient later to have the angular velocity of Fp
relative to Fy, expressed in terms of the derivatives of the aerodynamic
angles.

Let j; and ky;, be unit vectors in the directions of Oy and Oz, vespectively.
Then it follows from the definitions of o, and 8 (Sec. 4.3) [and an argument
like that for (5.2,3)] that the angular velocity of Fy relative to Fp is

— N 4
W= W L))

= —kp B + b, (5.2,12)
Taking the components of (5.2,12) in Iy, we have (see also Sec. 4.2,5)

p Pw 0 0
Lygla| — [aw|=—[0(f + Lyp|1 |d
r T 1 0
or
Pw » 0
9w | =Lypla—a,| +{0]|p (5.2,13)
T r 1

After expansion, this gives the scalar equations

Py = P €08 &, €08 § + (¢ — &) sin § + rsin o, cos ()
gy = —P cos a, sin f + (¢ — &,) cos f — rsin o, sin B &) (5.2,14)
Ty = —p sin o, -+ 7 €0S &, + f (¢)

From the last two of (5.2,14) the values of ¢, and f are conveniently ex-
pressed in terms of the angular velocities of F and Fy;, as

by =¢ — gpsecf —peosa,tan f —rsino, tan f  (a)
B=ry + psina, — rcosoa, (b (5.2,15)

The group of three equations actually wanted subsequently is (5.2,14¢) and
(5.2,15). :
Since (5.2,12) may alternatively be written

W, = (w0 — ) — (" — W)

it follows that (5.2,13) through (5.2,15) apply equally when the angular
velocities of ' and Fy, are relative to Fy, instead of F;. Then the lower-case
(®, g, r) are replaced in them by (P, @, R).
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5.3 POSITION, VELOCITY, AND ACCELERATION OF
THE VEHICLE MASS CENTER

POSITION AND VELOCITY RELATIVE TO THE EARTH

The location of the vehicle mass center relative to Earth is given by the
spherical polar coordinates % (geocentric radius), u (longitude), and A
(latitude). Their rates of change are related to the F'j, components of velocity
relative to Barth by (see Fig. 5.2)

% =~VE,

. 1 z

h= A cos A " (63.1)
: 1

h=—VE,

The components of V% are in turn given by [see (4.2,1)]

VE, = Lyw(Vyy + Wy) = Lypp(Vg + Wp) (5.3,2)
where
7] (W,
V=0, W,=|w, (5.3.3)
| 0] W,
] W,
Vp=1|vl; Wy=|W,
[ | LW,

and V is the airspeed of the vehicle, i.e. its speed relative to the atmosphere.
When the atmosphere is at rest relative to Earth, W = 0 and (5.3,2), (5.3,3),
and (4.5,4) yield

VE:,,V = V cos Oy cos py

VE, =V cos Oy sin yyy (5.3.4)
VEZV = —V sin Oy

Substitution of (5.3,4) into (5.3,1) provides the polar coordinates in the
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more eonvenient forms
R =V sin Oy

b= 14 cos Oy sin pp; sec 4 (5.3,5)
R
;v
A = — cos Oy cos
% w COS Yy

Using the body-axis velocity components an alternative system of equations
is

iR )
pR cos | =Lyg| v (5.3,6)
~% w

When the motion considered takes place over only a small portion of the
Earth’s surface, the latter may be regarded as locally flat, and the vehicle
position is then more conveniently referenced to a frame Fg located in its
immediate vicinity—for example, at the initial point of the trajectory. In
this case Fy, may be assumed parallel to Fg, and the position coordinates
of the mass center (zg, ¥z, 25) are governed by the differential equations

2y = V cos Oy cos vy,
Jg = V cos Oy sin py, (6.3,7)
Z.E = —V sin OW

INERTIAL ACCELERATION

We have two particular requirements for the inertial acceleration of a
particle in a moving reference frame: one is for the Fy, or Fz components of
the acceleration of C or Oy, the vehicle mass center, and the other is for the
Fp components of the acceleration of a particle in arbitrary motion relative
to the vehicle. Other reference frames may be of interest for application to
special dynamics problems, or for the analysis of navigation and guidance
systems in which expressions are needed for the outputs of accelerometers
mounted on inertial platforms that are oriented in accordance to some
particular navigation scheme. The two applications first mentioned above
are developed here; and as a matter of interest, we give also the formulation
needed for a particular navigation application.

Acceleration of . The basic equation for the inertial acceleration of the
mass center is (5.1,7), in which the moving point is Oy, in the rotating frame
Fg. v’ is then the velocity of the mass center relative to Earth, which we
have denoted V¥, We assume here, as in Sec. 5.2, that the Earth’s axis is
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fixed in inertial space, and that @ = 0. Thus the acceleration a, of the origin
of F'5 is the centripetal acceleration associated with Earth rotation. A numeri-
cal comparison shows that this acceleration is usually negligible when com-
pared with g. It is zero at the poles, and of order 1/1000 g at the equator
(sea level). The same holds true for the centripetal acceleration &@r’ of
(5.1,7)—i.e. it is usually negligible. Of the two terms that remain in (5.1,7)
#’ = VZ and the Coriolis acceleration is 2&FVZ. The latter depends on the
magnitude and direction of the vehicle velocity, and is at most 109, g at
orbital speed. It can of course be larger at higher speeds. This term must
therefore be kept in the mathematical model, even though it is at times
negligible. Finally then, the approximation we use for the acceleration of C is

ag, = VP 1+ 287 V7, (5.3,8)

To transform (5.3,8) into the moving frame F;, we use (4.6,10) noting that
the angular velocity of Fy, relative to Fj is (0% — w®) to obtain

ac, = Ly gac, = Ly e(VEy + 287 ;VEp)
=VE, L (O — &%), VE,, + 2L, »0F ,VE, (5.3,9)
The last term is treated as follows:
Ly p®7 5V, = (Lpp®? glpy)(LypVy) = @75 Ve, (5.310)
whence )
ag, = VP + (B — &F),VE,, 1 267, VE,,
=VE, 4 (&% + &F),VE,, (5.3,11)

To obtain the scalar expansion of (5.3,11) we note that VEW is given by
[see (5.3,3)] -

V w.,
Ve =101+ |W,, (6.3,12)
0 W
"y is given by w
Pw
o =gy (5.3,13)
Tw
and [see (5.2,1)]
pEy cos A
ofy =¢8] =Ly 0 |of (5.3,14)
P —sin 4

where the notation p™, etc. identifies the components of w” in the frame Fy,.
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‘When the atmosphere is at rest, W = 0 and the components of (5.3,11) are
ag, = 4
ac, = Virfy + rp) (5.3,15)
e, = V(@ + aw)

[Note that w® and " are both angular velocities relative to inertial space,
and that the sum (rEW -+ 7yp) for example, is not the resultant yaw rate of
Fy, relative to Fj, as one might be tempted to infer from (5.3,15).]

For the frame F, the same procedure yields instead of (5.3,11)

ac, = V7 + (& + &")pV75 (5.3,16)

The scalar components of the vectors of (5.3,16) are

% W,
VE, = v | +|W, (5.3,17)
| w | w
D] »Eg cos A
wp=|q|, wp=|¢"|=Lyp| 0 [oF
|7 Py —sin 4

Again for a stationary atmosphere, (5.3,16) is expanded with the aid of
(5.3,17) to give
ag, =%+ (g + ¢Fp)w — (r + r¥p
ag, =+ (r + rEphu — (p + pEplw (5.3,18)
ag,=w =+ (p + pZplw — (g + ¢¥plu

Acceleration of a Particle in F. A particle having coordinates (z, y, 2)
in Fy has inertial acceleration components in the directions of the axes of
Fy given by (5.1,8), in which a, is the inertial acceleration of the origin of
Fgzand (p, g, r) are the components of w. Since the origin of Fy, is the vehicle
mass center then a, = a, and its components are those given above in
(56.3,18). The required equations are then obtained by substituting (5.3,18)
for a; in (5.1,8).

The Navigation Case. Trom the general relations already given, it is a
straightforward, although tedious, caleulation to derive the equations for the
acceleration components a, of a moving particle. This particular set of
components is that measured by an inertial navigation system in which
accelerometers are mounted on a stabilized platform that is “Schuler tuned”
to maintain one axis vertical, and is “torqued” to maintain one horizontal
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axis directed north. In the navigation application, the accelerations of interest
are very small, and are in effect integrated twice over long periods of time
to give position. Thus the small centripetal acceleration [the last term of
(5.1,7)] is not negligible, and the complete equation must be used. The
acceleration of the origin of Fj, (which may be taken to be the location of
the inertial platform in this application) is then [cf. (5.3,8)]

a, = VB, — (6F&Fk, RB) 5 1 267 VP (5.3,19)
where ki, is a unit vector on Uz, and the second term is the centripetal

acceleration previously neglected. After transforming to Fj,,i.e.a,y = Lypa,,
(5.3,19) gives

a, = VE, + (& — &7),VE, — (&Z&Pk, R), + 265, VE, (5.3,20)

o

®’; and wEV are given respectively by (5.2,4) and (5.2,1), and from (5.3,1)
74

VE, = | R cos A (5.3,21)
—R

The components of the unit vector ky, in Fj are of course [0, 0, 1]. After

substituting the above expressions into (5.3,20) and expanding the mat-
rices, the following system of equations in (&, 4, u) are obtained:

a,, = R} + 2HA + R sin A cos Mw® + i)®
a, = % cos i+ 2w+ ) (% cos L — Rl sin ) (5.3,22)
a, = —%+ RI*+ R cos® N + p)?

OzV
When accelerometers provide measurements of the Lhs. of (5.3,22), a
navigation computer can in principle solve the three equations for
the geocentric position (%, 4, u). For horizontal flight or when & can be ne-
glected, the result is simpler, i.e.

@,, = i+ A sin ] cos Yo® + g)*

o , (5.3,23)
@, = — 2 cos Aji — 2w + i) RA sin )

This is a pair of equations for the latitude and longitude of the vehicle.
To mechanize them for analog or digital computation, they would be more

conveniently rearranged as

1

v @, — sin 4 cos Haw® 4 1)

z bt
(5.3,24)

= % sec Aaoyy + 2(0® + p)i tan A
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5.4 EQUATIONS OF MOTION OF AN ARBITRARY
SYSTEM :

The equations of motion result from the application of Newton’s laws of
motion to the material system that constitutes the flight vehicle. Consider
2

Fic. 5.3 Application of Newton’s Law to an element of a body.

an element of mass dm, and an inertial frame of reference F; (se¢ Fig. 5.3).
(Since only one reference frame is used in the following argument, no identi-
fying subscript is appended to the vector symbols. The subseript I should
be understood.) Newton’s second law provides the equation of motion of
dm, i.e.

df =¥dm = vdm (5.4,1)

Here df is the resultant of all the forces acting on dm, r is its position vector,
and v its velocity. In this form, the equation is valid only in an inertial frame
of reference.

Taking the cross product of (5.4,1) with r yields the moment equation

rxdf=rx vdm (54,2)
Now let the angular momentum of dm w.r.t. O be defined as

dh' =r x vdm (5.4,3)
It follows that

%(dh’):('xxv—i—rx%)dm

=(vxvi+rxvidm
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Since vx v =0,

-‘Z(dh') =rxvdm
dt

which is the r.hs. of (5.4,2). We therefore have

¢’ =2 aw (5.4,4)
dt
where
dG’ =r x df (5.4,5)
is the moment of df about 0.
We now integrate (5.4,1) and (5.4,4) for a system of particles comprising a
general deformable body of mass m. First we note that the mass center C of

the body is located at r,, given by

mrgy :J.r dm (5.4,6)
Differentiating once yields '

mvg =fi' dm (54,7)
and a second time

mag = fif dm (5.4,8)

where v and ag are respectively the velocity and acceleration of the mass
center relative to F;. The integral of (5.4,1) is obtained from (5.4,8) as

f = ma, (5.4,9)

where f = [ df is the vector sum of all the forces acting on all the elements.
Since the internal forces, those which one element of the system exerts upon
another, occur in equal and opposite pairs by Newton’s third law of motion,
they vanish from f df: f is then the resultant external force acting on the

system m. Similarly, the integral over m of (5.4,4) is simply,
G = 4 h’ (5.4,9b)
dt

where G’ = { r x df is the resultant external moment about 0, and
h = f rx vdm (5.4,10)

is the resultant angular momentum about 0. Let
r=rys+ R (54,11a)
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as shown on Fig. 5.3. Note that from (5.4,6)

fR dm =0 (5.4,1156)
Then we may expand (5.4,9b) as follows:
f(ro +R) x df = d%f(ro +R)x vdm
Since r is constant, it can come outside the integrals, to give
re X f+fR x df =rg xf\'rdm—k(%fli x vdm

From (5.4,8) and (5.4,9) the leading terms on the Lh.s. and r.h.s. are seen to
be equal, so the equation reduces to

G=h (a) (5.4,12)

where
G sz x df ()

and
h =fR x vdm (c)

are, respectively, the moment and angular momentum about C. Note that
(5.4,9b) has the same simple form as (5.4,12) even though the former is
referenced to a fixed point in inertial space, and the latter to a moving
point, the mass center. This simple form does not hold, for arbitrary motion
of the systems, for any moving reference point except the mass center.

Equations (5.4,9) and (5.4,12) are the two fundamental vector equations,
equivalent to six scalar equations, that relate the ‘“‘gross” motion of the body
to the external forces that act on it. The description of the “fine”” motion
(distortion and articulation) requires additional equations that are given
subsequently.

THE ANGULAR MOMENTUM

With components in F;, the angular momentum of the general deformable
body is from (5.4,12¢), on converting to matrix notation,

h, =fl~{IvI dm

=JRIR, dm (5.4,13)
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It is not convenient, as will be seen later, to have the angular momentum
components referred to fixed axes. In fact we want its components along
the axes Fp, attached to the moving vehicle. From (4.6,10)

R; = LRy + &5R;5) (5.4,14)

whence (5.4,13) gives the components of h in Fy as

hB = LBIhI =fLBIﬁ1LIBRB dm +JLBIﬁILIB&BRB dm

Now the matrixR transforms according to the rule (4.7,4), so that LR Ly, =
Ry and we get for hy

hy = f RpRydm + f RpiopR, dm (5.4,15)

When the body is rigid, RB = 0, and the first term vanishes. [Note that

jRB dm vanishes in any case because the origin is the mass center, see
(5.4,115).] The second term of (5.4,15) is therefore identified as the *“rigid-body
component’’ of h, and the first term as the “deformation component.” To

evaluate the second term, we note that @R = —Rew (Since o X R = —R x w)
and hence
f}iB.:,BRB dm = — f RpRpw, dm (5.4,16)

Since &, is constant with respect to the integration, we may write

— f RBzRpwyp dm = Fup (5.4,17)
where

Ip= —fﬁBﬁB dm (5.4,18a)

(note the identity RR — RTRI — RRY). After expansion of (5.4,182) and
integration we get

I, —I, —I, A —F —
Fp=|—-1,, I, —I,|=|—-F B —D| (54,18
—I, —I, I, —E -D ¢

The two notations for the elements of & given in (5.4,18b) are both traditional
and in current use in flight dynamics literature. These elements are the
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moments and products of inertia, i.e.
I,=4 :J‘(y2 + 2% dm, ete.

I, ,=F zfxy dm, ete. (5.4,19)

Note that the inertia matrix transforms according to (4.7,4), so that for two
reference frames Fp and Fp we have

Ip,=LgpFpLpp (5.4,20a)

For any 5 , there always exists a transformation Ly 5 that produces a
diagonal matrix Fp (see ref. 5.1). Fy is then a set of principal axes, for
which the products of inertia all vanish. When the vehicle has a plane of
symmetry, then the x and z principal axes lie in it. If the body axes Fy are
obtained from the principal axes by a rotation ¢ about Cy, the elements of
F p are found from (5.4,20a) to be

— 2 in2
I,=1, cosfe+ I, sin¢

1,=1,

I,=1I, sin®c I, cos?e (5.4,200)
I,= 31, —I,)sin2e
I,=1,=0

where the subscript » denotes principal axes.
Let us denote the deformation component of h by

hj =ff¢BRB dm (5.4,21)

so that (5.4,15) gives the total angular momentum

hy = hy + Fpwp (5.4,22)
From (5.4,21) we can evaluate h} as
_f(yé — yz) dm_
hy = f (28 — 2x) dm (5.4,23)
f(xy — a&y) dm
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ROTATING SUBSYSTEM

When the relative motion in question (i.e. of the system w.r.t. Fj) is that
of a rigid rotating subsystem (such as an engine rotor or propeller in an air-
craft or an inertia wheel in a spacecraft) with angular velocity «w” relative
to the main body, then we have, over the spinning component,

— AT r
Ry =@pR"g

where R7; is the position vector of a mass element relative to an origin
anywhere on the axis of rotation. Ordinarily the mass center of the spinning
body lies on its axis, and this is the natural choice of origin for R”. In that
case it is easily shown (an exercise for the reader) that the contribution of
the rotor to h*, denoted h”, is

h'p = Iy (5.4,24)

where ST is the inertia matrix of the rotor with respect to centroidal axes
parallel to those of Fg. If moreover the spin axis is a principal axis of inertia
of the rotor the vector b” is collinear with ", and has magnitude I"w” where
I" is the moment of inertia of the rotor about the spin axis. Naturally,
there is one term like (5.4,24) for each rotor.

THE REMAINDER OF h*

The remainder of h* ordinarily comes from the motion of hinged parts
and from elastic deformation, although there are other kinds of possible
relative motion, such as fuel sloshing which is important in liquid-fueled
rockets (ref. 5.14). This total remainder is denoted by h®. We now show that
it is possible always to choose a set of body-axes Fp for which h® vanishes.
These are termed ‘“mean axes’” by Milne (ref. 5.2).

Consider two centroidal reference frames Fp and Fp, for which the angular
momenta are

hp, =f RpRp, dm + S5 w5+ ', (@)
i (5.4,25)
th :fﬁBzRBz dm + sz(w + Aw)Bz + z hriBz (b)

Here the summations are the contributions of spinning rotors, R in the inte-
grals represents the residual relative motion, and Aw is the angular velocity
of Fg, relative to Fpg . The first term of (5.4,25b) can be transformed as
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follows:
hp, = f ﬁ32R32 dm = f (LBzBIfEBlLBle){LB2BI(RBI + Adp Ry )} dm

- LBZBI{ f Ry Ry dm + f Rp Ad Ry, dm}

Applying (5.4,17) to the last term, we get

hep = Lml:fﬁmf‘ﬂl dm + Fp, AcoBl} (5.4,26)

It follows that the angular momentum h?y, of the distortional relative motion
vanishes in Fp_ if

fﬁBlkBl dm + I Awp =0
or if

Awp, = _jg}fﬁBIRBl dm (5.4,27)

Equation (5.4,27) provides the condition that the axis system Fp must
satisfy if the angular momentum hy referred to it is to have the form

hy =Fpwp + S hip (5.4,28)

This condition will be met when Fy, has the orientation required by Ly 5 (f)
that satisfies the differential equation [see (4.6,6)]

Lpp, = AdpLg 5, (5.4,29)

It is not necessary actually to solve (5.4,27 and 29) for Ly p, in order to
make use of mean axes. Our concern here is simply to establish their ex-
istence. We note that when the body axes are mean axes, the following
relations must hold for the distortional motion. Since the origin is the mass

center,
Ja’c’ dm =fg]’ dm =fz" dm =0 (@)

and from (5.4,23) (5.4,30)

f(yz” — y'z)dm =f(zab’ — g'z)ydm :f(xy" —dy)dm =0 (b)

in which the prime denotes the distortional component of the velocity
relative to Fy. The use of mean axes, and the consequent elimination of
distortional contributions to h* has the effect of eliminating the main inertial
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coupling between the distortional degrees of freedom and those of the rigid
body. Some coupling still remains through £ however, see (5.6,7).

5.5 FORCE EQUATIONS IN WIND AXES

The force equation of motion is (5.4,9). In wind axes it becomes
fy = mag,

with ap, given by (5.3,11). For the particular case of a stationary atmosphere
(5.3,15) gives the acceleration components, so that the scalar equations of
motion are

wa =mV
Juy = mV (P + ryp) (6.5,1)
fo = —mV (@5 + a3)

Although all the terms of (5.5,1) may be needed for applications to
hypervelocity flight, there are numerous exceptions in which the Earth
rotation can be neglected. The result is then much simpler, viz.

sz = mV
vy = MVry (5.5,2)
oy _quW

Not only is (5.5,2) simpler in form than (5.5,1), but the angular velocities
rw and gy that appear in it are those of Fy, relative to Earth and not to
inertial space, and are themselves correspondingly simpler.

THE FORCE VECTOR

The force vector for atmospheric flight consists of two parts, the aero-
dynamic reaction (including propulsive force) A, and the weight mg, i.e.

f=A 4 mg (5.5,3)
In the wind-axis system F,, the components of A are given by
Xy
Ap =Ty (5.5,4)
Zy
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It is convenient further to subdivide A into the ‘‘configuration aero-
dynamics’’ and the propulsive force thus

D T,
Ap=—|C|+|T,, (6.5,5)
L T,

Where D is drag, C is side force, and L is lift. The directions of D, C, L
relative to the vehicle are illustrated in Figs. 4.4 to 4.6. The separation
of the thrust from the other forces is to some extent always arbitrary, but
is nevertheless useful. Any of the components of T may be large when we
consider the flight of rockets or of V/STOL aircraft, although in the cruising
flight of airplanes only T, is usually significant. Finally the gravity force
is given by

0
gr=1|0
g
and
mEy = MLy p By (5.5,6)
In terms of the wind-axes Euler anglest this becomes, from (4.5,4)
—sin GW
mgy = myg| cos By, sin ¢y, (8.5,7)

cos Oy cos ¢y

so that the expanded set of scalar equations is
T,, — D — mgsin 6y = mV (@)
T,, — C + mg cos O sin ¢y = mV (o + 1) (b) (5.58)
T,, — L + mg cos Oy cos ¢y = —mV(g®p + aw) (¢)
The terms rEW and qEW will vanish when Earth rotation is negligible.
The above equations are most conveniently regarded as having the primary
dependent variables V, 7, ¢ However they are not complete in the sense
that the aerodynamic and thrust forces contained in them are functions
not only of the above three variables, but also of py,, and of the aerodynamic
angles « and f (see Sec. 4.3). The moment equations and some additional

kinematic relations must be used to complete the mathematical system;
these are presented in the following sections. Little use has been found for

1 The elements of I‘WV’ i.e. the direction cosines of FW, can be used as the orientation
unknowns instead of the Euler angles, see Sec. 5.2,
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the moment equations in the Fp, frame, and these are given below only
for Fp,.

5.6 FORCE AND MOMENT EQUATIONS IN BODY AXES
(EULER’S EQUATIONS)

The force equation of motion in Fy is [see (5.4,9)]
fB = maOB

with ag_ given by (5.3,16). Again particularizing, as in Sec. 5.5, to the case
of a stationary atmosphere, (5.3,18) give the required components of acceler-
ation. With the aerodynamic force in body axes denoted by

X
Ap=|Y (5.6,1)

in accordance with traditional usage, and treating gravity as in Sec. 5.5,
the scalar equations become

X — mgsin 0 = mla + (g% + gw — (% + )]
Y -+ mg cos 0 sin ¢ = m[ + (B + ryu — (pFp + P)w] (5.6,2)
Z + mg cos 0 cos ¢ = mlw + (pTg + v — (¢%5 + Q)u)

Again, when the Earth rotation can be neglected entirely, (p% 5, ¢% 5, % 5)
vanish.
The moment equation in frame F; is (5.4,12), i.e.

G, =h,; ; (5.6,3)
or in body axes,
Gp = Ly, G, =hy, + &ghy, (5.6,4)
The conventional notation for G5 and hy is
L h,
Gp=|M]|, hyp=|h (5.6,5)
N h

[despite the fact that L is also used for lift (5.5,5)]. In atmospheric flight G
normally comes from aerodynamie, propulsive, and control forces; in space
flight however, magnetic forces, solar radiation pressure, and gravitational
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torques may all contribute importantly to it. The scalar expansion of (5.6,4) is
L=h,+ qh, —rh,
M = h, + rh, — ph, (5.6,6)
N =h, + ph, — gh,

When mean axes are used, (5.4,28) gives hp, and in that case (5.6,4) can
be expressed as

Gp = Spwp + Ipiop + &pFpwop + z brig + z @php  (8.6,7)

Note that in (5.6,7) the rotation of the Earth does not appear explicitly,
even though no assumption has been made concerning it. It does however
occur implicitly in w, which is the angular velocity of Fy relative to inertial
space. The matrix expansion of (5.6,7) is

L Ia: _Iwy _jzw p I:c _Img ’—Izz 10
M) = '—'Im/ jy _qu q|+1—1I,, 1, 1K
N _"Izw '—I.yz Iz r '_Iza: _Iyz Iz 7

[0 —r g ][ I, I, —IL.|[p > b

+ 7 0 —p —'Ia:y Iy —Iyz q + z 711_,7"
i

—q P 0 _Iza: _I:llz Iz r z hzrt
[0 —r ¢ Fz b
+| 7 0 —p|2Zh" (5.6,8)

4

—¢ p O 2k

Lg .

Owing to its length, there is little advantage in presenting the full scalar
expansion of the complete equation (5.6,8). For the restricted case in which
is negligible, and there are no rotor terms, that is, for a rigid body, it is

L = pr - Iyz(q2 - 7«2) - z:c(i‘ + pQ) - Ia:y(q — Tp) - (Iy - Iz)qr
M= yq. - Iza:(rz - ./pz) - a:y(p + qT) - Iwz(f - pq} - (Iz - Ia:)rp (56:9)
N = Izi‘ - Izy(pz - qz) - Iyz(q. _i_ Tp) - Iza:(j) — qf) - (Ia: - Iq/).pq

It is usually the case for flight vehicles that Cxz is a plane of symmetry.
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In that case I, = I,, = 0, and (5.6,9) simplify to
L=1p — L0t + pg) — (I, — L)gr
M =14 — L —p*) — (I, — L) (5.6,10)
N =Li—L,®—¢q) — L, — 1)pq
Finally, when the axes are principal, I, as well vanishes, and we obtain the
simplest form of the moment equations
L=Lp—(,—1L)yr
M=Ig—I,—1)p (5.6,11)
N=1ILi—I,— I,)pq

5.7 DISCUSSION OF THE SYSTEM OF EQUATIONS

We have presented in the preceding sections a large number of complicated
coupled equations that describe the kinematics and dynamies of a vehicle
in flight over a spherical rotating Earth. (The student may be forgiven if
he is slightly bewildered by them at this point!) Qur purpose here is to
evaluate these equations, show the relationships between them, and present
the essential structure of the system.

Much of the complexity has resulted from the inclusion of the rotation
of the earth (the w® terms) and its curvature (the w” terms) in the mathe-
matical model. We have already shown (Sec. 5.3) that the centripetal
acceleration associated with «? is usually negligible, and that the Coriolis
acceleration is small but not quite negligible. To gain further insight into
the ¥ and w" terms we look at the z component of the force equation for
horizontal flight on the equator. Thus with 0, = ¢, = 0, (5.5,8¢) gives

With = 90° for eastward flight and 1 = 0, (5.3,14) and (4.5,4) yield
Y =]
&y = —of (5.7,2)

Since the Kuler angles are constants, then from (5.2,8) Py, = @y = Ry = 0,
and from (5.2,10)

O = — (0¥ + p) (6.7,3)
From (5.3,5), g = V|2, so that finally (5.7,1) becomes

—L+T, + mg= mV(ZwE + %)

2
= 2mVof + % (5.7,4)
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The first term on the r.h.s. is the Coriolis force due to Earth rotation, and
when V equals orbital speed (about 26,000 fps) amounts to about % mg.
The second term is due to Earth curvature (in the “flat’”” Earth approxi-
mation # = oo and this term vanishes), and at orbital speed makes up the
balance, about 90 %, of mg. [Note that V is speed relative to Fy, not relative
to F;, and that the exact form of (5.7,4) would have the additional small
term +mZAwE® on the r.h.s.] Both terms on the r.h.s. of (5.7,4) increase
with speed, the first linearly, the second quadratically, and each amounts to
19 of the weight when the speed is about & of orbital speed, ie. about
2600 fps for atmospherie flight. This speed therefore seems a useful boundary
below which both w” and w” can be neglected, and above which they should
be included for accurate results. It corresponds to a Mach number of about
21 to 3, depending on altitude, so that at low supersonic speeds, as for first
generation supersonic transports, these terms are just marginally small—
perhaps not quite negligible for range calculations. For all high supersonic
speeds and hypersonic speeds they would be of increasing importance.

The preceding argument, being based on the force equation of motion,
has validity only for trajectory calculations, i.e. for calculations of the flight
path. When the problem of interest concerns attitude dynamics, i.e. the
relatively rapid rotational motions of the vehicle relative to I}, the situation
is quite different. For then w” and «w? can be important only if they are
appreciable compared to w (greater than 1% say). Now o® ~ 7 x 10-3
rad/sec is extremely small compared to most technically important vehicle
rotations, and w” has a maximum value at orbital speed of about 10-3
rad/sec which is also negligible in this context. Hence both w® and w?
terms are normally negligible insofar as the moment equations are con-
cerned.

Two alternatives have been presented for the dynamical force equations:
in wind axes and body axes. Both are used in current practice, and there
are no overriding advantages for either system. The wind-axes form is gener-
ally more convenient for trajectory analysis, in which the attitude of the
vehicle is prescribed a priori, and the moment equations are not used at all.
For combined trajectory and attitude motions, either a “mixed” form of the
equations, or the body-axes form, is normally employed. In hovering flight,
when V = 0, and the angles « and 8 are not defined, the body-axes form is
virtually mandatory. It is convenient to use a particular mixed form of the
force equations for the analysis of small perturbations from a steady reference
state (see Sec. 5.10).

On the other hand, there is only one reasonable choice for the moment
equations. Only in Fp is & constant for a rigid body. To use any other
reference frame adds unnecessary complication.
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Little has been said in the foregoing sections about the aerodynamic
forces and moments that appear in the equations (D, C, L, and T') in (5.5,8),
(X, 7, Z) in (5.6,2), and (L, M, N) in (5.6,8). These depend on the local
ambient density, the motion of the vehicle relative to the atmosphere, and
on nonautonomous control inputs. Thus for a rigid vehicle, they are functions
(more exactly, functionals, see Sec. 5.10) of p(Z) the density, of (V, «,, f),
or (u, v, w), of (p,q,r),T and of a set of control variables. There are other
ways, besides its appearance in p, in which the altitude (i.e. %), can occur asa
nontrivial independent variable in the equations. One is when there is a wind
gradient with height, e.g. W_(£), and another is when the vehicle flies close
to the ground, so that there is a “ground effect’” on the aerodynamic field
of the vehicle. In the latter case the aerodynamic forces can be very strong
functions of height. A third case is when the gravitational inverse square
law is included, ie. g = g(#). For near-orbital velocities at very high
altitudes, it has been shown (ref. 5.4) that this refinement is necessary.

The structure of the mathematical system for a rigid vehicle (# = 0) in
the more general high-speed case, and the interrelations among the variables,
is displayed in Figs. 5.4 and 5.5. Each set of scalar equations is regarded as a
subsystem that produces three dependent variables as outputs. The inputs are
the quantities needed to calculate the outputs from the given equations.
All the quantities shown immediately to the right of the square blocks can
be found by algebraic solution of the equations. The aerodynamic terms in
the force and moment equations have all been replaced by the state variables
of which they are functions, and control forces and moments. On checking,
the reader will find that all the autonomous variables needed as inputs on
the left-hand side are available as outputs on the right-hand side.

To recapitulate, the mathematical models described by Figs. 5.4 and 5.5
are subject only to the following assumptions

(i) The Earth is a sphere rotating on an axis fixed in inertial space, and
g is a radial vector.
(ii) The centripetal acceleration associated with Earth rotation is neglected.
(iif) The atmosphere is at rest relative to the Earth.
(iv) The vehicle is a rigid body.

None of these restrictions is made from any fundamental necessity, and any
of them may be removed when the application requires it, at the cost of
additional complexity.

+ Actually the angular velocity of the vehicle relative to the atmosphere is w — w¥,
and it is the components of this vector, not (p, g, ), that strictly speaking should be
used in the calculation of aerodynamic forces and moments. However w¥ is so small that
in the majority of applications no significant error is incurred by neglecting it.
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Fie. 5.4 Block diagram of equations for rigid vehicle. Spherical rotating earth.

Combined wind and body axes.

5.8 THE FLAT-EARTH APPROXIMATION

We have shown above that a wide and important range of flight dynamics
problems, corresponding roughly to M << 3, can be treated adequately with
a significantly simpler mathematical model than that given in Figs. 5.4 and
5.5—that is, by neglecting w” and w” or alternatively by treating the Earth
as a stationary plane in inertial space. The reduced equations obtained by
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F16. 5.5 Block diagram of equations for rigid vehicle. Spherical rotating earth. Body

axis system.

neglecting all w? and " terms in the more general ones are collected below
for a rigid vehicle having a plane of symmetry.

T,, — D — mg sin by =mV (@)
T,, — C + mg cos Oy sin ¢y = mVry, (d) (5.81)
T,, — L + mg cos Oy cos dr = —mVay,  (c)
X — mg sin 0 = m(% 4 qw — rv) {@)
Y + mg cos 0 sin ¢ = m(d + ru — pw) ) (5.8,2)
Z 4- mg cos O cos p = m(w + pv — qu)  (c)
L=1p— L, +pq)— (L, —L)gr (a)
M=1g—I,0*—p*)— I, —Lyp (B (5.8,3)
N=Ii—L,0p—q)— L, —Lps (o
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b = Py + SNy tan Oy + 7y, coOS by tan Oy
Oy = g oS gy — 1y sin s
Y = (@ SiD gy + 1y €08 Pyy) s€C O
(Without subscript W, (5.8,4) apply to body axes.)
0, =q — gy sec f — p cos o, tan § — rsin o, tan B
B=ry + psina, — rcos a,
Py =P cos o, cos B+ (g9 — &,) sin § 4 rsin o, cos §
g = V cos Oy cos yy, (a)
g = V cos Oy sin gy, ®

2y = —V sin Oy (¢)
Ly u
Y| =Lyg| v
g w

(2)
@) (5.84)
(¢)
(@)
(b) (5.8,5)
(¢)
(5.8,6)
(5.8,7)

Following traditional usage, L is used above as a symbol for both lift
force and rolling moment. The context usually makes it quite clear which

b S Force Eq. v { 4
2g, v, ay, § —> in F -
pgr—> INEy > Iy
Control forces —> &1 [ a0
2 Vo @ B Moment Eq. ‘.’ (> p
PGt —>  inFp = q .___-[D— q
Control moments ——->- (583 L > 7 [D r

By Gy Ty >

}

Kinematics o
(53, 4) — fw >— by

GW’ ¢W

> Yy — 1D
Pys Ty ——> ] C.{x _D>— Oy
Kinematics .
P, q, 7T — 8,5 [ g —{D——2=8
&x, Ay B — — pw
v —> L iy — > %

Kinematics :
b Vv =1 " 586y [ O %

F1e. 5.6 Block diagram of equations for rigid vehicle with plane of symmetry.

Combined wind and body axes. Flat-Earth approximation.
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F1a. 5.7 Block diagram of equations for vehicle with plane of symmetry. Body axes.
Flat-Earth approximation.

is meant, and even the novice seldom has difficulty with this ambiguity.
In the nondimensional form of the equations, the ambiguity disappears,
different symbols being used for the two quantities.

The block diagrams for the above equations are given in Figs. 5.6 and 5.7
for the combined and body-axes systems, respectively. Since in the case of
body axes there are no kinematical relations needed to connect the two axis
systems, the number of equations is twelve instead of 15. However the force
equations (5.8,2) and the position equations (5.8,7) are then more complex
than (5.8,1) and (5.8,6) which they replace, so the advantage resulting from
the reduction of size is offset by greater complexity in the remaining members.
The state variables of Figs. 5.6 and 5.7 are conveniently grouped for identi-
fication as follows:

(u, v, w) or (V, o, B) give translation of vehicle relative to Earth.

(p,q,7) give rotation of vehicle relative to Earth.

(Tg Yg> 25) give position of vehicle relative to Earth axes.

(¢, 0, v) give angular orientation of vehicle relative to F,.

(Pw Oprs i) give orientation of wind axes. 0y =y is the
angle of climb, and yy, is the heading of flight
path.

(Pw Qs ") give angular velocity of the wind axes.
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5.9 STEADY STATES

It is of interest to deduce from the preceding general equations what
“equilibrium points’” exist for a flight vehicle. Neglecting motion of the
Earth center, a true state of rest in inertial space occurs only when the vehicle
travels due west at a rate exactly equal to that of the local eastward motion
of the Earth. This is too restricted a case to be useful. Equilibrium in a more
general dynamical sense corresponds to equilibrium of all the external
forces, i.e. a state of zero acceleration, or rectilinear motion. On a round
Earth, this kind of equilibrium is also not useful, since the flight path would
then either intersect the Earth, or go off into space. The useful definition
is that of an ‘“aerodynamic steady state,”” in which the motion, the aero-
dynamic field, and gravity are all constant in the frame Fg. Thus the aero-
dynamic pressure distribution and the gravity components are constant with
time. Such a state requires, first, that (u, v, w) or (V, «,, f) and the rates of
rotation (0 — w”)g of Fy relative to the atmosphere or to F 'z be constants.
Second, the Euler angles 6, ¢ that affect the gravity components must be
constant. Constancy of aerodynamic forces at constant (V, a,, f) also re-
quires constant air density, i.e. constant altitude flight. Thus 05 = 0. Now
consider the force equation (5.6,2). By postulate, the derivative terms are
zero, and the left-hand side is constant. It follows that these equations can
be solved for the constant values of

PEB +
(0F +w)p=|¢%; +4¢

E
g+ 7

Since the sum and difference (line 14 above) of w®; and wy are constants,
then they must be separately constant. Since (e, §) and (p, ¢, r) are constants,
then from (5.2,13), (py-, g, ) are also constant, and transforming the
constant w” into Fy leads to a constant w®y;,. Now the components of
w? can be constant in Fyyandfor Fp, with the constraint of constant altitude,
only if the motion of the frame is a rigid-body rotation around the Earth’s
axis. Thus the path of the vehicle mass center must be a circle around the axis,
t.e. it must be a menor circle of the Earth, lying on a parallel of latitude. Analyti-
cally this means that A = const, and v = 4-x/2. The conditions for this
most general steady state may then be summarized as follows, taking the
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option gy = 7[2 (eastward flight):

Py = w2 A = const
O =0 A = const (6.9,1)
¢y = const f=V|Zsech
u P
o, | = const, v | = const, q| = const (6.9,2)
) w r
From (5.2,8)
Py
Q=0 (5.9,3)
Ry,
From (5.2,10) _ ~
Pw 0 T
qw | = —|eos (A — by} |[(@® + 1) (5.9.4)
rw | sin (A — dp)
From (5.3,14)
it d i 0 i
9w | = —|eos (A — dp) |0® (5.9,5)
7B | sin (1 — ¢p) ]
The wind-axis force equations (5.5,8) then reduce to
T,— D=0

T,, — C + mgsin ¢y = —mV sin (A — ¢p) 207 + p)  (5.9,6)
T,, — L+ mg cos ¢y = mV cos (1 — ¢} (207 + 1)
The reduced moment equations for this case are of little interest, since they
contain only second-degree terms in (p, 9, #), and the latter are clearly of
order (o + 1), which is at most about 10~ rad/sec for suborbital flight.
They therefore reduce to L = M == N = ¢.

To be exact, even this restricted steady state cannot exist, for the following
reasons:

(i) All real vehicles in horizontal flight have propulsion systems that
utilize fuel, so m is never strictly constant.
(ii) The Earth is not a perfect sphere, so that flight at constant altitude
(i.e. air density) is not strictly flight on a circle.
(iii) The atmospheric density is never exactly constant and the wind never
exactly zero at a given height.
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These deviations from the idealized steady state are, of course, not im-
portant enough to invalidate its usefulness.

If the Earth rotation w” can be neglected, then clearly no one minor circle
is preferable to any other, and the steady state can be on any minor circle
over the Earth. In the flat-Earth approximation, the minor circle becomes
any circle parallel to the ground surface. If in addition the variation of p
with height can be neglected, as for a shallow climb or glide, the most general
steady state becomes a vertical helix, i.e. a climbing or gliding turn.

5.10 THE SMALL-DISTURBANCE THEORY

A particular form of the system equations that has been used with enor-
mous success ever since the beginnings of this subject is the linearized model
for small disturbances about a reference condition of steady rectilinear flight
over a flat Earth. This theory yields much valuable information and many
important insights with relatively little effort. It gives correct enough
results for engineering purposes over a surprisingly wide range of appli-
cations, including stability and control response. There are, of course,
limitations. It is not suitable for spinning, post-stall gyrations, nor any other
application in which large variations occur in the state variables.

The reasons for the relative suceess of this approach are twofold: (i) in
many cases the major aerodynamic effects are truly nearly linear functions
of the state variables, and (ii) disturbed flight of considerable violence can
correspond to relatively small values of the linear- and angular-velocity
disturbances.

CHOICE OF AXES

A convenient choice for the axes in the small-disturbance model is to use
wind axes for the lift-force and drag-force equations (5.8,1a and ¢), and
body axes for the remaining force and moment equations (5.8,26 and 5.8,3).
For vehicles having a plane of symmetry two sets of uncoupled equations
are found, the longitudinal and the lateral. Since the pitching moment
equation turns out to be the same in both axis systems, the longitudinal
equations are then in wind axes, and the lateral in body axes.

NOTATION FOR SMALL DISTURBANCES

The reference steady state is taken to be symmetric rectilinear flight,
although the more general case can readily be handled by the same approach
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(ref. 5.3). The steady-state values are denoted by subscript e (for equilibrium)
and changes from them by the prefix A. Thus for example

V=V,+ AV
$=¢,+ A
p=p,+0p (5.10,1)
L=L,+ AL
ete.

Since the steady state selected is wings-level translation, we can have at
most the following nonzero reference values of the state variables:

V,, o, 0, (5.10,2)
o % U s Y,

All other motion and angle variables are zero in the reference state and for
these the prefix A is not needed. f;; as well will be zero if the reference
state is horizontal flight, as it must be when we include the variation of air
density with height. However, we keep 0y, as nonzero in order to include
the case of constant density within the analysis. 0y, the angle of climb, is
replaced with the more common symbol y.

FURTHER ASSUMPTIONS

In the classical linear equations, m and ¢ are constants, the vehicle is
assumed to have a plane of symmetry, and the momenta of spinning rotors
is excluded. The latter assumption is easily relaxed when rotor terms are
important. As a particular choice for body axes we select Fg, the stability
azxes, for which «, = w, = 0 (see Sec. 4.2.7). Since the initial heading has
no special significance in the flat- Earth approximation, we also set yy, = 0.

Instead of a,, the angle of attack of the x4 axis, we choose for the angle of
attack variable that of the zero lift line (see Sec. 6.1). It is denoted simply
o, and of course is not zero in the reference state. o and o, differ only by a
constant in any particular case.

In treating the thrust terms of (5.8,1) we wish to make allowance for
rather general conditions, such as can occur in VTOL and STOL flight,
when the thrust vector may be at large angles to the direction of motion.
We therefore assume conditions as illustrated in Fig. 5.8. We further assume
that the thrust vector rotates rigidly with the vehicle when it is perturbed.
This implies that any rotation of the thrust relative to the vehicle is to be
accounted for by adding suitable increments to L, D, and Y.
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F1e. 5.8 Thrust vector at large angle to V.

In the perturbed state, the thrust vector in body axes is

cOS &y
Tp = (T, + AT)| 0

—sin oz
and in the wind axes is
Ty = Ly pTp
On making use of (4.5,5) (with o, = A« therein) and linearizing, the result
is

T,, = (T, + AT)cos ap — AaT, sin ap (@)
T,,= —8T, cosap %) (5.10,3)

T, =—(T,+ AT)sinap — AT, cos ap (¢)

THE LINEAR EQUATIONS

In linearizing the appropriate members of (5.8,1) to (5.8,7), we assume
that all the perturbation quantities AV, A«, p, ete., are small, and that
squares and products of them may be neglected. It follows that cos Ay =1,
and sin Ay = Ay. Thus (5.8,1a) for example becomes

(T, + AT) cos ag — AaT,sin ay — (D, + AD) — mg sin (y, + Ay) = mV
or, on expanding the trigonometric term,

(T, cos g — D, — mgsiny,) + AT cos anp
— AaT, sin gy — AD — mg cosy, Ay = mV



General equations of unsteady motion 157

The part in brackets vanishes, since the reference state must satisfy the
equations, and hence the final perturbation equation is
AT cos o — AaT, sin o — AD — mg cosy, Ay = mV (5.10,4)

Note that no approximation has been made here concerning y,. The equation
applies to flight at any angle of climb or descent up to vertical flight. Pro-
ceeding in a similar manner for all the other equations, the result is

AT cos ap — AT, sin ayp — AD — mg cosy, Ay = mV (@)
AY - mgecosy,p=m@s+ Vo) (b)
(5.10,5)
AT sin ap + AaT, cos ap + AL + mg siny, Ay = mV gy {¢)
AL=1Ip— I, 7 (@)
AM =14 ®) (5.10,6)
AN =1/~ 1,p {c)
$=p+rtany, (@t
Y =qw (®) (5.10,7)
= rsecy, ()t
Gy =q—d (5.10,8)
gy =V,cosy, 4+ cosy, AV — V siny, Ay (@)
Jg =V, cosy, p-+v (d) (6.10,9)%

tg=—V,siny, —siny, AV — V, cosy, Ay (¢)

Note that the order of the terms in (5.10,8) has been rearranged slightly
as compared with (5.8,5) and that two of the latter are not needed. Of
(5.10,9) the first and third come from (5.8,6), and the second from (5.8,7).

Although the moment equations (5.10,6) were obtained by a linearization
of (5.8,3), which are the equations for a rigid body, they are in fact valid
for a deformable body. This is because the first term on the r.h.s. of (5.6,8)
contains only the products of first-order rotations and rates of change of
inertia coefficients. The latter are also first order in the linear model, and
hence the distortional coupling terms are second order and negligible.

Because of the simplicity of the linear kinematical relations, it is convenient
to eliminate gy, and to regroup the equations as follows.

1 Equations (5.10,7¢ and ¢) cannot be regarded as a small-perturbation equation
when y, — 490° for then ¢ and ¢ — oo for any finite 7.

I Equations (5.10,9) are not strictly perturbation equations, albeit linear, because of
the presence of the constant terms V,cosy, and —V,sin y,. The perturbations are
strietly (fp — V, cos 9,), 9, and (2 + V, sin p,).
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Longitudinal aerodynamic
characteristics—part 1

CHAPTER 6

In the preceding chapters we have presented the general analytical
foundations for solving problems concerning the motion of flight vehicles in
the atmosphere. As was emphasized, however, the details of the problems
and the character of the results obtained are dominated by the aerodynamic
characteristics of the vehicle. It is essential therefore to explore the aero-
dynamic aspect of the subject, in some depth before proceeding to particular
studies of vehicle dynamies. To this end, this and the following two chapters
are devoted to a discussion of the main aerodynamic features of flight
vehicles that are of concern for vehicle motion. Included is a body of material,
traditionally referred to as “static stability and control” that relates to the
control displacements and forces required to maintain steady rectilinear
flight, or to maintain a steady ‘“‘pull-up.”’ These are important items, both
in relation to handling qualities and to their use as stability criteria. Clearly
the spectrum of vehicle types and operating conditions of interest is extremely
broad—from air-cushion vehicles and helicopters on the one hand to hyper-
sonic aircraft and entry vehicles on the other. It is obviously not practical
to present a comprehensive coverage of the aerodynamics of all these types
within the scope of this text. The items selected for treatment are those
considered to be particularly instructive and of rather broad application.
With this basis it is hoped that the reader should be able to extrapolate the
methods and approaches presented to other sitnations with which he may be

196
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concerned. One topic completely excluded, because it requires an extensive
treatment to be meaningful at all, is the aerodynamic characteristics of
rotoreraft. References 6.1 to 6.4 give considerable infermation on this and
other relevant topics in aerodynamics.

6.1 THE BASIC LONGITUDINAL FORCES

+ The basic flight condition for most vehicles is symmetric steady flight. In
this condition the velocity and force vectors are as illustrated in Fig. 6.1.

Fia. 6.1 Steady symmetrie flight.

The steady-state condition was fully described in Sec. 5.9. All the nonzero
forces and motion variables are members of the set defined as “longitudinal’
in Chapter 5, and hence we see the central importance of longitudinal
aerodynamics. The two main aerodynamic parameters of this condition are
V and o.

Nothing can be said in general about the way the thrust vector varies with
V and «, since it is so dependent on the type of propulsion unit—rockets, jet,
propeller, or prop-jet. Two particular idealizations are of interest, however,

(i) T independent of ¥, i.e. constant thrust; an approximation for rockets
and pure jets.

(ii) TV independent of ¥, ie. constant power; an approximation for
reciprocating engines with constant-speed propellers.

The variation of steady-state lift and drag with « for subsonic and supersonic
Mach numbers (M < about 5) are characteristically as shown in Fig. 6.2
for the range of attached flow over the surfaces of the vehicle (refs. 6.5, 6.6).
Over a useful range of « (below the stall) the coefficients are given accurately
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c Cp

CDmin-

Fia. 6.2 Lift and drag for subsonic and supersonie speeds.

enough by
Cp=Cra (6.1,1)

Cp=0Cp, .+ KC;? (6.1,2)

The three constants Cp,, Cp . K are principally functions of the con-
figuration shape, thrust coefficient, and Mach number.

Significant departure from the above idealizations may, of course, be
anticipated in some cases. The minimum of €}, may occur at a value of
o > 0, and the curvature of the (7 vs. « relation may be an important
consideration for flight at high C';. When the vehicle is a “slender body,”
e.g. a slender delta, or a slim wingless body, the €} curve may have a
characteristic upward curvature even at small o (ref. 6.7). The upward
curvature of 'y, at small ¢ is inherently present at hypersonic Mach numbers
(ref. 6.8). For the nonlinear cases, a suitable formulation for O, is (ref. 6.9)

Or = (§Cy, sin 2a 4 Cy,,, sin « [sin «|) cos a (6.1,3)

where Cy, and 'y are coefficients (independent of o) that depend on the
Mach number and configuration. [Actually Cy here is the coefficient of the
aerodynamic force component normal to the wing chord, and Cy_ is the value
of O, at « = 0, as can easily be seen by linearizing (6.1,3) with respect to «.]
Equation (6.1,2) for the drag coefficient can serve quite well for flight
dynamics applications up to hypersonic speeds (M > 5) at which theory
indicates that the exponent of C; decreases from 2 to $. Miele (ref. 6.10)
presents in Chapter 6 a very useful and instructive set of typical lift and
drag data for a wide range of vehicle types, from subsonic to hypersonic.
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6.2 PITCH STIFFNESS AND POSSIBLE CONFIGURATIONS
FOR FLIGHT

In Fig. 6.1 we have shown that the pitching moment M is zero, which is,
of course, one of the conditions for equilibrium. It is intuitively evident,
without recourse to any formal stability theory, that there might be some-
thing wrong with a flight vehicle that at constant speed and with fixed
controls, experienced a positive (nose-up) pitching moment AC,, following
an increase Ao in the angle of attack from its equilibrium value. This is
illustrated in curve o of Fig. 6.3 (i.e. C,,, > 0). For then the moment AC,,

Cm
Crg
e C’"a >0
/A;fACm o
o _ 7 ACh
Equilibrium

point (trim) b:Cpm, <0

Fia. 6.3 DPitch stiffness.

would be such as to increase further the perturbation in «. On the other hand,
if the C,, vs « relation is as in curve 3, (C,,, < 0) the moment following the
disturbance is negative, and tends to restore o to its equilibrium value. The
latter case is exactly parallel to that of a mass on a spring, which when
disturbed from equilibrium, experiences a restoring force. The vehicle
possesses as it were an “‘aerodynamic torsion spring’’ that tries to hold o
constant at its equilibrium value. This property has traditionally been called
“static stability’’ in pitch. In view of the more formal, more precise meaning
now usually attached to the word stability (see Chapter 3), a more appropriate
designation is positive pitch stiffness. The complete stability theory of the
longitudinal motion (see Chapter 9) shows that positive pitch stiffness
(C, < 0) is in general neither necessary nor sufficient for stability. However,
it is nevertheless a very important practical design criterion, the violation of
which leads to consequences that can rarely be tolerated. The great importance
of pitch stiffness makes calculation or measurement of C,(a) one of the
central features of the aerodynamic design of all flight vehicles. This curve
is typically monotonic in o over the usable flight range, as in Fig. 6.3, curve b.
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We may conclude then, that a satisfactory flight configuration must not
only have C,, = 0 at some & > 0 in order to trim (i.e. be in pitch equilibrium)
at positive lift, but at the same time must usually have C,, < 0. Alternatively,
as can be seen from Fig. 6.3, it must have C,, > O "and Cpn, <0. It is
somewhat simpler to use the latter form of the criterion to assess the
possibilities for flight.

We state here without proof (this is given in Sec. 6.3) that 9C,,/d« can be
made negative for virtually any combination of lifting surfaces and bodies
by placing the center of gravity far enough forward. Thus it is not the
stiffness requirement, taken by itself, that restricts the possible configurations,
but rather that it must coexist with zero moment. Since a proper choice of
the C.G. location can ensure a negative 0C, [0, then any configuration with
a positive C,, can satisfy the conditions for flight at L > 0.

Figure 6.4 shows the €, of conventional airfoil sections. If an airplane were

Positive camber . Zero camber Negative camber
C,,,(l negative Cmo =0 C,,,O positive

Fi1i. 6.4 C'm0 of airfoil sections.

to consist of a straight wing alone (flying wing), then the wing camber would
determine the airplane characteristics as follows:

Negative camber—flight possible at « > 0;1ie. €7 > 0.
Zero camber—Aflight possible only at « = 0, or Cf, = 0.

Positive camber—flight not possible at any positive o or Cy.

For straight-winged tailless airplanes, only the negative camber satisfies the
conditions for flight. Effectively the same result is attained if a flap, deflected
upward, is incorporated at the trailing edge of a symmetrical airfoil. A
conventional low-speed airplane, with essentially straight wings and positive
camber, could fly upside down without a tail, provided the C.G. were far
enough forward. The positively cambered straight wing can be used only in
conjunction with an auxiliary device which provides the positive C,, . The
solution adopted by experimenters as far back as Samuel Henson (1842) and
John Stringfellow (1848) was to add a tail behind the wing. The Wright
brothers (1903) used a tail ahead of the wing (Canard configuration). Either
of these alternatives can supply a positive C,, as illustrated in Fig. 6.5.
When the wing is at zero lift, the auxiliary surface must provide a nose-up
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+ Cambered wing at Tail with
Cp= C;, negative
=, S

| y

= S
Tail with + Cambered wing at
Cy, positive Cr=0
®)

Fic. 6.5 Wing-tail arrangements with positive C,, . («) Conventional arrangement.
(b) Tail-first or Canard arrangement.

moment. The conventional tail must therefore be at a negative angle of
attack, and the Canard tail at a positive angle.

An alternative to the wing-tail combination is the swept-back wing with
twisted tips (Fig. 6.6). When the net lift is zero, the forward part of the wing
has positive lift, and the rear part negative. The result is a positive couple,
as desired.

+Lift

- Lift

Fie. 6.6 Swept-back wing with twisted tips.
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A variant of the swept-back wing is the delta wing. The positive C,, can be
achieved with such planforms by twisting the tips, by employing negative
camber, or by incorporating an upturned tailing edge flap.

6.3 PITCH STIFFNESS OF A GENERAL CONFIGURATION

Having established above the central importance of the derivative C,, for
satisfactory flight, we turn now to a detailed discussion of it for a general
vehicle configuration. We consider the vehicle to be composed of a body, a
wing, a tail and propulsive units. If any of these are absent (as for a tailless
airplane, a wingless missile, or a glider) the appropriate deletions from the
analysis are readily made.

The pressure distribution over the surfaces of a vehicle in steady rectilinear
motion, and the consequent integrated forces and moments, are functions of
angle of attack o, control surface angles, Mach number M, Reynolds number
R,, thrust coefficient C,, and dynamic pressure 3pV2. The last-mentioned
parameter enters because of aeroelastic effects. If the vehicle is flexible, then
a change in dynamic pressure, with all other variables constant, produces a
change in shape, and hence of the forces and moments.

In the following discussion the only restriction in relation to the above
parameters is that of steady rectilinear flight. Specifically, power effects,
flexibility, and compressibility effects are not excluded.

PITCHING MOMENT OF A WING

The force system acting on an isolated wing, in symmetric flight, can be
represented as a lift L, and drag D, acting at a reference point, the mean
aerodynamic center, together with a pitching moment M, . ~(¥Fig. 6.7).

Mean aerodynamic center

Mean aerodynamic
chord

Fie. 6.7 Aerodynamic forces on the wing.
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¥16. 6.8 Moment about the C.G. in the plane of symmetry.

The inviscid theory of thin wings at small «, predicts that the moment
about the aerodynamic center is invariant with o,, and this is indeed
very often the case in reality. However, it is possible that M, . may
vary with e, and this case is included in the following. The moment of the
force system of Fig. 6.7 about the vehicle center of gravity (see Fig. 6.8) is
given by

M,=M,.., + (L,cos a, -+ D,sin o) (b — b, )¢

+ (L, sin o, — D, cos a,,)2¢ (6.3,1)
For many flight situations, including the cruising flight of all classes of
fixed-wing aircraft, the angle of attack is small enough to justify the
approximations sin e, = «,, cos &, = 1. We take this to be the case here,
bearing in mind the consequent restriction on the validity of the resulting
equations.
Equation (6.3,1) is made nondimensional by dividing through by 1pV28¢.
Tt then becomes
C

My Oma‘

L+ (Cr, + Op )b —b,) + (Cp o, — Cp)z (632)

€.,
Although it may occasionally be necessary to retain all the terms in (6.3,2),
experience has shown that the last one is frequently negligible, and that
Cp, %y may often be neglected in comparison with Cz . With these simpli-
fications, we obtain

Cpy=Cp. . +Cp(h—h,) (6.3,3)

Equation (6.3,3) will be used to represent the wing pitching moment in the
discussions that follow.
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PITCHING MOMENT OF A BODY AND NACELLES

The influence of the body and nacelles are complex. A body alone in an
airstream is subjected to aerodynamic forces. These, like those on the wing,
may be represented over moderate ranges of angle of attack by lift and drag
forces at an aerodynamic center, and a pitching couple. When the wing and
body are put together, however, a simple superposition of the aerodynamic
forces which act upon them separately does not give a correct result. Strong
interference effects are usually present, the flow field of the wing affecting
the forces on the body, and vice versa.

These interference flow fields are illustrated for subsonic flow in Fig. 6.9.
Part (a) shows the pattern of induced velocity along the body that is
caused by the wing vortex system. This induced flow produces a positive
moment that increases with wing lift or «. Hence a positive (destabilizing)
contribution to C,, results. Part (b) shows an effect of the body on the wing.
When the body axis is at angle & to the stream, there is a cross-flow com-
ponent V sin «. The body distorts this flow locally, leading to cross-flow

A

Y [

|

’ ]

@ [
R =

-]

(a)

Q T o s T T P
U

Vsina

(%)

Fic. 6.9 Example of mutual interference flow fields of wing and body—subsonic flow.
(@) Qualitative pattern of upwash and downwash induced along the body axis by the
wing vorticity. (b) Qualitative pattern of upwash induced along wing by the cross-flow
past the body.
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components that can be of order 2V sin « at the body-wing intersection.
There is a resulting change in the wing lift distribution.

The result of adding a body and nacelles to a wing may usually be inter-
preted as a shift (forward) of the mean aerodynamic center, an increase in
the lift-curve slope, and a negative increment in C,, . The equation that
corresponds to (6.3,3) for a wing-body-nacelle combination is then of the same
form, but with different values of the parameters. The subscript wb is used
to denote these values.

C,.=0C + Cp (b —h

Mad Ma.comwp

(6.3,4)

"wb)

PITCHING MOMENT OF A TAIL

The forces on an isolated tail are represented just like those on an isolated
wing. When the tail is mounted on an airplane, however, important inter-
ferences occur. The most significant of these, and one that is usually pre-
dictable by aerodynamic theory, is a downward deflection of the flow at the
tail caused by the wing. This is characterized by the mean downwash angle
¢. Blanking of part of the tail by the body is a second effect, and a reduction
of the relative wind when the tail lies in the wing wake is the third.

I .
Wing-body mean L I Tail mean
aerodynamic t

i aerodynamic
chord \ LCG. ¥ (ayp= ©) J\‘/ center
A 24 a"t
y o
/%,//J?&Taﬂ mean
/‘I/

aerodynamic
chord

Fi1e. 6.10 Forces acting on the tail.

Figure 6.10 depicts the forces acting on the tail. V¥ is the relative wind
vector of the airplane, and V'’ is the average or effective relative wind at the
tail. The tail lift and drag forces are by definition respectively perpendicular
and parallel to V’. The reader should note the tail angle 7,, which in keeping
with Fig. 6.5 must be negative. The moment M, ., is the pitching moment
of the tail about its own aerodynamic center. This is zero for a symmetrical
tail section, and in any case would come mainly from the deflection of the
elevator.

The contribution of the tail to the airplane lift, which by definition is
perpendicular to V, is

L,cose — D,sine
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€ is usually a small angle, and D,e may be neglected compared with L,. The
contribution of the tail to the airplane lift then becomes simply L,. We
introduce the symbol U, to represent the lift coefficient of the tail, based on
the airplane dynamic pressure 3pV? and the tail area S,.

— Lt
3677,

The reader should note that the lift coefficient of the tail is often based on
the local dynamic pressure at the tail, which differs from 1p¥? when the
tail lies in the wing wake. This practice entails carrying the ratio V'(/V in
many subsequent equations. The definition employed here amounts to
incorporating V'/V into the tail lift-curve slope a, = 9Cp, [0«,. This quantity
is in any event different from that for the isolated tail, owing to the interference
effects previously noted. This circumstance is handled in various ways in
the literature. Sometimes a tail efficiency factor #, is introduced, the isolated
tail lift slope being multiplied by 7,. In other treatments, 7, is used to
represent (V'/V)2. In the convention adopted here, @, is the lift-curve slope
of the tail, as measured in situ on the airplane, and based on the dynamic
pressure p V2. This is the quantity that is directly obtained in a wind-tunnel
test.

From Fig. 6.10 we find the pitching moment of the tail about the C.G. to be

M, = —L[L; cos (ay, — €) + Dy sin (o, — €)]
— 2Dy cos (o, — €) — Ly sin (o, — €)] + M,,, (6.3,6)

I (6.3,5)

Experience has shown that in the majority of instances the dominant term
in this equation is the first one, and that all others are negligible by com-
parison. Only this case will be dealt with here. The reader is left to extend
the analysis to situations where this approximation is not valid. With the
above approximation, and that of small angles,

M, = —lL, = —10L}pV?8,

Upon conversion to coefficient form, we obtain

(6.3,7)

My

The combination [,S,/S¢ is the ratio of two volumes characteristic of the
airplane’s geometry. It is commonly called the “horizontal-tail volume
ratio,” or more simply, the “tail volume.” It is denoted here by V ;. Thus

Co, = —VuCr, (6.3,8)

Since the center of gravity is not a fixed point, but varies with the loading
condition and fuel consumption of the vehicle, ¥ 5 in (6.3,8) is not a constant
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Fie. 6.11 Wing-body and tail acrodynamic centers.

(although it does not vary much). It is a little more convenient to calculate
the moment of the tail about a fixed point, the mean aerodynamic center
of the wing-body combination, and to use this moment in the subsequent
algebraic manipulations. Figure 6.11 shows the relevant relationships, and
we define

Vo= 6.3,9
=g ( )
which leads to
_ S,
Ve =Vyg— gt (b — b,,) (6.3,10)

The moment of the tail about the wing-body aerodynamic center is then
[of. (6.3,8)]

Cp, = —VuCr, (6.3,11)

and its moment about the C.G, is, from substitution of (6.3,10) into (6.3,8)

_ S
Cp, = —VuCr, + Oy, §‘ (b —h,,) (6.3,12)

PITCHING MOMENT OF A PROPULSIVE SYSTEM

The moment provided by a propulsive system is in two parts: (1) that
coming from the forces acting on the unit itself, e.g. the thrust and in-plane
force acting on a propeller, and (2) that coming from the interaction of the
propulsive slipstream with the other parts of the airplane. These are dis-
cussed in more detail in Sec. 7.3. We assume that the interference part is
included in the moments already given for the wing, body, and tail, and
denote by C,, the remaining moment from the propulsion units.
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TOTAL PITCHING MOMENT

On summing (6.3,4) and (6.3,12) and adding the contribution C,, for the
propulsive system, we obtain the total pitching moment about the C.G.,

8 _
O =Cpy .+ ( L+ O St) (h — by — VCr, + Co,

(6.3,13)

Since 'y, is a coefficient based on S,, then €7, 8,/8 is the tail contribution to
Cr, and the total lift coefficient of the vehicle is

Cp=0g, + OL,'% (6.3,14)
Equation (6.3,13) therefore becomes
Cpn=0Cpp ot Crlh—h, ) — Vulp, + C,, (6.3,15)

It is worthwhile repeating that no assumptions about thrust, compressibility,
or aeroelastic effects have been made in respect of (6.3,15). The pitch stiffness
(—C,,,) is now obtained from (6.3,15). Recall that the aerodynamic centers
of the wing-body combination and of the tail are fixed points, so that

0C,, _ 3, aC
Oma= "’"-l—CLa(h ﬂwb) —Vg— 4
da oc

i) (6.3,18)

If a true aerodynamic center in the classical sense exists, then 0C g P)/ O
is zero and
oCy,  9C,

—2 6.3,17
dc Jda ( )

Oma = OLa(h — ) VH

C,,, as given by (6.3,16) or (6.3,17) is a constant that depends linearly on the
C.G. position, k. Since Cz_is usually large, the magnitude and sign of C,,
depend strongly on A. This is the basis of the statement in Sec. 6.2 that C
can always be made negative by a suitable choice of k. The C.G. position h
for which C,, is zero is of particular significance, since this represents a
boundary between positive and negative pitech stiffness. In this book we
define k, as the neutral point, N.P. It has the same significance for the
vehicle as a whole as does the aerodynamic center for a wing alone, and indeed
the term vehicle aerodynamic center is an acceptable alternative to “‘neutral
point.”’
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The location of the N.P. is readily calculated from (6.3,16), i.e.

aC,,
or ho—h, (aoma'c"”" — Vg e, + ao’"") (6.3,18)
" " 0p,\ O O oo ’
Substitution of (6.3,18) back into (6.3,16) simplifies the latter to
Cpny = Cp (b — 1) (6.3,19)

which is valid whether C,, and C,, vary with « or not. Equation (6.3,19)
clearly provides an excellent way of ﬁndmg k, from test results, i.e. from
measurements of €, and . The difference between the C.G. position and
the N.P. is sometimes called the static margin,

K,=(h,—}) (6.3,20)

Since the criterion to be satisfied is C,, < 0, i.e. positive pitch stiffness,
then we see that we must have A <<, or K, > 0. In other words the C.G.
must be forward of the N.P. The farther forward the C.G. the greater is K,
and in the sense of “static stability’’ the more stable the vehicle.

It must be emphasized that C,, and C are partial derivatives. This
means that all other significant arguments, normally M, C,, and pV? are
kept constant. This is especially important to keep in mind when experi-
mental results are being used. If these parameters are unimportant or absent,
asin the gliding flight of a rigid vehicle at low M, then C,, and C, are functions
of o only, C,, is a unique function of Cy, and (6.3,19) yields

h—h, = W (6.3,21)

dcy,

Equation (6.3,21) is sometimes used in practice as a definition of the neutral
point, but as is clear from the foregoing, it contains some dangers. Since C,,
and Cj are in the general case each functions of several independent
variables, then the derivative dC,,/dCy, is not mathematically defined, and
indeed different values for it can be calculated depending on what con-
straints are imposed on the independent variables. With particular con-
straints it indeed turns out to be a useful index of stability, and this point
is treated further in Sec. 9.3.

LINEAR LIFT AND MOMENT

When the forces and moments on the wing, body, tail, and propulsive
system are linear in «, as may be near enough the case in reality, some



210 Dynamics of atmospheric flight

additional useful relations can be obtained. We then have

CL,, = Gutun (6.3,22)

Cr, = a, (6.3,23)
ac,,

and Cpy =0, + 2 (6.3,24)
» oL

Furthermore, if C,, . is linear in ¢ Loy it follows from (6.3,4) that C,
does not vary with Cy,_, i.e. that a true aerodynamic center exists. Flgll:e
6.10 shows that the tail angle of attack is

oy = 0y + 9, — € (6.3,25)
and hence
C’Lt = a,(0tyy + ¥ — €) (6.3,26)
The downwash e can usually be adequately approximated by
€ = ¢y _3_6 o, (6.3,27)
o ™

The downwash ¢, at €y, = 0 results from the induced velocity field of the

body and from wing twist; the latter produces a vortex wake and downwash

field even at zero total lift. The constant derivative de/dx occurs because the

main contribution to the downwash at the tail comes from the wing trailing

vortex wake, the strength of which is, in the linear case, proportional to Cy.
The tail lift coefficient then is

Op, = a,[ (1 _ 3_) ti,— ] (6.3,28)

and the total lift, from (6.3,14) is
a, S, Oe
0= aw,,a.wb[l o (1 - )} + at fip—e) (@)
or  Cp=(Cp)e+ aa,, () (6.3,29)
or (= aax () |
S,

where (Cp)o = @, Zg‘t (4, — €) (6.3,30)
is the lift of the tail when o, = 0;

_ 9L _ awb[l 4 oS (1 _ ﬁ)] (6.3,31)

O @, oo

is the lift-curve slope of the whole configuration; and o is the angle of attack
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(CL ) 0

Qwd

Fia. 6.12 Graph of total lift.

of the zero-lift line of the whole configuration (see Fig. 6.12). Note that, since
i, is negative, then (Ur), is negative. The difference between « and a,, is
found by equating (6.3,29b and ¢) to be

8
‘ES} (5, — ) (6.3,32)

o — Oy =

When the linear relations for €, C7, and C,, are substituted into (6.3,15)
the following results can be obtained after some algebraic reduction:

- 6.3,33

Cpp = O+ Ci g @ ¢339

— C
where O, =a(h—h,, )— atVH(l — ?f) + ?ﬂ (a)
* i : o O
B¢ ac,, (6.3,34)
or Cm = awb(h - hnw ) - a’tVH(l - _‘) + 2 (b)
* i Ot Oo
and Cmo =0, + Gmo + a7 gleo — %)
8.y »
a S Oe
1 — 2ty — —
X[ aS( aa)] “ 6.3,35
Oy =Cn_ .+ Oy + a¥ gl — i) @) (6%
"t wh »
- oC,,
where C, =0, +(0—a,,) 2 (e)
0’, 01, am
1
by = by + 2 VH(I - -af) _ 1%, (6.3,36)
*a Ou. a Ou
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Cn
p>hn
Crn=Cryt alh = hp)a

cG.oft

F16. 6.13 Effect of C.G. location on C,, curve.

Note that since C,, is the pitching moment at zero o, not at zero total lift,
its value depends on h (via V), whereas C,, , being the moment at zero
total lift, represents a couple and is hence independent of C.G. position. All
the above relations apply to tailless aireraft by putting ¥z = 0. Another
useful relation comes from integrating (6.3,19), i.e.

G, = Cpy + Oplh — h,) ()

(6.3,37)
or Cpp= Oy, +aulh — k)

Figure 6.13 shows the linear C,, vs. « relation, and Fig. 6.14 shows the
resultant system of lift and moment that corresponds to (6.3,37), i.e. a force
O and a couple C,, at the N.P.

Cr
C.G.\
< e
| A
h€ f=— N.P.
_ Fi¢. 6.14 Total lift and moment act-
FinG-> ing on vehicle.

6.4 LONGITUDINAL CONTROL

In this section we discuss the longitudinal control of the vehicle from a
static point of view. That is, we concern ourselves with how the equilibrium
state of steady rectilinear flight is governed by the available controls.
Basically there are two kinds of changes that can be made by the pilot or
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automatic control system—a change of propulsive thrust, or a change of
configuration. Included in the latter are the operation of aerodynamic
controls—elevators, wing flaps, spoilers, and horizontal tail rotation. Since
the equilibrium state is dominated by the requirement C,, = 0, the most
powerful controls are those that have the greatest effect on C,,.

Figure 6.13 shows that another theoretically possible way of changing the
trim condition is to move the C.G., which changes the value of « at which
C,, = 0. Moving it forward reduces the trim « or Cr, and hence produces an
increase in the trim speed. This method was actually used by Lilienthal, a
pioneer of aviation, in gliding flights during 1891-1896, in which he shifted
his body to move the C.G. It has the inherent disadvantage, apart from
practical difficulties, of changing C,, at the same time, reducing the pitch
stiffness and hence stability, when the trim speed is reduced.

The longitudinal control now generally used is aerodynamic. A variable
pitching moment is provided by moving the elevator, which may be all or
part of the tail, or a trailing-edge flap in a tailless design. Deflection of the
elevator through an angle , produces increments in both the C,, and Cp, of
the airplane. The ACy, caused by the elevator of aircraft with tails is small
enough to be neglected for many purposes. This is not so for tailless aircraft,
where the ACy, due to elevators is usnally significant. We shall assume that
the lift and moment increments for both kinds of airplane are linear in §,,
which is a fair representation of the characteristics of typical controls at
high Reynolds number. Therefore,

ACp = O, (a)
Cp = Or(x) + Op,9, () (64,1)
AC,, = 0,0, (c)
and Crp = Cp@) + Cd, )

where Cp; = 00|96, C,,, = 0C,[09,, and Cr(x), O, (x) are the “basic”
lift and moment when 8, = 0. The usual convention is to take down elevator
as positive (Fig. 6.15a). This leads to positive Cz; and negative C,,,. The
deflection of the elevator through a constant positive angle then shifts the
O~ curve downward, without change of slope (Fig. 6.15b). At the same time
the zero-lift angle of the airplane is slightly changed (Fig. 6.15¢).

In the case of linear lift and moment, we have

OL = OLaOC + GL‘S(‘)& (a)
(6.4,2)
Cpp = O+ Oyt + O, )
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Horizontal tail
— L

Cn

de=0
Original trim «
8} \b\ak/ g

o
Final trim « 850 AC
()
C:
8.>0
0.=0
r/r—Original trim pt.
"‘ACL
a
(c)

Fie. 6.15 Effect of elevator angle on C,, curve. (a) Elevator angle. (b} C,, — « curve.
(¢) O — o curve.

THE DERIVATIVES C;, AND C,,

Equation (6.3,14) gives the vehicle lift, with S, = 0 for tailless types, of
course. Hence

L0, 0., | 800
s 95, 95, 8 94,

(6.4,3)

in which only the first term applies for tailless aireraft and the second for
conventional tail elevators or all moving tails (when ¢,.is used instead of 4,).
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We define the elevator lift effectiveness as

oC
0, = L (6.4,4)
90,
go that (6.4,3) becomes
0y, 8,
=—2 1 q,— 64,5
Ls aae + e S ( )

The total vehicle C,, is given for both tailed and tailless types by (6.3,15).
For the latter, of course, ¥ ;; = 0. Taking the derivative w.r.t. §, gives

9, a0;,  oC
c _ a'°'wb+ o (h _7 . 17 L, my 6.4,6
™8, T ne) ~ V' 29, + 29, (6.46)
We may usually neglect the last term, since there is unlikely to be any
propulsive-elevator interaction that cannot be included in @,. Then (6.4,6)
becomes

oC,,
Cry = 3 5' 4 Cp (b — k) —aVy (6.4,7)
Summarizing for both types of vehicle, we have
With tails:
Cr.=a 5
g~ g @ (648)
Cny = —a Vg - Cryh — b)) (b)
Tailless:
oCy,
L= 3 5, (@)
(6.4,9)
oy = aa:'c‘ + Op,(h — h,) (b)

In the last case, the subscript wb is, of course, redundant and has been
dropped. The primary parameters to be predicted or measured are a, for
tailed aircraft, and 3C/dé,, 0C,, [0, for tailless.

ELEVATOR ANGLE TO TRIM

The trim condition is C,, = 0, whence from (6.4,1d)

o = — Oule) (6.4,10)
trim C

ms
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and the corresponding lift coefficient is

= OL(OC) —I_ OL(; 6

Lipim ®rim

¢
= Ozle) — 220, (0) (641D
Cm
s
When the linear lift and moment relations (6.4,2) apply the equations for
trim are
OLaMn.im + OL,)ée i = OL i
trim trim (6.4,12)
Oma‘xtrim + Omgé = —C

e m,
trim 0

These equations are solved for « and &, to give

_ OmooL,; + Cm,;OLtrim

Lpim = A (a/)
s Cn 01, + Om CLixim 5
etrim — A ) (6.4,13)
dd C,, c
S T Ik — b, (©)
dCrim A A
where A=0CpC, —CpCp, (d)

and is normally negative. The values of A for the two types of airplane are
readily calculated from (6.4,8 and 9) together with (6.3,19) to give

Tailed :

A= OLa[OL‘,(h'n - hnwb) — @, VH] (a')
Tailless:
.. (6.4,14)
A — OL +Co
* 99,
and both are independent of k. From (6.4,13a) we get the trimmed lift curve:
c Iz + A (64,15
Ltrim — Om,s Gm,; Lirim 4,15)
and the slope is given by
ac C
(_L) —0, —Zg, (6.4,16)
dOL trim ® 0 ®
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CL

Basic (5,=0)/
/

/ / Trimmed

CLa Cmo /
- C*m,
T /

Fic. 6.16 Trimmed lift curve.

The trimmed lift-curve slope is seen to be less than (7, by an amount that
depends on C,, , i.e. on the static margin, and that vanishes when & = h,.
The difference is only a few percent for tailed airplanes at normal C.G.
position, but may be appreciable for tailless vehicles because of their larger
Cr, The relation between the basic and trimmed lift curves is shown in
Fig. 6.16.

Equation (6.4,13b) is plotted on Fig. 6.17, showing how §, . varies with
c Lorim and C.G. position when the aerodynamic coefficients are constant.

6etrim
— h=h,
- C"‘oCLa
A
¥
0 CLtrirn
h<hy,

Fie. 6.17 Elevator angle to trim at various C.G. positions.
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VARIATION OF 4§, .~ WITH SPEED

When, in the absence of compressibility, aeroelastic effects, and propulsive
system effects, the aerodynamic coefficients of (6.4,13) are constant, the
variation of 0, . with speed is simple. Then 4, is a unique function of
Cr  for each C.G. position. Since €y is in turn fixed by the equivalent

trim

airspeed,t for horizontal flight

w
= 4,1
Lirim %Poszs (6 4’ 7)
then §,, becomes a unique function of V. The form of the curves is shown
in Fig. 6.18 for representative values of the coefficients.

The variation of 6, with Cr,_  or speed shown on Figs. 6.17 and 6.18
is the normal and desirable one. For any C.G. position, an increase in trim
speed from any initial value to a larger one requires a downward deflection
of the elevator (a forward movement of the pilot’s control). The “gradient’
of the movement 06, [0V 5 is seen to decrease with rearward movement of
the C.G. until it vanishes altogether at the N.P. In this condition the pilot
in effect has no control over trim speed, and control of the vehicle becomes
very difficult. For even more rearward positions of the C.G. the gradient
reverses, and the controllability deteriorates still further.

When the aerodynamic coefficients vary with speed, the above simple
analysis must be extended. In order to be still more general, we shall in the

20° |- h=hg

10° — (hn=h)=01 Tho—hy=03
n =)=V,
Bemm 0 1 | | | ] I
50 100 150 200 250 300 350 400
Vg mph
—10° |- N
=-20° -
-30°"—

F1e. 6.18 Example of variation of elevator angle to trim with speed and C.G. position.

1t Equivalent airspeed (EAS) is Vg = vV, ITPO where p, is standard sea-level
density.
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following explicitly include propulsive effects as well, by means of the
parameter 7, which stands for the state of the pilot’s propulsion control
(e.g. throttle position). 7 = constant therefore denotes fixed-throttle and,
of course, for horizontal flight at varying speed, 7 must be a function of ¥V
that is compatible with 7 = D. For angles of climb or descent in the normal
range of conventional airplanes L = W is a reasonable approximation, and
we adopt it in the following. When nonhorizontal flight is thus included, =
becomes an independent variable, with the angle of climb y then becoming a
function of 7, ¥V, and altitude.

The two basic conditions then, for trimmed steady flight on a straight
line are

Cn=0 6.4,18
L=CplpV?8=W (6.4,18)
and in accordance with the postulates made above, we write
Om = 3 V’ 65,
m(@ ™) (6.4,19)

OL = CL(a, V, 52, 77')

Now let ( ), denote one state that satisfies (6.4,18) and consider a small
change from it, denoted by differentials, to another such state. From (6.4,18)
we get, for p = const,

dC, =0 (6.4,20)
and C V% = const
or 2V, Cp, dV + V20, =0
so that dCy, = —20;, ‘;V = —20; dV (6.4,21)

where V is defined in Table 5.1. Taking the differentials of (6.4,19) and
equating to (6.4,20 and 21) we get

OLG da + CLa dae = _OLn d7T —_ (OLV + 20L6) d?

(6.4,22)
Oy do + Cppyd8, = —C,, dn — C,, 4V

where C7,, = 0Cr/dV and C,,, = 9C,,/0V. From (6.4,22) we get the solution
for dé, as

dé, = i. {[(CLV +201)0,, ~Cr O, 14V + (Cp,Cp —Cr C,) dTr} (6.4,23)

There are two possibilities, = constant and 7 variable. In the first case
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(fixed throttle), dm = 0 and

(déemm) _ (Cr, + 20 )C0n, —CrC,, (6.424)

v A

It will be shown in Chapter 9 that the vanishing of this quantity is a true
criterion of stability, i.e. it must be >0 for a stable airplane. In the second
case, for example exactly horizontal flight, # = #(V) and the 7 term on the
r.h.s. of (6.4,23) remains. For such cases the gradient (dd,, /dV) is not
necessarily related to stability. For purposes of calculating the propulsion
contributions, the terms C L, 47 and C,, dm in (6.4,23) would be evaluated
as dCy, and dC,, [see the notation of (6 3,13)]. These contributions to the
lift and moment are discussed in Sec. 7.3.

8 trim

Fre. 6.19 Reversal of dy,, slope at transonie speeds, = = const.

The derivatives Oz, and C,, (see Sec. 7.8) may be quite large owing to
slipstream effects on STOL airplanes, or Mach number effects near transonic
speeds. These variations with M can result in reversal of the slope of J,,
as illustrated on Fig. 6.19. The negative slope at 4, according to the stability
criterion referred to above, indicates that the airplane is unstable at A.
This can be seen as follows. Let the airplane be in equilibrium flight at the
point A4, and be subsequently perturbed so that its speed increases to that of
B with no change in « or §,. Now at B the elevator angle is too positive for
trim: i.e. there is an unbalanced nose-down moment on the airplane. This
puts the airplane into a dive and increases its speed still further. The speed
will continue to increase until point C is reached, when the 8, is again the
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correct value for trim, but here the slope is positive and there is no tendency
for the speed to change any further.

STATIC STABILITY LIMIT, A,

The critical C.G. position for zero elevator trim slope (i.e. for stability)
can be found by setting (6.4,24) equal to zero. Recalling that C,, =
Cp (b — h,), this yields

C
h—h, ——F =0 (6.4,25)
CLV + 20L
or h=h,
O
where h,=h, + ———L— (6.4,26)
Cyr, + 20y,

Depending on the sign of C,, , k, may be greater or less than 4,. In terms of
k,, (6.4,24) can be rewritten as

(déegm) =0, 420, )— 1y (6.4,27)
av /= A

3

(b — k) is the ‘“‘stability margin,”’ which may be greater or less than the

static margin.

FLIGHT DETERMINATION OF h, AND h,

For the general case, (6.3,19) suggests that the measurement of 4, requires
the measurement of C,, and Cp . Flight measurements of aerodynamic
derivatives such as these can be made by dynamic techniques. However, in
the simpler case when the complications presented by propulsive, com-
pressibility, or aeroelastic effects are absent, then the relations implicit in
Figs. 6.17 and 6.18 lead to a means of finding h, from the elevator trim
curves. In that case all the coefficients of (6.4,13) are constants, and

daetr'm CMG
—Strim (6.4,28)
dCLtrim A
dd c

or etrim e _& (h _ hn) (64,29)
dOLtrim A

Thus measurements of the slope of 4, ot VS Oy, at various C.G. positions
produce a curve like that of Flg 6.20, in which the intercept on the h axis is
the required N.P.
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4rim
0o 9CLyim }ﬁ, h
- -
-~
M fixed

Fie. 6.20 Determination of stick-fixed neutral point from flight test.

When speed effects are present, it is clear from (6.4,27) that a plot of
(dd,, ,./aV), against h will determine %, as the point where the curve crosses

the A axis.

6.5 CONTROL HINGE MOMENT

The aerodynamic forces on any control surface produce a moment about
the hinge. Figure 6.21 shows a typical tail surface incorporating an elevator
with a tab. The tab usually exerts a negligible effect on the lift of the
aerodynamic surface to which it is attached, although its influence on the
hinge moment is large.

The coefficient of elevator hinge moment is defined by

JE— HG
T 1oV288,

Here H, is the moment, about the elevator hinge line, of the aerodynamic
forces on the elevator and tab, S, is the area of that portion of the elevator
and tab that lies aft of the elevator hinge line, and ¢, is a mean chord of the
same portion of the elevator and tab. Sometimes ¢, is taken to be the geo-
metric mean value, i.e. {, = §,/2s,, and other times it is the root-mean square
of ¢,. The taper of elevators is usually slight, and the difference between the
two values is generally small. The reader is cautioned to note which definition
is employed when using reports on experimental measurements of C,,.

Of all the aerodynamic parameters required in stability and control
analysis, the hinge-moment coefficients are most difficult to determine with
precision. A large number of geometrical parameters influence these co-
efficients, and the range of design configurations is wide. Scale effects tend to
be larger than for many other parameters, owing to the sensitivity of the
hinge moment to the state of the boundary layer at the trailing edge. Two-
dimensional airfoil theory shows that the hinge moment of simple flap controls
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Fi6. 6.21 Elevator and tab geometry. (a) Plan view. (b) Secvion 4--4.

is linear with angle of attack and control angle in both subsonic and super-
sonic flow.

The normal-force distributions typical of subsonic flow associated with
changes in « and 8 are shown qualitatively in Fig. 6.22. The force acting on
the movable flap has a moment about the hinge that is quite sensitive to its
location. Ordinarily the hinge moments in both cases (@) and (b) shown are
negative.

In many practical cases it is a satisfactory engineering approximation to
assume that for finite surfaces C,, is a linear function of «,, §,, and J,. The
reader should note however that there are important exceptions in which
strong nonlinearities are present. An example is the Frise aileron, shown
with a typical C, curve, in Fig. 6.23.
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ﬂ/)r . 5 Hinge Control
vV Fixed surface
()

e

(%)

Fic. 6.22 Normal-foree distribution over control surface at subsonic speed. (a) Force
distribution over control associated with « at § = 0. (b) Force distribution over eontrol
associated with § at zero a.

We assume that C,, is linear, as follows,

Che = by + byat; + byd, + b3d, (6.5.1)
where b, = OChe _ Che
oo, s
oc,,
b, = %e— heg
b= 2 g,
094, ot

a, is the angle of attack of the surface to which the control is attached (wing
or tail), and 4, is the angle of deflection of the tab (positive down). The
determination of the hinge moment then resolves itself into the determination
of by, by, b,, and b,. The geometrical variables that enter are elevator chord
ratio ¢,/c,, balance ratio ¢,/c,, nose shape, hinge location, gap, trailing-edge
angle, and planform. When a set-back hinge is used, some of the pressure acts
ahead of the hinge, and the hinge moment is less than that of a simple flap
with a hinge at its leading edge. The force that the control system must
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Fie. 6.23 Typical hinge moment of Frise aileron. Wing « = 2°. R.N. = 3.3 x 108,

exert to hold the elevator at the desired angle is in direct proportion to the
hinge moment.

We shall find it convenient subsequently to have an equation like (6.5,1)
with « instead of «,. For tailless aircraft, o, is equal to o, but for aircraft
with tails, o, = «,. Let us write for both types

Che = Chey + Cppp e + 026, + B30, (6.5,2)
where for tailless aircraft C,, = by, Cy,, = b,. For aircraft with tails, the
relation between o and «, is derived from (6.3,25) and (6.3,32), i.e.

o1 =0 o —iy[1_wBfy O
at—oc(l aa) (€ zt)l:l 2 (1 a«)] (6.5,3)

whence it follows that for tailed aircraft, with symmetrical airfoil sections
in the tail, for which b, = 0,

. s 2
Gy = byl — ) [1 — % - (1 — a—:)] (@)

0
Ohea = bl(l - a—;) (®

(6.5,4)
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6.6 INFLUENCE OF A FREE ELEVATOR ON LIFT AND
MOMENT

In Sec. 6.3 we have dealt with the pitch stiffness of an airplane the controls
of which are fixed in position. Even with a completely rigid structure, which
never exists, a manually operated control cannot be regarded as fixed. A
human pilot is incapable of supplying an ideal rigid constraint. When
irreversible power controls are fitted, however, the stick-fixed condition is
closely approximated. A characteristic of interest from the point of view of
flying qualities is the stability of the airplane when the elevator is completely
free to rotate about its hinge under the influence of the aerodynamic
pressures that act upon it. Normally, the stability in the control-free
condition is less than with fixed controls. It is desirable that this difference

x
-

v
F1c. 6.24 Elevator floating angle.

should be small. Since friction is always present in the control system, the

free control is never realized in practice either. However, the two ideal

conditions, free control and fixed control, represent the possible extremes.
When the control is free, then C,, = 0, so that from (6.5,2)

1
= % (Che, + Ohea“ + bsd;) (6.6,1)
2

®free

The typical upward deflection of a free-elevator on a tail is shown in Fig. 6.24.
The corresponding lift and moment are

OL = CLaoz + O’Laé

etree

fre (6.6,2)
Omﬂ_ee = Cmﬂ + C’mau + Cméaelree
After substituting( 6.6,1) into (6.6,2), we get
Oeree = CLIO + OL;«' (a)
(6.6,3)

=G+ O (B)

Miree
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, c
where Oy = = 22 Gy + 190 (a)
2 0. o (6.6,4)
=0, =0, —- 8 (®)
« -3 b2
, ..
Omo = Omo —-— b— ( heo + bsét) (a)
oo (6.5,6)
C;n = Om e (b)
(-3 @ b2

When due consideration is given to the usual signs of the coefficients in these
equations, we see that the two important gradients 7 _and C,, are reduced

in absolute magnitude when the control is released. This leads, broadly
speaking, to a reduction of stability.

FREE-ELEVATOR FACTOR

When the elevator is part of the wing, as on a tailless aireraft, and the
elevator is free, the lift-curve slope is given by (6.6,4b), i.e.

C..b
o = a( Ls 1) (6.6,6)
ab,

The factor in parentheses is the free elevator factor F, and normally has a
value less than unity. Likewise, when the elevator is part of the tail, the
floating angle can be related to o,, viz.

Cho = b1ty + bydy, + By, = 0

or 5, = — bl (Byote + by3,) (6.6,7)
2

efree

and the tail lift coefficient is
0y, = awy + a0

¢iree

- at(l _ab Ii)at _ by (6.6,8)
a, b, b,

The effective lift-curve slope is

— = Fa 6.6,9
Oo, K ( )

b
where F = (1 - Z—”b—l) is the free-elevator factor for a tail. If Fa, be used in
t V2
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place of a; and o’ in place of @, then all the equations given in Sec. 6.3 hold
for tailed aircraft with a free elevator.

CONTROL-FREE NEUTRAL POINT

It is evident from the preceding comment that the N.P. of a tailed aircraft
when the control is free is given by (6.3,36) as

(6.6,10)

Taob

Fa de 1 00
B, =h *7all — "

T VH( 30() @ Ou
Alternatively, we can derive the N.P. location from (6.6,5b), for we know
from (6.3,19) that

O, = O, (b — By (@)
¢, 1 C,
h_.k' _ ""az__ 0 m5 hey
or ( n) o, @ ( me T g ) (6.6,11)
1 C,..C
= ah —p )y — M P
S — =]

Since C,,; is of different form for the two main types of aircraft, we proceed
separately below.

Tailless Aircraft. C,, is given by (6.4,9) and C,,, = b,. When these are
substituted into (6.6,11) the result is

b =) — o by — 2 e
n o n a/b2 L Ib aa
(h - hn) bl C bl aoma 7~ Mma.c.
= a — —
7 (1 00m)
By virtue of (6.6,6) this becomes
b, oC,,
h—h,=h—h, ——— ——=&
a'b, 86
, b, oC,,
or h, =h, + — —2= (6.6,12)

" " a'b, 36
Tailed Aircraft. Om‘5 is given by (6.4,8), so (6.6,11) becomes for this case

heg ==

aVu

=ty =2 —hy— 0, h—, )+
. _al n a,'62 Ls Tywp ;-b—z_
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Using (6.6,4b) this becomes

1 c, C ¢,
h—hi,:h——(ahn—h;;l"’knwb) + g Ty

[2
a’ 5 a’b,

We replace &, by (h,  — b,) + &, to get

a’eohea =
Ve
2

’ Ohe OL
h = hn a5 hn — hn —
" + bya ( w

Finally, using (6.4,8) for ', and (6.5,4) for C,, , we get

b O¢ S -
Wo—h —2e2 () S\ h —p )2 6.6,13
n n a’ 1)2 ( aa)( ( n ”m)S + VH) ( )

The difference (h, — &) is called the control-free static margin, K,. When
representative numerical values are used in (6.6,13) one finds that b, — hy,
may be typically about 0.08. This represents a substantial forward movement
of the N.P., with consequent reduction of static margin, pitch stiffness, and
stability. :

6.7 THE USE OF TABS

TRIM TABS

In order to fly at a given speed, or '}, it has been shown in Sec. 6.4 that a
certain elevator angle 6, is required. When this differs from the free-
floating angle 4, . a force is required to hold the elevator. When flying for
long periods at a constant speed, it is very fatiguing for the pilot to maintain
such a force. The trim tabs are used to relieve the pilot of this load by
causing 6 and d, _ to coincide. The trim-tab angle required is calculated
below.

When O, and O, are both zero, the tab angle is obtained from (6.5,2) as

Ctrim

1
= — W (Che. + Chea“trim + 020,,5) (6.7,1)
3

ttrim €y

On substituting from (6.4,13), (which implies neglecting 80,,/06,) we get

1 0"" OLtrim
6ttrim =T Oheo + . (OheaoLa - bzoLa) + (Ohea0m5 - bZCma)
. by A A



230 Dynamics of atmospheric flight

stuim

Fia. 6.25 Tab angle to trim.

which is linear in Oy, for constant %, as shown in Fig. 6.25. The dependence
on k is simple, since from (6.6,11) we find that

(Oheaom; - b20mu) = _—a’,b2(h - h;l)
and hence
1 C,, a'b, .
o = — — [0,,% 20 (0 Oy — bs0p,) — —22 (b — h,,)ome] (6.7,2)
b, A A
This result applies to both tailed and tailless aircraft, provided only that the
appropriate values of the coefficients are used. It should be realized, of
course, in reference to Fig. 6.25, that each different ClLyym 10 @ real flight
situation corresponds to a different set of values of M, $pV2, and Cp, so that
in general the coefficients of (6.7,2) vary with Oy, and the graphs will depart
from straight lines.

Equation (6.7,2) shows that the slope of the §, vs O, curve is pro-
portional to the control-free static margin. When the coefficients are constants,
we have

@ty by’ ,

——==—(h—hy) (6.7,3)

daCr,.. by A
The similarity between (6.7,3) and (6.4,13c) is noteworthy, i.e. the trim-tab
slope bears the same relation to the control-free N.P. as the elevator angle
slope does to the control-fixed N.P. It follows that flight determination of
h, from measurements of dd,, . [dCy,  is possible subject to the same
restrictions as discussed in relation to the measurement of &, on p. 221.

GEARED TABS

The coefficient b, dominates the hinge moment of a control, and hence the
control force. It gives the rate at which the hinge moment increases with
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Fie. 6.26 Geometry of geared tab.

control angle. The need for reduction of b, by aerodynamic means was
referred to in Sec. 6.5. One such means, which is very effective, is the geared
or servo tab. The geometry of such a tab is illustrated in Fig. 6.26. The angle
of the tab relative to the control surface is determined by the rigid link 4 B.
‘When arranged as shown, downward movement of the control is accompanied
by an automatic upward movement of the tab. The hinge moment caused
by the tab is then of the sense which assists the control movement. If B were
moved to the upper surface of the tab, so that AB crossed HH, then the
opposite effect would be obtained. This arrangement, known as an antiservo,
or antibalance tab can be used when a control is otherwise overbalanced, or
too closely balanced. It provides a means of achieving a zero or positive b,
without any detrimental effect on b,, as follows. The balance, ¢, (Fig. 6.21),
is chosen large enough so that b, becomes zero or positive. The control will
then have b, either too small or even positive. This is then corrected by
introducing an antiservo geared tab.

Suppose that, when the elevator moves through an angle §,, the tab
displacement is —y4,. y, called the “tab gearing,” is positive for a servo tab
and negative for an antiservo tab. The hinge-moment coefficient will then be

Chre = bo + byot; + 1,0, + b3d,
= by + by, + b2(1 — l;—3y) 0, (6.7,6)
' 2

The servo tab thus in effect reduces the value of b, by the factor

(1 —{)3;/).
b,

SPRING TABS

The effect of the “speed-squared law’’ on control forces at high speeds has
led to the development of the “spring tab.” The effect of this device is to
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Rudder hinge line

Tab hinge
line

Control rod
F1a. 6.27 Spring tab applied to a rudder.

Torsion bar

mitigate the influence of speed. Figure 6.27 shows the principle. The system
functions as follows. When a force is applied through the control rod to the
control lever, the latter rotates through some angle 6. The control surface
would rotate through the same angle, and the tab not move at all, if the
control lever were rigidly connected to the surface. However, this is not so,
and the torsion bar twists through some angle ¢. The surface displacement is
then 6 = 6 — ¢. The movement of the control lever relative to the surface
(angle &), causes the tab link to move and deflect the tab, just as though it
were a geared tab. Now with all other factors equal, an increase in speed will
require an increase in the control-rod load to hold the same surface angle.
But an increase in this force introduces extra twist into the torsion bar, and
hence increases the tab deflection. Thus, as the speed increases, an increasing
proportion of the hinge moment is balanced by the tab, and a decreasing
proportion by the pilot or control system. In effect, the system behaves like
a geared servo tab, the gearing of which increases with speed.

SERVO TABS

When the pilot’s control force acts only to deflect the tab, and not the
main surface, it is designated a servo tab. This result is attained if the torsion
spring of Fig. 6.27 is replaced by a free hinge. The control lever then becomes
an idler and the force in the control rod is simply the reaction to the tab
hinge moment, which is of course relatively small. The angle through which
the control surface deflects is then governed by the kinematies of the linkage,
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and the equilibrium of aerodynamic and control rod moments about the
main surface hinge.

Both spring tabs and servo tabs are effective devices for reducing control
forces on large high-speed airplanes. However, both add an additional
degree of freedom to the control system dynamics, and this is a potential
source of trouble due to vibration or flutter.

6.8 CONTROL FORCE TO TRIM

One of the important handling characteristics of an airplane is the force
required of the pilot to hold the elevator at the angle required for trim, and
the manner in which this force varies with speed. If friction in the control
system be neglected, the stick force is simply related to the elevator hinge
moment. The hinge moment itself, as can be deduced from the definition of
C,,. is roughly proportional to the square of the speed, and the cube of the
airplane size. Large high-speed airplanes therefore have serious control
problems, since the forces required may be too large for a human pilot to
supply. Much development has gone into attempts to arrive at purely
aerodynamic solutions to this difficulty. The devices employed include
various forms of nose balance, and the use of geared and spring tabs. Closely
balanced controls have experienced difficulties because of the sensitivity of
the hinge moment to such factors as nose shape and gap, which are inevitably
subject to variations in manufacture.

Another approach is to relieve the pilot of some or all of the aerodynamie
load through the use of power controls. These may be designed so that the
pilot supplies a fixed proportion of the control force, the power system
supplying the remainder. A system of this kind is illustrated in Fig. 114,
With such “ratio”-type controls, the feel has the same character as when
power is absent, i.e. the stick forces vary with speed, and in maneuvers, in
the same way. Alternatively, the power controls may be irreversible, in
that none of the aerodynamic load is carried directly to the pilot. Such
gystems are fitted with devices that produce a synthetic feel at the stick.
The stick-force characteristics can then be made virtually whatever the
designer wishes. Other classes of control system provide the pilot with power
amplification rather than force amplification, i.e. the power system acts so
as to increase the control deflection above that which would follow from the
unpowered kinematics. This has the same net effect as the ratio-type control,
however, since a greater mechanical advantage can then be supplied to the
pilot than would be possible without the power boost. A detailed discussion
of a variety of control concepts and mechanisms is given by Kolk (ref. 6.11),
to which the student is recommended.
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P,s

H,,3,

j/rie/
- e—— \______—&
Control-system ~
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[

Fie. 6.28 Schematic diagram of an elevator control system.

Figure 6.28 is a schematic representation of a reversible control system.
The box denoted “control system linkage’ represents any assemblage of
levers, rods, pulleys, cables, and power-boost elements that comprise a
general control system. We assume that the elements of the linkage and the
structure to which it is attached are ideally rigid, so that no strain energy is
stored in them. We also neglect friction, and assume that the movement of
the control is slow enough that the automatic power elements have nearly
zero error (e.g. the link 4B in Fig. 11.4 does not rotate appreciably). The
system then has one degree of freedom. P is the force applied by the pilot,
(positive to the rear) s is the displacement of the hand grip, and the work
done by the power boost system is W,. Considering a small quasistatic
displacement from equilibrium (i.e. no kinetic energy appears in the control
system), conservation of energy gives

Pds - dW, 4+ H,dj, =0 (6.8,1)
aw, dé
P=-2"?v_.""—+°Q
or ds ds °

Now the nature of ratio or power boost controls is such that dW,[ds is
proportional to P or H,. Hence we can write

P= (G, — Gy)H, (6.8,2)
dé, .
where G, = — T >0, the elevator gearing (rad/ft)
_aW,jds

and ad, 7 the boost gearing (ft1)

€
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In the example of Fig. 11.4, 0 is zero in a steady state, and clearly the work
done by the hydraulic system is dW, = const X J ds, where the constant
derives from the various lever ratios; and J = const X H,. Hence dW,[ds =
const X H,. The latter constant, easily found from the geometry, is G,. Finally,
we write

P=GH, (6.8,3)

where G = G; — G,. For fixed G, i.e. for a given movement of the control
surface to result from a given displacement of the pilot’s control, then the
introduction of power boost is seen to reduce G and hence P. G may be
designed to be constant over the whole range of §,, or it may, by the use of
special linkages and power systems, be made variable in almost any desired
manner.

Introduction of the hinge-moment coefficient gives the expression for P as

P = GC,8,¢1pV? (6.8,4)

and the variation of P with flight speed depends on both V2 and on how C,,
varies with speed.
The value of C,, at trim for arbitrary tab angle is given by

Che = O, + OM Orim + D90, + byd, (6.8,5)
From (6.7,1) we see that

etrim

Cre = b3(8; — 6y, . ) (6.8,6)

trim
i.e. the hinge moment is zero when 6, =4, . as expected, and linearly
proportional to the difference. From (6.7,2) then the hinge moment is

Ib ,
Ch, = byd; + G, + Im 2 (O Or, — bGL)——2<h h)Crn (6.8,7)

Except at hypervelocities, the lift equals the weight in horizontal flight, so

that
w

oV*

where w = W/8, the “wing loading.”” When (6.8,7 and 8) are substituted
into (6.8,4) the result obtained is

Crim = (6.8,8)

P = A + BpV? (6.8,9)
where

A= —GS¢

88

2(h—h)

B— [b36 + Oy, + ™ (¢, Cr, — bgoLa)]
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F16. 6.29 Example of low-speed control force.

The typical parabolic variation of P with V when the aerodynamic
coefficients are all constant, is shown in Fig. 6.29. The following conclusions
may be drawn.

1.

2.

Other things remaining equal, P ¢ 8,é,, i.e. to the cube of the airplane
size. This indicates a very rapid increase in stick forces with size.

P is directly proportional to the gearing G.

. The C.G. position only affects the constant term (apart from a second-

order influence on C,,/). A forward movement of the C.G. produces an
upward translation of the curve.

. The weight of the airplane enters only through the wing loading, a

quantity that tends to be constant for airplanes serving a given function,
regardless of weight. An increase in wing loading has the same effect
as a forward shift of the C.G.

. The part of P that varies with pV? decreases with height, and increases

as the speed squnared.

. Of the terms contained in B, none can be said in general to be negligible.

All of them are “‘built-in’’ econstants except for d,.

. The effect of the trim tab is to change the coefficient of }p¥?, and hence

the curvature of the parabola in Fig. 6.29. Thus it controls the intercept
of the curve with the ¥ axis. This intercept is denoted Viy; it is the
speed for zero stick force.
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6.9 CONTROL FORCE GRADIENT

It was pointed out in Sec. 6.7 how the trim tabs can be used to reduce the
stick force to zero. A significant handling characteristic is the gradient of P
with ¥ at P = 0. The manner in which this changes as the C.G. is moved aft
is illustrated in Fig. 6.30. The trim tab is assumed to be set so as to keep Vi
the same. The gradient dP/dV is seen to decrease in magnitude as the C.G.

P
A~]1=h1
A~h>h~ 0 Virim v

F1c. 6.30 Effect of C.G. location on control-force gradient at fixed trim speed.

moves backward. When it is at the control-free neutral point, 4 = 0 for
aircraft with or without tails, and, under the stated conditions, the P-V
graph becomes a straight line lying on the V axis. This is an important
characteristic of the control-free N.P.; i.e. when the C.G. is at that point, no
force is required to change the trim speed.

A quantitative analysis of the control-force gradient follows.

The force is given by (6.8,9). From it we obtain the derivative

P
9L _ By
v P

At the speed Vigim, P = 0, and B = —A[4pV?%,,,, whence

P 24

i (6.9,1)
ov Vtrim

A is given following (6.8,9). Substituting the value into (6.9,1) we get

9% _ oq55, % Y b — ) (6.9,2)
v A7,

trim
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From (6.9,2) we deduce the following:

1. The control-force gradient is proportional to S,¢,; i.e. to the cube of
airplane size.

2. Tt is inversely proportional to the trim speed; ie. it increases with
decreasing speed. This effect is also evident in Fig. 6.29.

3. It is directly proportional to wing loading.

4. Tt is independent of height for a given true speed, but decreases with
height for a fixed V.

5. Tt is directly proportional to the control-free static margin.

Thus, in the absence of compressibility, the elevator control will be “heaviest’’
at sea-level, low-speed, forward C.G. and maximum weight.

6.10 MANEUVERABILITY—ELEVATOR ANGLE AND
CONTROL FORCE PER g

In this section we investigate the elevator angle and control force required
to hold a vehicle in a steady pull-up with load factor} » (Fig. 6.31). The
concepts discussed here were introduced by 8. B. Gates, ref. 6.12. The flight-
path tangent is horizontal at the point under analysis, and hence the net
normal force is L — W = (n — 1)W vertically upward. The normal
acceleration is therefore (n — 1)g.

When the vehicle is in straight horizontal flight at the same speed and
altitude, the elevator angle and control force to trim are §, and P, respectively.
When in the pull-up, these are changed to J, + Ad, and P + AP. The ratios
Ad,/(n — 1) and AP/(n — 1) are known, respectively, as the elevator angle per
g, and the control force per g. These two quantities provide a measure of the
maneuverability of the vehicle; the smaller they are, the more maneuverable
it is.

The angular velocity of the airplane is fixed by the speed and normal
acceleration (Fig. 6.31). (0 — 1)g

q - (6.10,1)
As a consequence of this angular velocity, the field of the relative air flow
past the airplane is curved. It is as though the machine were attached to the
end of a whirling arm pivoted at O. This curvature of the flow field alters the
pressure distribution and the aerodynamic forces from their values in trans-
lational flight. The change is large enough that it must be taken into account
in the equations deseribing the motion.

1 The load factor is the ratio of lift to weight, n = L/W. It is unity in straight
horizontal flight.
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0o

F16¢. 6.31 Airplane in a pull-up.

We assume that ¢ and the increments Aa, Ad, ete. between the rectilinear
and curved flight conditions are small, so that the increments in lift and
moment may be written

AOL = OLG Aa + CLaq "I— OL,) Aae (6.]0,2)
AC, = C, Aa+ Cpd+ Cpy A3, (6.10,3)

where § = q¢/2V, Cp = 0CL/04, C,, = 00, [0] (see Sec. 5.13). The ¢
derivatives are discussed in Sec. 7.9. In this form, these equations apply to
any configuration. From (6.10,1) we get

i=t—15
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which is more conveniently expressed in terms of O and u (see Table 5.1),
ie.

y,] OW

§d=(n—1)— (6.10,4)

Since the curved flight condition is also assumed to be steady, i.e. without
angular acceleration, then AC,, = 0. Finally, we can relate AC}, to n thus:

nW—Ww
1oV
Equations (6.10,2 and 3) therefore become

AC, = = (n — 1)C0y (6.10,5)

(n — 1)Cp = Cp, Ao + (n — 1)0LGC% + O, A,
773

0=0,, A0+ (n— 1)0,,,q%’£ + C,.s A6,
12

which are readily solved for Ax and Ad, to yield the elevator angle per g

A_éel - _ %W[Cma - 21 (C1Cm, —C Laom,)] (@)

n— H (6.10,6)
and Ao = i(CW - CL,, Gw Crs 2 ) ®)

n—1 C L, 2u n—1

where A is given by (6.4,13). As has been shown in Sec. 6.4 A does not depend
on C.G. position, hence the variation of Ad,/(n — 1) with % is provided by the
terms in the numerator. Writing ¢,, = Oy (b — k,) (6.10,6a) becomes

Ad, CwCr (2u—Cp)

C,.
= — 2 h—h, +—"— 6.10,7
n—1 2uA ( +2‘u—0 ) ( )

The derivatives €y, and C,, both in general vary with %, the former linearly,
the latter quadratlcally, (see Sec. 7.9). Thus (6.10,7), although it appears to be
linear in A, is not exactly so. For airplanes with tails, C7 can usually be
neglected altogether when compared with 2y, and the variation of C,, with
h is slight. The equation is then very nearly linear with 2, as illustrated in
Fig. 6.32. For tailless airplanes, the variation may show more curvature.
The point where Ad,/(n — 1) is zero is called the control-fixred maneuver point,
and is denoted by h,,, as shown. From (6.10,7) we see that

C,. (k
by = by — _ OnglPm) (6.10,8)
2p — Cp, (hy,)
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Fic. 6.32 Elevator angle per g.

where C,, (k,,) and Cy, (k,,) are the values of these two derivatives evaluated
for h = h,,. When C,, and Cp_ can be assumed to be independent of h,
(6.10,7) reduces to

Aé, OwCr,(2n — Cy)

= — a h—h 6.10,9
— T (b — h,,) (6.10,9)

The difference {(k,, — %) is known as the control-fixed manewver margin.

CONTROL FORCE PER g
From (6.8,4) we get the incremental control force
AP = GS,LpV? AC,, (6.10,10)

C,, is given for rectilinear flight by (6.5,2). Since it too will in general be
influenced by ¢, we write for the incremental value (Ad; = 0)

AC, = Cp, Do+ Cr g + b, As, (6.10,11)
The derivative C), is discussed in Sec. 7.9. Using (6.10,4) and (6.10,6b),
© (6.10,11) is readlly expanded to give
Ad, CrCre,
- 1( 2 Cyr )

A% _ w134 — 0,10, + G, O,
(6.10,12)

n—1 2‘uCL
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From (6.6,4) we note that the last parenthetical factor is sz},a/OLa or

b,0' [a. For Ad, we use the approximation (6.10,9) in the interest of simplicity
and the result for AC,, after some algebraic reduction is

AC, Oy a'b,
A% _ w9, o yh -, 6.10,13
o= = e — 00— ) (6.10,13)
, A /C,, G,
where B, = h, + _( PR ) (6.10,14)
a'b2 OL 2‘11, - OL

In keeping with earlier nomenclature, k,, is the control-free manewver point
and (h, — k) is the corresponding margin. On noting that Cp1pV? is the
wing loading w, we find the control force per ¢ is given by

AP _ — 68,50 %0 @u—Cr)h—H,)  (6.10,15)
n—1 2ul ¢

Q=

Note that this result applies to both tailed and tailless aircraft provided that

the appropriate derivatives are used. The following conclusions may be
drawn. from (6.10,15).

1. The control force per g increases linearly from zero as the C.G. is moved
forward from the control-free maneuver point, and reverses sign for

bo> ko,
(9
2
3
8
e
k=
o
(5]
1
<&
h’n\ h'm
[o) . h‘ .
~o C.G. position
~
Control-free neutral point— Control-free
point of zero gradient of maneuver point—
control force at point of zera control
hands-off speed force per g

Fra. 6.33 Control force per g.
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2. It is directly proportional to the wing loading. High wing loading
produces “heavier’’ controls.

3. For similar aircraft of different size but equal wing loading, ¢ o S,é,;
i.e. to the cube of the linear size.

4. Neither O, nor V enters the expression for @ explicitly. Thus, apart
from M and Reynolds number effects, ¢ is independent of speed.

5. The factor y which appears in (6.10,14) causes the separation of the
control-free neutral and maneuver points to vary with altitude, size,
and wing loading, in the same manner as the interval (k,, — 5,).

Figure 6.33 shows a typical variation of @ with C.G. position. The state-
ment made above that the control force per ¢ is “reversed’” when h > k;,
must be interpreted correctly. In the first place this does not necessarily mean
a reversal of control movement per g, for this is governed by the elevator
angle per g. If k,, < h < h,,, then there would be reversal of @ without
reversal of control movement. In the second place, the analysis given applies
only to the steady state at load factor #, and throws no light whatsoever on
the transition between unaccelerated flight and the pull-up condition. No
matter what the value of &, the initial control force and movement required
to start the maneuver will be in the normal direction (backward for a pull-
up), although one or both of them may have to be reversed before the final
steady state is reached.
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CHAPTER 7

7.1 BOB WEIGHTS AND SPRINGS

The control-force characteristics of manual-control systems can be
modified by the introduction of weights and springs, as illustrated sche-
matically in Fig. 7.1. When a spring, or bungee, is used as in Fig. 7.15, it is

P P
Control column—]
b b
2 T
Weight @ AMAAMAN\AAA

\ % Spring \ —_f

[
nW f
(@ ' @®

L ———E——— L ———
Fiec. 7.1 Bob weight and spring. (a) Bob weight. (b) Spring.
244
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usually so designed that it exerts a nearly constant force on the control
colamn. Thus both weight and spring require an additive stick force AP to
maintain equilibrium. These forces are

AP = nW%f for the weight

AP =T z for the spring
where n = 1 for rectilinear flight, and is given by (6.10,4) for a pull-up.

EFFECT UPON CONTROL FORCE TO TRIM AND h,

The added constant term in the control force will produce a change in the
characteristic as shown in Fig. 7.2. The figure illustrates the case where the

P

AP

Original constant
term

3] 14

No weight or spring

With weight or spring

Fic. 7.2 Effect of bob weight and spring on the control-force characteristic. The trim
tab is set to trim at the same speed in both cases.

trim tab is set to produce the same trim speed as when the AP is absent.
The parabolic part of the variation is different for the two cases (see 6.8,9)
because of the altered trim-tab setting. It is clear from the figure that the
net result of adding the AP and moving the tab is to produce a steeper
gradient at the given trim speed. Now the gradient has been shown in See.
6.9 to depend on the control-free static margin (h;, — h). Thus the increased
gradient corresponds to an apparent backward shift of the control-free neutral
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point. The same conclusion is reached by consideration of the constant term
of (6.8,9), which is proportional to (%, — k). The apparent shift of the
neutral point may be calculated directly from it, i.e.

’
AP = GScw “7;’3 AX,
or
A AP
a'b, G8 ¢ w
The term “apparent shift’’ of the N.P. is used above because the N.P.
location depends on O';:‘a and 0;,,‘1, and the latter are not influenced at all by

AP. This is readily demonstrated. When the pilot exerts no additional force
on the control, the hinge moment is given by

AP

AR, =

n

(7.L,1)

m = Cheo + Ch,“ —I— bgée + b36t (7.1,2)
and hence the free elevator angle becomes
e = 1(—5;— — G, — Ch— bsét) (1.1,3)
free b2 G%_pv Seée (] (3

Equation (7.1,3) shows that the presence of AP at constant speed simply
changes §, by a constant. Consequently, substitution of (7.1,3) into (6.6,2)
leads to the same values of C},a and C;"a as given previously by (6.6,5).

Hence from (6.6,11a) A, is unchanged.

EFFECT UPON STICK FORCE PER g AND h;,

When AP is provided by a spring, then it is not dependent in any way on
acceleration of the airplane. Hence the addition of a spring does not alter
the stick force per g or the maneuver point. The bob weight, on the other hand,
is affected by airplane acceleration. At load factor », the effective weight of
the bob is increased from W to nW, and hence induces an additional stick
force of (n — 1) AP. The stick force per g is thereby increased by the amount

(n — l)AP=

n —

AQ = AP

Since @ is proportional to k,, — h, this increase moves the maneuver point
aft. Consideration of (6.10,15) shows this shift to be

AW, = AP 2ulA
GS cow a'by(2u — Cp)

(1.1,4)
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This movement of the maneuver point however, unlike that of the N.P., is
real, since the maneuver point is defined by the control force per g.

7.2 INFLUENCE OF HIGH-LIFT DEVICES ON TRIM AND
PITCH STIFFNESS

Conventional airplanes utilize a wide range of aerodynamic devices for
increasing Oy . These include various forms of trailing edge elements
(plain flaps, spht flaps, slotted flaps, etc.), leading edge elements (drooped
nose, slats, slots, etc.) and purely fluid mechanical solutions such as boundary
layer control by blowing. Each of these has its own characteristic effects on
the lift and pitching moment curves, and it is not feasible to go into them in
depth here. The specific changes that result from the “configuration-type’
devices, i.e. flaps, slots, etc., can always be incorporated by making the
appropriate changes to Cma‘cm and Cy , in (6.3,4) and following through the

consequences. Consider for example the common case of part-span trailing
edge flaps on a conventional tailed airplane. The main aerodynamic effects
of such flaps are illustrated in Fig. 7.3.1

1. Their deflection distorts the shape of the spanwise distribution of lift
on the wing, increasing the vorticity behind the flap tips, as in (a).

2. They have the same effect locally as an increase in the wing-section
camber, i.e. a negative increment in C,,  and a positive increment
inCp .

3. The downwash at the tail is increased ; both ¢y and de/du will in general
change.

The change in wing-body C,, is obtained from (6.3,4) as
aAc, ,=AC, . +ACL (h—h, ) (7.2,1)

The change in airplane Cp is
8,
AOL = ACwa b atg A€ (7.2,2)

and the change in tail pitching moment is
AC,, = a,V g Ae - (7.2,3)
When the increments AC,,. ~ and ACy,_, are constant with o, then the only
8.C. gy w

1 Note that o is still the angle of attack of the zero-lift line of the basic configuration,
and that the lift with flap deflected is not zero at zero a.



Spanwise loading —flaps down

/ —no flaps Vorticity in wake
/" behind flap tips

(@)

Ae  Tail
Cr €
5>0
3[ =0
>0
/ Ae 6f = 0
TRy « o
(o) (@
Cn
[4] o o o
(e)

Fie. 7.3 Effect of part-span flaps. (@) Change of lift distribution and vorticity. (b)
Changes in forces and moments. (¢) Change in Cj. (d) Change in downwash. (¢) Change
in C,.
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effect on €7, and C,, is that of O¢/du, and from (6.3,31) and (6.3,34a) these
are

S, . Oe
Aa = AC; = —a,~tA = 7.2,4)
@ L, “tS P ( )
ACma =(h—h,, )0+ afy Aazs (7.2,5)
o

The net result on the O and C,, curves is obviously very much configuration
dependent. If the C,, — « relation were as in Fig. 7.3¢, then the trim change
would be very large, from a; at 6, = 0 to «, after flap deflection. The (', at
oy is much larger than at «, and hence if the flap operation is to take place
without change of trim speed, a down-elevator deflection would be needed
to reduce oy, to oy (Fig. 7.3¢). This would result in a nose-down rotation
of the aircraft.

7.3 INFLUENCE OF THE PROPULSIVE SYSTEM ON TRIM
AND PITCH STIFFNESS

The influence of the propulsive system upon trim and stability may be
both important and complex. The range of conditions to be considered in
this connection is extremely wide. In the first place, there are several types
of propulsive units in common use—reciprocating-engine-driven propellers,
turbojets, propeller-jets, and rockets. In the second place, the operating
condition may be anything from hovering to reentry. Finally, the variations
in engine-plus-vehicle geometry are very great. The analyst may have to deal
with such widely divergent cases as a high-aspect-ratio straight-winged
airplane with six wing-mounted counterrotating propellers or a low-aspect-
ratio delta with buried jet engines. Owing to its complexity, a definite and
comprehensive treatment of propulsive system influences on stability is not
possible. There does not exist sufficient theoretical or empirical information
to enable reliable predictions to be made under all the above-mentioned
conditions. However, certain of the major effects of propellers and propulsive
jets are sufficiently well understood to make it worth while to discuss them,
and this is done in the following.

In a purely formal sense, of course, it is only necessary to add the appropri-
ate direct effects, Om% and 0C,, [0« in (6.3,34 and 35), together with the
indirect effects on the various wing-body and tail coefficients in order to
calculate all the results with power on.

When ecalculating the trim curves (i.e. elevator angle, tab angle, and
control force to trim) the thrust must be that required to maintain equilib-
rium at the condition of speed and angle of climb being investigated (see
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Sec. 6.4). For example (see Fig. 6.1), for flight at speeds below about M = 3
(see Sec. 5.9) and assuming that a; < 1

Cp=Cp+ Cpsiny (@) (1.3.1)
Oy cosy = O + Crop ®
Solving for Oy, we get
Cp = Cp +Cptany (7.3,2)

1 —aptany

Except for very steep climb angles, aptany <1, and we may write

approximately,

Let the thrust line be offset by a distance zp from the C.G. (as in Fig. 7.5)
and neglecting for the moment all other thrust contributions to the pitching

Cm
Climbing flight
Horizontal
flight, y=0
Cr=0,
() gliding flight
Cm
\\\ o
(0] \
T'=const
P = const
T=0,
gliding flight

®)

Fic. 7.4 Effect of direct thrust moment on C,, curves. (a) Constant . (b) Constant
thrust and power.
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moment but Tz, we have

Cp, =Cp2

c

= (Cp + Oy tan )2 (1.3,4)
é
Now let Cp, be given by the parabolic polar (6.1,2), so that
Cm, = (Cp_+ KC + Oy, tan y) 2 (7.3,5)
min c

Strictly speaking, the values of Cp and Cp, in (7.3,4 and 5) are those for
trimmed flight, i.e. with §, = d, . For the purposes of this discussion of

€trim

propulsion effects we shall neglect the effects of §, on Cp and Cz, and assume
that the values in (7.3,5) are those corresponding to §, = 0. The addition of
this propulsive effect to the C,, curve for rectilinear gliding flight in the
absence of aeroelastic and compressibility effects might then appear as in
Fig. 7.4a. We note that the gradient —dC,,/dC} for any value of y > 0 is less
than for unpowered flight. If dC, [dC; is used uncritically as a criterion for
stability [as in (6.3,21)] an enfirely erroneous conclusion may be drawn from
such curves.

(i) Within the assumptions made above, the thrust moment Tz, is
independent of o, hence 9C,, [0x = 0 and there is no change in the
N.P. from that for unpowered flight.

(if) A true analysis of stability when both speed and « are changing
requires that the propulsive system controls (e.g. the throttle) be
kept fized, whereas each point on the curves of Fig. 7.4a corresponds
to a different throttle setting. This parallels exactly the argument of
Sec. 6.4 concerning the elevator trim slope. For in fact, under the
stated conditions, the C,, — €, curve is transformed into a curve of

O¢,pimVS- V by using therelationsd,  —=—C,,(«)/C,,, and O, =W/[}pV?S.

The slopes of C,, vs. Cp and 4, vs. V will vanish together.

rim

If a graph of C,, vs. O, be prepared for fixed throttle, then y will be a
variable along it, and its gradient dC,, [dC} is an index of stability, as shown
in Chapter 9. The two idealized cases of constant thrust and constant power
are of interest. If the thrust at fixed throttle does not change with speed,
then we easily find

T 2
C, ==0,2 a
N TP (@
and
(7.3,6)
di
_Oﬂ — T z )

i, W
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If the power P is invariant, instead of the thrust, then 7' = P[V and we

find
3/2
m [
=W \/ (e)

whence % = P % oY% (d)

a0, 2WN2wé *
Thus in the constant thrust case, the power-off C,, — Cj, graph simply has
its slope changed by the addition of thrust, and in the constant power case
the shape is changed as well. The form of these changes is illustrated in Fig.
7.4b and it is evident by comparison with 7.4 that the behavior of dC,,[dC,
is quite different in these two situations.

(7.3,6)

THE INFLUENCE OF RUNNING PROPELLERS

The forces on a single propeller are illustrated in Fig. 7.5, where o, is the
angle of attack of the local flow at the propeller. It is most convenient to
resolve the resultant into the two components T along the axis, and N, in

| = |
ANy
| —Propeller disk / Airplane C.G.
T \f 2p

/aW \Thrust line T

F1a. 7.5 Forces on a propeller.

the plane of the propeller. The moment asociated with 7 has already been
treated above, and does not affect O’ma. That due to NV, is

AC, = Oy 225 (7.3,7)

*é¢ 8

where Oy = N,[}pV?8, and S, is the propeller disk area. To get the total
AC,, for several propellers, increments such as (7.3,7) must be calculated for
each and summed. Theory shows (ref. 7.4) that for small angles Cy is
proportional to «,. Hence N, contributes to both C,, ~and 9C,, [0u. The

latter i
arker s 30, 8,00y dx,
de S ¢ Oa, Ou

(7.3.,8)
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If the propeller were situated far from the flow field of the wing, then du, [0«
would be unity. However, for the common case of wing-mounted tractor
propellers with the propeller plane close to the wing, there is a strong upwash
€, at the propeller. Thus

%, = a + €, 4 const ()
and % -1 @, ®) (7.3,9)
Oa O

where the constant in (7.3,9a) is the angle of attack of the propeller axis
relative to the airplane zero-lift line. Finally,

aomp . L& xp(l ae,,) aCNﬂ (7 3 10)

90 S ¢ 20) a,

INCREASE OF WING LIFT

When a propeller is located ahead of a wing, the high-velocity slipstream
causes a distortion of the lift distribution, and an increase in the total lift.
This is a principal mechanism in obtaining high lift on so-called deflected
slipstream STOL airplanes. For accurate results that allow for the details
of wing and flap geometry powered-model testing is needed. However, for
some cases there are available theoretical results (refs. 7.5 to 7.7) suitable for
estimates. Both theory and experiment show that the lift increment tends
to be linear in « for constant Cp, and hence has the effect of increasing a,,,
the lift-curve slope for the wing-body combination. From (6.3,36) this is
seen to reduce the effect of the tail on the N.P. location, and can result in a
decrease of pitch stiffness.

EFFECTS ON THE TAIL

The propeller slipstream can affect the tail principally in two ways.
(1) Depending on how much if any of the tail lies in it, the effective values
of a, and a, will experience some increase. (2) The downwash values ¢, and
J¢/0a may be appreciably altered in any case. Methods of estimating these
effects are at best uncertain, and powered-model testing is needed to get
results with engineering precision for most new configurations. However,
some empirical methods (refs. 7.8 to 7.10) are available that are suitable for
some cases.

EXAMPLE OF PROPELLER EFFECT

Figure 7.6 shows the large effects of thrust on a deflected-slipstream STOL
configuration. The data presented are from wind-tunnel tests reported in
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Fia. 7.6 Longitudinal characteristics of a deflected-slipstream STOL configuration

(from ref. 7.11). (a) O, vs. a. (b) Cf vs. Cp. (¢) O, vs. .

ref. 7.11. The configuration has two tractor propellers, full-span double
slotted flaps deflected 45°, and a high tail. The drag coefficient C7, plotted on
Fig. 7.6b is the net streamwise force, and includes the thrust as a negative
drag. The effect of the slipstreams on the downwash was large. For the case
shown, Oe¢/0u increased by 1009, between Cp = 0 and 1.25. At the same
time Cp, increased from .068 to .130. A large decrease in static margin at

o = 0 due to adding thrust is found from the data:

C, 025
Cp=0 : K,=——2¢=__— 37
Cp, 068
C, 0120
Cp=125: K,=—-2e—="___ — 09
0, 130

This represents a forward movement of the N.P. of 289, ¢.

THE INFLUENCE OF JET ENGINES

The direct thrust moment of jet engines is treated as shown at the
beginning of this section, the constant-thrust idealization given in (7.3,6)
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often being adequate. In addition, however, there is a normal forece on jet
engines as well as on propellers.

Jet Normal Force. The air which passes through a propulsive duct
experiences, in general, changes in both the direction and magnitude of its
velocity. The change in magnitude is the principal source of the thrust, and
the direction change entails a force normal to the thrust line. The magnitude
and line of action of this force can be found from momentum considerations.
Let the mass flow through the duct be =’ slugs per second, and the velocity

Engine air

intake\

—

F1e. 7.7 Momentum change of engine air.

vectors at the inlet and outlet be V; and V;. Application of the momentum
principle then shows that the reaction on the airplane of the air flowing
through the duct is

F=—m'(V,—V)+F

where ¥’ is the resultant of the pressure forces acting across the inlet and
outlet areas. For the present purpose, F' may be neglected, since it is approxi-
mately in the direction of the thrust 7'. The component of F normal to the
thrust line is then found as in Fig. 7.7. It acts.through the intersection of
¥, and V;. The magnitude is given by

Nj =3 ml VZ Sin 0
or, for small angles,
N, =m'V0 (7.3,11)

In order to use this relation, both ¥V, and 6 are required. It is assumed that
V, has that direction which the flow would take in the absence of the engine;
ie. 0 equals the angle of attack of the thrust line «; plus the upwash angle
due to wing induction e;.

0=o;+ ¢ (7.3,12)
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Tt is further assumed that the magnitude V, is determined by the mass flow
and inlet area; thus

Vv, =2 (7.3,13)
A

where 4, is the inlet area, and p, the density in the inlet. We then get for
N; the expression

N

ml2
i= 1 (‘xj + €)

iPi
The corresponding pitching-moment coefficient is

ml2

AC,, =

(x5 + €;) (7.3,14)

zpz 2PV286 "
Since the pitching moment given by (7.3,14) varies with « at constant
thrust, then there is a change in ¢ mg given by

’2

1 oz
AC, =2 (1 gt 73,15
" Aipi%pVZSé[’”’( +a )+ a] (7319

The quantities m’ and p, can be determined from the engine performance
data, and for subsonic flow, Oe;/0u is the same as the value de, /0« used for
propellers. 0x;/0a can be calculated from the geometry.

Jet [nduced Inflow. A spreading jet entrains the air that surrounds it, as
illustrated in Fig. 7.8, thereby inducing a flow toward the jet axis. If a
tailplane is placed in the induced flow field, the angle of attack will be
modified by this inflow. A theory of this phenomenon which allows for the
curvature of the jet due to angle of attack has been formulated by Ribner

Fie. 7.8 Jet-induced inflow.
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(vef. 7.2). This inflow at the tail may vary with « sufficiently to reduce the
stability by a significant amount.

7.4 EFFECT OF STRUCTURAL FLEXIBILITY

Many vehicles when flying near their maximum speed are subject to
important aeroelastic phenomena. Broadly speaking, we may define these
as the feedback effects upon the aerodynamic forces of changes in the
shape of the airframe caused by the aerodynamic forces. No real structure
is ideally rigid, and aircraft are no exception. Indeed the structures of flight
vehicles are very flexible when compared with bridges, buildings, and
earthbound machines. This flexibility is an inevitable characteristic of
structures designed to be as light as possible. The aeroelastic phenomena
which result may be subdivided under the headings static and dynamie.
The static cases are those in which we have steady-state distortions associated
with steady loads. Examples are aileron reversal, wing divergence, and the
reduction of longitudinal stability. Dynamic cases include buffeting and
flutter. In these the time dependence is an essential element. From the
practical design point of view, the elastic behavior of the airplane affects all
three of its basic characteristics: namely performance, stability, and
structural integrity. This subject occupies a well-established position as a
separate branch of aeronautical engineering. For further information the
reader is referred to one of the books devoted to it (refs. 5.11 and 5.12).

In this section we take up by way of example a relatively simple aero-
elastic effect; namely, the influence of fuselage flexibility on longitudinal
stiffness and control. Assume that the tail load L, bends the fuselage so that
the tail rotates through the angle Ao, = —kL, (Fig. 7.9) while the wing
angle of attack remains unaltered. The net angle of attack of the tail will
then be

oy = o,y — € + %, — kL,

L

=g Aat = = kLt

m f

G

Fi1e. 7.9 Tail rotation due to fuselage bending.
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and the tail lift coefficient at S, = 0 will be
Cp, = o, = a0, — € + i, — kL)
But L, = Cp }pV?S,, whence
OL, = ay(ety, — € + 1, — kCp 3pV?8,) (14,1)
Solving for C,, we get
- @

1 + ka,S;3pV*
Comparison of (7.4,2) with (6.3,26) shows that the tail effectiveness has been
reduced by the factor 1/[1 + ka,(p/2)V?%8,]. The main variable in this
expression is ¥, and it is seen that the reduction is greatest at high speeds.

From (6.3,36), we find that the reduction in tail effectiveness causes the
neutral point to move forward. The shift is given by

CL‘ (o — € + %) (7.4,2)

Ah, =A% I7H(1 — ?f) (14,3)
a da
where Aa;, = a 1 1 (7.4,4)
’ ‘(1 + ka,}pVs, ) "

The elevator effectiveness is also reduced by the bending of the fuselage.
For, if we consider the case when ¢, is different from zero, then (7.4,1) becomes

Cp, = afoy, — €+ 1, — kCp 3pV?S) + 0,

13

and (7.4,2) becomes
_ ayo,, — € + %) + ad,

c
E 1+ kadpV?s,

Thus the same factor 1/(1 + ka,3pV?28,) which operates on the tail lift
slope @, also multiplies the elevator effectiveness a,.

7.5 GROUND EFFECT

At landing and take-off airplanes fly for very brief (but none the less
extremely important) time intervals close to the ground. The presence of
the ground modifies the flow past the airplane significantly, so that large
changes may take place in the trim and stability. For conventional airplanes,
the take-off and landing cases provide some of the governing design criteria.

The presence of the ground imposes a boundary condition which inhibits
the downward flow of air normally associated with the lifting action of the
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wing and tail. The reduced downwash has three main effects, being in the
usual order of importance:

(1) A reduction in ¢, the downwash angle at the tail.

(ii) An increase in the wing-body lift slope @,

(iii)) An increase in the tail lift slope a,.
The problem of calculating the stability and control near the ground then
resolves itself into estimating these three effects. When appropriate values
of de/du, a,;, and a, have been found, their use in the equations of the
foregoing sections will readily yield the required information. The most
important items to be determined are the elevator angle and stick force
required to maintain €y in level flight close to the ground. It will usually
be found that the ratio a,/a,, is decreased by the presence of the ground.
Equation (6.3,36) shows that this would tend to move the neutral point
forward. However, the reduction in Oe¢/0a is usually so great that the net
effect is a large rearward shift of the neutral point. Since the value of C,,
is only slightly affected, it turns out that the elevator angle required to
trim at Oz is much larger than in flight remote from the ground. It
commonly happens that this is a critical design condition on the elevator,
and may govern the ratio S,/S,, or the forward C.G. limit (see Sec. 7.6).

7.6 C.G. LIMITS

One of the dominant parameters of longitudinal stability and control has
been shown in Chapter 6 to be the fore-and-aft location of the C.G. The
question now arises as to what range of C.G. position is consistent with
satisfactory flying qualities. This is a critical design problem, and one of the
most important aims of stability and control analysis is to provide the
answer to it. Since aircraft always carry some disposable load (e.g. fuel,
armaments), and since they are not always loaded identically to begin with
(variations in passenger and cargo load), it is always necessary to cater for a
variation in the C.G. position. The range to be provided for is kept to a
minimum by proper location of the items of variable load, but still it often
becomes a difficult matter to keep the flying qualities acceptable over the
whole C.G. range. Sometimes the problem is not solved, and the airplane is
subjected to restrictions on the fore-and-aft distribution of its variable load
when operating at part load.

THE AFT LIMIT

The most rearward allowable location of the C.G. is determined by con-
siderations of longitudinal stability and control sensitivity. The behavior of
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Fi6. 7.10 The five control gradients.

the five principal gradients discussed in Chapter 6 are summarized in Fig.
7.10 for the case when the aerodynamic coefficients are independent of
speed. From the handling qualities point of view, none of the gradients
should be “reversed,” i.e. they should have the signs associated with low
values of 2. When the controls are reversible, this requires that kb <C h,. If
the controls are irreversible, and if the artificial feel system is suitably
designed, then the control force gradient dP/0V can be kept negative to
values of & > h,, and the rear limit can be somewhat farther back than with
reversible controls. The magnitudes of the gradients are also important. If
they are allowed to fall to very small values the vehicle will be too sensitive
to the controls. When the coefficients do not depend on speed, as assumed
for Fig. 7.10, the N.P. also gives the stability boundary (this is proved in
Chapter 9), the vehicle becoming unstable for b > &, with free controls or
h > h, with fixed controls. If the coefficients are not independent of speed,
e.g. C, = C, (M), then the C.G. boundary for stability will be different and
may be forward of the N.P. However (this is also shown in Chapter 9) the
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nature of the instability is very much dependent on whether O, is greater

or less than zero, i.e. on whether the C.G. is forward or aft of the relevant
N.P. In the former case the instability is less severe than in the latter, and
hence the N.P. still provides a good practical eriterion for stability.

By the use of automatic control systems (see Chapter 11) it is possible to
increase the natural stability of a flight vehicle. Stability augmentation
systems (SAS) are in widespread use on a variety of airplanes and rotorcraft.
If such a system is added to the longitudinal controls of an airplane, it
permits the use of more rearward C.G. positions than otherwise, but the
risk of failure must be reckoned with, for then the airplane is reduced to its
“natural’’ stability, and would still need to be manageable by a human pilot.

THE FORWARD LIMIT

As the C.G. moves forward, the stability of the airplane increases, and
larger control movements and forces are required to maneuver or change the
trim. The forward C.G. limit is therefore based on control considerations
and may be determined by any one of the following requirements:

(1) The stick force per g shall not exceed a specified value.

(ii) The stick-force gradient at trim, dP[dV, shall not exceed a specified
value.

(iii) The stick force required to land, from trim at the approach speed,
shall not exceed a specified value.

(iv) The elevator angle required to land shall not exceed maximum up
elevator.

(v) The elevator angle required to raise the nose-wheel off the ground at
take-off speed shall not exceed the maximum up elevator.

7.7 LONGITUDINAL AERODYNAMIC DERIVATIVES

The small-disturbance equations of motion given in Chapter 5 used the
technique of expressing aerodynamic forces and moments in terms of the
aerodynamic derivatives. The remainder of this chapter is devoted to a
discussion of these derivatives. Some of the main aerodynamic derivatives
have already been discussed in some detail in Chapter 6, i.e. Oy , C,, , Che,»
Crs Omg and G .. Of the remaining « derivatives, Cp is immediately
obtained from (6.1,2) as

Cp,=2KC.Cp, (7.7,1)

where Uy, is the value of Oy, in the reference equilibrium flight condition.
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The thrust derivative C'y is not readily predicted by theory, and would
usually be small enough to neglect.

7.8 THE V DERIVATIVES (Cz,, Cp,» C,0 Co» Caoy)

This group of derivatives gives the changes that occur in the coefficient
when the flight speed V changes, while the other variables, i.e. «, ¢, 25, J,,
remain constant. It is important to remember that the propulsion controls
(e.g. the throttle) are also kept fixed.

THE DERIVATIVE Cp,

The derivative Cp depends on the type of propulsion system, specifically
on how 7" varies with V at fixed throttle. In general it is given by
oCp oC . o T
Op =—5| =V,=2£| =V, =
vl v | av 3p7%8 |
_ (@T[ov), 2T,
VS VS

_(@TjaV), _ 20, (7.8,1)
1pV S ¢
For constant-thrust propulsion, as for jet and rocket engines, 37/0V = 0
and | Cp,= —20y,

For constant-power propulsion, 7'V = const, whence

TdV +VdT =0

so that (a_T) = — ﬂ
ov /. v,
and CT,, = —30p, _ (7.8,2)

Note that, from (7.3,2)
c (C’ p + Oy tan y)
p o= (2127
¢ 1l —aptany /e

For piston-engine-propeller systems, the usual fixed-control case implies
fixed throttle and constant RPM. In that case the brake horsepower is
constant, and the thrust is given by

TV = nPy (7.8,3)
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where 7 = propulsive efficiency and Py is the engine shaft power. We then

have
TdV +VdT = Pgdy

or —_— = — T, 784
7). = =%+ G 5
P on
and Cp = —3C B_ (1
Ty 7.+ %pvfs(av)e
After substituting for Py from (7.8,3) we get
Cp — —30, + 0, (3’7) (7.8,5)
| 4 T, e aV

This relation is useful, since the variation of  with ¥ would normally be
known for a propeller-driven airplane.

THE DERIVATIVE Cp

In order to include all the main effects of speed changes formally, we shall
assume that the drag coefficient is a function of Mach number M, the

dynamie pressure
Dy = LpV? (7.8,6)

and the thrust coefficient, i.e.

Cp = Cp(M, p;, Op)

Then
o _y 0| _y 00| L 20p0m| 30500,
v av e oM aV apd ov | GCT aV [

Since M = V/a, where a is the speed of sound, then

oM _1 dp, aoC

~; =L=pV and V, Il =q
v o w av |~
oC oC oC
Thus Cp,=MZ=2 4 p V22 —2 7.8,7
Py oM T op, + O30, oC 7.87)

The aeroelastic effect on O, (the p; term) is not likely to be large enough to
need to be included in other than exceptional cases.
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THE DERIVATIVES Cy,, C,, Cu,

The derivations for these three derivatives are exactly the same as for
Cp, above, and the results are exactly the same as (7.8,7) except that Cp is
replaced by the appropriate coefficient.

The Mach number effect on these three derivatives can be calculated from
aerodynamic theory for both subsonic and supersonic flow. It is quite
sensitive to the shape of the wing, high-aspect ratio straight wings being
most affected by M, and highly-swept and delta wings being least affected.
An upper limit is obtained by considering two-dimensional flow. For subscnic
edges, the Prandtl-Glauert theory} and simple sweep theory combine to give
for an infinite wing of sweepback angle A

a0

Op= ———*+ — _—  McosA<1
L7 (1 — M2eos® A)

where a; is the lift-curve slope in incompressible flow. Whence
90;, _ MPcos® A
oM 1 — M?cos® A
In level flight, with L = W, M2C;, is a constant, so that M 6C;/0M varies
as 1/(1 — M2 cos? A). The theory of course breaks down at M ~ sec A where
an infinite value would be predicted, but nevertheless large values of

M 9C;/d M may be expected near that Mach number. At supersonic speeds,
two-dimensional theory for swept wings gives the result

(7.8,8)

4o cos A
(M2 cos? A — 1)%’

After differentiating with respect to M, the result obtained is again (7.8,8),
which therefore applies for infinite yawed wings at both subsonic and
supersonic speeds. The results given above derive from a linear theory that
predicts proportional changes in the pressure distribution when M is
changed—i.e. the pressure distributions remain unaltered in form, but
changed in magnitude. Hence the results for C,, and C,, would be of the same
form, i.e.

Mcos A>1

OL:

00,  M’cos® A

Moo A 7.8,9
oM 1 —M2cos®2A ™ ( )
2 2
and 90, M cos®A (7.8,10)

M 1 — M2cos®A
T A. M. Kuethe and J. D. Schetzer, Foundations of Aerodynamics, Secs. 11.6, 11.14.



266 Dynamics of atmospheric flight

The vanishing of 8C,,/6 M will hold only for truly subsonic and truly super-
sonic flows, In the transition region between them there is a very important
redistribution of pressure, such that the center of pressure on two-dimensional
wings moves from .25¢ in subsonic flow to .50¢ in supersonic flow. This
would lead to a negative 8C,/0M, possibly of large magnitude, in the
transonic range. The vagaries of transonic flow are such that test results are
the only way to get reasonably reliable results in this speed range.

No general rules can be given for the derivatives with respect to p; or Cop.
Aeroelastic analysis or wind-tunnel testing must be used to find these. By
way of example, we can calculate the contribution to 8C,,[0p, associated with
the fuselage bending treated in See. 7.4. We found there that the lift coefficient
of the tail is given by

a4y

N S — 7 7.8,11
1+ katpdSt (“wb €+ t) ( )

Oy,

The pitching moment contributed by the tail is (6.3,8)

Omt = "'VHOLt
Hence (%) = — HaO_Lt (7.8,12)
Op, Jtait op,

When (7.8,11) is differentiated with respect to p; and simplified, and the
resulting expression is substituted into (7.8,12), we obtain the result

(ain) = _omt__lcf_t_‘s_'t__ (7.8,13)
0pg Jrait 1 4 ka,p,S;

The corresponding contribution to C,, is

2p ka,S,

— 7.8,14
™y 4 ka,p,S, ( )

(Omy)tail =

All the factors in this expression are positive, except for C,, , which may be
of either sign. The contribution of the tail to C,, may therefore be either
positive or negative. The tail pitching moment is usually positive at high
speeds and negative at low speeds. Therefore its contribution to C, is
usually negative at high speeds and positive at low speeds. Since the dynamic
pressure oceurs as a multiplying factor in (7.8,14), then the aerolastic effect
on C,, goes up with speed and down with altitude.

Figure 7.6 shows the large effects of thrust coefficient on €y, O}, C,, and
values of the associated derivatives dC'z/0C, etc. can be found from data
in this form.
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7.9 THE q DERIVATIVES (Cy, C,n, G)

These derivatives represent the aerodynamic effects that accompany
rotation of the airplane about a spanwise axis through the C.G. while a
remains zero. An example of this kind of motion was treated in Sec. 6.10
(i.e. the steady pull-up). Figure 7.115 shows the general case in which the
flight path is arbitrary. This should be confrasted with the situation
illustrated in Fig. 7.11a, where ¢ = 0 while « is changing.

N

(a)

/ %
®)
F16. 7.11 (a) Motion with zero ¢, but varying «. (b) Motion with zero «, but varying q.

Both the wing and the tail are affected by the rotation, although, when
the airplane has a tail, the wing contribution to Cy_and C,, is often negligible
in comparison with that of the tail. In such cases it is common practice to
increase the tail effect by an arbitrary amount, of the order of 109, to allow
for the wing and body.

CONTRIBUTIONS OF A TAIL

As illustrated in Fig. 7.12, the main effect of ¢ on the tail is to increase its
angle of attack by (¢/,/V) radians. It is this change in o, that accounts for
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Acs 2 sin™? ‘{,—l cos (X~ )=

2l

Fic. 7.12 Effeet of pitch velocity on tail angle of attack.

the changed forces on the tail. The assumption is implicit in the following
derivations that the instantaneous forces on the tail correspond to its
instantaneous angle of attack; i.e. no account is taken of the fact that it
takes a finite time for the tail lift to build up to its steady-state value
following a sudden change in . [A method of including this refinement has
been given by Tobak (ref. 7.12).] The derivatives obtained are therefore
quasistatic.

C., OF A TALL

The change in tail lift associated with ¢ is
1
ACp, = a, Aoy = at%

and the corresponding change in total lift coefficient is

8 8, gl
AOp == ACy, =a, 1!
=g AL =4y
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It follows that the tail contribution to €y, is

AC,  ACL2V
(OLa)tail - _AL =—£=
q C
=20,V ‘ (7.9,1)

C., OF A TAIL
The increment in C,, corresponding to ACz, is

and it follows easily that

Om ot = A&" = —2a, k Vg (7.9,2)
q é

THE DERIVATIVE C,,

For a tail elevator, the change in «, produces a change in hinge moment
given by [see (6.5,1)] .
AG,, = b, %t

whence it follows that 0, = %
! q

= 2b

1

ST

CONTRIBUTIONS OF A WING

As previously remarked, on airplanes with tails the wing contributions
to the ¢ derivatives are frequently negligible. However, if the wing is highly
swept or of low aspect ratio, it may have significant values of ¢z and C,, ;
and of course, on tailless airplanes, the wing supplies the major contribution.
The ¢ derivatives of wings alone are therefore of great engineering importance.

Unfortunately, no simple formulas can be given, because of the complicated
dependence on the wing planform and the Mach number. However, the follow-
ing discussion of the physical aspects of the flow indicates how linearized
wing theory can be applied to the problem. Consider a plane lifting surface,
at zero «, with forward speed V and angular velocity ¢ about a spanwise
axis (Fig. 7.13). Each point in the wing has a velocity component, relative
to the resting atmosphere, of gz normal to the surface. This velocity dis-
tribution is shown in the figure for the central and tip chords. Now there is an
equivalent cambered wing which would have the identical distribution of
velocities normal to its surface when in rectilinear translation at speed V.
This is illustrated in Fig. 7.14a. The cross section of the curved surface S is
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F16. 7.14 The equivalent cambered wing.
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shown in (). The normal velocity distribution will be the same as in Fig. 7.13

if 0z
VEZ e or 1 z
ox ? x V
Hence 2= 19 (7.9.4)

and the cross section of 8 is a parabolic arc. In linearized wing theory, both
subsonic and supersonie, the boundary condition is the same for the original
plane wing with rotation ¢ and the equivalent curved wing in rectilinear flight.
The problem of finding the ¢ derivatives then is reduced to that of finding
the pressure distribution over the equivalent cambered wing. Because of the
form of (7.9,4), the pressures are proportional to g/V. From the pressure
distribution, Cp,, C,, , and C;, can all be calculated. The derivatives can in
prineiple also be found by experlment by testing a model of the equivalent
wing.

The values obtained by this approach are quasistatic; i.e. they are steady-
state values corresponding to « = 0 and a small constant value of ¢. This
implies that the flight path is a circle (as in Fig. 6.32), and hence that the
vortex wake is not rectilinear. Now both the linearized theory and the wind-
tunnel measurement apply to a straight wake, and to this extent are
approximate. Since the values of the derivatives obtained are in the end
applied to arbitrary flight paths, as in Fig. 7.11b, there is little point in
correcting them for the curvature of the wake.

The error involved in the application of the quasistatic derivatives to
unsteady flight is not so great as might be expected. It has been shown
that, when the flight path is a sine wave, the quasistatic derivatives apply
so long as the reduced frequency is small, i.e.

wé
k== 1
2V<

where  is the circular frequency of the pitching oscillation. If I is the
wavelength of the flight path, then

= T

o~ h

so that the condition k< 1 implies that the wavelength must be long
compared to the chord, e.g. I > 60¢ for k < .05.

DEPENDENCE ON h

Because the axis of rotation, Fig. 7.13, passes through the C.G., the
results obtained are dependent on 4. The nature of this variation is found as
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cAn

Normal velocity A
Normal velocity B

(%)
Fre. 7.15  Effect of C.G. location on Cp,, Cy, .

follows. Let the axis of rotation be at A4, Fig. 7.15, and let the associated
lift and moment be

OLJl = OLqAé; OmA = quAé (79’5)

Now let the axis of rotation be moved to B, with the change in normal
velocity distribution shown on the-figure. Since the two normal velocity
distributions differ by a constant, (the upward translation ¢¢Ah) the
difference between the two pressure distributions is that. associated with a
flat plate at angle of attack

w=—Lpap (7.9,6)
7

This-angle of attack introduces a lift increment acting at the wing aero-
dynamic center of amount

AC, =Cpa=— %AhOLa (7.9,7)

so that for axis of rotation B,

Cp,=Cr, 4—2Cy, Ahg
or ACp, = —20; Ah (7.9,8)
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i.e. Op is linear in h. The incremental moment about B is
AC,=C Lud Ak + ACy(hg — k)
=[C I, Ah —2C;, Ahlhg — )14
and AC,, = [CL — 20 (hp — h,, )1 AR (7.9,9)

whence C,, . 18 quadratic in k. From (7.9,8) and (7.9,9) by taking the limit
as Ah— 0 we get

C
?a—l? = —20, (@)
ac (7.9,10)
a}’:a =0, — 20La(h — ha,) (b)
By integrating (7.9,10)
C'1;,, = “201:“(’0 — hy) (a)
(7.9,11)

=C,,, — 20, (h — hye

The forms of C' L, and C’ are sketched on Fig. 7.15b. b, is the C.G. position
for zero C Ly % that for maximum Om , and C,, is the maximum (least
negative) value of C\p,- From (7.9,106) and (7.9 lla) we find

b= Y(ho + h,,,) (7.9,12)
The linear theory of two-dimensional thin wings gives for supersonic flow:
ho =h = 3
2
qu =——— (7.9,13)
3/ M1
and for subsonic flow: s
ho =z
b=} (7.9,14)
qu =0

PITCH DAMPING OF PROPULSIVE JETS

When gases flow at high velocity inside jet or rocket engines, there is a
consequent rate of change of moment of inertia which leads to an inertia
term in the moment equation [j pWg in (5.6,7)]. Instead of retaining it as a
term on the r.h.s., it is convenient to transpose it to the Lh.s. and treat it as

an external moment AG, = -5 pWwg. Considering only pitching motion,
0
wp =19 (7.9,15)

0
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the corresponding terms in the scalar moment equations (5.6,8) are

AL =1,4q
AM = —Iq (7.9,16)
AN =14

The corresponding ¢ derivatives are therefore

AL, =1,
AMq = —jy (7.9,17)
ANQ = jyz

We restrict ourselves to consideration only of propulsion systems that have
inertial symmetry with respect to the xz plane, so I, = I, = 0, and only
AM, remains. Figure 7.16 shows three types of propulsion system, for each

()

Fi6. 7.16 Mechanism of jet damping. (@) Jet engine and duet. (b) Solid fuel rocket.
(¢) Liquid fuel rocket.
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of which we assume that the velocities are uniform across surfaces 1 and 2.
For the jet engine 1 is the air inlet and for the rockets it is the moving
boundary of the fuel. «, is the jet exit velocity, «, is the inlet velocity for the
jet, and the rate of movement of the relevant interface for the rockets.

The Ozz coordiate system of Fig. 7.16 is taken fixed to the solid part of
the vehicle, and we focus our attention on the material system comprising
the solid, liquid, and gaseous constituents of the vehicle at time zero. The
boundaries of this system move in a time df as illustrated ; as a result its mass
center moves away from the origin O, and its moment of inertia changes.
Let I, be the moment of inertia around 0, and I, be that around the displaced
mass center, at coordinates (T, Z). By the parallel axis theorem for moment
of inertia we have

I =1,— m(@ + )

where m is, of course, the fofal vehicle mass. It follows that

I=1,— 2m(§cd—x + z‘f)
: dt dt
and at ¢t =0, when ¥ = 2 = 0, I, = I,. Thus the movement of the mass
center associated with the jet flow does not contribute to the jet damping
effect explicitly. The change in I, in time df is given by

I, = dtf potta{my® + 257) d Ay — dtf prt(a, + 2,7 d4, (7.9,18)
Az Ay
In the second term, for a jet engine, p, is, of course, the density of the inlet
air. For a rocket it is, strictly speaking, the difference in density between the
fuel and the adjacent gas. For all practical purposes the latter can clearly
be neglected. If z2 and z2 are the component mean-square distances to the
surfaces 4, and 4,, (7.9,18) can be expressed as

I, = pyusdo(T? + 2,2) — pyu A, (7?2 -+ 2,2) (7.9,19)

Now pu;4; is the mass flux across 4;, and may be taken constant for all
three types of system (the fuel mass flow in jet engines is much smaller than
the air mass flow). Thus

1, = m@: — 52 + (3¢ — 5] (7.9,20)

where m’ = A,pu; is the mass flow rate out of the jet. In many practical
cases, for elongated slender vehicles, the z? terms may be negligibly small.
The result for the pitch damping in that case is

AM, = —m/(Z? — %,2) (7.9,21)
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It will be negative, corresponding to positive damping, whenever the C.G. is
closer to the inlet or the fuel surface than to the nozzle exit. For compactness
we may write &2 for (Z,2 — Z,2) -+ (%2 — Z?) so that

AM,= —m'&? (7.9,22)
The nondimensional coefficient follows as
2
AC, = — 4 & (7.9,23)
! oVS &

It varies inversely as speed for constant propulsive mass flow m'. The thrust
of the engine is given by
T =mwmV,

where V, is the final velocity of the jet relative to the vehicle, so that (7.9,23)
can be rewritten in terms of 7' instead of m’. The result is
2
AC,, = —2C,— Ve (7.9,24)
‘ V&

For jet airplanes in cruising flight this contribution to C,, is usually
negligible. Only at high values of €y, and when the C,, of the rest of the air-
plane is small, would it be significant. On the other hand a rocket booster at
lift-off, when the speed is low, has practically zero external aerodynamic
damping and the jet damping becomes very important.

7.10 THE & DERIVATIVES (Cy, Cog> Chee)

The & derivatives owe their existence to the fact that the pressure dis-
tribution on a wing or tail does not adjust itself instantaneously to its
equilibrium value when the angle of attack is suddenly changed. The
calculation of this effect, or its measurement, involves unsteady flow. In
this respect, the & derivatives are very different from those discussed
previously, which can all be determined on the basis of steady-state
aerodynamics.

CONTRIBUTIONS OF A WING

Consider a wing in horizontal flight at zero «. Let it be subjected to a
downward impulse, so that it suddenly acquires a constant downward
velocity component. Then, as shown in Fig. 7.17, its angle of attack undergoes
a step increase. The lift then responds in a transient manner (the indicial
response) the form of which depends on whether M is greater or less than 1.
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Fre. 7.17 Lift response to step change in o. (After Tobak, NACA Rept. 1188.)
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In subsonic flight, the vortices which the wing leaves behind it can influence
it at all future times, so that the steady state is approached only asymptot-
ically. In supersonie flight, the upstream traveling disturbances move more
slowly than the wing, so that it outstrips the disturbance field of the initial
impulse in a finite time ¢;. From that time on the lift remains constant.

In order to find the lift associated with &, let us consider the motion of an
airfoil with a small constant &, but with ¢ = 0. The motion, and the angle
of attack, are shown in Fig. 7.18. The method used follows that introduced
by Tobak (ref. 7.12). We assume that the differential equation which relates
O (f) with a(f) is linear. Hence the method of superposition may be used to
derive the response to a linear a(f). Let the admittance be A(f). Then,
[cf. (5.11,2)], the lift coefficient at time { is

i
0ﬂb=f AG — () dr
7=0

Since «'(7) = Da = constant, then
¢
Cr(f) = Da f A(f — 1) dr (7.10,1)
=0
The ultimate Cf, response to a unit-step o input is Cp . Let the lift defect
be f(f): i.e.
A(f) = 0p, — f(d)
Then (7.10,1) becomes

3
CL(g) = ‘DaOLai — Da f(f —_ 1') dr
=0

=Cgo— 8 Da (7.10,2)

where S(f) = [i_, f(t — 7) dr. The term § De is shown on Fig. 7.18. Now,
if the idea of representing the lift by means of aerodynamic derivatives is to
be valid, we must be able to write, for the motion in question,

Or(l) = O af) + Cp, Do (7.10,3)
where €y, and Cy  are constants. Comparing (7.10,2 and 3), we find that
Cy,, = —58(), a function of time. Hence, during the initial part of the motion,

as already pointed out in Sec. 5.11 the derivative concept is invalid. However,
for all finite wings,} the area S(f) converges to a finite value as f increases
indefinitely. In fact, for supersonic wings, S reaches its limiting value in a
finite time, as is evident from Fig. 7.17. Thus (7.10,3) is valid,} with constant

1 For two-dimensional incompressible flow, the area S(tA) diverges as ¢t — co. That is,
the derivative concept is definitely not applicable to that case.
1 Exactly for supersonic wings, and approximately for subsonic wings.
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Fia. 7.18 Lift associated with &.

C Ly for values of { greater than a certain minimum. This minimum is not

large, being the time required for the wing to travel a few chord lengths. In
the time range where § is constant, or differs only infinitesimally from its
asymptotic value, the O () curve of Fig. 7.18¢ is parallel to C Lo A similar
situation exists with respect to C,, and C,,.

We see from Fig. 7.18 that C,, which is the lim — S(f) can be positive

{00

for M = 0 and negative for larger values of M.
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There is a second useful approach to the ¢ derivatives, and that is via
consideration of oscillating wings. This method has been widely used
experimentally, and extensive treatments of wings in oscillatory motion are
available in the literature,} primarily in relation to flutter problems. Because
of the time lag previously noted, the amplitude and phase of the oscillatory
lift will be different from the quasisteady values. Let us represent the
periodic angle of attack and lift coefficient by the complex numbers

a=oe and  Op=Cpe (7.10,4)
where o, is the amplitude (real) of o, and C' 1, 8 @ complex number such that

{Cr,| is the amplitude of the C'z, response, and arg Uy is its phase angle. The
relation between (', and o, appropriate to the low frequencies characteristic

im
L
C=c 20 R
e
@
\L\\ F1c. 7.19 Vector diagram of lift response
Cz, to oscillatory o.

of dynamiec stability is illustrated in Fig. 7.19. In terms of these vectors, we
may derive the value of €'y as follows. The a vector is

& = twuge™’
Thus C7, may be expressed as

Op = R[C )" + 1[0 ]

o &
= RO, 12 + I1CL) —
oy Wy
Hence 0y, = _90p  _ 1l
Y 0E2V) ke

or, if the amplitude «, is unity, €z, = I[Cy )k, where k is the reduced
frequency wé/2V.

To assist in forming a physical picture of the behavior of a wing under
these conditions, we give here the results for a two-dimensionalf airfoil in

(7.10,5)

¥ See bibliography.
1 Rodden and Giesing (ref. 7.15) have extended and generalized this method. In
particular they give results for finite wings.
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Cuy

¢ o |
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Fie. 7.20 Lift on oscillating two-dimensional airfoil.

o
o

e
o

he

incompressible flow. The motion of the airfoil is a plunging oscillation; i.e.
it is like that shown in Fig. 7.11a, except that the flight path is a sine wave.
The instantaneous lift on the airfoil is given in two parts (see Fig. 7.20):

Cr =0y +0y,

where - 0y, = %[«F(k) 4 (i‘ﬁ) @} (7.10,6)

o) &
0, — “_c)
Ze ”(21/

and F(k) and G(k) are the real and imaginary parts of the Theodorsen
function C(k), plotted in Fig. 7.21. The lift that acts at the midchord is
proportional to & = 2/V, where z is the translation (vertically downward) of
the airfoil. That is, it represents a force opposing the downward acceleration
of the airfoil. This force is exactly that which is required to impart an
acceleration Z to a mass of air contained in a cylinder, the diameter of which
equals the chord ¢. This is known as the “apparent additional mass.”” It is as
though the mass of the airfoil were increased by this amount. Except in
cases of very low relative density u = 2m/pS¢, this added mass is small
compared to that of the airplane itself, and hence the force Cy is relatively
unimportant. Physically, the origin of this force is in the reaction of the air
which is associated with its downward acceleration. The other component,
O'r,» which acts at the ; chord point, is associated with the circulation around
the airfoil, and is a consequence of the imposition of the Kutta—Joukowski
condition at the trailing edge. It is seen that it contains one term proportional
to o and another proportional to &. From Fig. 7.19, the pitching-moment
coefficient about the C.G. is obtained as

Cp=0Cph—1+Crh—13 (7.10,7)
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Fia. 7.21 The Theodorsen function.
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From (7.10,6 and 7), the following derivatives are found for frequency k.

Op, =7+ 2nm (ﬂ)

k
Cp, = 27F (k) (h — })
Cm& =m(h — 1) + 2=

(7.10,8)

G(k)

P — 1
k( 1)

The awkward situation is evident, from (7.10,8), that the derivatives are
frequency-dependent. That is, in free oscillations one does not know the
value of the derivative until the solution to the motion (i.e. the frequency)
is known. In cases of forced oscillations at a given frequency, this difficulty

is not present.

‘When dealing with the rigid-body motions of flight vehicles, the character-
istic nondimensional frequencies ¥ are usunally small, ¥ <<< 1. Hence it is
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reasonable to use the F(k) and G(k) corresponding to & — 0. For the two-

dimensional incompressible case deseribed above, lim F(k) = 1, so that
k—0

Cr,=2m and O, =2m(h — }), the theoretical steady-flow values. This
conclusion, that € and C,, are the quasistatic values, also holds for
finite wings at all Mach numbers. The results for ¢y, and C,, are not so

clear, however, since lim GQ(k)/k given above is infinite. This singularity is
marked for the example of two-dimensional flow given above, but is not
evident for finite wings at moderate aspect ratio. Miles (refs. 7.13, 7.14)
indicates that the k log k term responsible for the singularity is not significant
for aspect ratios less than 10, and the numerical calculations of Rodden and
Giesing (ref. 7.15) show no difficulty at values of k as low as .001. Filotas’
(ref. 7.16) more recent solutions for finite wings bear out Miles” contention.
Thus for finite wings definite values of Oy, and C,, can be associated with

small but nonvanishing values of k. If the airfoil has a control flap, the hinge
moment associated with &, C,, , behaves like Oy and C,, . The limiting
values described above can be obtained from a first-order-in-frequency
analysis of an oscillating wing. To summarize, the & derivatives of a wing
alone may be computed from the indicial responses of lift, pitching moment,
and hinge moment, or from first-order-in-frequency analysis of harmonically
plunging wings.

CONTRIBUTIONS OF A TAIL

There is an approximate method for evaluating the contributions of a
tail surface, which is satisfactory in many cases. This is based on the concept
of the lag of the downwash. It neglects entirely the nonstationary character
of the lift response of the tail to changes in tail angle of attack, and attributes
the result entirely to the fact that the downwash at the tail does not respond
instantaneously to changes in wing angle of attack. The downwash is assumed
to be dependent primarily on the strength of the wing’s trailing vortices in
the neighborhood of the tail. Since the vorticity is convected with the
stream, then a change in the circulation at the wing will not be felt as a
change in downwash at the tail until a time At = I,/V has elapsed, where I,
is the tail length (Fig. 6.10). It is therefore assumed that the instantaneous
downwash at the tail, e(t), corresponds to the wing « at time (¢ — At). The
corrections to the quasistatic downwash and tail angle of attack are therefore

Ae:—a—edﬁAt=——€€—d—l£
O da V

— —Aa, (7.10,9)
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Cr. OF A TAIL
The correction to the tail lift coefficient for the downwash lag is
l, Oe
ACL, = a, Ao, = ag - — 7.10,10
L, § % * P ( )
The correction to the airplane lift is therefore
I, 0e 8,
ACp=apt—2
TV 8
oC 0
and (O = —2= = —2aV ;; = (7.10,11)
a(% oo
2V
C., OF A TAIL
The correction to the pitching moment is obtained from AC L, 88
_Oel
AC,, = =V ACy, = —atoca—a I_t/ Va
Therefore 80__m = —aVy l_t 8_e
oa V 0u
C l
and (Coniians = 0 L = —2atVH—fZ—€ (7.10,12)
¢

C,.. OF A TAIL
&

The correction to «, produces a change in the elevator hinge moment

de 1
AC,, =C,, Ao, =0,, —a £
re hea, 0y hey, vV
Therefore % = C,, as_l*
Oa i 4
l
and Chey = 0 _ 2C,, -}% (7.10,13)
P oc_c') a ¢ aa
2V
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7.11 AERODYNAMIC TRANSFER FUNCTIONS

Finally, it should be remarked that there is no need to accept the small
inaccuracy associated with the use of unsteady derivatives such as Oz, ete.

In Sec. 5.11 it was shown how the use of aerodynamic transfer functions
could avoid this difficulty entirely, and equations (5.14,1 to 3) were presented
for this purpose. To obtain a transfer function from the indicial response,
(5.11,6) can be applied. Thus if the step-function response of Fig. 7.17 is
designated A4 ;(f), then

Grols) = sA1(s)

and similarly for all other transfer functions that appear in (5.14,1 to 3).

When the information available is in the form of a frequency-response
analysis or measurement, then the transfer function can be obtained from it
directly. From (3.4,25) we have the general relation for frequency response
of a linear system in terms of the transfer function. Thus, let G, (s) be the
transfer function relating any aerodynamic coefficient C, to any state
variable v and G, (k) be the frequency-response vector giving O, for periodic
v. G(s) is obtained from G(ik) by replacing ik by s, or k by —is.

7.12 THE z DERIVATIVES (Cz, Cp, Cy., C..)

There are two main classes of z derivatives; those that are associated with
ground proximity, and those that are associated with vertical gradients in
the properties of the atmosphere. Of the latter the density gradient is the
most important, and others can probably be ignored most of the time.

We have described some of the effects of ground proximity in Sec. 7.5.
To calculate the associated z derivatives one needs the data, either theoretical
or experimental, on the variation of the various coefficients with height
above ground. For configurations with large power effects, i.e. strong
slipstreams or jets impinging on the ground, testing is generally required to
get good results. The ground effects can be very large, and the z derivatives
can exert a very important influence on the vehicle dynamics at landing
and take-off.

As to the effects of atmospheric gradients, the gradient dp/0z has already
been explicity included in the equations of motion (5.13,16), so that if 7', D,
L, M all vary exactly as p when the speed is constant then Cy_ete. will all
be zero. This assumption is probably good enough for D, L, and M, but not
always for 7. If the vehicle uses air-breathing engines, then T' oc p is reason-
able, and Op,=0; but if a constant-thrust rocket is used, then we have
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070z = 0, and from the analysis on p. 183,
9p

: Te o2

The only other atmospheric gradients that might need to be included are
those associated with Reynolds number R, and Mach number M. Sometimes,
for very high altitudes the particulate nature of air becomes a factor. The
Knudson number

Cr (7.12,1)

where A is the mean free path and 7 is a characteristic length of the vehicle,
may then be used as an aerodynamic parameter. It is not a new independent
variable, being related to M and R,:

K 1.26 /y M

n T - \/ 4 Re
where y is the ratio of specific heats. For air a rough approximation is
K, =~ M/R,. The circumstances when these gradients might be important
are those involving very rapid changes of the flow field with the parameter
in question—for example, near M = 1, the variations of M with height due
to sound-speed gradient; and near the R, for boundary layer transition.
A typical derivative would be calculated thus. Let C, stand for any of

Cp-++0C,; then
0, = 9, 090, M  oC,0E, (1.12,2)
=~ 3 oM o2 ' R, 9
M ¢o (V) Vé da & Oa
where il =t
% 202 2a® 0z % 0z
and ?E‘f:?tZ(Vl) — ?_Iil?fz—- c o
;2 20 29% 0z ° 2y 02
Finally, 0, = —m2%% 5 &0, (7.12,3)
: 2a 0z oM 2v 0z OR,

7.13 AEROELASTIC DERIVATIVES

In Sec. 5.12 there were introduced certain aerodynamic derivatives

associated with the deformations of the airplane. These are of two kinds:
those that appear in the rigid-body equations, and those that appear in the
added equations of the elastic degrees of freedom. These are illustrated in
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C.G. of deformed
airplane

z

Fie. 7.22 Symmetrical wing bending.

this section by consideration of the hypothetical vibration mode shown in
Fig. 7.22. In this mode it is assumed that the fuselage and tail are rigid, and
have a motion of vertical translation only. The flexibility is all in the wing,
and it bends without twisting. The functions describing the mode (5.12,1) are
therefore : ,

¥=x—2,=0

Y =9y—9=0 (7.13,1)

2 =2 — 2 = Yy

For the generalized coordinate, we have used the wing-tip deflection z.
Rh(y) is then a normalized function describing the wing bending mode.

In view of the fact that the elastic degrees of freedom are only important
in relation to stability and control when their frequencies are relatively low,
approaching those of the rigid-body modes, then it is reasonable to use the
same approximation for the aerodynamic forces as is used in calculating
stability derivatives. That is, if quasisteady flow theory is adequate for the
aerodynamic forces associated with the rigid-body motions, then we may
use the same theory for the elastic motions.

In the example chosen, we assume that the only significant forces are
those on the wing and tail, and that these are to be computed from quasisteady
flow theory. In the light of these assumptions, some of the representative
derivatives of both types are discussed below. As a preliminary, the forces
induced on the wing and tail by the elastic motion are treated first.

FORCES ON THE WING
The vertical velocity of the wing section distant y from the center line is

2 = h(y)ip (7.13,2)
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and the corresponding change in wing angle of attack is
Aa(y) = My)eqp|V (7.13,3)

This angle-of-attack distribution can be used with any applicable steady-flow
wing theory to calculate the incremental local section lift. (It will of course
be proportional to £,/V.) Let it be denoted in coefficient. form by Cy(y)ép/V,
and the corresponding increment in wing total lift coefficient by C7,2p/V.
Oi(y) and Cp,, are thus the values corresponding to unit value of the non-
dimensional quantity 2,/V. '

FORCE ON THE TAIL

The tail experiences a downward velocity A(0)2,, and also, because of the
altered wing lift distribution, a downwash change (0¢/0%5)2p. Hence the
net change in tail angle of attack is

Ao, = B0V — q_e o
0z

T
_ l:h(()) _ O ]Z—T (7.13,4)
V)V
This produces an increment in the tail lift coefficient of amount
AC, — at[h(()) _ 0 ]ZL (7.13,5)
‘ 0Er[V)]V

THE DERIVATIVE L,

This derivative describes the contribution of wing bending velocity to the
lift acting on the airplane. A suitable nondimensional form is 9C;/d(Z,[V}:

AC, =03, 2 + at[hw) - i—rf 5

V)|V 8

oC O¢ S,
dh L_ _ ¢ h(0) — = 7.13,6
ane honee 7)ot “‘[ © a(»zT/V)]S (7.13.9)

THE DERIVATIVE A,

This derivative (see 5.12,12) represents the contribution to the generalized
force in the bending degree of freedom, associated with a change in the
angle of attack of the airplane. A suitable nondimensional form is obtained
by defining 7
7 e

Then the appropriate nondimensional derivative is c Ty
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Let the wing lift distribution due to a perturbation « in the angle of attack
(constant across the span) be given by C'; (y)o.. Then in a virtual displacement
in the wing bending mode dz,, the work done by this wing loading is

b/2
oW = —f b/2oc0za(y)h(y) dzp}pVe(y) dy

where ¢(y) is the local Wing chord. The corresponding contribution to F is

b/2

——1V c, d
azT ocpf/ (h(y)e(y) dy

and to Oz _is
1
pVZSm =— *f 1, (@h(y)ely) dy (7.13,7)
T

The tail also contributes to this derivative. For the tail lift associated with
ais

atoc(l - E) 1077,
du
and the work done by this force during the virtual displacement is
—ata(l _ E) 1pVES,(0) b2
Ou.

Therefore the contribution to €4 is
O€
—aofl — —)=Ah(0
(1= 5)5 O

‘h(O)(l — gf) (7.13,8)

&,

and to Oy is

The total value of 'z _is then the sum of (7.13,7 and 8.)

THE DERIVATIVE b,, (SEE 5.12,12)

This derivative identifies the contribution of %, to the generalized aero-
dynamic force in the distortion degree of freedom. We have defined the
associated wing load distribution above by the local lift coefficient O;(y)ip/V .
As in the case of the derivative 4, above, the work done by this loading is
calculated, with the result that the wing contributes

aCy 1 oW :_1Jb/2
3Gr|V)  1pV*S 027 8(21[V) 8 Ju

Hk(y)e(y) dy  (7.13,9)
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Table 7.1
Summary—Longitudinal Derivatives
Cr Cp Cr Cn Che
(8T)9V) acy, a0, | ecy, a0y, ac o a0, aC,
Lrs "0 Mgyt el Mo el Mot TV Tl
v 2PV P Pg Pa Pa
oC o0 aC aC,
D L m he
c 4 —L —_m + COp, (=22
- TV(aCT)e ‘ CTV(aOT)e - TV(aOT)e TV(aOT)e
. O¢
o N.A 2KCp, O, cr, Cr, (b — hy) |1 -
, *e 2e * 1, 2 * 1, de
o Neg Neg. 2atVH -a-; —-—2atVH cj —a; 2b1 - a—a
Neg Neg =20z, (h — ho) O, — 201, (h — hY? I
q l v & 2b 2
¢ =
+ 20,Vg ~24,Vp 7 — 20 7@ X
5 St
S, Neg. Neg. 2 —a,Vy b,

2 N. A. means no convenient formula available.

b “Neg.” means usually negligible.
¢ The asterisk means contribution of the tail only.
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Likewise, the contribution of the tail is calculated here as for 4

ng and is
found to be
—a 'gth(O)[h(O) _ 0 ] (7.13,10)
‘s Aeg|V) ’

The total value of 0C+[0(2,/V) is then the sum of (7.13,9 and 10.).

7.14 SUMMARY OF THE FORMULAE

The formulae that are frequently wanted for reference are collected in
Table 7.1. Where an entry in the table shows only a tail contribution, it is
not implied that wing and body effects are not important, but only that no
convenient formula is available.
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Lateral aerodynamic
characteristics

CHAPTER 8

In the preceding two chapters we have discussed the aerodynamic character-
istics of symmetrical configurations flying with the velocity vector in the
plane of symmetry. As a result the only nonzero motion variables were V, «,
end ¢, and the only nonzero forces and moments were 7', D, L, and M. We
now turn to the cases in which the velocity vector is not in the plane of
symmetry, and in which rolling and yawing motions (8, p, ) are present.
The associated force and moment coefficients are O or C,, ), and C,, (see
Table 5.1).

One of the simplifying aspects of the longitudinal motion is that the
rotation is about one axis only (the ¥ axis), and hence the rotational stiffness
about that axis is a very important criterion for the dynamic behavior.
This simplicity is lost when we go to the lateral motions, for then the rotation
takes place about two axes (z and z). The moments associated with these
rotations are cross-coupled, i.e. roll rotation p produces yawing moments C,,
as well as rolling moment C,, and yaw displacements § and rate r both
produce rolling and yawing moments. Furthermore, the roll and yaw
controls are also often cross-coupled—deflection of the ailerons can produce
significant yawing moments, and deflection of the rudder can produce
significant rolling moments.

Another important difference between the two cases is that in “normal’
flight—i.e. steady rectilinear symmetric motion, all the lateral motion and

292
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force variables are zero. Hence there is no fundamental trimming problem—
the ailerons and rudder would be nominally undeflected. In actuality of
course, these controls do have a secondary trimming function whenever the
vehicle has either geometric or inertial asymmetries—e.g. one engine off, or
multiple propellers all rotating the same way. Because the gravity vector
in normal flight also lies in the plane of symmetry, the C.G. position is not a
dominant parameter for the lateral characteristics as it is for the longitudinal.
Thus the C.G. limits, as discussed in Sec. 7.6 are governed by considerations
deriving from the longitudinal characteristics.

8.1 YAW STIFFNESS (WEATHERCOCK STABILITY)

By exactly the same argument as used for pitch stiffness (Sec. 6.2), we
conclude that flight vehicles should have positive yaw stiffness, i.e. (see Fig.
8.1) 9C,/0B > 0. For then a perturbation in § will produce a restoring
moment N that tends to keep the velocity vector in the plane of symmetry.

Flight-path tangent

Fic. 8.1 Sideslip angle and yawing moment.
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X,

CG.

Apre—

Vr

Mean aerodynamic | __—Lp

center of
A

fin and rudder
Fic. 8.2 Vertical-tail sign conventions.

DH,

c, 5 is found from wind-tunnel measurements of the yawing moment, or
when these are not available, can be estimated by synthesising the contri-
butions of the various components of the vehicle. The principal contributions
are those of the body and the tail. By contrast with C,, , the wing makes a

relatively small contribution to C ng

In Fig. 8.2 are shown the relevant geometry and the lift force L acting
on the vertical tail surface. If the surface were alone in an airstream, the
velocity vector V5 would be that of the free stream, so that (cf. Fig. 8.1) ap
would be equal to —f§. When installed on an airplane, however, changes in
both magnitude and direction of the local flow at the tail take place. These
changes may be caused by the propellor slipstream, and by the wing and
fuselage when the airplane is yawed. The angular deflection is allowed for by
introducing the sidewash angle ¢, analogous to the downwash angle e. ¢ is
positive when it corresponds to a flow in the y direction: i.e. when it tends to
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increase « . Thus the angle of attack is
op=—Pf+ o (8.1,1)

and in the linear case the lift coefficient of the vertical-tail surface is

Cr, = ag(—B + o) + a9, (8.1,2)
The lift is then

Ly=0Cy, ’_2’ VS, (8.1,3)

Just as with the horizontal tail, any difference between V . and V is absorbed
into the coefficients @ and a,. The yawing moment is

Np=—Cp, gvstlF
: Sklr
whence C,, = —Cf, % (8.1,4)

The ratio Spl;/Sb is analogous to the horizontal-tail volume ratio, and is
therefore called the vertical-tail volume ratio, denoted here by V. Equation
(8.1,4) then reads

C,, = —VyCy, (8.1,5)

ny

and the corresponding contribution to the weathercock stability is

oC,, aCy, i do
Onﬁlfin = Tﬂ— = _VV—B—B‘-‘ =‘VVaF (l — a_ﬁ) (81,6)

The Sidewash Factor 96/08. Generally speaking the sidewash is difficult
to estimate with engineering precision. Suitable wind-tunnel tests are required
for this purpose. The contribution from the fuselage arises through its
behavior as a lifting body when yawed. Associated with the side force that
develops is a vortex wake which induces a lateral-flow field at the tail. The
sidewash from the propeller is associated with the side force which acts
upon it when yawed, and may be estimated by the method of ref. 7.3,
previously cited in Sec. 7.3. The contribution from the wing is associated
with the asymmetric structure of the flow that develops when the airplane
is yawed. This phenomenon is especially pronounced with low-aspect-ratio
swept wings. It is illustrated in Fig. 8.3.

The Velocity Ratio V5/V. When the vertical tail is not in a propeller

_slipstream, V p/V is unity. When it is in a slipstream, the effective velocity
increment may be dealt with as for a horizontal tail (see Sec. 7.3).
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— 8

Net induced
flow

Fie. 8.3 Vortex wake of yawed wing.

Contribution of Propeller Normal Force. The yawing moment produced
by the normal force which acts on the yawed propeller is calculated in the
same way as the pitching-moment increment dealt with in Sec. 7.3. The
result is similar to (7.3,10)

Wnp _ _ 28, 90ny
8 b S ou
This is known as the propeller fin effect, and is negative, i.e. destabilizing,

when the propeller is forward of the C.G., but is usually positive for pusher
propellers.

(8.1,7)

82 YAW CONTROL

In most flight conditions it is desired to maintain the sideslip angle equal
to zero. If the airplane has positive weathercock stability, and is truly
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symmetrical, then it will tend to fly in this condition. However, yawing
moments may act upon the airplane as a result of unsymmetrical thrust
(e.g. one engine inoperative). slipstream rotation, or the unsymmetrical flow
field associated with turning flight. Under these circumstances, ff can be kept
zero only by the application of a control moment. The control that provides
this is the rudder. Another condition requiring the use of the rudder is the
steady side-slip, a maneuver sometimes used, particularly with light aircraft,
to increase the drag and hence the glide path angle. From (8.1,2 and 5), the
rate of change of yawing moment with rudder deflection is given by

a0, a0,
ng = 861 S —-V.Vﬁ = — aTVV (8.2,1)

This derivative is sometimes called the “rudder power.”” It must be large
enough to make it possible to maintain zero sideslip under the most extreme
conditions of asymmetric thrust and turning flight.

A second useful index of the rudder control is the steady sideslip angle
which could be maintained by a given rudder angle if the aileron angle, roll
rate, and yaw rate were all zero. The total yawing moment would then be

C,= Onﬂﬂ + C,6r (8.2,2)
For steady motion, C,, = 0, and hence the desired ratio is
c
E __ (8.2,3)
57‘ Qnﬁ

The rudder hinge moment and control force are treated in a manner
similar to that employed for the elevator. Let the rudder hinge-moment
coefficient be given by

Cpp = biot g + b0, (8.2,4)

The rudder pedal force will then be given by

P=gq ’5’ V28,¢,(byop + bs6,)

= G’—g V28.0,[by(— B + 0) + byd,)] (8.2,5)

where @ is the rudder system gearing.
The effect of a free rudder on the yaw stiffness is found by setting C}, = 0
in (8.2,4). Then the rudder floating angle is
by, - (8.2,6)

free b
2
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The vertical-tail lift coefficient with rudder free is found from (8.1,2) to be

12 — 1
C'Ly = agop — “r;“I«'
2
a, b,

- aFaF(l -2 b—) (8.2,7)
F Y2

The free control factor for the rudder is thus seen to be of the same form as
that for the elevator (see Sec. 6.6) and to have a similar effect.

8.3 ROLL STIFFNESS

Consider a vehicle constrained, as on bearings in a wind tunnel, to one
degree of freedom-rolling about the x axis. The forces and moments resulting
from a fixed displacement ¢ are fundamentally different in character from
those associated with the rotations o and § about the other two axes. In the
first place if the z axis coincides with the velocity vector V, no aerodynamic
change whatsoever follows from the fixed rotation ¢ (see Fig. 8.4). The
aerodynamic field remains symmetrical with respect to the plane of symmetry,
the resultant aerodynamic force remains in that plane, and no changes occur
in any of the aerodynamic coefficients. Thus the roll stiffness C, 5 is zero in
that case.

Lift

Rolling moment, L

W (weight)

Frc. 8.4 Rolled airplane.
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If the x axis does not coincide with V, then a second-order roll stiffness
results through the medium of the derivative C; . Let the angle of attack
of the x axis be a, (Fig. 4.4), then the velocity vector when ¢ = 0 is

V cos a,
V,=| o0 (8.3,1)
V sin o,
After rolling through angle ¢ about Oz, the velocity vector is (cf. Sec. 4.5)
V cos «,
V, = L(¢)V, = | V sin «, sin ¢ (8.3,2)
V sin o, cos ¢

Thus the sideslip component is v = Vsin a, sin ¢, and the sideslip angle is
4.3.3)

B = sin‘l% = sin™? (sin «, sin @) (8.3,3)
As a result of this positive 3, and the usually negative C, 5 there is a restoring
rolling moment C, ﬂﬁ i.e.

AC, = C,p sin~! (sin o, Sin ¢) (8.3,4a)
For small o, we get the approximate result
AC, = Oy sin™ (o, sin ¢) = C,

0, 5in & (8.3,4b)

and if ¢ also is small,

AC, = 0, 0,9 (8.3,4¢)
The stiffness derivative for rolling about Oz is then from (8.3,4a)
9, _ sin o, cos ¢> 835
0¢ (1 — sin® a, sin gb)l/ (8.3,5a)
or for a, <<<< 1,
9. = (, ;% COS 13 (8.3,5b)
o
or for a,, ¢ <<1
9, . 0,0 (8.3,5¢)

o6
Thus there is a roll stiffness that resists rolling if «, is >0, and would tend

to keep the wings level. If rolling occurs about a wind axis, the stiffness is
zero and the vehicle has no preferred roll angle. If «, < 0, then the stiffness
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is negative and the vehicle would roll to the position ¢ = 180°, at which
point ¢; = 0 and Gy, <0.

The above discussion applies to a vehicle constrained, as stated, to one
degree of freedom. It should not be thought that the derivative C, so deduced
should be introduced into the rolling moment equation (5.13,17b)! The rolling
moment we have discussed above arises solely from the aerodynamic effect
of B, and as such is already tncluded in the term C, ﬁ of the equation. The
usefulness of the above point of view is that it helps one to understand the
behavior of free motions that consist principally of rolling about an axis in
the plane of symmetry.

Having shown above that airplanes have no first-order aerodynamic roll
stiffness, it is worthwhile to digress at this point to show why they neverthe-
less have an inherent tendency to fly with wings level. They do so because of
a secondary effect, involving gravity and C,,. When rolled to an angle ¢,
there is a weight component mg sin ¢ in the y direction (Fig. 8.4). This
induces a sideslip velocity to the right, with consequent § > 0, and a rolling
moment C; ,8 that tends to bring the wings level. The rolling and yawing
motions that result from such an initial condition are however strongly
coupled, so no significant conclusions can be drawn about the behavior
except by a dynamic analysis (see Chapter 9).

8.4 ROLLING CONTROL

The angle of bank of the airplane is controlled by the ailerons. The primary
function of these controls is to produce a rolling moment, although they
frequently introduce a yawing moment as well. The effectiveness of the
ailerons in producing rolling and yawing moments is described by the two
control derivatives 00,/06, and 9C,/d4,. The aileron angle ¢, is defined as the
mean value of the angular displacements of the two ailerons. It is positive
when the right aileron movement is downward (see Fig. 8.5). The derivative
9C,/d4, is normally negative, right aileron down producing a roll to the left.

For simple flap-type ailerons, the increase in lift on the right side and the
decrease on the left side produce a drag differential which gives a positive
(nose-right) yawing moment. Since the normal reason for moving the right
aileron down is to initiate a turn to the left, then the yawing moment is seen
to be in just the wrong direction. It is therefore called aileron adverse yaw.
On high-aspect-ratio airplanes this tendency may introduce decided diffi-
culties in lateral control. Means for avoiding this particular difficulty include
the use of spoilers and Frise ailerons. Spoilers are illustrated in Fig. 8.6.
They achieve the desired result by reducing the lift and increasing the drag
on the side where the spoiler is raised. Thus the rolling and yawing moments
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Sa= 181+ 82)

Fic. 8.5 Aileron angle.

developed are mutually complementary with respect to turning. Frise
ailerons (Fig. 6.23) diminish the adverse yaw or eliminate it entirely by
increasing the drag on the side of the upgoing aileron. This is achieved by the
shaping of the aileron nose and the choice of hinge location. When deflected
upward, the gap between the control surface and the wing is increased, and
the relatively sharp nose protrudes into the stream. Both these geometrical
factors produce a drag increase.

Section through spoiler

Fia. 8.6 Spoilers.
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The deflection of the ailerons leads to still additional yawing moments
once the airplane acquires a roll rate. These are caused by the altered flow
about the wing and tail. These effects are discussed in Sec. 8.6 (C, ), and
are illustrated in Figs. 8.12 and 8.15.

A final remark about aileron controls is in order. They are functionally
distinct from the other two controls in that they are rafe controls. If the
airplane is restricted only to rotation about the wind axis, then the appli-
cation of a constant aileron angle results in a steady rafe of roll. The elevator
and rudder, on the other hand, are displacement controls. When the airplane
is constrained to the relevant single-axis degree of freedom, a constant
deflection of these controls produces a constant angular displacement of the
airplane. It appears that both rate and displacement controls are acceptable
to pilots.

AILERON REVERSAL

There is an important aeroelastic effect on roll control by ailerons that is
significant on most conventional airplanes at both subsonic and supersonic
speeds. This results from the elastic distortion of the wing structure associated
with the aerodynamic load increment produced by the control. As illustrated
in Fig. 6.22, the incremental load caused by deflecting a control flap at
subsonic speeds has a centroid somewhere near the middle of the wing chord.
At supersonic speeds the control load acts mainly on the deflected surface
itself, and hence has its centroid even farther to the rear. If this load centroid
is behind the elastic axis of the wing structure, then a nose-down twist of the
main wing surface results. The reduction of angle of attack corresponding
to 6 > 0 causes a reduction in lift on the surface as compared with the rigid
case, and a consequent reduction in the control effectiveness. The form of
the variation of Cla,, with $p¥?2 for example can be seen by considering an
idealized model of the phenomenon. Let the aerodynamic torsional moment
resulting from equal deflection of the two ailerons be T'(y) oc $p¥25, and
let T'(y) be antisymmetric, T(y) = —T(—y). The twist distribution corre-
sponding to T'(y) is O(y), also antisymmetric, such that 6(y) is proportional
to T' at any reference station, and hence proportional to $pV?%5,. Finally,
the antisymmetric twist causes an antisymmetric increment in the lift
distribution, giving a proportional rolling moment increment AC, = k$pV?24,.
The total rolling moment due to aileron deflection is then

AC, = (Clﬁa)x‘igidaa + k3pV3, (8.4,1)
and the control effectiveness is

C5, = (O rigia + kZpV? (8.4,2)
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As noted above, (C, 6u)n-gid is negative, and k is positive if the centroid of the
aileron-induced lift is aft of the wing elastic axis, the common case. Hence
|C, 6.;‘ diminishes with increasing speed, and vanishes at some speed Vj, the
aileron reversal speed. Hence

0= (Cl&a)rigid + k%PVRZ
or b= — (OIJG)Hgid/ 1oV (8.4,3)

Substitution of (8.4,3) into (8.4,2) yields

V2

G, = (Olau)rigid(l — V_ﬁ) (8.4.4)
R

This result, of course, applies strictly only if the basic aerodynamics are not

Mach-number dependent, i.e. so long as Vy is at a value of M appreciably

below 1.0. Otherwise k¥ and (O, )rigia are both functions of M, and the

equation corresponding to (8.4,4) is

£(M) v?
Ic(TR) (Cl‘;a)rigid(MR)I;‘—z (8.4,5)

Ol‘;u(M) = (Olaa)rigid(M) -
R

where My, is the reversal Mach number.

It is evident from (8.4,4) that the torsional stiffness of the wing has to be
great enough to keep V5 appreciably higher than the maximum flight speed
if unacceptable loss of aileron control is to be avoided.

8.5 THE § DERIVATIVES (C,,, Cy;0 Cuyo Ciry)

The sideslip derivatives are all obtainable from static wind-tunnel tests
on yawed models. Generally speaking, estimation methods are not very
reliable, and testing is needed for accurate results.

THE DERIVATIVE Cg,‘8

We shall assume that the thrust vector remains in the 2z plane, so that it
does not contribute to the Y force. Then in terms of C; and O, (see Fig. 4.5)
we have

C,= —Cgeos § — Opsin P

and (O, = {C,sin —%eos — O'p cos —a&)sin
Y C ﬂ aﬂ D ﬂ 3‘3 -
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where 5, the equilibrium value, is zero. Hence

ac
0, ——0p 52

(8.5,1)

The main contributions to C, usually come from the body and the tail, the
wing contribution being minor. That from the tail is readily estimated. From
(8.1,3) we have

(AC)pn = —Cr, g &
d Sr
an (ACehan = —Cr, —o

(©, ). = - 2 (8.5,2)
vg tail_TS,- —a"é‘ = E“F( a-ﬁ_) RiN

The Cp, term of (8.5,1) would often be small compared to the tail contribution
(8.5,2), and the whole derivative O, 5 often has negligible effect on the vehicle

whence

dynamics.

THE DERIVATIVE Cz,;

By contrast with C, " the derivative €, » known as the dihedral effect, is of

paramount importance. We have already noted its relation to roll stiffness
and to the tendency of airplanes to fly with wings level. The primary con-
tribution to C, 5 is from the wing—its dihedral angle, aspect ratio, and sweep
all being important parameters.

The effect of wing dihedral is illustrated in Fig. 8.7. With the coordinate
system shown, the normal velocity component ¥V, on the right wing panel
(R) is, for small dihedral angle T,

V,=wcosI'+ vsin [
= w -+ oI

and that on the other panel is w — oI'. The terms +oI'/V = 41 represent
opposite changes in the angle of attack of the two panels resulting from
sideslip. The “upwind” panel has its angle of attack and therefore its lift
increased, and vice versa. The result is a rolling moment approximately
linear in both § and I', and hence a fixed value of C, 5 for a given I'. This part
of O’zﬂ is essentially independent of wing angle of attack so long as the flow

remains attached.



Wing-chord plane

Velocity
components
of wing
x
Y4

Fr1c. 8.7 Dihedral effect.

V, = normal velocity of panel B
=weos '+ vsin I'=w 4 oI

I varl
. Ao of R due to dihedral == % = i = AT

Vortex wake

>

F1a. 8.8 Yawed lifting wing.
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Even in the absence of dihedral, a flat lifting wing panel has a ' pro-

portional to Cz. Consider the case of Fig. 8.8. The vertical induced velocity
(downwash) of the vortex wake is greater at L than at R simply by virtue
of the geometry of the wake. Hence the local wing angle of attack and lift
are less at L than at R, and a negative O, results. Since this effect depends,
essentially linearly, on the strength of the vortex wake, which is itself
proportional to the wing €, then the result is AC, 5 OC Cq.

INFLUENCE OF FUSELAGE ON C’B

The flow field of the body interacts with the wing in such a way as to
modify its dihedral effect. To illustrate this, consider a long cylindrical body,
of circular cross section, yawed with respect to the main stream. Consider
only the cross-flow component of the stream, of magnitude V, and the flow
pattern which it produces about the body. This is illustrated in Fig. 8.9. It

_____ e P
_____ =S NZ——

Low wing

AL

Fic. 8.9 Influence of body on C; 5

is clearly seen that the body induces vertical velocities which, when combined
with the mainstream velocity, alter the local angle of attack of the wing.
When the wing is at the top of the body (high-wing), then the angle-of-attack
distribution is such as to produce a negative rolling moment: i.e. the dehedral
effect is enhanced. Conversely, when the airplane has a low wing, the dihedral
effect is diminished by the fuselage interference. The magnitude of the effect
is dependent upon the fuselage length ahead of the wing, its cross-section
shape, and the planform and location of the wing. Generally, this explains
why high-wing airplanes usually have less wing dihedral than low-wing
airplanes.

INFLUENCE OF SWEEP ON C,‘ﬂ

Wing sweep is a major parameter affecting C, 5 Consider the swept yawed
wing illustrated in Fig. 8.10. According to simple sweep theory it is the velocity
V,, normal to a wing reference line (} chord line for subsonic, l.e. for super-
sonic) that determines the lift. Tt follows obviously that the lift is greater
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Fi¢. 8.10 Dihedral effect of a swept wing.

on the right half of the wing shown than on the left half, and hence that
there is a negative rolling moment. The rolling moment would be expected
for small § to be proportional to

OL[( Vnz)right - (Vnz)left] = OLV2[0052 (A - ﬁ) — cos? (A + ﬂ)]
The proportionality with € and 8 is correet, but the sin 2A factor is not a
good approximation to the variation with A. The result is a C, g € C;, that
can be calculated by the methods of linear wing theory.

INFLUENCE OF FIN ON Clﬂ

The sideslipping airplane gives rise to a side force on the vertical tail as
explained in Sec. 8.1. When the aerodynamic center of the vertical surface
is appreciably offset from the rolling axis (Fig. 8.11) then this force may
produce a significant rolling moment. From (8.1,2 and 3) with §, = 0 this

Mean aerodynamic center:

Ad

&

Fie. 8.11 Dihedral effect of the vertical tail.
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moment is found to be

whence AC, = ay(—B + o) ‘.SF_ZI"
Sb
aU SFZF
and Aolﬁ = —aF(l — -a—lé)ﬁ (85,3)

THE DERIVATIVE Cnﬂ

This is the yaw stiffness derivative, already treated in detail in Sec. 8.1.

THE DERIVATIVE G,

This derivative gives the rudder hinge moment due to sideslip. It is
analogous to the elevator hinge moment due to angle of attack. It is given

by
ao;". __ 0 adF

2 ﬁ hrey, 8_5
where C, is the appropriate coefficient—see (6.5,1). By using (8.1,1) we
ap

get

Crng = _C,M(l - ?TZ) (8.5,4)

8.6 THE p DERIVATIVES (C,.C,, C,,» Cupr Cun,)

When an airplane rolls with angular velocity p about its x axis in the
referencestate (the flight direction for wind axes), its motion isinstantaneously
like that of a screw. This motion affects the airflow (local angle of attack) at all
stations of the wing and tail surfaces. This is illustrated in Fig. 8.12 for two
points: a wing tip and the fin tip. It should be noted that the non-dimensional
rate of roll, § = pb/2V is, for small p, the angle (in radians) of the helix
traced by the wing tip. These angle-of-attack changes bring about alterafio_ns
in the aerodynamic load distribution over the surfaces, and thereby introduce
perturbations in the forces and moments. The change in the wing load
distribution also causes a modification to the trailing vortex sheet. The
vorticity distribution in it is no longer symmetrical about the x axis, and a
sidewash (positive, i.e. to the right) is induced at a vertical tail conventionally
placed. This further modifies the angle-of-attack distribution on the vertical-
tail surface. This sidewash due to rolling is characterized by the derivative
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Lift distribution
when rolling

Fic. 8.12 Angle of attack changes due to p.

905/0p. Tt has been studied theoretically and experimentally by Michael
(ref. 8.1), who has shown its importance in relation to correct estimation of
the tail contributions to the rolling derivatives. Finally, the helical motion
of the wing produces a trailing vortex sheet which is not flat, but helical.
For the small rates of roll admissible in a linear theory, this effect may be
neglected with respect to both wing and tail forces.

THE DERIVATIVE C,,

The side force due to rolling is often negligible. When it is not, the con-
tributions that need to be considered are those from the wing} and from the
vertical tail. The vertical-tail effect may be estimated in the light of its
angle-of-attack change (Fig. 8.12) as follows. Let the mean change in op
(Fig. 8.2) due to the rolling velocity be

Aop— T L 9

Vv op

where z; is an appropriate mean height of the fin. Introducing the

1 For the effect of the wing at low speeds, see ref. (8.4).
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nondimensional rate of roll, we may rewrite this as

do
Awp=—p(2F — — 8.6,1
F ( b 31‘)) ( )
The incremental side-force coefficient on the fin is obtained from Aag,
do
AC,, = apAx :-a‘2@——) 8.6,2
up F A% FP( b Y ( )

where ap is the lift-curve slope of the vertical tail. The incremental side
force on the airplane is then given by

AC, = %F AC,, = —ayp 1(2 2 _ a—")

S b 0p
N z do -
whence C S gL [2ZE —-—) 86,3
( !l,,)ta.ll r 9 ( b aﬁ ( )

THE DERIVATIVE C,

C,, is known as the damping-in-roll derivative. It expresses the resistance
of the airplane to rolling. Except in unusual circumstances, only the wing
contributes significantly to this derivative. As can be seen from Fig. 8.12, the
angle of attack due to p varies linearly across the span, from the value pb/2V
at the right wing tip to —pb/2V at the left tip. This antisymmetric o dis-
tribution produces an antisymmetric increment in the lift distribution as
shown in Fig. 8.13. In the linear range this is superimposed on the symmetric

z

Fica. 8.13 Spanwise lift distribution due to rolling.
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lift distribution associated with the wing angle of attack in undisturbed
flight. The large rolling moment L produced by this lift distribution is
proportional to the tip angle of attack , and C; is a negative constant, so
long as the local angle of attack remains below the local stalling angle.

If the wing angle of attack at the center line, u,(0), is large, then the
incremental value due to p may take some sections of the wing beyond the
stalling angle, as shown in Fig. 8.14. [Actually, for finite span wings, there is

- / /;\

= |

D

S |

g ! \

8 |

15

;

g I

g Stalled porti

= alled portion
\' of wing

o] Q- 'g') o {0) c‘w(%)

Net section angle of attack

Fre. 8.14 Reduection of C;, due to wing stall.

an additional induced angle of attack distribution «;(y) due to the vortex
wake that modifies the net sectional value still further. We neglect this
correction here in the interest of making the main point.] When this happens
|Cy,B] is reduced in magnitude from the linear value and if «,(0) is large
enough, will even change sign. When this happens, the wing will autorotate,
the main characteristic of spinning flight.

THE DERIVATIVE C,

The yawing moment produced by the rolling motion is one of the so called
cross derivatives. It is the existence of these cross derivatives that causes the
rolling and yawing motions to be so closely coupled. The wing and tail both
contribute to C,, .

The wing contribution is in two parts. The first comes from the change in
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profile drag associated with the change in wing angle of attack. The wing «
is increased on the right-hand side and decreased on the left-hand side.
These changes will normally be accompanied by an increase in profile drag
on the right side, and a decrease on the left side, combining to produce a
positive (nose-right) yawing moment. The second wing effect is associated
with the fore-and-aft inclination of the lift vector which is caused by the
rolling in subsonic flight and in supersonic flight when the leading edge is
subsonic. Its existence depends on the leading edge suction. The physical
situation is illustrated in Fig. 8.15. The directions of motion of two typical

y

Fra. 8.15 Inclination of O vector due to rolling.

wing elements are shown inclined by the angles 40 = py/V from the
direction of the vector V. Since the local lift is perpendicular to the local
relative wind, then the lift vector on the right half of the wing is inclined
forward, and that on the left half backward. The result is a negative yawing
couple, proportional to the product € p. If the wing leading edges are
supersonie, then the leading-edge suction is not present, and the local force
remains normal to the surface. The increased angle of attack on the right
side causes an increase in this normal force there, while the opposite happens
on the left side. The result is a positive yawing couple proportional to 5.

The tail contribution to C, is easily found from the tail side force given
previously (8.6,2). The incremental C, is given by

Syl
(Aon)tail AO@/F ; 2
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where 15 is the distance shown in Fig. 8.2. Therefore

(AC,)py = agh 2 (2 r _ a")

S\ o
z 7
and (Co ) = a5V (2 " 5;) (8.6,4)

where V), is the vertical-tail volume ratio.

THE DERIVATIVE G,

This derivative gives the change of aileron hinge moment due to rolling.
It occurs because of the change in wing angle of attack at the ailerons, and
because C, of the ailerons is usually nonzero. Let y, be the spanwise co-
ordinate of the right hand mid-aileron section. Then the approximate change
in angle of attack at the right hand aileron is

Ag = 2Ya
and AC,, = C,, e
Sy
2y
Therefore C,mp = T" Chaa (8.6,5)

THE DERIVATIVE G,

The change in vertical-tail angle of attack brought about by p produces a
change in the rudder hinge moment. This is given by

0¢
AC, = —C,, p{2%E
hr hrmF P ( b a ﬁ
Therefore 0, = —C, (2 90 (8.6,6)
? %r b aﬁ
When C’h,ap is negative, as for a simple flap control, then a positive roll
produces a positive rudder hinge moment.

8.7 THE r DERIVATIVES (C,. C,. C,. Gy, Gu)

When an airplane has a rate of yaw r superimposed on the forward motion
V, its velocity field is altered significantly. This is illustrated for the wing
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and vertical tail in Fig. 8.16. The situation on the wing is clearly very
complicated when it has much sweepback. The main feature however, is
that the velocity of the } chord line normal to itself is increased by the
yawing on the left-hand side, and decreased on the right side. The aero-
dynamic forces at each section (lift, drag, moment) are therefore increased
on the left-hand side, and decreased on the right-hand side. As in the case

F1e. 8.16 Velocity field due to yawing. AB = velocity vector due to rate of yaw r.

of the rolling wing, the unsymmetrical lift distribution leads to an unsym-
metrical trailing vortex sheet, and hence a sidewash at the tail. The incre-
mental tail angle of attack is then

9o

1
Aax :u'—kr
F |4 dar

or Aoy = f(z L _) (8.7,1)
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THE DERIVATIVE C,

The only contribution to C, that is normally important is that of the tail.
From the angle-of-attack change we find the incremental C, to be

(A, an = g &'(2 L, + aa)

AN
S l do
Whence (Cyr)‘iaﬂ =agp 5(2 —Z' + 3_7") (8.7,2)

THE DERIVATIVE C;

This is another important cross derivative; the rolling moment due to
yawing. The increase in lift on the left wing, and the decrease on the right
wing combine to produce a positive rolling moment proportional to the
original lift coefficient C;. Hence this derivative is largest at low speed.
Aspect ratio, taper ratio, and sweepback are all important parameters.

When the vertical tail is large, its contribution may be significant. A
formula for it can be derived in the same way as for the previous tail
contributions, with the result

Sp 2 l do
C) . = q, E2E(oE | 9O 8.7.3
( lr)ta,ll ag 9D ( b + af) ( )

THE DERIVATIVE C,

C,, is the damping-in-yaw derivative, and is always negative. The body
adds a negligible amount to C,,_ except when it is very large. The important
contributions for airplanes are those of the wing and tail. The increases in
both the profile and induced drag on the left wing and the decreases on the
right wing give a negative yawing moment and hence a resistance to the
motion. The magnitude of the effect depends on the aspect ratio, taper ratio,
and sweepback. For extremely large sweepback, of the order of 60°, the
yawing moment associated with the induced drag may be positive: i.e.
produce a reduction in the damping.
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The side force on the tail also provides a negative yawing moment. The
calculation is similar to that for the preceding tail contributions, with the
result

l oo
(€ ot = — aFVV( If‘ + -a—;;) (8.7,4)

Just as with €, , there is a damping-in-yaw provided by the propulsive
jet on jet and rockﬂt vehicles. The calculation of AC,, applies exactly to this
case as well if M be replaced by N, and ¢ by r. The result is the same as
(7.9,20 and 22), i

AN, = —2m'l¢

and AC, = —4C, ri (8.7,5)
v,

THE DERIVATIVE G,

The change in aileron hinge moment due to yawing velocity is a consequence
of the velocity differential between the right and left ailerons. Let the hinge-
moment coefficient of the right-hand aileron, at zero aileron angle, be G, .
Then the corresponding hinge moment, with no yawing, is €y, (p/2)V?8,¢,.
This hinge moment is normally balanced by that on the left aileron, so that
no load is carried to the pilot’s control. Now, when yawing is added, the mean
forward velocity at the right-hand aileron is changed from ¥V to (V — ry,),
so that the hinge moment is approximately hao( pI2)(V — ry,)2S,c,. To the
first order in 7, the incremental hinge moment is

AEla = haoprya VS Ca

On the left-hand side, the increment in H is equal to the above but opposite
in sign, so that the two are additive with respect to the stick force, just as
though the ailerons were deflected through a small positive angle. The
coefficient of AH, is

"Ya ~ Y
AOha = _20ha0 ? == —“4’1' —Z-f Ohao

Since (), is defined as the hinge moment on one aileron then

¢, =—4%q¢

ha, — b hag

(8.7,6)
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Table 8.1
Summary—Lateral Derivatives
Oy Cl Cy Oha Chr
a0¢ *a
e L%
(%)
B
oC¢ Sp 00 Spzgp o0 o6
—_ =aep—=f1 — — —ap—— =1 — = apVpll — — Neg. - 1l ——
( o )tall s ( o ) s b L ap & M“F( aﬂ)
* S 2 d¢ z o6 Y z o6
B F F a 7
—ap Ll - = N.AD apV 2-———) 22¢ -0, f2£ —=
P F S ( b a;)) B V( 3 35/ b “ha Bray b %
* S 1 a0 ¥ Spz l l ad l bl
F Fer(,'F F . Ya 7 g
ap—12— + = ap———\2= 4 —apVy |2 = + -} (tail —4 —C, C, 2 -
. FS( b+?) Fs b( b FV( b+8r)(al) b “hao '”41'( b +ar)
2
—20p v, (jet)
8a Neg.¢ N.A. N.A Cnas Neg.
Sp Spp
O a5 “@ g T —a,Vy Neg. Crrs

% % denotes a contribution from the tail only.
b N.A. means no convenient formula available.

¢ Neg, means usually negligible.
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THE DERIVATIVE G,

The change in the vertical-tail angle of attack (8.7,1) induces a change in
the rudder hinge moment. This is given by

AC, =0, Auy—C. ;(2% + ?2)
ay

h"aF 31‘*

where C,, _is the derivative, with respect to the vertical-tail angle of attack
7
of the rudder hinge-moment coefficient. Hence

. lp  Oc
Oy = O, (2F +53) (87,7

8.8 SUMMARY OF THE FORMULAE

Table 8.1 contains a summary of useful formulae used for estimation
purposes.
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Stability of steady flight

CHAPTER 9

The preceding chapters have provided the analytical and aerodynamic
tools needed to analyze the dynamic behavior of flight vehicles. We now
apply them to a consideration of the stability of small disturbances from
steady flight. This is an extremely important property of aircraft—first,
because steady flight conditions make up most of the flight time of airplanes,
and second, because the disturbances in this condition must be small for a
satisfactory vehicle. If they were not it would be unacceptable for either
commercial or military use. The required dynamic behavior is ensured by
design—by making the small-disturbance properties of concern (the natural
modes, Fig. 3.6) such that either human or automatie control can keep the
disturbances that ensue from atmospheric motion, movement of passengers,
etc., to an acceptably small level. Finally, as pointed out in Sec. 5.10, the
small-disturbance model is actually valid for disturbance magnitudes that
seem quite violent to human occupants.

To study the stability of the linear/invariant systems that result from the
small-disturbance approximation, we need only the eigenvalues of the system.
If the real parts are negative, the system is stable. More complete information
about the characteristic modes is usually wanted, however, and is supplied
by the eigenvectors. The complete solution for arbitrary initial conditions
in the autonomous case follows directly from the eigenvalues and eigen-
vectors—it is given by any of (3.3,9), (3.3,13), or (3.3,49).
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320 Dynamics of atmospheric flight

For the most part, the equations of motion are too complicated, even when
linearized and simplified as far as is reasonable, to arrive at analytical results
of general validity. Hence the technique we use is to demonstrate repre-
sentative behavior by numerical examples. From these, certain useful
analytical approximations can be inferred.

9.1 LONGITUDINAL MODES; FLAT-EARTH
APPROXIMATION

Many useful results and insights can be obtained using the flat-Earth
approximation. As we showed in Chapter 5, this approximation is valid
for a wide range of flight conditions. We begin with the longitudinal modes,
for which the relevant small-disturbance equations in nondimensional form
are (5.13,18 and 19). We shall consider first a subsonic transport airplane
in a reference steady state of horizontal flight, (y, = 0) and initially neglect
the z derivatives as well. This is an approximation that is almost universally
made in dealing with the flight of airplanes at subsonic speeds. Its significance
is explored in Sec. 9.4. Thus the relevant equations are (5.13,19) with p, = 0.

For this class of vehicle there is little error entailed by assuming that the
inclination of the thrust vector, oy, is zero, and we make this assumption.

Since we are concerned with stability of a steady state, i.e. with autono-
mous behavior, all the elements of the control vector—the last column on
the r.h.s. of (5.13,19)—are zero as well. We are left then with an antonomous
linear/invariant system with the matrix shown on the facing page.

The general theory for such systems has been given in Sec. 3.3, where it
was pointed out that the central elements of the solutions for free motion
are the eigenvalues and eigenvectors. To obtain the natural modes of a
vehicle, subject to the approximations and restrictions implicit in (9.1,1), it
then remains to assign numerical values to the elements of A and to calculate
its eigenvalues and eigenvectors.

Numerical Example. The following data pertain to a hypothetical jet
transport airplane flying at high altitude.

W = 100,000 1b S = 1667 ft* W/S = 60 psf
A=1 & = 1540 ft p, = -000889 (approx.
30,000 ft altitude)
V = 500 mph = 733 fps =~ u = 272 I,="7u
Op, = Cy, = 25 Cp, = 0188 t* = .0105 sec
0 2
Cp= 016 + -~

T



I1t€

B Or, —Cp, Or, —Op, 0 — C_’VKE ]
2n 2u 2p
_ OLV + 20We . OLoc + ODe 2p — OLq 0
A= 21 + Oy, 2u + Cp, 2u + 0t
17, Cuny(Cry + 20w, 1 I:G Cne(Cr, + C'D):, 1 Crmy (2 — GL,,):I 0
Fy my 24 +Cp, I, e 2u +0La E, g 2u +Cr,
B 0 0 i 1 o |
The state vector is, of course, [A T?, Ao, 4, AG]. (9.1,1)
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It is assumed that the thrust of the jet engines does not vary with speed, i.e.
0T[2V = 0, and that there are no speed effects on the aerodynamic deri-
vatives. The remaining data needed for (9.1,1) are given for this particular
vehicle as (see Table 7.1)

Cr,=488; C,, = —488h, —h); (h,—h)=.15

c —20“0 s Oy =0; C, — —4.20
Da_—7_ Lea> Lg — V2 mg T
v

GLq = 0; qu == —22.9; OTV = “‘201'2 = —20-De
OLV = ODV = Omy = 0.

Using the above data, the coefficients of A were caleculated, and the eigen-
values and eigenvectors found by library subroutines} available for the
UTIAS IBM 1130 computer. Let the eigenvalues be 4 = # -- i where the *
denotes nondimensional values (note that the independent variable of the
differential equations is £ = ¢/t*). The properties of interest are then, in real
time:

2
Period, T' = ¢* —~
w
« 69315
thaig = — P
n

N balf — half./ T

The results obtained are as follows:

EIGENVALUES

Mode 1: 1 = —.3065 x 10—% + .573 x 10-3;
Mode 2: 1= —.1161 x 101 + .1891 x 10~'3

The corresponding periods and damping times are given in Table 9.1. We
note that the phugoid mode is of long period (about 2 min) and lightly
damped, whereas the short-period mode is quite rapid and very heavily
damped. The characteristic transients of these two modes are shown in
Fig. 9.1.

T Prepared by Dr. P. C. Hughes. It is perhaps indicative of the timés that most of the
digital computation needed for this and the following examples was performed, using
these subroutines, by a high-school student, David Alexander Etkin.



Table 9.1

Period thalf Nuaxe
Mode Name (sec) (sec) (cycles)
1 Phugoide 115 237 2.06
2 Short-period 3.48 .626 .18

% The phugoid mode was first described by Lanchester
(ref. 1.1), who also named it. The name comes from the Greek
root for flee as in fugitive. Actually Lanchester wanted the
root for fly. Appropriate or not, the word phugoid has become

established in aeronautical jargon.

115 sec.
(a)
0
3.48 sec.
(7}

F16. 9.1 Characteristic transients. (a) Phugoid mode. (b) Short-period (pitching) mode.
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324 Dynamics of atmospheric flight

EIGENVECTORS

The eigenvectors corresponding to the above modes are given in the Table
9.2. They are not normalized, being to an arbitrary scale. The first and third
columns correspond to & > 0, the second and fourth to & < 0.

Table 9.2
Eigenmatrix [u,;]
Phugoid Short-Period
AV |—.227 x 1071 | —.227 x 1071 279 x 102 279 x 10~2
+.281 ¢ —.281 ¢ 4.180 x 10727 —.180 x 10724
Aa .639 x 10~8 .639 x 103 .333 .333
—.629 x 10724| +.629 x 10724 +.195 % —.195 ¢
§ |—115 x 104 | —115 x 10~ | —.455 x 1072 | —.455 x 102
4.202 x 10734 —.202 x 10734 +.578 x 102¢ —.578 x 10724
A .353 .353 .329 .329
+.116 x 10~24| —.116 x 10724 +.383 x 10714 —-.383 x 1071¢

Figure 9.2 is the Argand diagram of the vectors in columns 1 and 3. This
is a very effective form of displaying modal characteristics. Since the actual
magnitudes of eigenvectors are arbitrary, only the relative lengths of the
vectors are shown, taking that of A = 1.0. The vectors shown can be
imagined as rotating and shrinking (just as in Fig. 3.6e except that here we
only have those with w positive); and their projections on the Re axis can
be thought of as the real values of the indicated variables.

The phugoid is seen to be a motion in which the speed and pitch angle 6
are the main variables, the former leading the latter by roughly 90° in phase,
while the angle of attack and the pitech rate remain virtually constant at
their reference values. The flight-path angle Ay is related to Af and A« by
(6.10,22), Ay = A6 — Aa, so that in the phugoid Ay = A8, and the oscilla-
tory flight-path angle lags the speed by about 90°.

In the short-period mode, by contrast, there is negligible speed variation,
while the angle of attack oscillates with an amplitude and phase not much
different from that of Af. The difference vector Ay is also shown in the figure.
This mode as well is one that proceeds essentially in two degrees of freedom,

Ao and AB.



. Im

q
(not visible)

AV =0.799

w,
’\ A9=10
o) / = Re

Aa (not visible)
(a)
Im
g (not visible) N =
? AV (not visible) Aa =117
@ A6=10
/ Re
Ay =0472

(b)
F1a.9.2 (o) Vector diagram of phugoid mode. (b) Vector diagram of short-period mode.
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326 Dynamics of atmospheric flight

FLIGHT PATHS IN THE CHARACTERISTIC MODES

Additional insight into the modes is gained by studying the flight path.
With the atmosphere at rest, the differential equations for the position of
the C.G. in F'; are given by (5.13,19), with y, = 0, i.e.

Dig =1+ AV

Diy = — (A6 — Aq) (.1.2)

In a characteristic oscillatory mode with eigenvalues A, A* the variations of
AV, A9, and A« are [cf. (3.3,30)]
AV——ul,u + ufe a
Aa = uzje g uye A (9.1,3)
AB—uMe A uje .
where the constants u,; are the components of the eigenvector corresponding
to A. For the prewous numerical example, they are the complex numbers

given in Table 9.2 with j = 1 for the phugoid and j = 3 for the short-period
mode. After substituting (9.1,3) in (9.1,2) and integrating we get

uy;
Ep =1+ l’e 4 2Ty const

1*
=4 2% Re [u—;i e""‘\’f] + const (9.1,4)

i Ug; — U,
éE = 2¢™ Re I:—'?’—Eﬁ zwt:I + const

where Re denotes the real part of the complex number in the square brackets.
The dimensional coordinates are obtained by using the additional relations

¢,
g =—Zp 2E

by t=1t* (9.1,5)

l\')
[ SR Y

For the numerical data of the above example (9.1,4) and (9.1,5) have been
used to calculate the flight paths in the two modes, plotted in Fig. 9.3. The
magnitudes of the eigenvectors were chosen so that 0, is approximately 4°
in the phugoid mode, and 10° in the short-period mode. ¢ = 0 corresponds
to the configuration of variables in Fig. 9.2, and the arbitrary constants of
(9.1,4) are zero. The latter choice makes the initial point of the flight paths
differ from the origin, but they both approach the x5 axis as ¢t — co. Figure
9.3a shows that the phugoid is an undulating flight of very long wavelength.



40,820 43,380

01 50 80 /\ g /1000, f
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Fi1e. 9.3 (a) Phugoid flight path (fixed reference frame). (b) Phugoid flight path
( moving reference frame). (¢) Short-period flight path.
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328 Dynamics of atmospheric flight

Since A« == 0, the vehicle “flies like an arrow,” i.e. has its « axis approxi-
mately tangent to the trajectory. The mode diagram, Fig. 9.2a shows that
the speed leads the pitch angle by about 90°, from which we can infer that
V is largest at the bottom of the wave and least at the top. This variation
in speed results in different distances being traversed during the upper and
lower halves of the cycle, as shown in Fig. 9.3a. For larger amplitude oseil-
lations, this lack of symmetry in the oscillation becomes much more pro-
nounced (although the linear theory then fails to describe it accurately) until
ultimately the upper part becomes first a cusp and then a loop (see Miele,
ref. 1.7, p. 273). The motion (see Sec. 9.2) is approximately one of constant
total energy, the rising and falling corresponding to an exchange between
kinetic and potential energy. Figure 9.3b shows the phugoid motion relative
to axes moving at the reference speed V,. This is the relative path that would
be seen by an observer flying alongside at speed V,.

Figure 9.3c shows the path for the short-period mode. The disturbance is
so rapidly damped that the transient has virtually disappeared within
1000 ft of flight, even though the initial Ax and Af were very large. The
deviation of the path from a straight line is small, the principal feature of
the motion being the rapid rotation in pitch.

9.2 APPROXIMATE EQUATIONS FOR THE
LONGITUDINAL MODES

Tt is frequently useful and desirable to have approximate analytical
expressions for the periods and dampings of the characteristic modes. These
are convenient for assessing the influence of the main flight and vehicle
parameters that affect the modes, and are especially useful when con-
ventional methods of servomechanism analysis are applied to automatic
control systems (ref. 9.4). There are two approaches generally used to arrive
at these approximations. One is to write out a literal expression for the
characteristic equation and, by studying the order of magnitude of the
terms in it, to arrive at approximate linear or quadratic factors. For example,
if the characteristic equation

sttt 2 s+ =0

is known to have a “small”’ real root, an approximation to it may be obtained
by neglecting all the higher powers of s, i.e.

8 +¢=0

Or if there is a “large” complex root, it may be approximated by keeping
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only the first three terms, i.e.

§24cs+c, =0

This method is frequently useful, and sometimes the only reasonable way
to get an approximation.

The second method, which has the advantage of providing more physical
insight, proceeds from a foreknowledge of the modal characteristics to arrive
at approximate system equations of lower order than the exact ones. For
the longitudinal modes we use the second method (see below), and for the
lateral modes (see Sec. 9.6,1) both methods are needed.

It should be noted that no simple analytical approximations can be relied
on to give accurate results under all circumstances. Machine solutions of the
exact matrix is the only certain way. The value of the approximations is
indicated by examples in the following.

To proceed now to the phugoid and short-period modes, we saw in Fig. 9.2
that some state variables are negligibly small in each of the two modes.
This fact suggests certain approximations to them based on reduced sets of
equations of motion. These approximations, which are quite useful, are
developed below.

PHUGOID MODE

Lanchester’s (ref. 1.1) original solution for the phugoid used the assumptions
that Aw =0 and 7 — D = 0. It follows that there is no net aerodynamic
force tangent to the flight path, and hence no work done on the vehicle
except by gravity. The motion is then one of constant total energy, as
suggested previously. This simplification makes it possible to treat the most
general case with large disturbances in speed and flight-path angle (see
Miele, ref. 1.7, p. 271 et seq.). Here we content ourselves with a treatment
of only the corresponding small-disturbance case, for comparison with the
exact numerical result given earlier. The energy condition is

B = imV? — mgzp = const
or V2= V.2 + 2925 (9.2,1)

where the origin of Fj is so chosen that ¥V = V, when z5 = 0. With o
.constant, and in addition neglecting the effect of ¢ on Oy, then (', is constant
at the value for steady horizontal flight, ie. O = Cp = Oy, and L =
Cw 3pV?8 or, in view of (9.2,1),

L= O 3pV 28 + (Cyr pgSeg = W + ke 9.2,2)

Thus the lift is seen to vary linearly with the height in such a manner as
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always to drive the vehicle back to its reference height, the “spring constant’
being

k = Cy pg8 (9.2,3)
The equation of motion in the vertical direction is clearly, when 7' — D = 0,

W — L cos § = mZg
or for small 6,

W — L = mig ’ 9.2,4)
On combining (9.2,2) and (9.2,4) we get
mip + kzg =0

which identifies a simple harmonic motion of period

T =2n o_ 27 i
k Cw.p9S

Since Oy, = mg[}pV,?S, this becomes

T = m/gl;f (9.2,5)

a beautifully simple result, suggesting that the phugoid period depends only
on the speed of flight, and not at all on the airplane or the altitude! For the
above example, V, = 733 fps, and (9.2,5) gives 7' = 101 sec, a value 12.29,
different from the correct result, 115 sec.

Although (9.2,5) is a very useful result for the period, the above theory
cannot give any information at all about the damping, since thrust and drag
were eliminated from consideration and it is precisely these that cause the
amplitude of the oscillation to change. For a better approximation, we return
to the equations of motion and incorporate a simplification suggested by
Fig. 9.2a, i.e. Ax = 0. Note that this is one of Lanchester’s two assumptions.
If we drop one variable, we must also drop one equation of motion. Now the
zero Ao may be considered to imply zero pitching moment of inertia, so
that pitch equilibrium is always maintained throughout the motion, and
this suggests that it is the pitching moment equation that should be dropped.
With A and the C,, equation missing, (9.1,1) reduces to

. Cp, —Cp, 0 _ Y,
DV 2u
el O, +20y ) 2u—Cp, (9.2,6)
DO 2u +Cr, | 2u + OL&
= 0 1
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For consistency with the previous numerical example, we neglect. as well the
derivatives Cr, , Cp,, Cr, Cr,- Now the second of the three equations is an

algebraic relation, i.e. with the preceding approximations

Co. . A
— AV +§G=0 (9.2,1)
um

After using (9.2,7) to eliminate ¢ from (9.2,6) we get the second-order system

CTV CWe-l
DV | 2u  2u ||AV
| # (9.28)
DO | Oy, 0 Af
“ R
The characteristic equation is therefore
(C—’?—V — s)v — Ci”_e
2u 2u
=0
Cw, s
u
The expansion gives the quadratic
2 T w.
— ¥ F) —_—t =0
o * T 2 (92,9)
or L 2Ab,s + d,2=0
which has the roots
A=+ id
where A= —{b, = Cﬁ
4y
o= (6,2 — a2
o 1 Cp,
(()" R
O
and the damping ratio is
1 C
{=—— X (9.2,10)
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The ‘“‘undamped” period is seen to be

After eliminating Cy, this reduces exactly to (9.2,5) so that the Lanchester
result is recovered from (9.2,9) when Cp = 9.

For the case of horizontal flight under consideration here, Cp depends
only on the reference drag coefficient and the type of propulsion system
(see Sec. 7.8). For the example airplane in horizontal flight Cp, = —2Cp,
and in that case the damping coefficient is

To this approximation, { will always vary inversely as the (L/D) ratio, but
for constant-power propulsion (instead of constant thrust) the constant is
3/21/2 (instead of 1/v/2).

The accuracy of the approximation given by (9.2,9) is illustrated on Figs.
9.40, 9.8, and 9.16.

Another approximation that gives better results for the period, but not
necessarily for the damping, is one originally due to Bairstow (ref. 1.4) [the
derivation is given by Ashkenas and McRuer (ref. 9.5)]. When converted
to the notation of this work, it gives

. [CWe[Cma(CW, + 1Cr,) — 30, (Cr + Cp, )%
w =
pl2uCp, + C,, (€ + Cp)]
. OD3+ %ODV %ODGOMV

A
n = -

2u 2uC,,, + Cn (CL,+ Cp)

(9.2,11)

This also is compared with exact results in the figures that follow.

SHORT-PERIOD MODE

Figure 9.2b shows that the speed remains substantially constant in the
short-period mode, and this suggests an approximation to the equations in
which AV = 0. Again, one equation must be dropped from the set, and the
correct choice is the speed equation of motion. The reduced equations are
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then, after neglecting the same derivatives as before,

(Cr,+Ch,) A
- B | 0 lra
D“ 2” (v 3
""" il =|1 CpyCr, + C i | 9212
124 T(Oma~ _(_£_+__D)) Lo, 400l @2
po] | L 2 I, il A6
L 0 1 0 |
The characteristic equation is then
 (CutCp) .
2p
— - 5 =0 (9.2,13)
i(oma _ %L_«i_l’_)) }1- (O, + Cp) —
v 2u ¥
This expands to give the cubic equation
s+ e+ ) =0
2nuoma + Cmq(OLa + CD,,)
where Cp = —
2,uj v
5 (9.2,14)
1(Cr, + Cp) — 20(C,n, + C)
¢y =
2‘uf v

of which the second-degree factor is the approximation for the short-peried
roots. The zero root is of no interest. With the numerical values of the
preceding example, the roots obtained from (9.2,14) are

A= —1162 x 101 1 1892 x 10-1¢
which are to be compared to the exact values
—.1161 x 107 4 .1891 x 107%¢

The errors are seen to be very small, less than 5% in both the damping
and the period. Equations (9.2,14) give a good approximation to the im-
portant short-period oscillation over a wide range of flight and vehicle
parameters.

Because of the large influence of C.G. position on C,, , a critical C.G.
position is indicated by (9.2,14) when

2uC,, + Opy(Cr, + Cp,) =0 (9.2,15)
At this condition, ¢, vanishes, and the characteristic equation becomes

s(s+¢)=0
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with roots 1 =0, —¢,. The latter corresponds to a damped exponential
mode, and the zero root identifies one that is a constant state in the two
variables A« and §. This state, a longitudinal motion at constant speed, o
and ¢ is none other than the steady pull-up treated in Sec. 6.10. The critical
C.G. position is found from (9.2,15) thus

20, (hogsy — ) + O (Cp, + Cp) =0
Cn(Cr,+ Cp)
crit hy, — ————=
2#01’11

Comparison of (9.2,16) and (6.10,8) shows that k., above would be exactly
h,, (the control-fixed maneuver point) if Uy, were zero in the former and Cp,
zero in the latter. In fact these equations both describe the same flight
condition, and the differences between them are entirely due to differences in
the detailed assumptions made in their derivations. Specifically, 'y, was
neglected in (9.2,12) and no component of the thrust normal to ¥V was
included in the derivation of (6.10,8). Had the assumptions been strictly
compatible, the results would have been identical.

The above analysis shows that the steady pull-up at constant speed can
occur without motion of the controls at this C.G. position, and hence it is
indeed the condition of zero control motion per g. We can further deduce
that movement of the C.G. farther aft causes a reversal of sign of ¢, and
hence corresponds to a “static instability” as in a mass-spring-damper with
a “negative” spring. In this light the control-fixed maneuver point is seen
as a criterion for the divergence of the short-period mode.

or h (9.2,16)

9.3 GENERAL THEORY OF STATIC LONGITUDINAL
STABILITY

The concept of static stability was introduced in Chapter 3, where it was
identified with the nature of the exponential characteristic modes (Figs. 3.6a
and b). In Sec. 3.3 (p. 70) it was pointed out that the vanpishing of the
constant term in the characteristic equation of a linear/invariant system
provides a boundary between asymptotic stability and static instability.
This is the criterion that we discuss in this section, and relate to the stability
criteria presented earlier in Chapter 6.

‘The characteristic equation [see (3.3,7)] is

[sI — Al =0
and clearly the constant term is found by setting s = 0, i.e.

co = |—A]



Stability of steady flight 335
The criterion for static stability is then
|—A} >0 (9.3,1)

The application of this criterion is in principle straightforward for any of
the linear/invariant systems (5.13,18 to 20) that describe the longitudinal
and lateral motions. In the interests of deriving a simple usable analytical
result, however, we shall treat the special case represented by (9.1,1), in
which the equilibrium flight path is horizontal, and z derivatives are neglected.
When |—A] is expanded we get

Ow,
2/41 (2u+Cr.)

Since the factor outside the square brackets is always positive (C L, could

O, + Cp )0, — Cp (Cp, + 20y )] (9:3,2)

not be <—2u for any reasonable heavier-than-air vehicle) the stability
criterion becomes

(Cp, + Cp )00, — O (Cr, + 20y ) >0 (9.3,3)

When comparing (9.3,3) with the static stability criteria discussed in Chapter
6, a minor difference in basic assumptions must be noted. In the preceding
development, it was specifically assumed that the thrust vector rotates
with the vehicle when « is changed. In the development leading to (6.4,24)
by contrast, there is an implicit assumption that the thrust provides no
component of force perpendicular to V [see (6.4,18)]. It is this difference
that leads to the presence of C p,in(9.3,3) whereas there is no corresponding
term in the numerator of (6.4 24) Had the assumptions been the same, the
expressions would be strictly compatible. In any case, Cp, is usually small
compared to Cp , so that the difference is not important. We see that the
justification for the statement made in Sec. 6.4, that the slope of the elevator
trim curve (dd,4,im/d V), is a criterion of static stability, is provided by (9.3,3).
[Note that OW = O’L in (9.3,3).]

Another stablhty criterion referred to in Chapter 6 is the derivative
d0C,,/dC, (6.3,21). It was pointed out there that this derivative can only be
said to exist if enough constraints are imposed on the independent variables
o, V, 8, q, ete., on which C,, and C;, separately depend. Such a situation
results if we postulate that the vehicle is in rectilinear motion (g = 0) at
constant elevator angle and throttle setting, with L = W, but with varying
speed and angle of attack. Such a condition cannot, of course, actually oceur
in flight because the pitching moment could be zero at only one speed, but
it can readily be simulated in a wind tunnel where the model is restrained
by a balance. [The argument that follows is quite similar to that of (6.4,18)
et seq.] With the above stipulations, C,, and O reduce to functions of the
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two variables ¥ and «, and incremental changes from a reference state ( )
are given by

e

0y, = Or, da + Cp dV

. (9.3,4)
acC,, = C,, de+C, dv
The required derivative is then
av
Oma + Omy r
L

provided df’/doc exists. This is guaranteed by the remaining condition
imposed, i.e. I = W (implying o4 = 0). For then we have

W = Cp(x, V)}pV28 = const

from which we readily derive

(Cr, da + Cr, AV)4pV 28 + Of pV, S AV =0 (9.3,6)
From (9.3,6)
(Cr, +2C;) AV + Cp da =0
p c
or W L. (9.3,7)
do O, +20,

After substituting (9.3,7) into (9.3,5) and simplifying we get

a0 1

- = ¢, (C 20,)—-C.C,, 9.3,8

aCy |;py 20, OL,,[ O, +20L) —CpC, 1 (9.3,8)

On comparing (9.3,8) with (9.3,3), again neglecting C}, therein for compatibil-
ity of assumptions, and noting that O, = O, , we see that the static stability
criterion is
ac,,
dly,

provided that dC,,/dC is calculated with the constraints Ad, = Aw = ¢ =0
and L = W. [The quantity on the left side of (9.3,8) and (9.3,9) is sometimes
referred to as speed stability in the USA, by contrast with “angle of attack”
stability. In Great Britain, this term usually has a different meaning, as in
Sec. 11.5.]

On using the definition of 7, given in (6.4,26) we find from (9.3,8) that

<0 (9.3,9)
L=w

dc,,

= {1 GL”h h 9.3,10
~(+20)<—s) (9.3,10)

L,

L=w
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i.e. that it is proportional to the “stability margin,” and when €7, <20y , is
equal to it.

Finally, we must check on the significance of the “pitch stiffness” parameter
C,,,, to which great importance was attached in Chapter 6. We see from
9.3,3 that when C_and C,, are zero, U,, < 0 does indeed provide an exact
criterion for static stability. Even when O and C,, are not zero, we shall

see from the examples to follow that C,, < 0 is still a useful and significant
criterion.

9.4 EFFECT OF FLIGHT CONDITION ON THE
LONGITUDINAL MODES OF A SUBSONIC JET
TRANSPORT

In Sec. 9.1 we gave the representative characteristic modes of a hypo-
thetical subsonic jet airplane for a single set of parameters. It is of consider-
able interest to enquire into how these characteristics are affected by changes
in the major flight variables—speed, altitude, angle of climb, and stability
margin. It is also of interest to establish the nature of the approximation
dpldZ = 0. In this section we present numerical results that illustrate the
above features.

9.4.1 EFFECT OF SPEED

When the speed is changed in horizontal flight, the matrix (9.1,1) previously
used is still applicable. All the assumptions made in Sec. 9.1 are retained—in
particular, no Mach number effects are included—and hence the only
quantities that vary are Oy , Cp, Cp , Cp , and t*. The eigenvalues and

eigenvectors of (9.1,1) have been calculated for a range of speeds, and the
variations of the pericd and damping of the two modes are given in Fig. 9.4.
The Lanchester approximation to the phugoid period (9.2,5) is shown for
comparison, as well as approximations (9.2,9), (9.2,11), and (9.2,14) to the
phugoid and short-period modes, respectively.

The speed domain shown corresponds to a range of Oy, from .2 to 1.8.
This is somewhat larger than that over which one might expect the theory
to be accurate. The highest speed corresponds to M = .82 at which com-
pressibility effects would be expected to be present in Cy, , Cp , and Cy ,
and possibility in 07 and C,, . On the other hand, at the large Cy, corre-
sponding to the lowest speed, flow separation effects might be expected to
oceur on the cruise configuration in the absence of boundary layer control,
affecting several of the derivatives.
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The phugoid period is seen to behave qualitatively as predicted by Lan-
chester’s theory, and the usefulness of the approximate theories for pre-
dicting it is evident. Not so for the damping of the phugoid however, for
which the approximate theories fail to predict the severe loss of damping
at low speeds, where the number of cycles to half amplitude increases to
nearly six.

The short-period mode has essentially constant nondimensional eigen-
values [note that OW; does not appear in (9.2,14)]. The variation shown in 7'
comes almost entirely from that of * = ¢/2V,. The approximation given by
{9.2,14) is to the accuracy of the graph indistinguishable from the exact
solution.

At the lowest speed the separation of the periods of the two modes is
much less than at high speeds, their ratio at 274 fps being only 3.9 by
contrast with 34.8 at 821 fps.

Figure 9.5 shows the root-locus of the phugoid mode. That for the short-
period mode is virtually a pair of conjugate points and is not shown.

Figure 9.6 shows how the modal characteristics (the eigenvectors) have
changed at the lowest speed. The most significant feature is that appreciable
A« has appeared in the phugoid and AV in the short-period mode. This can
be traced to the fact that the periods of the two modes are much closer to
one another at this speed, and hence that the coupling between the previously
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Fie. 9.5 Root locus—phugoid mode, variable C, .
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lightly-coupled degrees of freedom is stronger. That is to say, a variation of
o at the short-period frequency can induce an appreciable speed change
under these conditions and the pitching moment variation during the phugoid
(associated mainly with Cp4) can induce appreciable changes in «. Now we
arrived at the approximations (9.2,9) and (9.2,14) by ignoring A« in one mode
and AV in the other. It therefore follows that the approximations might
be poorer at low speed than at high speed. This is clearly shown for the
phugoid damping in Fig. 9.4a, but the approximations to the phugoid period,
and to the short-period mode, are not appreciably worse at low speed than
at high speed.

9.42 EFFECT OF ALTITUDE

When the altitude is varied at constant Oy, and constant static margin
the density change has two separate effects. The first is on u and 7, which
are both smaller at lower altitude, and the second is on the true speed V,,
which also decreases with decrease of altitude. The matrix (9.1,1) is still
applicable, and with the same assumptions as used before the only quantities
in it that change are u and [,. Computations were carried out for the altitude
range 0 to 40,000 ft for Oy = .25 and K, = .10. The results are shown on
Figs. 9.7 to 9.11. As with the speed variation previously discussed, the
results would not be expected to be accurate at the highest altitude, where
the speed is about 900 fps, i.e. M == .93, since compressibility effects were
not included in the aerodynamic derivatives. The speed is seen in Fig. 9.7
to vary over a range of 2:1 as the height changes, and this has a large effect
on the phugoid periods. This is evident in Fig. 9.8, where the period is seen
to vary with height in the same way as does the speed, qualitatively as
predicted by the Lanchester formula. From (9.2,14) it follows that &, for

the short-period varies approximately as V' —p, and hence that T varies

1000
900
800
700
600
500
400 [

300 I ) 1 ! ! 1 ! I !
0 5000 10,000 15,000 20,000 25000 30,000 35000 40,000 45,000

Altitude, ft

Ve, fps

Fie. 8.7 Variation of V, with altitude-horizontal flight. Cy, =0, = -25.
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approximately as (\/EVe)—l. Since p,V,? is a constant at constant Oy the
short-period is expected to vary only slightly with height, and this is evident
in Fig. 9.9. The damping of both modes is higher in the denser lower atmos-
phere. This is predicted for the short-period mode by (9.2,14), but not for
the phugoid by (9.2,9). The nondimensional roots show large and qualitatively
similar variations for both modes in Figs. 9.10 and 11.

9.43 EFFECT OF FLIGHT-PATH ANGLE

To caleulate the stability characteristics for nonhorizontal flight it is
necessary to neglect all the z derivatives, and use the system matrix of
(56.13,19). The basic aerodynamic assumptions made in the following calcu-
lations are the same as those used in Sec. 9.1 but the following important
difference should be noted—the thrust and lift are no longer equal to the

drag and the weight, respectively. Instead at angle of climb y, we have, when
Lp = O, c C .
= + Cyp siny,
T TR T (9.4,1)
O, = Oy cosy,
Since with the assumptions of the model used, C T, = —2C T, this derivative,
and hence the coefficient a,, of the matrix, vary strongly with y,. It is also

1 { I 1 1 1 1 i ) T I ) 1 1 T T 1 1 1 [} 34
} 132
| 30
140} I 28
~—— 7 M|y Pae_— t26
120 | ~124
' 22
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F16.9.12 Variation of phugoid mode parameters with p.C,, = .25, attitude = 30,000 ft.
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necessary to note that for negative flight-path angles (diving flight) greater
than a few degrees (9.4,1) would require negative thrust. For this range of
y, we have assumed for the purposes of the example that T, is zero and that
dive brakes are extended to provide the necessary drag, i.e. that

Cp, = —Cy, siny, (9.4,2)

Thus for y, less than the power-off glide angle, a,; = (U /u) siny,. The
main results of calculations of the eigenvalues are shown on Figs. 9.12 and
9.13 for the constant values C’We = .25, p, = .000889, K, = .10. The short-
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Fie. 9.13 Variation of the time to half amplitude of the phugoid mode with y.

period mode is not significantly affected by y,, but the phugoid is very much.
Figure 9.12 shows the variation of its period and damping over the range
—20 <y, < 20°. Although the period varies only slightly, the damping
deteriorates rapidly with increasing climb angle until the mode becomes
unstable above 10.8°. At 20° climb angle the number of cycles to double
amplitude has deereased to about 2.2, but because of the long period the
time to double, as shown on Fig. 9.13, is still very long—289 sec.

This behavior of the phugoid damping is approximately predicted by the
two-degree-of-freedom analysis. If p, be retained from the beginning, with
Cp, = —2Cp, for constant-thrust powered flight, the same method that
was used to obtain (9.2,9) yields for this case the characteristic equation

Cw,

20 (Cyp, cos® y, — Cp,siny,) =0 (9.43)

1
s 4+ — (20, — Oy siny,)s +
2” € e

The coefficient of s, which gives the damping, decreases as y, increases, and
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vanishes at the critical angle

20
y, =sin" -O—Il (9.4,4)

erit
W,

For the example, this is 8.6°, somewhat less than the correct value of 10.8°
obtained from the complete system of equations.

The unstable phugoid can be shown to be entirely a consequence of the
thrust law assumed. If the propulsion system were one of constant power
TV instead of constant thrust 7', the value of C7 would be —3Cp_instead
of —2Cy [see (7.8,5)]. In that case the coefﬁment of s in (9.4,3) turns out
to be 301),/2!% a positive number almost independent of climb angle, and
the approximate theory indicates no important change of phugoid char-
acteristics with angle of climb. Values of O intermediate between the two
values used above would give less reductlon in the damping than shown in
F]g 9.12.

9.4.4 EFFECT OF VERTICAL DENSITY-GRADIENT

The effect of the vertical gradient in atmospheric density on the char-
acteristic modes of horizontal flight was first discussed by Scheubel (ref. 9.1),
and later in more detail by Neumark (ref. 9.2) and Walkowicz (ref. 9.3).
Their principal conclusions were that the short-period motion is unchanged
by the density gradient, but that the phugoid period is appreciably shortened
by an amount that increases with speed. Neumark also pointed out that the
characteristic equation for this case is of the fifth degree and that the extra
root is a small one corresponding to the tendency of the vehicle to seek or
depart from its equilibrium altitude, depending on whether or not the root
is negative. Neumark concluded, based on examples in which the thrust
was independent of height, that the damping of the phugoid was unaffected
by dp/dz. In fact, the phugoid damping is very sensitive to the thrust law,
and as shown in the example that follows, in which 7' ¢ p so that O = 0
(a reasonable approximation for jet engines), the damping can be very much
reduced at all speeds by the density gradient. Before proceeding to the
numerical solutions of the complete equations however, it is instructive to
present Scheubel’s extension of the simple Lanchester analysis of the phugoid
period. In Sec. 9.2 we saw that with Lanchester’s approximations there is a
vertical “spring stiffness” k given by (9.2,3) that governs the period. When
the density varies there is a second ‘“‘stiffness” &’ resulting from the fact
that the increased density when the vehicle is below its reference altitude
increases the lift, and vice versa. This incremental lift associated with a
density change is

AL = C.3V38 Ap
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so that
k= AL _ CrAv.2s
0z d
From the definitions of p, £ and noting that C7 = Oy, we get
&= 2w dp (9.4,5)
é dz

The density variation in the atmosphere is closely exponential over appreci-
able altitude ranges, so dg/dZ = (1/p,)(dp/dZ) is roughly constant. Thus we
find that %' is approximately constant, whereas k from (9.2,3) depends on
Cy p, which varies as V2 for constant weight. The density gradient therefore
has its greatest relative effect at high speed. The correction factor for the
period, which varies inversely as the square root of the stiffness, is

E YV 1

- ( ) _ - (9.4,6)
E+F 1+ &[k)

so that the period with density gradient is 7" = K7'. With the given values

of k& and &’ this becomes 1
Ee—— (94,7)

2dp
1
( ) g dZ)

in which the principal variable is seen to be the speed, occurring in the form
of the Froude’s number (V,2/g¢). The reduction in phugoid period predicted
by (9.4,7) for the example airplane is 14 % at 500 mph, which is very close
to the exact result of 139, (Fig. 9.14).

In order to provide a complete comparison with the approximation based
on constant density, we use the fifth-order system (5.13,18) to make numerical
caleulation for the same conditions as hold in Figs. 9.4 and 9.5. All the z
derivatives Cp , Op, Cr , C,, have been agsumed to be zero, and the only
den51ty~grad1ent effects are embodled in the dp/dz terms. Note that ¢, = 0
implies a propulsion system in which the thrust is proportional to p. With
all the assumptions that pertain to this example explicitly incorporated, the
system matrix is

T o mtn L, | R
" 2u 2u
_ Cw, _ Yy + O, 1 0 #c.'i‘zdﬁ
1 24 2u dz
Cw Oy | 1 Omg (O, + C 1 c d
i | o (oml _ L‘f(_m'_”ﬁ) 7 @, + Cng) 0 _ ko, B
uly ¥ 20 v 2l d2
0 0 1 0 0
_ o 1 0 —1 0 _
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The value of dp/dZ was obtained from the tables for the U.S. Standard
Atmosphere (ref. 9.14) as follows:

ap _ 1 edp _ _Cdlogp (9.4,9)
i p,2dz 2 dh ’

where h is the altitude. From the tabulated data, dlog p/dk at about
30,000 ft altitude is found to be —4.16 x 10~% and hence dp/ds =
3(15.40)(4.16)10-% = .000320. With this value, the eigenvalues of (9.4,8)
have been calculated for the same range of speeds as used in Figs. 9.4 and 9.5.
The short-period mode is found to be unchanged to three significant digits,
in agreement with Neumark, the phugoid damping and period are both
altered, and a new stable nonoscillatory mode of long time constant appears.
Figure 9.14 shows the quite substantial effects on the phugoid. It is clear
from these graphs that neglect of atmospheric density gradient can lead to
considerable error. This is especially significant with respect to the damping
since the constant-density approximation gives unconservative results.

The fifth root of the characteristic equation is negative, corresponding
to a stable subsidence. Its characteristic time, plotted on Fig. 9.15, is seen
to be very long. This mode is related to the weak tendency of the vehicle
to fly at its equilibrium altitude (note that there is no preferred altitude in
the constant-density case). The eigenvector of this mode for ¥, = 561 mph
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Fi6. 9.15 Time to damp of altitude-convergence mode.

is found to be AV:A«:gd:A0:2, = —.161 x 10-3:.187 x 10-7: —.398 X
107°:.199 x 10~*:1 which shows that, like the phugoid, it is a mode with
negligible Ax and ¢. That is, it is an “arrow” mode, in which the vehicle
axis is closely aligned with the velocity vector while it drifts slowly back
to its equilibrium altitude. The principal degree of freedom is clearly zg.
The relative magnitudes are a little deceptive however because of the small
length (¢/2) used to make zz nondimensional. For this vehicle, a decrease
in altitude of 1000 ft in this mode would correspond to AZ; = 130 and a
AV of —29,.

It is instructive to examine the approximation obtained by neglecting
Ao and the O, equation, just as was done previously with the fourth-order
system. For additional generality, to allow for other than jet engines, we
retain the term Oy in the first equation. When the same procedure is
followed as led to (9.2,9) the result is the cubic characteristic equation

c Cw? Oy dp Cp dp\ C
83_82_Tv+8( L +_We_f’) 4 (OT _ Tv_g)_&zo (9.4,10)
2u 2u 2u df z 2 di) 2u4®

When the thrust is independent of height and speed, as for a rocket engine,
Cr, is given by (7.12,1) as Oy, = —Cp dpfdZ and Cp, = —2Cp, . The last
term of (9.4,10) then disappears, one root is zero, and the remaining two
are given by

2 Op, Cw,.  Cw, dﬁ)
§ — s —= —} =0
2‘u2 2u di

Without the dgjdZ term, this is exactly the phugoid approximation (9.2,9),
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and the constant term can be identified exactly as the augmented “spring-
constant’ that led to (9.4,7)-—note that the ratio of the last two terms is

2u d 2ﬂ2 r d

Tt is clear that the approximation to the fifth root in this case is 1 = 0, and
that the phugoid is changed only to the extent of the reduced period. The
damping term Cyp [2u is unaffected by the presence of the density gradient.
This is consistent with Neumark’s finding for examples in which 7' is constant.
When the propulsion system is comprised of jet engines, a reasonable
approximation is 7' o¢ p and independent of V, in which case O = 20, =
—2Cp, and Cp, = 0. The last term of (9.4,10) is then (Cp Cy [20?)(dp[dZ),
a small positive constant. An approximation to the fifth root is obtained by
neglecting the s? and s* terms of (9.4,10) with the result
dg= — OD"—aP/a;—- (9.4,11)
9p
wet bty 02
This actually gives a very good approximation to this root for the example
treated. It is seen to correspond to a stable convergence. The effect on the
remaining phugoid roots can now be inferred. The coefficient of the next-to-
the-highest order term in any characteristic equation is equal to the negative
of the sum of the roots.} Since the imaginary parts cancel the result is the
“sum of the dampings.” In this case this yields

Cry, _ _ o,
2u [

where the phugoid roots are #,, + id,,. It follows that the “sum of the
dampings” is a constant, and hence that the presence of the stable fifth root
must be accompanied by a reduction in the damping of the phugoid.
Specifically

2ﬁph + /15 =

. I/ Cp 4
Ty = -(—— $ — 25) (9.4,12)
2\ p
For the example case at Cp = .20, this gives the reduction in phugoid

damping from the constant- densn:y case, Af /i, within about 19%,.
In summary, it is clear that even at subsonic speeds the classical “stability
quartic” derived from a uniform-atmosphere model can be significantly in
+ Verify by comparing Lh.s. and rhs. of (s — A)(s — A) - -+ (s — 4,) = " +
Cn_qs" 1 4+« + - €. —Cu-1 is equal to the trace of the system matrix A, ie. to the sum
of its diagonal elements.
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error with respect to the phugoid roots, and the' design of autopilot systems
to maintain speed and/or altitude may require the use of the more accurate
model. At supersonic speeds the effect of density gradient is larger still.
However it should be noted that the flat-Earth model itself becomes inade-
quate at high supersonic speeds (see Sec. 9.10).

9.4.5 EFFECT OF STATIC MARGIN

It was indicated in Chapter 6 that the single most important aerodynamic
characteristic for longitudinal stability is the pitch stiffness C,, , and that
it varies strongly with the C.G. position, i.e.

Cma = CLa(h - hn)

where the static margin is K, = h, — h. The effect of this parameter is
demonstrated by using (9.1,1) with variable K,. The results for all other
data the same as in Sec. 9.1 are shown on Figs. 9.16 to 9.19. Figure 9.16
shows that the phugoid period and damping vary rapidly at low static
margin, and that the approximation (9.2,9), which does not include the effect
of the piteh stiffness, is useful only at large K ,. Approximation (9.2,11),
however, gives the trends with K, quite well. The period goes to infinity, and
N,, to zero at a value of K, slightly greater than zero. Figure 9.17 shows
the variation of the short-period roots. These too vary strongly with pitch
stiffness, the mode becoming nonoscillatory at K, slightly less than .01.
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Fie. 9.16 Variation of period and damping of phugoid mode with static margin.
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Fie. 9.17 Variation of period and damping of short-period mode with static margin.

The approximation of (9.2,14) is seen to be excellent over the whole oscillatory
range.

Additional insight into the behavior of the modes is obtained from the
root-locus plots of Fig. 9.18. Figure 9.18a shows that the damping # of the
short-period mode remains essentially constant as K, decreases, while the fre-
quency & decreases to zero at K, between .01 and .02 (point A4). The root
locus then splits into a pair of real roots, branches 4B and AC of the locus.
These represent damped aperiodic modes, or subsidences. Figure 9.18b shows
that the phugoid mode behaves similarly as the C.G. is moved backwards
towards the neutral point. At point D, when the C.G. is just forward of the
N.P., the oscillatory phugoid also degenerates into a pair of aperiodic modes,
the branches DF and DE of the locus. DF is a subsidence and that portion
of DE to the right of the origin represents a divergence—i.e. the airplane
is statically unstable when K, is negative.

The behavior of the roots is quite interesting for b > h, -+ .02. The branch
AB of the short-period mode and the branch DF of the phugoid “collide”
at F when the C.G. is between 2 and 219, of ¢ behind the N.P. A new oscil-
latory mode then appears corresponding to the branches FG of the locus.
This is a stable oscillation whose damping and period are intermediate
between those of the two parent modes. The eigenvector for this mode shows
that all three degrees of freedom AV, Aa, Af are significantly excited, and
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hence there is no simple approximation to it. Since the range of C.G. positions
in which this mode occurs is that for which there is already one unstable
root (DE), it is of academic interest only.

It was shown in Sec. 9.3 that the criterion for static stability is (9.3,3).
The calculations presented in Fig. 9.18b verify this conclusion, since in the
example C,, = 0 and the criterion reduces to K, > 0. When the C.G. is
aft of the N.P. the rate of divergence of the unstable mode is as shown in
Fig. 9.19 (curve for C,,, = 0). The time to double rapidly decreases with
decreasing K, to values-too short to be manageable by a human pilot.

£0.15

[, — Root locus

0.10

100&
—1.6

Static margin, (hn — k) |12

Oscillation branch -
0.02
Subsidence branch2

{ =0 0]

-24 C-2.0 ~1.6

EglL 0.01 > ] 0 ]-0.02 100;;
124 -08 _ -04 B |0

o

(@

Fie. 9.18 () Locus of short-period roots, varying C.G. position. Cpyp = 0. (b) Locus of
phugoid roots, varying C.G. position. Cmy = 0.
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9.4.6 EFFECT OF SPEED DERIVATIVES

In the preceding examples, all the speed derivatives except Cp were
assumed to be zero. Now speed effects are highly dependent on the con-
figuration, and for subsonic airplanes result from both aeroelastic and com-
pressibility effects. They vary widely from one vehicle to another, and can
change rapidly with Mach number (implying that the small-disturbance
theory is very restricted in that case). It is not therefore feasible to give
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F1a. 9.19 Time to double of the divergent mode.

any generally useful results for speed effects. There is one point, however,
which is worth exploring, and that is the effect of C,,  on the roots. Equation
(9.3,3) shows that this derivative can affect the static stability, negative
values producing a reduction in the stability boundary Ak, [see (6.4,26)].
To illustrate this, the value of C,, has been set equal to —.10 in (9.1,1) and
the eigenvalues found for the same range of K, as used in the previous
example. This value of C,, is quite representative of what may occur at
high subsonic Mach number. The root loci obtained look much like those
presented in Fig. 9.18. The short-period mode is changed only slightly, but
the phugoid has an important difference; namely, the divergent branch DE
crosses the axis at K, = .20 instead of at zero. Thus there is an unstable
divergence over the whole of the C.G. range used in the example. The nature
of this divergence is seen in Fig. 9.19, which shows the time to double
amplitude. The divergence associated with this value of C,, is not very
rapid for reasonable design values of K, i.e. K, > .03, for then f3,,p1e > 8
sec and the airplane would not be unmanageable. The unstable mode is one
involving primarily the speed and flight-path angle (of opposite sign) so
that it represents either a climb at increasing climb angle and decreasing
speed, or a dive of increasing speed and dive angle. The latter is what was
called a “compressibility dive” at the end of World War II. The nonlinear
features rapidly take over control of these motions as AV increases. For the
climb divergence, the reduction of speed and Mach number take the vehicle
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back toward the incompressible regime and a reduction in |0, | whereas
the dive case leads to increasing M and possibly an aggravation of the
divergence.

9.5 LONGITUDINAL CHARACTERISTICS OF A STOL
AIRPLANE

The curves of Figs. 9.4 and 9.5 show that the characteristic modes of an
airplane vary markedly with speed, i.e. with the equilibrium weight coefficient
Oyp,. In particular, the two characteristic periods begin to approach one
another as Cyp, becomes large. It is of interest to explore this range more
fully by cons1der1ng an STOL airplane, operating in the ‘“‘powered-lift”
region for which Uy may be much larger. To this end the data given in
ref. 7.11, part of which is shown in Fig. 7.6, has been used to obtain a
representative set of coefficients for 2.0 < Oy, < 5.0. The flight condition
assumed is horizontal steady flight, so that O} = 0 (see Fig. 7.6b). (The
particular data used from the reference was that for the aircraft with a
large tail in the high position, ¢, = 0, and 6, = 45°.) From the given curves,
and from cross-plots of the coefficients O, C}, and C,, vs. O at constant a,
the data in Table 9.3 was derived for the equilibrium condition. Smooth
curves were used for interpolation. Since this is not a tilt-wing airplane, o,
is not large in the cases considered, and has been assumed to be zero.

Table 9.3
Basic Data for STOL Airplane

ac ac ac
C c c Pl Rt L L S
We T. La b, " a0y 0y aCp
2.0| 053 | 575 1.19 .500 .705 .285 —.090
2.5 0.72 6.20 | 1.80 | .475 790 328 —.070
3.0 090 | 6.65 | 241 450 875 370 —.050
3.5 | 1.09 710 | 3.02 424 | .955 411 —.030
40| 128 | 7.55 | 3.63 | .398 1.025 450 —.010
45| 146 | 8.00 | 424 | .37 1.097 488 +.010
50| 1.65 | 845 | 485 | .346 1.165 .525 +.030
c —=0p,
T Dy = aC

1h, =.30 —C,, [Cr_
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Fie¢. 9.20 Root locus—short-period mode, STOL airplane.

Since aeroelastic and compressibility effects are negligible at the low speeds
of STOL flight the required speed derivatives are given by (see Table 7.1)

Xp. o _g ac,,

Cp, = Cp =2 ; —c, %z, 9O
Dy T ae, B T a0, T 80,

my c
For a propeller-driven airplane, the value of Oy is given by (7.8,5), and an
examination of the data on 7 for a typical constant-speed propeller at low
speedf showed that (V,[5,)(0n/0V), is close to unity. Hence we have used
Cp, = —2Cp, in this example.

Using the formulae of Table 7.1, the following estimates were made of the
q and & derivatives:

Cr, =14, Cp, = —17.9, Cr, =55, Cp,=—13
Finally the following inertial and geometric characteristics were assumed :
W = 40,000 Ib, 8 =10001t2, A=0542, ¢=13.60ft
u="768, I,=38, h=.30

With the above data, the coefficients of the system matrix (9.1,1) were
evaluated, and its eigenvalues and eigenvectors calculated. The main results
are shown on Figs. 9.20 to 9.24. Figures 9.20 and 9.21 show the loci of the
roots as O, varies between 2 and 5. The effect of Cyy, is seen to be large
on both modes, the short-period mode becoming nonoscﬂlatory at a value of
Oy, somewhat greater than 3.5, and the damping of the phugoid increasing

t The De Havilland Buffalo airplane.
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rapidly at the same time. Figure 9.22 shows the two periods, and that they
actually cross over at Cp, = 3.4. The concept of the phugoid as a “long”
period oscillation is evidently not applicable in this situation! The approxi-
mations (9.2,11) to the phugoid, and (9.2,14) to the pitching mode are also
shown for comparison. It is seen that they give the two periods quite well,
and that (9.2,14) also depicts quite accurately the damping of the pitching
oscillation and of the two nonperiodic modes into which it degenerates at
high (' . The phugoid damping, however, is not at all well predicted by the
approximate solution, and (9.2,9) gives even larger discrepancies for both
period and damping. Figure 9.23 shows the damping times for the modes,
and they are all seen to be heavily damped over the whole range.

The eigenvectors for the two modes are shown on Fig. 9.24 for Oy, = 3.5,
the condition of nearly equal periods. The relative configurations of the
vectors are seen to be quite similar to those for the jet transport at O, = 1.8
(Fig. 9.6), but the magnitudes of Ax in the phugoid, and AV in the short-
period mode are appreciably larger.
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Response to actuation of
the controls (open loop)

CHAPTER 10

10.I INTRODUCTION

From the system theory presented in Chapter 3 we see that it is convenient
to classify vehicle motion according to whether it is free or forced. Chapter 9
was devoted to a discussion of a number of examples of the former, and in
this chapter we give some illustrations of the latter. The particular cases
studied here are those in which the motion results from nonautonomous
actuation of the controls. That is, we exclude those in which the controls
are moved in response to the vehicle motion in accordance with a prescribed
law, as by an autopilot. Such motions are the subject matter of Chapter 11.
We should recall as well that for linear/invariant systems (Sec. 3.4) there is
really only one fundamenial response problem The impulse response, the
step response, and the frequency response are all explicitly related, and the
convolution theorem (3.4,41) and (3.4,43) enables the response to any
arbitrary control variation to be calculated from a knowledge of either the
impulse response or the step response.

In the examples that follow, we consider the response of an airplane to
actuation of its prinecipal controls, the throttle and the three aerodynamic
control surfaces. The examples include both step and frequency response,
and both linear and nonlinear cases.

As shown in Chapter 3, the basic item needed for computing frequency

400
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response, and for formulating response problems analytically is the transfer
function that relates the relevant responses and inputs. In the present
context the input is the control vector. The required transfer functions can
be found either from the standard first-order form of the differential equations
of motion, in which case they are given by (3.2,23), or from the Laplace
transforms of the equations (5.11,8 to 10) or (5.14,1 to 3). There is an essential
theoretical difference between the two methods, since the former implies
the representation of the aerodynamic forces by means of aerodynamic
derivatives, and the latter allows (but does not require) the use of exact
linear aerodynamics (see Sec.5.11). Practically, there is only a difference
between the responses calculated by the two approaches when the aero-
dynamic control surfaces are moved very rapidly.

LONGITUDINAL CONTROL

The two principal quantities that need to be controlled in symmetrie
flight are the speed and the flight-path angle, that is to say, the vehicle’s
velocity vector. To achieve this obviously entails the ability to apply control
forces both parallel and perpendicular to the flight path. The former is
provided by thrust or drag control, and the latter by lift control via elevator
deflection or wing flaps. It is evident from simple physical reasoning (or
from the equations of motion) that the main instial response to opening the
throttle (increasing the thrust) is a forward acceleration, i.e. control of speed.
The main initial response to elevator deflection is a rotation in pitch, with
subsequent change in angle of attack and lift, and hence the development
of p, a rate of change of flight-path angle. When the transients that follow
such control actions have ultimately died away, the new steady state that
results can be found in the conventional way used in performance analysis.
Fig. 10.1 shows the basic relations. The steady speed V at which the airplane
flies is governed by the lift coefficient, which is in turn fixed by the elevator
angle—see (6.4,13). Hence a constant §, implies a fixed V. The flight-path
angle y at any given speed is determined, as shown in Fig. 10.1, by the thrust.
Thus the ultimate result of moving the throttle at fixed elevator angle (when
the thrust line passes through the C.G.) is a change in y without change in
speed. But we saw above that the initial response to throttle is a change in
speed—hence the short-term and long-term effects of this control are quite
contrary. Likewise we saw that the main initial effect of moving the elevator
is to rotate the vehicle and influence p, whereas the ultimate effect at fixed
throttle is to change both speed and y. The short-term and long-term effects
of elevator motion are therefore also quite different. The total picture of
longitudinal control is clearly far from simple, and the transients that connect
the initial and final responses require investigation. We shall see in the
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Fie. 10.1 Basic performance graph.

following that these are dominated by the long-period, lightly damped
phugoid escillation, and that the final steady state with step inputs is reached
only after a long time. These matters are explored more fully in the following
sections.

LATERAL CONTROL

The lateral controls (the aileron and rudder) on a conventional airplane
have three principal functions.

1. To provide trim in the presence of asymmetric thrust associated with
power plant failure.

2. To provide corrections for unwanted motions associated with atmos-
pheric turbulence or other random events.

3. To provide for turning maneuvers—i.e. rotation of the velocity vector
in a horizontal plane.

The first two of these purposes are served by having the controls generate
aerodynamic moments about the x and z axes—rolling and yawing moments.
For the third a force must be provided that has a component normal to V
and in the horizontal plane. This is, of course, the component L sin ¢ of
the lift when the airplane is banked at angle ¢. In the equation of motion
this appears as the sin ¢ term in (5.9,6). Thus the lateral controls (principally
the aileron) produce turns as a secondary result of controlling ¢.
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Ordinarily, the long-term reéponses to deflection of the aileron and rudder
are very complicated, with all the lateral degrees of freedom being excited
by each. Solution of the complete equations of motion is the only way to
appreciate these fully. Certain useful approximations of lower order are
however available.

10.2 RESPONSE TO ELEVATOR INPUT

For the conventional case of cruising flight of airplanes, (5.14,2) can be
used for the response to elevator by setting ATTG = 0. We shall first make
some simplifying assumptions, i.e. that a;, = 0, that the reference flight
path is horizontal, soy, = 0, and that all of G oY ¢ v émy, é 1.4 are negligible.
It is assumed further that deflecting the elevator can change the lift and
moment, but not the drag, so that AC, b, =0, AC, . = Grs A3, and A-C—m, =
G,.; AS,. Then (5.14,2) reduces to

(Gry — 2u9) €z, — Gpa) 0 —Cw, AV 0
—2Cy, — (814 + Cp, + 2u9) 2u 0 A& 615 3
" PR = | As,
0 — Gpa [ S 0 q Gms
0 ) 1 —s Ad 0

(10.2,1)

The aerodynamic transfer functions on the r.h.s. can usually be represented
well enough by (see Sec. 5.14)

Grs = Oy + Cp; (10.2,2)
and C,,; is furthermore frequently neglected.

Let the 4 X 4 matrix on the Lh.s. of (10.2,1) be denoted P. Then (10.2,1)
may be compactly written

AV 0
Az Gus|
P =, |Ad, (10.2,3)
q Gmﬁ
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We premultiply dy P! to get

AV 0
Az Gus|
=P | Ag, (10.24)
q Gm6
A6 0
whence the transfer-function vector for elevator input is
Qps 0
A éa& GL‘;
G=1, =P (10.2,5)
Gq5 ”5
Gos 0

Since P is the matrix of the nondimensional equations, then the elements of

G relate the Laplace transforms of the nondimensional variables, for example
4 VA NP '

Gps = e Gos =

ZLTAé,] Z[Ad,]

The above elements of G do not exhaust the transfer functions of interest.

Other response quantities may be wanted—for example, the flight-path
angle and the normal load factor. The former is given by y = 6 — «, so that

(10.2,6)

G5 = Gy — O (10.2,7)
The latter (see Sec. 6.10) is
L
n ==
w
and is unity in the reference condition. The perturbation in # is
An=2E _ 1 ag, 420, AD) (10.2,8)
W O, d

to first order. AC; is conveniently expressed in terms of the state variables as
AGL = CAT‘LV A—V "l— GA!LaK; —I— équ + éL(;EB

After substituting in the Laplace transform of (10.2,8), and dividing by
Z—ée we geb

4

G, =

ns

]_ A A A A A A
5 UGy + 200 )6y, + 61,6, + Ot Grsl  (102,9)
”,

>

o

d
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The preceding equations can be used directly for machine computation
of frequency response functions, which basically requires only routine
operations on matrices with complex coefficients; an example of this appli-
cation is given below. However, for analysis one needs the literal expressions
for the various transfer functions, and in some applications one must also
find their inverse (the impulse response funetions). This is not a praectical
analytical procedure for the complete system, even with the simplified
equation (10.2,1). For obtaining exact solutions for the impulse response
or step response, the preferred method is to solve the original differential
equations on a digital or analog computer. For analytical work associated
with control system design, approximate forms of the transfer functions
may be quite useful (refs. 9.4 and 9.5).

We can find approximate transfer functions by using the short-period and
phugoid approximations given in Sec. 9.2 as a guide. These would be expected
to be useful for inputs whose spectral representations are limited to certain
frequency bands appropriate to the mode in question.

SHORT-PERIOD APPROXIMATION

We found in Chapter 9 that a very good approximation to the short-period
mode is given by (9.2,14). We therefore make the same additional assumptions
here as led to that approximation—viz. AV = 0, and the speed equation of

motion is identically satisfied. The reduced system equation is then found
from (10.2,1) to be

—Cret+Cp,+2u8)  2u O[AT] [d
— G Fs—@ 0| a|=|0s|As 10210
0 1 —slLAB 0

The system transfer functions are now most simply found from (10.2,10)
by solving for the ratios A&/AJ,, etc., with the result

GA _ Az _ Qyémé — (A;Lé(jus — émq) (@)
s A§, (Is— GO, + OD,, + 2us) — 2pG,
G"06 _ A-e _ A Gmé(%ﬂs +A GL“ + ODQ) - G’LaGfmz _ (b) (10'2’11)
As,  s{,s — G, NGy, + Cp, + 2us) — 2u@, .}
é«a = Séoa (0

When the aerodynamic control transfer functions are replaced by their
stability derivative representations, i.e. by (10.2,2) and with

C

me — “maq

A

C;YL“ = OL,z; éma = Cma + 80"%; G
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the denominators of the above transfer functions are all polynomials in s
that have exactly the same roots as (9.2,14). The numerators become

Of Gy (Cp,Crm, + 28C,,) + 82uC,y —1,01,) (a)
Of Gy [Cy(Cr, + Cp) — Cpa O] +8[(2UC,, + Cpoy(Cr, +Cp ) — Op,Cp ]
+ %(2uC,,;) (®) (10.2,12)

Both numerators are of degree one less than their respective denominators.

PHUGOID APPROXIMATION

The phugoid approximation in Sec. 9.2 was based on the assumption that
Aa is negligibly small and the pitching moment equation is identically
satisfied. When the elevator angle is varying however, A¢ can no longer
be assumed small. The equivalent assumption for this case is that pitch
equilibrium is maintained, i.e. that

G Aot + G g+ G5 AS, =0

Now we expect this approximation to be useful only at low elevator fre-
quencies, when we can replace the above expression by

Oy Aet + Cp 4 4 €, NS, = 0

We now further assume that Cmqé is negligible, so that the angle of attack
is given by the quasistatic value

C .
Ax = — C—”"*Aae (10.2,13)

My

The usefulness of this assumption is checked a posteriori. With the pitch
equation eliminated from (10.2,1) and A« eliminated by (10.2,13), we get
the reduced system equation

A B Om ]
OTV -_ 2,”,8 0 ”“CWB AV-—‘ 0_6 (OI’c —_— O-Da)
.............. G
~2Cy i2ui O g |~ |0, — 0—7; (Cr, + Cp, + 2us) Ad,
B 0 1 —s || A6 | N 0
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The required basic transfer functions are obtained from (10.2,14) as

~01C, + "2 [Cy (Cp, + Cp,) + 2uCp 5]
e ”‘“
Ve 4u%s® — 2puCp s + 205 ° @

Om
~0p(Cz, — 2) + 5™ =20 (O, — Op))

My

+ Cp, (O, + Cp) + 2us(Cp, — COp, — Cp ) — 4u’s"]

Gos = 4u’s® — 2uCyp s + 20W¢2
() (10.2,15)

éqa = Séoa ()
From (10.2,13) we have in addition
Guym = @)

a .
and ﬁnaliy )
ém = éea - éa& (e)

As expected, the denominators of (10.2,15a and b) give the same characteristic
equation as was used for the phugoid previously, i.e. (9.2,9).

The assumptions on which (10.2,15) are based hold exactly in the limit
of zero control frequency, and hence the static gains given by them are
correct. Taking the limit s — 0 (see (3.2,4)) we get the gains

Omé(OLa + CDE) o Cm«zOLé . OmtﬁOLa B OmaCLé

== a
ve 20y, O 20,0, @
0, [Cr,(Cr, +Cp,) — 203 (Cpy, — Op )] — O, C,, ©
Kpy— o Lo ta D = W;C We D I "L (5) (10.2,16)
w, " m,
Cons
Knui: —6,: (C)

If we consider a typical jet transport in cruising flight, Cp < Cp , and
Cq, = 20p,. For this case, the gain in flight-path angle becomes, after
simplification,

Kys = Kgs — Ko

—_ OLl?CDe 2"16%1 (1 . ODe CLa
Ow? Cn, Cw, C..Cp )
The interesting thing about (10.2,17) is that it can change sign as Oy, (= Cp )

(10.2,17)
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Fi1c. 10.2 Drag polar, M = const.

varies. With reference to Fig. 10.2 the quantity in parentheses on the r.h.s.,
for constant Mach number, can be written

CpdCy,

CrdCy
where dC/dC, is the slope of the tangent to the drag polar, I,. Since C1/Cp
is the slope of I, it is evident that (Cp/C WdC[dCp) is unity at point 4,
is <1 for O > Op, and >1 for Cp < Op . As a result the second term on
the r.h.s. of (10.2,17) is negative for €7, < U, and positive for C7, > O .
Because of the first term in (10.2,17) K,; does not change sign exactly at 4,
but at a slightly lower value of C. With typical numerical values K ;= 0
when (Cp/C ) (dCJdCp) = 1.05. The point of all this is that 4 represents
flight at (L/D)y.x, o at minimum drag, and hence that the ultimate response
of flight-path angle to elevator reverses when this speed is crossed. At high
speed (low Uy, )K,; is negative, so that up-elevator (stick back) produces a
climb, but at low speed the opposite occurs. This result is seen to be entirely
compatible with the conclusions reached from performance considerations,
see Fig. 10.1. It is seen that the sign of 77 — D for a speed reduction (associ-
ated with a negative Ad,) is opposite for points P and @ on opposite sides
of the minimum-drag speed.

1
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NUMERICAL EXAMPLE—FREQUENCY RESPONSE

For this example we take the same hypothetical jet transport as was used
in Sec. 9.1, flying at the same speed and height. For the aerodynamic transfer
functions in P we use the stability derivative representation, i.e. all but G
are the same as the corresponding stability derivatives, and 63 =0, +
8C,;- In addition, for the control aerodynamics we use

GALE = Op, = .24[radian
C:'ma = C,,; = —.12[radian

The exact frequency response was calculated from (10.2,1) and the two
approximations from (10.2,11) and (10.2,15) by substituting s = ¢@ in them.
The results are shown on Fig. 10.3 for speed, angle of attack, and flight-path
angle.

The exact solutions show that the responses in the “trajectory” variables
V and y are dominated entirely by the large peak at the phugoid frequency.
Because of the light damping in this mode, the dynamic gains at resonance
are very large. The peak ICAT"V6| of about 85 means that a speed amplitude
of 109, of V, would result from an elevator angle amplitude of only .1 X
57.3/85 = .068°. Similarly at resonance an oscillation of 10° in y would
result from about 1/10° elevator amplitude. For both these variables, the
response diminishes rapidly with increasing frequency, becoming negligibly
small above the short-period frequency. The phase angle for V, Fig. 10.3b, is
zero at low frequency, diminishes rapidly to —180° at the phugoid frequency
(very much like the lightly damped, second-order systems of Fig. 3.17b) and
subsequently at the short-period frequency undergoes a further drop char-
acteristic of a heavily damped, second-order system. The “chain’ concept
of high-order systems (Sec. 3.4) is well exemplified by this graph.

By contrast, the attitude variables o and ¢ show important effects at
both the phugoid and short-period frequencies. The complicated behavior
of « near the phugoid frequency indicates the sort of thing that can oeccur
with high-order systems. It is associated with a pole and a zero of G,; occurring
close together in the exact transfer function. Again, above the short-period
frequency, the amplitude of « and ¢ both fall off rapidly.

As to the approximate solutions shown, one general statement can be
made. The short-period approximation is exact as @ —> o0, and the phugoid
approximation is exact as @ — 0. With a single exception, all the phenomena
shown are represented reasonably well by one or other of the approximations.
The exception is the « response at the phugoid frequency, which is revealed
only by the exact solution. The principal error in the approximations is the
displaced peak at the phugoid. This corresponds to the error in the phugoid
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period shown for approximation (9.2,9) on Fig. 9.4a. Had the characteristic
equation corresponding to (9.2,11) been used instead, the approximation
would have been better.

NUMERICAL EXAMPLE—STEP RESPONSE

For the same airplane and flight conditions as in the previous example,
the response to a step-function input in the elevator angle was computed,
using (5.13,19) mechanized for a 10-volt analog computer. As an aid to
readers unfamiliar with analog computation, the details of this one example
are set out rather fully. The other examples that follow later were computed
in essentially the same way, but the details of scaling and circuits are omitted.
With the same assumptions as made previously the differential equations
with numerical coefficients are:

DV = —6.92 x 105AV 4 2.55 x 10~ Ax — 4.60 X 10-¢ A
Do = —9.20 x 10-* AV — 9.00 x 103 A + § — 4.42 x 10~ A§,
D = 2.03 x 1076 AV — 3.62 x 10~% Aoc — 1.43 x 102§ — 3.77 x 10~ A4,

DY =g (10.2,18)

To mechanize them for analog computation we make the following trans.
formation of variables:

(V1=sp AV;  [al=s,Aa; [gl=s4d; [0]=s5A0 (10.2,19)

where the quantities in square brackets, [V] etc., denote machine voltages,
and s, ete. are scale factors. Time scaling is by the law

r— s
where 7 is laboratory clock time, or macsecs (for computing machine seconds),

and { is the nondimensional time variable of the differential equations. To
relate the computer results to real flight time ¢ we use

t
T=sig,  1F = 0105 sec (10.2,20)

On recalling that D in (10.2,18) represents d/df, and defining [ |" = (d/d=)[ 1,
the transformation of the equations into differential equations for the
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voltages yields
, 8 6.92 x 10~° 2.55 x 101 4.60 x 10
y =% V1 + (] — =222 1)
st 8V 81 30
, s 920 x 107 9.00 x 107
[a] = {— v]— [o]
Sy SV Sy
+ L) — 442 x 10 Aée:
sq
_ 10.2,21)
, 8, (2.03 x 10 6 3.62 x 10™ ( ’
[q] =% {——— ] — 282 X107
st SV Sa
. 143 x 102

[q] — 3.77 x 107* Aée}

[6) = = [q]
Sq

Note that we have chosen for convenience to give the control angles as
Aé,, rather than [8]/s;, since Ad, not [8] is to be specified. The scale factors
used were as follows:

sp = 10 v/unit
s, = 10 v/radian
8, = 1000 v/unit
sp = 10 v/radian
Since the response shortly after { = 0 is governed mainly by the short-period

mode, and the long-term response by the phugoid mode, a single time scale
is not appropriate for both. Hence two time scales were used:

To show long-term response: s, = 103
To show initial response: 8, = 102

The analog circuit for s; = 10~% and Ad, = —.03 rad is shown in Fig. 104,
using conventional symbols for integrators, summers, ete.
When s, = 103, the time relation, from (10.2,20) is
t*
t =— 1 =1057
St
and hence the process proceeds about 10 times faster on the computer
than in flight. When s, = 1072, the process proceeds at nearly real flight time.
The results for ¥, «, and y are shown for both time scales on Figs. 10.5 and
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Fi¢. 10.4 Analog circuit diagram for response to elevator step. AS, = —.03 rad,
sy = 1073,

10.6. These curves were recorded by a conventional  — y plotter; the time
base was generated on the computer by integrating a constant.

Figure 10.5 shows that « increases rapidly and quickly damps out to its
asymptotic value. V and y, however, make a slow, weakly damped approach
to their final values, the initial overshoot being very large for both. If the
reason for moving the elevator were to change to a new steady state, the
maneuver has not been a very effective one! After 500 sec the oscillations in
V and y have still not disappeared. The behavior near ¢ = 0 is shown more
clearly on Fig. 10.6; the rapid rise in a is dominated by the short-period
mode. Tt is only after « has changed that the associated increase in lift can
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Fi¢. 10.5 Response to elevator (Ad, = —.03 rad). Jet transport cruising at high
altitude.

act to curve the flight path (via AL = mVyp); thus the increase in y lags that
in o. At the same time the increased drag due to Aw, and the “downhill”
component of the weight combine to produce a reduction in speed, which
lags still farther behind. The response in y is not in fact very rapid. It takes
about 10 sec to increase y by about 10° with this elevator deflection. In
this time the vehicle has traveled 7330 ft.

10.3 RESPONSE TO THE THROTTLE

The initial response of an airplane to movement of the throttle is actually
quite dependent on the details of the engine control system and on the type
of propulsion system. For jet engines it takes an appreciable time for the
rpm and thrust to increase after opening the throttle, and this can be an
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Fic. 10.6 Response to elevator {(Ad, = —.03 rad). Jet transport cruising at high
altitude.

important factor in emergency conditions. The response of a propeller, which
increases thrust by a change of blade angle, is more rapid. We make the
simple assumption here that opening the throttle produces a step change in
Crp of amount ACy . If the thrust line does not pass through the C.G. there
is an associated pitching moment (7.3,4) AC,, = ACy 2/¢. The Lhs. of the
system equation is then exactly the same as (10.2,1) and the r.h.s. is

—1

0 —
AC, (10.3,1)
zfé

0

APPROXIMATE TRANSFER FUNCTIONS

Since the main effects of the throttle are the long-term changes in speed
and flight-path angle, the phugoid approximation to the equations is an
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appropriate one. The same procedure that led to (10.2,14) for this case

gives the approximate equations

I, 4 0p) 4 2us(1 + 2 2 2e
e ACy, f(s)
20w, + 2o [Or,(Cr, + Cp) — 20w (Cp, — O]
- | — us —— (0, + Cp) — dus® ——
b _ A0 i, 2D &C,.
za 76@)
(v
AqT = A_g’; = Séor {¢) (10.3,2)
A Az _ 2 : @

(e)

where f(s) is the denominator of (10 2,15a).

Just as in the case of the elevator response the static gains obtained from
(10.3,2) are exact, since the assumptions leading to them are valid in the
steady state They are

(Or, +Cp)
Ko, =%
rr 20,,.Cw.

20y O, + 2 [Cp (Cp, + Op) — 20y (Cp, — Cp)]
° (10.3,3)

o 20,, Cppr?
2
Kyp=— —
- iC_

When 2z = 0, the simplest result is obtained, i.e.
Kyp =0
Kop =K g = L (10.3,4)
Cw,

erT =0
These show that increasing the thrust (without change of pitching moment)
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simply leads to a new steady-state flight condition at increased climb angle
and no change of speed. By contrast the other principal longitudinal control,
the elevator, ultimately influences both speed and flight-path angle [(10.2,16a)
and (10.2,17)], albeit the change in the latter may be of either sign depending
on flight speed. The simple rule “throttle controls climb and elevator con-
trols speed’” is not what it seems. It is true that the throttle is an uncoupled
climb control (when z = 0) but the elevator is not an uncoupled speed
control (except at yp,.,) and the rule only applies to steady states, not to
initial transients.

NUMERICAL EXAMPLE—STEP RESPONSE

Analog computations were made for the airplane and flight condition of
the previous example, with ACy, = .0125 and withz/¢ = 0 and .3 The results
for V, «, and y are shown on Figs 10.7 and 10.8. The motion at this time
scale is clearly dominated by the lightly damped phugoid. Consider Fig. 10.7

A

AV
05}
[/\ N AN
Aa
0.5°F-
) 100 200 300 300 500 ¢ sec
Ay
6
4o
N\
wl N
Yes = 2.86°
! 1 1 | 1
0 100 200 300 400 500 4 sec

F1e. 10.7 Response to throttle (AC, = .0125). Jet transport crusing at high altitude.
Thrust line passing through C.G. '
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| | { ] § > ¢, Sec
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1 ] L | 1 ¢, sec
0 1‘0/0 200 300 400 500

Fic. 10.8 Response to throttle (ACy = .0125). Jet transport cruising at high altitude.
Thrust line below C.G., z/é¢ = .30.

(z/¢ = 0) first. We see that the speed begins to increase immediately, before
the other variables have time to change. It then undergoes a damped oseil-
lation, returning finally to its initial value. The angle of attack varies only
slightly, and y makes an oscillatory approach to its final positive value y,,.
The ultimate steady state is a climb with AV = Ax = 0, the numerical
value of y,; being correctly given by (10.3,4). For the case 2/¢ = .3, Fig. 10.8,
the results differ from the preceding in several significant ways. Although
the speed does begin to increase at first, the increase is small and is quickly
followed by a reduction of order 109, V,. The final value is 5%, less than V,,
a rather large change. The initial response in « is rapid, being dominated
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by the short-period mode, and is not seen in detail at this time scale. Because
of the rapid increase in «, and the excess lift that goes with it, there is a
much more rapid response in y.than is the case in Fig. 10.7. The amplitude
of the y oscillation is also larger than on Fig. 10.7, and the final state is a
climb of appreciably larger inclination. The steady states are again correctly
predicted by (10.3,3).

10.4 LATERAL STEADY STATES

The basic flight condition is steady symmetric flight, in which all the
lateral variables §, p, r, ¢ are identically zero. Unlike the elevator and the
throttle, the lateral controls, the aileron and rudder are not used individually
to produce changes in the steady state. This is because the steady-state
values of 3, p, r, ¢ that result from a constant §, or &, are not generally of
interest as a useful flight condition. There are two lateral steady states that
are of interest, however, each of which requires the joint application of
aileron and rudder. These are the steady sideslip, in which the flight path is
rectilinear, and the steady turr, in which the angular velocity vector is vertical.
We look into these below before proceeding to the study of dynamic response
to the lateral controls.

THE STEADY SIDESLIP

The steady sideslip is a condition of nonsymmetric rectilinear translation.
It is sometimes used, particularly with light airplanes, to correct for cross-
wind on landing approaches. Glider pilots also use this maneuver to steepen
the glide path, since the L/D ratio decreases due to increased drag at large 5.
In this flight condition D = djdr =0, and p = r = yz = 0. Thus, with
reference to (5.13,17), the only nonzero state variables are 3, ¢, and y. For
the control terms we use the following, which is a good representation for
conventional airplanes:

Aoyc Oy‘s’ 0 0, 04,1
AC, | =10y, Oy, s (1041)
AC,, Crs, Cng "

With (10.4,1), and the special conditions for steady sideslip, (5.13,17) reduces
to CyyB + O, cosyb + C,, 6, =0
Ozﬂﬁ + Ola, O, + Claa 0, =10

Cogl + Cay 8, + Cop 9= 0

B+ yeosy,=0

(10.4,2)
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The fourth equation is the only one containing ¥, and may be dropped from
consideration. The three preceding ones contain the four variables §, ¢, 8,, 6,.
Hence an infinite set of solutions exists, in which any one of the four may
be selected arbitrarily. If we choose ¢ to be arbitrary the equations can be
solved for the corresponding f, 8,, J, (provided of course that its matrix is
not singular). Thus

B —Cyp, cos P
o, =A™ 0
Oy 0
where (10.4,3)
c, s Cyar 0
A=|( 5 Clér C, 5
c,, C C

ng n5, N5,
As an example, consider the jet transport used previously, at Oy = 1.0,

¥, = 0, with the § derivatives as in Sec. 9.6. In addition to these we need
the control derivatives, for which we use

C,, =067 O, =.003 C, =—.040
¢,

5, — —-065 C;, = 005
It is evident from (10.4,3) that $, §,, and d, are all proportional to ¢, hence
the ratios of the angles are constant. The numerical result is:

¢ osss;  Z—ves; % _1s00
p p

p

so that for a sideslip of 10°, the other angles are ¢ = .56°, §, = 16.75°,
d, = —18.00°. As expected, a slip to the right requires left rudder and right
aileron. The control angles are seen to be large ; powerful controls are needed
to sideslip at large angles. When the matrix A is singular, it only indicates
that ¢ is zero in the sideslip. In that case the equations can be rearranged
to put ¢ on the Lh.s. and § on the r.h.s., in which case the new matrix is
very unlikely to be singular.

THE STEADY TURN

We define a “truly banked” turn to be one in which (i) the vehicle velocity
vector w is constant and vertical (see Fig. 10.9) and (ii) the resultant of
gravity and centrifugal force at the mass center lies in the plane of symmetry.
This corresponds to flying the turn on the turn-and-bank indicator.{ It is
quite common for turns to be made at bank angles that are too large for

1 Neglecting the fact that the pilot and indicator are not right at the C.G.
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Fia. 10.9 Steady climbing turn.

linearization of sin ¢ and cos ¢ to be acceptable, although all the state

variables other than ¢ and V are small. Thus we turn to the basic nonlinear

equations in Sec. 5.8 for this analysis. The large bank angle has the conse-

quence that coupling of the lateral and longitudinal equations occurs, since

more lift is needed to balance gravity than in level flight. Thus not only the

aileron and rudder but the elevator as well must be used for turning at large ¢.
The body-axis angular rates are given by

P 0
gi=Lgy 0 (10.4,4)
7 w

which for small elevation angle 0 yields
P —0
g| = |sin ¢ |w (10.4,5)

r cos ¢
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We now apply the second condition for a truly banked turn—that the
ball shall be centered in the turn-and-bank indicator. This means that the
vector mg — ma, shall have no y component. But ma, is the resultant external
force f, so that from (5.5,3)

mg — ma, = mg — f = —A

where A is the resultant aerodynamic force vector. Thus we conclude that
the aerodynamic force must lie in the xz plane, and that ¥ = 0. 1t follows
from (5.8,2b), when only ¢ and » are not small, that

mg sin ¢ = mru = mrV (10.4,8)
=mVw cos ¢

Hence the bank angle is given by

tan ¢ = oV (10.4,7)
g

We choose the body axes so that «, = w = 0, whence it follows (see Fig. 4.4)
that z and zp, coincide, and hence that L = —Z. Equation (5.8,2¢) then
permits the determination of L, i.e.

L= —Z = my cos 6 cos p — m(pv — qu)
which, again to first order, after substituting ¢ from (10.4,5) yields
L =mgcos¢p + mVwsin ¢ (10.4,8)

When Vo is eliminated by (10.4,7) we get

n = L =sec ¢ (104,9)
myg

The incremental lift coefficient, as compared with straight flight at the same

speed and height, is

L—mg
3pV8

AC, = (n — 1)Cyy (10.4,10)

We can now write down the equations governing the control angles. From
(5.8,3), to first order, L = M = N = 0, so we have the five aerodynamic
conditions

C,=0,=0,=C,=0

and - ACy = (n — 1)Cy
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On expanding these with the usual aerodynamic derivatives, we get
C,pﬂ + O p+ O F + Cy,, 4, + Cy, 0, =0
Cp, Ao+ 0y g+ 0, A6, =0
Copb + C,p+0C,7+ Cos, 07 + Oy, 0,=0 (10.4,11)
Oyﬂﬁ +0,p+0, 7+ Cys, 5, =0
CLG AOC —I“ CLGQ + OL(se Aae = (n —_ I)CW

In these relations p, ¢, # are known from (10.4,5), i.e.

o - »
A _0 —
P v
[
g|=]snd—lw 104,12
q ¢ o7 ( )
N b
7 cos ¢ o |

The five equations (10.4,11) for the five unknowns [, 6,, 6,] and [A«, Ad,]
uncouple into two independent sets:

¢, ¢, 078 c

0 wb
Cp Gy, Oy ||6:,1=1C, G, [ }— (10.4,13)

¢, ¢, ¢, |ls,| l|c. ¢

ng ng, ns

C’ma Om.s Ao Ch, wé 0
¢ _ — — sin ¢ + (10.4,14)
Cr, Cr, ||AS, Cr,| % (n — 1)Cpy

Note that the matrix on the 1.h.s. of (10.4,13) is the same as that of (10.4,3).
When (10.4,9) is used to eliminate ¢ from (10.4,14), and after some routine
algebra, the solution for A4, is found to be

n+1
C, + +n (©C1,Cu,—CrOn)
A8, = (0 — 1)0p d (10.4,15)
’ OL‘,‘Cma - CLaomﬁe

Except for far forward C.G. positions and low speeds, the angles given by
(10.4,15) are moderate. The similarity of this expression to that for elevator
angle per g in a pull-up (6.10,6a) should be noted. They are in fact the same
in the limit » — oo. The elevator angle per ¢ in a turn is therefore not very

different from that in a vertical pull-up.
Finally, the lateral control angles are obtained from the solution of (10.4,13)

and
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NUMERICAL EXAMPLE

The values of [B, d,, §,;] corresponding to low-speed flight at sea level
(Cz = 1, p = p,) for the jet transport of the previous examples have been
calculated from (10.4,13) and are shown in Fig. 10.10. The numerical data
and the aerodynamic coefficients are the same as in Secs. 9.6 and in the steady
sideslip above. Both the sideslip angle and the rudder angle are seen to be
very much dependent on 6. This may be traced directly to the fact that
the roll rate p is proportional to § and changes sign with it.

er 6=15°
vl =
B
0

=20
el 6=-15°

4

§=15°
2° - /
. :

——

-2¢1
—4e |-

or
-6°
-8
-10°}-
1o
i

0= -15°

0=.t15“

! 1 ] i 1
0 10° 20° 30° 40° 50° 60°
?

Fie. 10.10 Control angles in a truly banked turn.
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Thus the term C, pﬁ in the yawing moment equation is of opposite signs
for climb and glide, and affects the rudder angle required to cancel the mo-
ment. Since C, must also be zero, the value of § is in turn affected by that
of 6,. One would expect that the difference in C; p between climbing and
gliding would likewise cause a substantial difference between d§, for the two
cases, whereas no such difference exists. It is fortuitous that in this example
the term C, provides just the difference in the rolling moments needed.
Sinee ¢ > 0 represents a right turn, we see that the ailerons are deflected
in the “off-bank’ sense (stick left), that considerable right rudder is used
for gliding turns, but that for climbing turns it may be in either direction.
Finally, it may be remarked that the control angles obtained would have
been substantially different had it been stipulated that §, not C,, should be
gero in the turn. It would not then be possible, however, to satisfy the
requirement that the ball be centered in the turn-and-bank indicator.

10.5 LATERAL FREQUENCY' RESPONSE

The computation of the lateral frequency response is carried out with
(5.14,3). The column veetor on the r.h.s. is conveniently expressed as

26,
AC, 5,
~| k= QI}} (10.5,1)
AOnc a
0
where —@, 0
o7
0— -G, _Gléa
_Gn‘;r gy
0 0

Denoting the 4 X 4 matrix on the Lh.s. of (5.14,3) by P, we get the 4 X 2
transfer-function matrix G — P-1Q (10.5,2)

The elements of G are specifically

Gﬂ&r Gﬂaa
G @
G=| " " (10.5,3)
Gr&f Gni
Gps Gys
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In addition, from the supplementary relations given in (5.14,3) the transfer
functions for y and y are

sec y,

= —2£(
As

cos y,
75 > G5=—Gpa+ 7

G G

(10.5,4)

o o

NUMERICAL EXAMPLE

The frequency-response functions for the jet transport in horizontal flight
at 30,000 ft altitude and C L, = .25 were calculated from the above equations.
All the aerodynamic transfer functions were replaced by the corresponding
derivatives, i.e. C:!yﬁ = 0 Gw =0 _ete. Thus we have neglected terms such

as sCy; . The numerical values are the same ones used in the previous ex-
amples. The results for some of the state variables are shown in Figs. 10.11
and 10.12. Figure 10.11 shows the responses in §, ¢, and r to rudder input.
The principal feature is the peak at the frequency of the Dutch roll, which
because of the relatively light damping of this mode, is substantial. For
example, a 1° rudder amplitude produces about 41° § amplitude and 63°
roll amplitude. At zero frequency f, p, and r are finite, but ¢ and y are infinite.
That is, the computed steady state associated with rudder input is a constant
rotational motion w,, = ip,, + kr,,. Since the equations were linearized with
respect to ¢ and are therefore not valid for large ¢, this steady state is
spurious. The slopes of the high-frequency asymptotes can be predicted from
the structure of the general transfer-function matrix. For the given rudder
input it yields slopes of —1 for 8, r, and —2 for ¢. These slopes are reached
approximately by & = .1 for r and ¢, but not for 8. This is because the co-
efficient of the cubic term in the numerator of (y; contains the small aero-
dynamic derivative Cy, .

Figure 10.12 shows similar results for aileron angle input. The absence
of the control term C,; makes the high-frequency asymptote of |Gy; | a
line of slope —2 1nstead of —1.

All the amplitude curves on both figures show a rapid reduction of response
once the frequency exceeds that of the lateral oscillation mode.

The sharp dip in |G,; | at @ = 0025 is characteristic of a zero in the
transfer function lying close to the imaginary axis at this frequency.

APPROXIMATE LATERAL TRANSFER FUNCTIONS

In Sec. 9.7 we presented two approximate second-order systems that
simulate the complete fourth-order system insofar as the characteristic modes
are concerned. These same approximations can be used to get approximate
transfer functions for control response.
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Consider first the Dutch-roll approximation (p.374). Taking the Laplace
transform gives

1 3 4

(Q/ —_— [ —— 2 0 6,
%) 7 |Pl=_|% (10.5,5)
N N, — )7 Ny N LS,
c
where Ys, = 2
2u

l

0"'6 ’
'/V'J,‘ - 'T,r + fzccolaf

z

(2.8

a =

c, ,
N5, = é,a + .0

The four transfer functions for § and r responses are readily found from
(10.5,5) to be

DUTCH-ROLL APPROXIMATION

1
('/Vr—s)@a,-l-z/‘/a,

b__

8, f(s)

Fo_ _(@ﬁ—s)ﬂaf—ﬂﬁ@‘;f

5 fis) (10.5,6)
b__ A

8, Afl(s)

_f_ — (@p - S)=/Vaa

8, £(s)

where f(s) is the characteristic polynomial (9.7,13).

For the spiral/roll approximations, we proceed similarly with (9.7,10) to
solve for the desired ratios. In the following results, the subscripts a and r
are omitted from the control derivatives since the same formulas actually
apply to both d, and 4,. The only difference is that %;_is usually zero [as in
(10.5,6)] making the aileron transfer functions simpler than those for the
rudder. :
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SPIRAL/ROLL APPROXIMATION

Ays® + @ys® + a8 + a
f(s)
bys - by
f(s)
dos® 4 dis + d,
f(s)

I

(10.5,7)

Sal =1 SN ooy
l

SEh )
l
'
13
Qo8

where f (s) is the characteristic polynomial (9.7,11) and

ay =¥Y;; ay=—Y(Lp+ N, ___./1_;_5

1 C
a1:@6($pe/f/‘r_$r'/‘/‘p)_—(gﬁ'/Vﬁ’_g"'/V‘s) _l—g‘; =
A 24y
¢
a,o’—_——We—(gr/V“; gaf/i/‘r)
24u
YL 1 il
b1 —‘sAﬁ; b0=—A?($5Mﬁ_$ﬂWJ)+'j($ﬁ'/g/”_$’mﬂ)

C
d2=@5'/1/‘ﬂ; dlzgé(gﬂ'/’/‘p_gp#ﬂ); d0=2Zl;($émﬁ~$ﬂm6)

The accuracy of the above approximations is illustrated for the example jet
transport on Figs. 10.11 and 10.12. Two general observations can be made:
(1) the Dutch-roll approximation gives good results for the higher frequencies,
down to a little less than that of this mode, and (2) the spiral/roll approxi-
mation is correct in the low frequency limit. In this respect the situation is
entirely analogous to the longitudinal case, with the spiral/roll corresponding
to the phugoid and the Dutch-roll to the short-period approximation. There
are ranges of frequency where neither approximation is satisfactory, as on
Figs. 10.11e and 10.12¢. The spiral/roll approximations for the phase angles
are not shown on Fig. 10.11, since they are reasonable only at the lowest
frequency. For all three variables, 8, ¢, and #, they increase monotonically
to about 180° at the highest frequency, whereas the exact phase angles all
decrease in this range.

The reader should note that the agreement shown for the Dutch-roll
approximation is not to be expected generally. We saw in Fig. 9.28 that the



438 Dynamics of atmospheric flight

damping is not given at all well by this approximation at low speed (high
CL,)- Thus ‘the approximate solution at low speed would substantially
underestimate the amplitude peaks at the frequency of the lateral oscillation.
We repeat that the lateral approximations must be used with caution, and
that only the use of the exact equations can guarantee accurate results.

10.6 TRANSIENT RESPONSE TO AILERON AND
RUDDER

We have seen previously that useful lateral steady states are produced
only by certain definite combinations of the control deflections. It is evident
then that our interest in the response to a single lateral control should be
focussed primarily on the initial behavior. The equations of motion provide
some insight on this question directly. Following a step input of one of the
two controls the state variables at ¢ = 0t are all still zero, and from (5.13,20)
we can deduce that their initial rates of change are (using the compact
notation)

D‘B = @65
Dp = Lsb (10.6,1)

The initial sideslip rate Df is not of much interest, but the rotational accel-
erations are. From the last two equations

Do = (i¥5 + kAN ;)d
and for t — 0, ® = (i.%; + kA ;)E6 (10.6,2)

Thus the resultant angular velocity vector, and hence the initial instantaneous
axis of rotation, lie in the plane of symmetry as illustrated in Fig. 10.13.
Let us investigate the angle £ that w makes with the x axis for the two cases
of “pure” controls, i.e. when only one of C;; or C,,; is not zero. For the roll-
control case, 0% = 0 and

tan &p = Lo iV_a = el =1
p L5 Ol

From the definitions given in (5.13,20), (10.6,3) becomes

I, (10.6,3)

’oaJnER:ﬁ
z

and is zero if I, = 0, i.e. if Cx is a principal axis. This is just as expected,
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ZZ: ~__~Pure roll control
X

/

/ Pure yaw control

Fic. 10.13 Initial response to lateral control. (a) General. (b) Example jet transport.

of course, that a moment applied about a principal axis produces rotation
about that axis. When I,, is not zero, we get from (5.4,20b)

(,, —I,,) sinecose

tan £, = 10.64
BI, cosPe + I, sinf e (1064
Similarly for the pure yaw control, ¢;; = 0 and
I, cos’e I, sin®
ban y — 20 %05 € s, S0 € (10.6,5)

(I,, — 1, )sinecose

These angles are seen to depend on the relative inertias about the principal
axes, as well as on . For example, if I, = 41, , as is roughly the case for
the jet transport we have been considering, then &, and &y are as on Fig.
10.14. The relations are shown to scale on Fig. 10.13b for € = —20° (high
angle-of-attack case). Tt is observed that there is a tendency for the vehicle
to rotate about the principal x axis, rather than about the axis of the aero-
dynamic moment applied. This comes about because I, /I, is appreciably
less than unity. The jet transport is a relatively high-aspect-ratio machine
with wing-mounted engines, and would by no means be considered a “‘slender”
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F1c. 10.14 Angle of axis of rotation.

vehicle. For vehicles that are slender, such as the SST or a slender missile, the
trend indicated above is very much accentuated. In the limit I, — 0, both
(10.6,4) and (10.6,5) give the limit

tan & = tan ¢

which indicates that the vehicle will initially rotate about its principal x
axis no matter what the direction of the applied-moment vector. If this
rotation were to persist through 90°, then § would be equal to |¢| and o would
be reduced to zero. The above analysis tells us how the motion starts, but
not how it continues. For that we need solutions of the complete system
equations (5.13,20). Solutions for the example jet transport at Oz = .25 at
30,000 ft altitude were obtained by analog simulation of these equations,
and the results for f, P, ¢, and y are shown on Figs. 10.15 and 10.16. Figure
10.15 shows the response to negative aileron angle (corresponding to entry
into a right turn). The main feature is the rapid acquisition of roll rate,
and its integration to produce bank angle ¢. The maximum roll rate is achieved
in about 1} see, and a bank angle of about 25° at the end of 6 sec. Because of
the aileron adverse yaw derivative, C,; > 0, the initial yawing moment

is negative, causing the nosc to swing to the left, with consequent negative
vy and positive f. The positive f, via the dihedral effect C;; < 0 produces a



Response to actuation of the controls (open loop) 441

negative increment in C,, opposing the rolling motion. More than 4 sec
elapse before the nose swings into the desired right turn.

Figure 10.16 shows the response to a negative (right) rudder angle of the
same magnitude as the aileron angle on Fig. 10.15. This causes the nose to
swing rapidly to the right, § being initially roughly equal and opposite to y
indicating virtually no change in the direction of the velocity vector. The
result of § << 0 (because of C,; ,;/3) is a positive rolling moment and positive ¢.

Right rudder, like right aileron, is seen to produce a transition into a
turn to the right, but neither does so optimally. A correct transition into a
truly banked turn requires the coordinated use of both controls, and if
there is to be no loss of altitude (see Sec. 10.4) of the elevator as well.

An approximation to the ¢ response to J, can be obtained from the single-
degree-of-freedom roll analysis corresponding to (9.7,7). With the aileron

6|
4
2|

0.008
0.006
0.004
0002 |-

T

Approx.
(b e (10.6, 7)
30° - Exact
20°+

10°

0 1 2 3 4 5 6 7 sec.
Fi1a. 10.15 Step response to aileron input. §, = —2.87°.
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F1a. 10.16  Step response to rudder input. §, = —2.87°.

term included this becomes

Dp = Z,p + 2,8,

or AD — AL, D =%, 4, (10.6,6)
The solution of (10.6,6) for zero initial conditions is
6 L 1 ,
—=——2li 4+ —[1 — exp (ZL,} 10.6,7
R A S (10.6,7)

This result is compared with the exact solution on Fig. 10.15 and is seen to
give a good approximation to ¢ over the most important first few seconds.
This simple analysis supplies a useful criterion for roll control. It yields as
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_the steady-state roll rate,

fu—— 22
s gp a
or for principal axes,
p = — Ol""a (10.6,8)
ss Cl [ e

P
A requirement on p for a given vehicle then leads to an aileron design to
provide the necessary C;; 0,.

10.7 INERTIAL COUPLING IN RAPID MANEUVERS

There is a class of problems, all generically connected, known by names
such as roll resonance, spin-yaw coupling, inertia coupling, ete. (refs. 10.1 to
10.9). These have to do with large-angle motions or even violent instabilities
that can occur on missiles, launch vehicles, reentry vehicles, and aircraft
performing rapid rolling maneuvers. The common feature of all these is
that the vehicles tend to be slender, and that rapid rolling is present. In
some of the situations that have oceurred in practice, complicated nonlinear
aerodynamics, and mass and configurational asymmetries have been im-
portant factors in determining the motion. This subject as a whole is too
large for anything approaching a comprehensive treatment to be given here.
However, we present some analysis that reveals some of the underlying
principles, and by way of an example show what can happen in rapid rolling
maneuvers of aircraft.

Let us begin by examining a very simple hypothetical case. The body
in question is axisymmetric with I, > I . Its reference flight condition is
one of constant V and w, both these vectors lying on the axis of symmetry,
the z axis. We neglect gravity entirely, and study small perturbations around
the reference state. The perturbations are further constrained not to include
either V or the roll rate, which remain constant at V, and p,, respectively.
We further assume that the only aerodynamic effects are pitching and yawing
moments given by

Om = Cmaa + quq}‘
C,=C,pf + O, 7

Because of the axisymmetry, C, 5 = ~Cp,and C, = C,, . Since the essence
of this problem is nonlinear inertia coupling between the longitudinal and
lateral degrees of freedom, we require the general equations (5.13,8) to (5.13,12)
for the formulation. In applying the equations we take both the reference

(10.7,1)
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lengths b and ¢ to be equal to a reference diameter d, so that 4 = 1. There
are then four variables left in the problem, [«, B, 9, 7], so we need four
equations of motion. These are provided by (5.13,96 and ¢) and (5.13,11a
and b). In using the latter two we note that (5.13,86 and c) show that §p
and 7y, are zero by virtue of the neglect of gravity and aerodynamic forces.
(Since the net force is zero, V is a constant vector, and the wind axes have
motion. of translation only.) The pertinent equations are then, on making
due allowance for the axisymmetry,

Cn Dq — (£, — L,)%h,
C, Dr i —1

+ ( y w)qpo . (10'7’2)
Do Do cos o tan § — 7 sin « tan §

A
=q—
DB = Posin o — 7 cos a

On combining (10.7,1) with (10.7,2) and performing the usual linearization,
the result is (using Laplace transforms of the equations)

Co, O (Cn —1Im d,—1)b,

a
o —c, —,—1I)y, ©, —1ILs||B
One —Iy=L)by Coy =IN1P|_ o 0 g
S Do —1 0 7
—Do s Y 1 4

Now we recognize that we are dealing here with the problem of gyrostability.
At very large roll rates, we expect the body to display typical gyroscopic
motions that will depend mainly on the signs and magnitudes of C,, and
C,, . At vanishingly small roll rates, the equations decouple into conventional
lateral and longitudinal sets, in which the sign of C,, (i.e. of the pitch stiffness)
is a dominant consideration—for C,, and C,, both <0, a stable system is
assured. We know that even if ¢, > 0, gyroscopic stability (in the sense
that motions are bounded) is achieved at large enough spin rates. This is in
fact the method of stabilizing rifle bullets and artillery shells. It is therefore
intuitively evident that there must be a critical roll rate for the case C,, > 0
above which the vehicle is stable—just like the critical spin rate for a common
top. On the other hand there is no such intuitive notion about the case when
Ch, <0, ie. when the system is already stable at zero spin—the common
case in aerospace (as opposed to ballistic) applications.

To study the stability we need the characteristic equation of (10.7,3),
which is of fourth order '

Cgst -+ cg8® 82 + 035+ cp =0
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where Cy = IAu2
€3 = —nyqu
= —2I C,. +p021 2+ 0,2+ (I — Lyp2 (10.7,4)

& = 20y, C,. — 209°C,, 1,
Co = [(fy - jx)ﬁoz + Cma]z —I_ C,2

Unfortunately, even with all the simplifications already made, this equation
is still rather too complicated to permit us to say anything simple about the
roots. We therefore make a further simplification, and take C,, = 0. We
then have

A

ey =1}
c; =10
62 = ﬁoz[‘['yz + (Iy - Im)z] - 2I@I0m¢
c; =0
Co = [(fy - jw)ﬁoz + Oma ?
p— 2 —
whence jro To ke — dag, (10.7,5)

2c,

WHEN C,, > 0 (AERODYNAMICALLY UNSTABLE CONFIGURATION)

In this case ¢, and ¢, are positive definite whereas ¢, changes sign from
negative to positive as p, increases. The only possibility for stable roots is
12 < 0, in which case 1 is imaginary, corresponding to gyroscopic motion.
If )2 is real and positive, or complex, there will be at least one root with a
positive real part. Thus the conditions to be met are A2 real and <0, for
which it is necessary and sufficient that ¢,2 > 4cyc,. The roll rate required
for stability is then given by

2 40'maly
Po > 55— (10.7,6)

WHEN C,, < 0 (AERODYNAMICALLY STABLE CONFIGURATION)

In this case ¢, and ¢, are positive definite and it is ¢, that can change sign.
The condition (10.7,6) still holds, but because C,, is now negative, it is
automatically satisfied. However, the condition that }% be negatlve now
requires that c, be positive. So for this case the criterion for p, is obtained
from ¢, > 0, i.e.

(e v — w)+0m¢] >0 | (10.7,7)
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Condition (10.7,7) is met for all values of §,* except one, at which the l.h.s. =
0. There is thus one roll rate at which the system has “neutral” stability, i.e.
for which there is a zero root. The ecritical value is

p —Ow 1" 10.7,8
Ipo]—l:jy—~j] ( ").

.

To summarize, we have seen that an aerodynamically unstable configu-
ration can be stabilized by spinning it fast enough, and that at a certain
eritical roll rate an aerodynamically stable configuration becomes neutrally
stable. The source of these phenomena is the inertia effects given by the rp
and ¢p terms in the pitching and yawing moment equations. They can be
thought of as gyroscopic moments associated with high roll rate. Phillips
(ref. 10.1) has analyzed a more general case, in which the vehicle is not
axisymmetric, and in which aerodynamic forces as well as moments are
retained, i.e. an airplane configuration. In this case he found that there is a
band of roll rates within which the vehicle is unstable, the lower critical
one being given approximately by the lesser of

___O'm 4 c, Lg
—_— or —= (10.7,9)
A(l,—1,)

[compare with (10.7,8)].

For the jet transport of our examples, with C,, = —.488 the critical rate
would be .4 = .112, corresponding to the first of the two criteria. From
(10.6,8) this vehicle, at §, = 20°, achieves p,, = .0528, a value considerably
less than the critical, and hence one would not anticipate any difficulties for
this airplane arising from nonlinear inertia coupling.

Since the rolling motion may be thought of in a sense as providing a
periodic excitation of the uncoupled longitudinal and lateral oscillations,
it proves convenient to look at stability boundaries in the plane of the two
uncoupled frequencies. This idea was first used by Phillips. The result is
typically like that in Fig. 10.17, the exact boundaries depending mainly
on the dampings of the two oscillations. A vehicle conventionally stable in
nonrolling flight would be represented by a point in the upper right quadrant,
the exact position being determined by p,. As p, increases, the point moves
radially toward the origin. If it follows a line like 4, there will be no instabil-
ity; but if like B, there is an unstable range of p, separating two stable
regions as found by Phillips. A vehicle that is statically unstable in both pitch
and yaw when nonrolling will correspond to a point in the lower left quadrant,
and can be stabilized by a large enough p, (line C).



(wg /p0)?

Divergence

;
Y
% A%/
|
Divergent ‘
oscillation \
2
C

7" -
y

447

Response to actuation of the controls (open loop)

B
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2
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Fre. 10.17 Form of stability boundaries for rolling vehicle. @, = frequency of yaw
oscillation, VN, 8/1,. wg = frequency of pitch oscillation, v —M,/I,.

NUMERICAL EXAMPLE—PITCH/ROLL COUPLING OF

A SMALL AIRPLANE

To show how the nonlinear inertia terms can affect the motion of an
airplane we consider a small maneuverable single-engined jet airplane. Its
principal characteristics are

W =60001b, S=216f2 A=60
b=2360ft, ¢=6.0ft

I, = .170 x 10* slug ft2

I, =120 x 105slug ft2, I, =0

I, = .140 X 105 slug ft?

Note that I,/I, is only .121, as compared with about .4 for the transport
airplane. The pertinent aerodynamic data for flight at 500 fps at sea level

are given as

g, = — 081,
C,,, = —A435,
0y, = —08L,
C,, = 0218,
Cp,, =0, C

CT,,W = —ﬁCTe’

Mye

Cp, = 4.35,
Cp, = —2.1,

Cry=0r, =0
- C,, = —9.73
C, = —442, C, = .0309
0, = —.0424
=24 O =0
Cp, = 017



448 Dynamics of atmospheric flight

The value of Py, calculated from (10.7,9) is .0796. In applying the general
nonlinear equations, we assume that A«, B, remain small, that linearization
is permissible with respect to them, and that the speed is constant.

With these assumptions, (5.13,8) et seq. yield the following system of
equations.

—Crp f — Cg + Oy cos Oy sin by = 2udiy,

—Cp Ao — O + Oy cos Oy cos gy = ~2udy

D,B:rﬂ—l—%Aoc~—

"w
A

Doy, = ij + Gy tan Oy sin ¢y, -+ == tan Oy cos ¢y

A

Dby = gy cos by — 7:

sin ¢pr

Py =D + ABdy + Aaf
Co="Cyp
Cp=0CLx
Cy=Cy B+ 0 b+ Cf + 0y, 8,
Op = Op ot + OpyDe + Crp g + Crpy 00
O, =0, p+ O, P + O, f

The logical structure of these is essentially as in Fig. 5.6.
The above equations were programmed for solution on a digital computer,
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using a Runge-Kutta algorithm for solving differential equations. Solutions
- were obtained for two different sets of conditions:

(i) Initial condition of rolling at rate p,, with all other initial values zero,
with |§,| at 2°, and with §, set at the value required to make p,, = p;
[see (10.6,8)]. Thus the initial value of  would be zero, producing a
condition somewhat like that of Phillip’s analysis.

(ii) All initial values zero, with a pitch maneuver initiated by elevator
elevator deflection at { = Q0 and a subsequent roll maneuver super-
imposed by a step change in J,.

Figure 10.18 shows the angle of attack variation in the first case, (@) for
pitch-up and (b) for pitch-down. A striking result is the difference between
positive and negative elevator angle, a difference that results entirely from
the nonlinearity of the equations. Even for very large aileron angles, there
is no evidence in (@) of instability, and only for the case of |4, = 14.7° does
Ao become momentarily excessive. On the other hand case (b) develop
excessive Aa quite suddenly when |§,| goes from 4.2 to 6.3°. The difference
in behavior in these two cases is largely attributable to the difference in the
roll-rate time histories, which in turn results from the fact that § > 0 in
(@) and 8 < 0 in (b). (The roll rate results are not presented on the
figures. The following comments are based on the computer output.)
In the case §, = .060, §, = 2.0°, p first decreases slightly, then increases
with time as a result of rolling moment due to side-slip, crossing over the
critical value .0796 at about .8 sec, and remaining larger till the end of the
calculation. Very soon after § exceeds Py, Aa starts to increase rapidly.
On the other hand, for $, = .040, § never reaches the critical value, and
Ax is “well-behaved.” In Fig. 10.18a, p, = .140, the rolling moment due to
sideslip is negative and decreases the roll rate so that it falls below the
critical value at ¢ = 2.6 sec. This is again compatible with the reduction
in A« that occurs at about the same time. It appears that the critical roll
rate derived by Phillips is a very useful criterion for a “well-behaved”
transient.

Figure 10.19 shows the variation of A« for the second case, which is a
realistic maneuver, resulting after 5 sec in a pitch-up (or down) of about 20°,
and a roll when 3, = 8° of about 11 revolutions. Again the lack of symmetry
between pitch-up and pitch-down is clear, the latter being the unfavorable
case for a roll to the left. The difference between A« for §, = 4° and §, = 8°
or 10° is striking. In the former case the detailed solution shows p < p_.
for the whole time, whereas the latter two have p > p,, almost
from the onset of the rolling motion. For the pitch-up case as well,
Py, 1 exceeded for §, = 12° and 18°, but not for §, = 6°.
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Fi1e. 10.18 Variation of Aa during rapid roll. () Pitch-up case, §, = —2.0°. (b) Pitch-
down case, §, = 2.0°

In the discussion of these examples we have studiously avoided the use
of the word “stability”” in describing the solutions, using ‘“well-behaved”
instead to denote ‘“‘acceptable behaviour.” We have not in fact discovered
anything about the stability of the solution presented, in the strict Lyapunov
sense. They may or may not be continuous funetions of the initial conditions
as { — oo, (although they certainly appear to be continuous for the range of
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F1a. 10.19 Variation of angle of attack in a combined pitch/roll maneuver,

¢ considered). Furthermore, the stability in that sense is actually irrelevant
(see closing remarks of Sec. 3.5). Whether or not the maneuver is an accept-
able one is governed entirely by the size of the Ax and Af excursions that
can be tolerated without structural failure or loss of control and not by the
theoretical stability of the solution.
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Closed-loop control

CHAPTER Il

[1.1 GENERAL PRINCIPLES

Although open-loop responses of the kind studied in some depth in Chapter
10 are very revealing in bringing out inherent vehicle dynamics, they do
not in themselves usually represent real operating conditions. Every phase
of the flight of an aerospace vehicle can be regarded as the accomplishment
of a set task—i.e. flight on a specified trajectory. That trajectory may simply
be a straight horizontal line traversed at constant speed, or it may be a
turn, a transition from one symmetric flight path to another, a landing flare,
following an ILS or navigation radio beacon, homing on a moving target,
ete. All of these situations are characterized by a common feature, namely,
the presence of a desired state, steady or transient, and of departures from it
that are designated as errors. These errors are of course a consequence of
the unsteady nature of the real environment and of the imperfect nature of
the physical system comprising the vehicle, its instruments, its controls, and
its guidance system (whether human or antomatic). The correction of errors
implies a knowledge of them, i.e. of error-measuring (or state-measuring)
devices, and the consequent actuation of the controls in such a manner as
to reduce them. This is the case whether control is by human or by automatic
pilot. In the former case, the state information sensed is a complicated blend
of visual and motion cues, and instrument readings. The logic by which this
information js converted into control action is only imperfectly understood,

452
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but our knowledge of the physiological ‘“‘mechanism’ that intervenes between
logical output and control actuation is somewhat better (see Chapter 12).
In the latter case—the automatic control—the sensed information, the control
logic, and the dynamics of the control components are usually well known,
so that system performance is in principle quite predictable. The process of
using state information to govern the control inputs is known as closing the
loop, and the resulting system as a closed-loop control or feedback control.
The terms regulator and servomechanism describe particular applications of the
feedback principle. Figure 3.5 shows a general block diagram describing the
feedback situation. In the present context we regard y as the state vector, H(s)
as an operator (linear in the figure, but of course not necessarily so) and € as
the control vector. Clearly, since real flight situations virtually always entail
closed-loop control, a study of the consequences of closing the loop isin order.

Another factor that eannot be separated from these referred to above
is the force amplification or power amplification common in the control
systems of large aircraft. As noted in Sec. 6.8, the control forces needed on
large high-speed aircraft may exceed the capabilities of human pilots. Thus
another dynamic system—powered controls—intervenes between the pilot
and the aerodynamic surfaces. Such subsystems are themselves commonly
servomechanisms—closed-loop systems that drive the surfaces in response
to pilot commands. Thus we are frequently concerned with ‘“loops within
loops,” a very common situation. For example, the “outermost” loop might
be a guidance loop that controls the error in vehicle position relative to an
ILS beam. An inner loop might be a stability augmentation system (treated
later in Sec. 11.4) whose purpose is to improve the inherent lateral dynamics
of the vehicle and, finally, within this one there may be still another loop
associated with the control-surface servo.

Although flight dynamicists (who usually come from an aerospace engi-
neering background) and control engineers (who frequently have a back-
ground in electrical engineering) usually communicate adequately on
problems of mutual concern, there is often understandably some difference
in their points of view. This is illustrated somewhat facetiously in Fig. 11.1.
At one extreme, the control engineer may overemphasize the many elements
that comprise the control system, and tend to minimize the role of the
dynamics of the vehicle itself—perhaps replacing all its rich and varied detail
with oversimplified approximate transfer functions. At the other extreme, the
flight dynamicist may substitute some simple algebraic relations for the
entire control system. Neither extreme is right for the final solution of real
problems, but both may have their merits for certain purposes. We naturally
tend here to the flight dynamicist’s view of the system in the illustrations
that follow. For example, it is sometimes very helpful to consider the loop
closure as simply modifying some of the existing aerodynamic derivatives, or
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F16.11.1 Closed-loop control—two extreme views. (@) The control engineer’s viewpoint.
(b) The flight dynamicist’s viewpoint.

adding new ones. Specifically let ¥ be any nondimensional state variable,
and let a control surface be displaced in response to this variable according to

the law Ad =k Ay; k= const

(Here k is a simplified representation of all the sensor and control system
dynamics!) Then a typical aerodynamic force or moment coefficient C, will
be incremented by

AC, = C,5 AS
= Cp.k Ay (11.1,1)
This is the same as adding a synthetic increment
AC,, = kG, (11.1,2)

to the aerodynamic derivative C, . Thus if y be yaw rate and J be rudder
angle, then the synthetic increment in the yaw-damping derivative is

AC, = kC’"‘s (11.1,3)
which might be the kind of change required to correct a lateral dynamics
problem. This example is in fact the basis of the often-applied “yaw damper,”

a stability-augmentation feature. Again, if y be the roll angle and 4 the
aileron, we get the entirely new derivative

O,y = kO, (11.1,4)

the presence of which can profoundly change the lateral characteristics.
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SENSORS

We have already alluded to the general nature of feedback control, and
the need to provide sensors that ascertain the stafe of the vehicle. When a
human pilot is in control, his eyes and kinesthetic senses, aided by the stand-
ard flight information displayed by his instruments, provide this information.
{In addition, of course, his brain supplies the logical and computational
operations needed, and his neuro-muscular system all or part of the actua-
tion.) In the absence of human control, when the vehicle is under the
command of an autopilot, the sensors must, of course, be physical devices.
As already mentioned, some of the state information needed is measured
by the standard flight instruments—air-speed, altitude, rate-of-climb,
heading, ete. This information may or may not be of a quality and in a form
suitable for incorporation into an automatic control system. In any event
it is not generally enough. When both guidance and attitude-stabilization
needs are considered, the state information needed may include:

Position and velocity vectors relative to a suitable reference frame.
Vehicle attitude (0, ¢).

Rotation rates (p, g, r).

Aerodynamic angles («, ).

Acceleration components of a reference point in the vehicle.

The above is not an exhaustive list. A wide variety of devices are in use to
measure these variables, from Pitot-static tubes to sophisticated inertial-
guidance platforms. Gyroscopes, accelerometers, magnetic and gyro compasses,
angle-of-attack and sideslip vanes, and other devices all find applications as
sensors. The most common form of output is an electrical signal, but fluidic
devices (ref. 11.1) are increasingly receiving attention. Although in the
following examples we tend to assume that the desired variable can be
measured independently, linearly, and without time lag, this is of course
an idealization that is only approached but never reached in practice.
Every sensing device together with its associated transducer and amplifier
is itself a dynamic system, with characteristic frequency response, noise,
nonlinearity, and cross-coupling. These attributes cannot finally be ignored
in the design of real systems, although one can usefully do so in preliminary
work. As an example of cross-coupling effects, consider the sideslip sensor
assumed to be available in the stability augmentation system of Sec. 11.4.
Assume, as might well be the case, that it consists of a sideslip vane mounted
on a boom projecting forward from the nose. Such a device would in general
respond not only to f = sin (v/V) but also to atmospheric turbulence
{side gusts), to roll and yaw rates, and to lateral acceleration a, at the vane
hinge. Thus the output signal would in fact be a complicated mathematical
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function of several state variables, representing several feedback loops,
rather than being simply proportional to f# as assumed in the example.
The objective in sensor design is, of course, to minimize all the unwanted
extraneous effects, and to provide sufficiently high frequency response and
low noise in the sensing system.

This brief discussion serves only to draw attention to the important design
and analytical problems related to sensors, and to point out that their real
characteristics, as opposed to their idealizations, need finally to be taken
into account in design.

11.2 EXAMPLE—SUPPRESSION OF THE PHUGOID

The characteristic lightly damped, low-frequency oscillation in speed,
pitch attitude, and altitude that was identified in Chapter 9, was seen in
Chapter 10 to lead to large peaks in the frequency-response curves (Fig. 10.3)
and long transients (Figs. 10.6 and 10.7). Similarly, in the control-fixed
case, there are large undamped responses in this mode to disturbances such
as atmospheric turbulence (see Chapter 13). These variations in speed, height,
and attitude are in fact not in evidence in actual flight; the pilot (human or
automatic) effectively suppresses them, maintaining flight at more or less
constant speed and height. The logic by which this process of suppression
takes place is not unique. In principle it can be achieved by using feedback
signals derived from any one or a combination of pitch attitude 6, altitude
2y, speed V, and their derivatives. In practice, the availability and accuracy
of the state information determines what feedback is used. We shall see that
a simple negative feedback of pitch attitude suffices effectively to eliminate
the phugoid. Pitch attitude is instantly and accurately available from either
the real or artificial horizon. We shall also see that operating on speed error
can produce pitch maneuvers free of phugoid oscillations.

Consider the system shown in Fig. 11.2, in which 0, is the pitch command,

’

Gog P)
s S
Gp —= Ggs
Control Aircraft

Fie. 11.2 Phugoid suppression system.
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G ,(s) is the overall transfer function of the control system, and ¢ is a dis-
turbance (gust) input. The pitch attitude is given by

6 = Go,§ + Gos 9, (11.2,1)
and we readily find the overall transfer functions
E GpGoa
0, 14 6,6
¢ e (11.2,2)
0_ Gy
g- 1 + G7005

The stability with respect to 0, or ¢ inputs is given by the roots of the char-

acteristic equations of these two overall transfer functions. So long as §, and

g are both inhomogeneous inputs to the linear aireraft system, it can be

seen that the denominators of Gy; and Gy, are the same, each being the char-

acteristic polynomial det (sf — A) (see Sec. 3.2). Thus we may write
N N,

Ge‘s:j)l GGQ:B

where N;, N,, D are polynomials in s, and the overall transfer functions are

(11.2,3)

0 G,N,

6, D+ @GN,

i x (11.2,4)
g -D "I‘ Gle

The poles of these transfer functions, which are the roots of the characteristic
equations, will be the same if ¢ N, and N, have no poles (or the same poles),
and in that case the stability with respect to gust inputs will be the same as
that for pitch command inputs. A reasonably general form for G, (s) for
this application is

6l6) = 2+ ky + Iy

For obvious reasons, the three terms on the r.h.s. are called, respectively,
wntegral control, proportional control, and rate control, because of the way they
operate on the error €. The particular form of the controlled system, here
Gy5(s), determines which of k,, k,, k; need to be nonzero, and what their
magunitudes should be for good performance. Integral control has the char-
acteristic of a memory, and steady-state errors cannot persist when it is
present. Rate control has the characteristic of anticipating the future values
of the error and thus generates lead in the control actuation. It turns out
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that all we need here is proportional control, so we choose G,(s) = K, a
constant, and the characteristic equation is

D(s) + KN,(s) =0 (11.2,5)

To proceed further, we need explicit expressions for N; and D. We saw in
Sec. 10.2 that the phugoid approximation to Gy, is quite good up to elevator
frequencies near that of the short-period mode. Since we may expect that
the elevator frequency needed to suppress the phugoid is of the same order
as the control-fixed phugoid frequency, we may use (10.2,15b) in this analysis
(and this is verified a posteriori). We therefore have

Ny(s) = nps® + mys + mg
D(s) = ¢€,8% + ¢18 + ¢4

Approximate expressions, good enough for this example, are obtained from
(10.2,15b) by neglecting O and assuming Cp = —2Cp and Cp << Cp, .
We then get

(11.2,6)

C
Ng == __4”2 ;e
Ce
Cn
" = _ZﬂCLz 67;5
C.. 11.2,7
no = _2[0LaODe + OWE(OWe - ODa)]E—& ( )
me |
cy = 4u?
¢ = 4/,LCDe (11.2,8)
eo = 20,
The characteristic equation is, from (11.2,5) and (11.2,6),
(o 4 Kmy)s® + (¢, + Kny)s + (¢o + Kng) =0 (11.2,9)

and the feedback is seen to affect every term in the equation. We also observe
that the numerator of the open-loop transfer function Gy; plays a decisive
role in determining the characteristics of the closed-loop system.

The frequency and damping of the system are now obtained from (11.2,9)
as
I Kno)%: " (1 + Kno/co)%

" (02 + Kn, "\1 + Knyc,
¢+ Kny —9 (1 4 KEnyfcy)

T Jo § Kng)es + Kngy (LT Kngleg)(L + Enofey)

(11.2,10)

2y
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where , = (cofcy)”t and 2{ = 01/\/ 62_60 are the fixed.control phugoid
parameters. Using the data for the jet transport cruising at 30,000 ft altitude
given in Sec. 9.1, and C,,; = C,, Wwe get the numerical values

Do 202, T—_130, 2=_10
Go ¢ ¢
! — 14
from which On _ I_LZK
o R (11.2,11)
XS 1— 130K "

{  Ja — K)Q —202K)

Even with small gain K the damping of the phugoid is very much increased.
The original value was { = .0535, so to produce a dead-beat transient for
which { = 1, we require {’/{ = 18.7, which is produced by a gain —K = .17.
Note that the gain is negative, since a positive error e indicates the nose is
too low, and up-elevator (§, < 0) is required to correct. With the gain needed
for { = 1.0, we get wy/w, = 1.07, so the frequency has been increased by
only 79, and the phugoid approximation for G; is clearly adequate.

This calculation shows how a human or automatic pilot could eliminate
the phugoid oscillations quite simply, using readily available state information.
The exact control law by which a human pilot actually achieves this result
may in fact be somewhat different from that assumed here, but it is probable
that 6 is the prime variable on which he operates.

CHANGE OF FLIGHT-PATH ANGLE

The phugoid makes its presence known not only in the form of transient
perturbations from a steady state, but also in maneuvers, as illustrated in
Sec. 10.3. We saw there for example that in changing from level to climbing
flight by opening the throttle (Fig. 10.7) there results a protracted, weakly
damped approach to the new state that would take some 10 min to complete.
Transitions from one value of  to another are obviously not made in this
manner, and the pilot suppresses the oscillation in this case as well. Provided
that the correct 6 is known for the climb condition, the same technique as
discussed above would work, i.e. proportional control operating on pitch-
attitude error. We illustrate an alternative concept that does not require any
knowledge of the final correct pitch attitude, but that uses speed error alone.
Figure 11.3a shows the system. In this case it is found that proportional
control is not adequate—it serves mainly to shorten the period of the oscil-
lation, but has little effect on the damping. To improve damping needs rate
control, so the control law used is

G(s) = ky + kos; Ky, ky >0 (11.2,12)
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¥1a¢. 11.3  (a) System with speed feedback. (b) Suppression of phugoid by closed-loop
control—response to thrust change.

where the signs of the gains have been chosen to give the required corrections.

Just as in the case of 6 feedback above, the characteristic equation can
be obtained from the approximate transfer function, in this case Gyp,. It is
given by (10.2,15a), i.e. with the same approximations as used above,

Ny(s)

Ve T D(s)

(11.2,13)
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where D(s) is given by (11.2,6) and (11.2,8) and

Ny(s) = mys + my
my = 2uCp CpsfC,
my = Cpy O Cs/Cra., (11.2,14)

The characteristic equation [cf. (11.2,5)] is

D(s) + (ky + kys)Nyfs) = 0
which becomes

(ca + myko)s® + (01 + myky + moks)s + (¢o + kymo) =0 (11.2,15)

The new characteristic equation is again second order, being the sum of
the original one and additional terms. When the signs of the quantities
in (11.2,14) are taken into account, the modifications to the three original
coffiecients can be summarized thus

¢y: increased by amount proportional to k,
¢,: increased by amounts proportional to k, and k,
¢o: increased by an amount proportional to k,

Since there are two free constants, k; and k,, we can analytically satisfy two
conditions by means of (11.2,15)—one on the period, and one on the damping
of the closed-loop system. This procedure is fairly obvious, and is not elabo-
rated on here. The values of the constants finally chosen have to be con-
strained of course by practical considerations related to sensor and control
hardware limitations. Finally, the approximate analysis has to be verified
with the complete system of equations. As an example, Fig. 11.3 shows the
response to a step input of thrust obtained using analogue computation of
the full system of equations. The constants used were

k; = .30 rad/unit; k, = 1000 rad/unit

The first corresponds to a deflection of .172° per 19, change in speed, and
the second to 25.3° per g of forward acceleration. The airplane and flight
condition of the figure are the same as those for Fig. 10.7. The dashed lines
show the beginning of the phugoid response that would exist without feed-
back. This would take about 10 min to decay. The solid lines show the
response with feedback, and we see that for all practical purposes the
transition is completed smoothly and rapidly—within about 15 sec. There
is a small overshoot in y, and small errors in AV and Ad that die out rather
slowly. This feature could be eliminated at the cost of some additional
complexity by introducing some integral control. The elevator angle variation
required to accomplish the transition is seen to consist of an initial step
(up-elevator) followed by a gradual reduction of the deflection. The conditions
near ¢ = 0 are, of course, somewhat artificial because of the step input used.
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A gradual thrust increase would have resulted in a gradual deflection of the
elevator. It should be noted that the error in AV, the primary quantity
sensed, is indeed kept quite small. The role of A« is worth commenting on.
At the scale of the figure, there is practically no « change in the open-loop
case within the time span shown. The “pulse” in « in the closed-loop case
clearly has the effect of producing a corresponding pulse in lift that rotates
the velocity vector through the required angle.

Finally, it should be observed that in theory a human pilot has all the
state information that we have assumed was available. ¥ and V could be
obtained from an airspeed indicator, and additional information about V
can be felt as an inertia force (a “seat-of-the-pants” input). An autopilot
could readily have AV supplied in electronic form by a conventional trans-
ducer, but V would be somewhat more troublesome. The two principal
alternatives would be differentiation of V, or an acceleration signal from an
inertial platform.

1.3 EQUATIONS OF MOTION OF THE CONTROL
SYSTEMS

Up to this point in our development of the subject we have not found
it necessary to consider the dynamics of the vehicle’s control systems per se,
although the omission of this feature was pointedly noted in the previous
section. In fact the dynamics of control systems not only enter into closed-loop
behavior but are also implicit in the stability of vehicles with free controls.
When the controls are reversible (i.e. when an external force applied at the
surface can cause it to move), the stability with free controls may be appreci-
ably different from that with fixed controls. This case can be thought of in a
sense as belonging to the feedback class of control problems, since the control
angles are then governed by certain inherent aerodynamic and inertial
feedbacks.

The wide variety of control system types and configurations in common
use, and the variability of the schemes used to provide power or force
amplification make it virtually impossible to present a universal analysis
of any use. We therefore select one hypothetical model of a control system,
and show how its equations of motion are derived. Generally speaking, a
similar procedure would apply to other cases. The model is that depicted
in Fig. 11.4. It consists of a rigid elevator surface, connected by a rigid
frictionless linkage to the pilot’s control and to a hydraulic jack. The airframe
structure to which the system is attached is also assumed to be rigid. The
external forces acting are the pilot control force P, the jack force J, and the
aerodynamic hinge moment H, Gravity is neglected since it is essentially
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Fi1e. 11.4 A hypothetical elevator system.

a constant that only affects the equilibrium position slightly. The system
has two degrees of freedom relative to the frame Fy, i.e. §, and 0;. The
control system shown represents a power assisted elevator, and does not in-
corporate explicitly any provision for closed-loop positioning of the elevator.
This would require a somewhat different physical arrangement, and its
governing equation would be different from that derived below.

We obtain the equations of motion by applying Lagrange’s equation
(56.12,3), the procedure being somewhat analogous to that used in Sec. 5.12.
In this application, since rigidity has been assumed, the strain energy U is
zero. €, stands for either , or 0, so that there are two equations of motion.
As in Sec. 5.12 the generalized force %, must include the inertia forces
associated with acceleration and rotation of the reference frame Fp.

THE KINETIC ENERGY T

The kinetic energy of the moving masses (elevator, levers, pistons, rods,
ete.) can for small displacements always be expressed in the form

T= %Ie éez -+ IeJ SeéJ + %IJGJ2 (11.3.1)

The coefficients of this equation are generalized inertias, and could be com-
puted by integrating the energy associated with d, and 6 ; over all the moving
material system. These inertias are assumed to be constants.

THE GENERALIZED FORCE &,

The generalized force is given by (5.12,8), where W is the work done by
the external aerodynamic and inertia forces during a virtual displacement
of the system. Let it be expressed as

AW = H,AS, + P Asp + J As; + AW, (11.3,2)

where sp and s; are the displacements of the forces P and J respectively,



464 Dynamics of atmospheric flight

and W, is the work done by the inertia forces. Thus

oW 0s Os ow,
—H p_r g Jd, "¢
5, et e T W |
(11.3,3)
oW _ ooy, By, OW, ®

8, o6, 90, 00,

The kinematic derivatives 0sp/04,, etc., are simple constants, readily deter-
mined from the geometry of the linkage.
We now require the derivatives of W,. The inertia force field is given by

df, = —(a — ¥')dm (11.3,4)

where a is acceleration of dm relative to F'; given by (5.1,8) and r’ = [z, y, 2]7

is its position vector in F5. The work done in a virtual displacement by this
field is

AW, = f (df,,, Az + df, Ay + df,, A2) (11.3,5)

where the integration is taken over the whole control system. To carry out
this integration exactly clearly requires complete information about the
masses, sizes, and locations of all the moving elements. It is in principle a
_straightforward albeit tedious process. In the interests of simplicity we
neglect all contributions to W, except those of the elevator surface itself,
and that we treat as a lamina lying in the xy plane. The relevant geometry
is shown in Fig. 11.5. The displacement of the element dm is in the direction
Cz and of magnitude & Ad,. Hence only the last term of (11.3,5) is nonzero,
so that

AW, = f df, & NS,

On using (11.3,4) and (5.1,8), remembering that z = & = 3 = 0, we get

AW, = —A8, f [ag, + ®(pr — @) + ylar + Pledm  (11.3,6)
It follows that

LA
26,

oW ~on, [dm — (r — i) [oin — @ ) [veam a1z

Since elevators are normally symmetric about Cx, the last integral of (11.3,7)
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Fi1e. 11.5 Horizontal tail.
vanishes. The first is, by virtue of the definition of mass center,

f £dm = mye, (11.3,8)

where m, is the mass of both elevators, and e, is as shown in Fig. 11.5. The
second integral is the product of inertia of the elevator w.r.t. its hinge line
and the y axis. It is denoted

f wgdm =P, (11.3,9)
Equations (11.3,7) now read
ow, ow,
t=0; t = —meay — P, (pr— ¢ 11.3,10
aeJ 856 ’ 0, eo:(p Q) ( )
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and finally, on combining (11.3,10) and (11.3,3) we get the generalized forces

Fy= Z(I;V = H, + kyP + kypJ — mee,ay, — P (pr—¢) (113,11)
ow

Fs=——+ kP + kyJ
a0,

where [k,;] is the matrix of kinematical gearings 9sp/d4,, ete.

EQUATIONS OF MOTION

The equations of motion are obtained by substituting the generalized
forces and the kinetic energy in Lagranges equations, i.e
Ie se + IeJéJ = He + k11P + klzJ — Me o, — Pem(.pr - Q) (2)
Ly, + 1,0, = leyP + Iy ()
(11.3,12)
The inertia terms on the r.h.s. of () are the only nonlinear ones, and in
view of the assumptions already made, linearization of these is in order.
a,, is the 2 component of the acceleration of the vehicle mass center and is

given by (5.3,18). Without the Earth rotation terms, and for small distur-
bances, we get

Ay, = W — qu

From (4.3,4), in the linear case, w = Vo, and w = V, so that the linear
éxpression for the acceleration is

@, = Ved - qu
and (11.3,12) become

L8, + 1,0, =H,+ kP + kyod —me, V(e —q)+ Pud  (a)

IeJ ge + IJéJ = k21P + kzzJ (b)
(11.3,13)

These equations, when combined with the vehicle equations of motion,
convert §, from a nonautonomous to an autonomous variable, add 6, to
the autonomous set, and introduce P and J as nonautonomous variables.
The aerodynamic force H, is a function of the state variables, i.e. [cf. (6.5,2)]

H,=H,+ Hy AV + H, A + Hya ++ Hyg + H; AS, + H; 5,  (c)
(11.3,13)



Closed-loop control 467

and provides aerodynamic coupling (feedback) between the vehicle motion
and the control force. Similarly the terms containing « and ¢ in (11.3,13a)
provide inertial coupling between vehicle and control dynamics.

INERTIAL COUPLING

Although little can be done to influence the aerodynamic coupling, the
inertial coupling is amenable to control by design. If the elevator mass
center is on the hinge line, e, = 0 and one coupling term vanishes—i.e.
acceleration in the z direction will then not tend to induce motion of the
control. With reference to Fig. 11.5, we can calculate P, as follows

P, =f§x dm
= —Im,e, — sin Aff ly'] dm — cos Af{-‘2 dm  (11.3,14)

For P,, and e, both to be zero, we would require

sin Afg |y| dm 4 cos Af£2 dm =0 (11.3,15)

This condition cannot be met if A = 0, but in principle can be if A £ 0 by
the addition of suitable balance weights. When both P,, and e, are zero we
have complete dynamic balance of the elevator, and rigid body motion of
the vehicle does not induce motion of the control.

The problem of reducing inertia coupling when aeroelastic flutter is the
issue is similar to, but not the same as, that discussed here. The relevant
product of inertia would in general be a different one [see (11.3,24)].

THE SERVO EQUATION

The pair of equations (11.3,13) do not normally give the whole picture.
The control system illustrated in 11.4 is infended to operate with 6 ; as near
to zero as possible. Typically a hydraulic system for this application would
sense 0, as an error, and control the flow of high-pressure fluid to the piston
so as to reduce it. A solenoid-controlled servo that could perform this function
is illustrated in Fig. 11.6. The ports are such that the actuator is forced to
follow the valve spool. In this case the error signal might be generated by a
displacement transducer attached to the link 4B of Fig 11.4 and used via
an intervening electronic system to position the value spool. Alternatively,
an entirely mechanical linkage could connect the valve spool to the pilot’s
control. Servos like this one have the characteristic that the volume rate of
flow of oil is very nearly proportional to the valve error, regardless of load.
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F1e. 11.6 Schematic of solenoid-controlled hydraulic servo.

Since the flow rate is proportional to the velocity of point A, which is a
linear combination of J, and 0, and since the valve error is proportional
to 0, the servo equation in this case would be

ad, + 0, = b0, (11.3,16)

Adding this equation to (11.3,13) completes the system, and has the effect
of transferring J to the autonomous set of state variables, leaving only P
as a nonautonomous input. The functioning of the servo itself in the neighbor-
hood of an equilibrium point, as an uncoupled system, is described by putting
AV, a, and ¢ = 0, leading to the control system equations (in Laplace trans-
forms)

(Iesz - HJS - HB) Ierz _k12 Age kll
I,,s2 I;s2 —kyl|l 0y =|ka|P (11.3,17)
as s—b 0 J 0

From this equation the Aj,/P transfer function can readily be found. The
characteristic equation is found by expanding the determinant of the 3 X 3
matrix, and is a cubiec.

If the servo is powerful enough that 6 ; may be assumed to be identically
zero, then a substantial simplification results. In that case (11.3,16) is super-
fluous and J can be eliminated via (11.3,12), i.e

J = 1 (I, 78, — ko1 P) (11.3,18)
ks
If furthermore the inertial coupling I,; is negligibly small, which can be
ensured by design, we get the desirable simple result

J— _tup_yp (11.3,19)
kye
Assuming both the above conditions to hold, the first system equation reduces
to

(Is* — Hys — H,) AS, — (ku _ 'f%) P (11.3,20)

22
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and gives a second-order transfer function connecting P and Ad,. The corre-
sponding equation with the « and ¢ terms present is obtained from (11.3,13a)
as

—H, AV + [(me,V, — Hy)s — H,] Az — (P, 8 + meV, + H)g
+ (I — Hs — H)AS, = KP (11.3,21)

where K=k, (l — %)
11’022

Although perfect dynamic balance of the elevator surface may not always

be achieved, the inertia coupling terms are often small. If they can be

neglected, we get the simplest equation that still contains the essential

ingredients of the control dynamics—i.e. the inertia of the control elements

and the aerodynamic feedbacks:

—~Hy AV — (Hys +H)Aa — Hg+ (I,s*— Hiys — H;)AS,= KP  (a)

(11.3,22)
With similar assumptions, the equations for the other two control systems are
Rudder system:
~Hyf — H,p— Hi + (Is* — Hps — Hy) 5, = K,P, ()
Aileron system: (11.3,22)

—2H,p — 2HF + (I,s* — 2Hzs — 2H;) 8, = K,P,  (c)

For the aileron system, 6, is the downward deflection of the right-hand
surface, assumed equal to the upward deflection of the left-hand surface.
I, is the generalized inertia of the entire system comprising both surfaces
and all connected parts, but H is the aerodynamic hinge moment on one
surface only.

COUPLING OF CONTROLS WITH ELASTIC DEGREES OF FREEDOM

In Sec. 5.12 we presented equations of motion for elastic modes with con-
trols locked in a fixed position, and in the preceding section we have developed
the control equations for a rigid airplane. Thus, coupling between controls
and elastic motions has been excluded. In fact, as is clear from the existence
of the aileron reversal phenomenon (Sec. 8.4), and the effect of flexibility
on elevator effectiveness (Sec. 7.4), there are important couplings between
the control degrees of freedom and the elastic degrees of freedom. To include
these entails modifications to both the elastic equations (5.12,7) and (5.12,12)
and control system equations such as (11.3,12). The details depend on
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which control system is being considered—aileron, elevator, or rudder—and
on its particular design features. We illustrate the process by considering
the elevator surface and its coupling with z deflections of the vehicle. We
treat a case of one degree of freedom by stipulating 0, = 0.

The deflection of the structure from the reference position is now given
by [cf. (5.12,1)]

10) = 3 s Yor 200nlt) + s A1)

where ks is zero except for points of the elevator, where it is b; = £ and &
is the distance from the elevator hinge line, as shown on Fig. 11.5. Now the
displacement function represented by the last term is not in general ortho-
gonal to the k,, and hence the integrals of its products with them that
appear in the kinetic energy do not vanish. This leads to the appearance
of an additional term on the Lh.s. of (5.12,7), viz. (an exercise for the reader)

I,(&, + 20,0,¢, + w,0€) +1,:8,=F, (11.3,23)

where I =jhn§ dm

the integral being taken over the elevator.
Similarly, the Lh.s. of (11.3,13a) (with 0, = 0) becomes

L8, + 21, =" (11.3,24)
n=0

The terms containing I ; in these equations represent inertial couplings be-
tween the elevator and elastic degrees of freedom. That in (11.3,23) corre-
sponds to “tail wags dog,” i.e. acceleration §, of the elevator generates
motion in the nth elastic mode. This may be expected to be a small effect
in most cases. That in (11.3,24) represents the converse, “‘dog wags tail,”
i.e. elastic mode accelerations &, generate motion of the elevator. This
contribution is very significant in relation to control-surface flutter, and is
minimized by proper mass balancing of the control surface to reduce I,;
for the critical elastic mode.

The remaining modifications to the equations of motion occur on the r.h.s.
For the elastic modes the only addition is one aerodynamic term to %, i.e.
4,5 Ad, to (5.12,12) or G, 5 A, to (5.12,13). These aerodynamic contributions
to elastic motion are usually important. The addition to the control equation
is also an aerodynamic coupling. There H, in (11.3,13¢) becomes

Hy=- +3H,e, (11.3,25)
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In summary, the elastic and control equations are both modified by addi-
tional simple inertial terms on the Lh.s and by aerodynamic terms on the
r.h.s.

11.4 EXAMPLE—STABILITY AUGMENTATION SYSTEM
FOR STOL AIRPLANE

In Sec. 9.8, where we considered an example STOL airplane, we found
that the spiral mode was unstable, with an uncomfortably short time to
double. We remarked there that a feedback stability augmentation system
might be useful. How should we proceed to synthethize such a system?
We can choose any of (B, p, r) as variables to sense, and feedback functions
of them [cf. (11.2,1)] to produce command signals for the aileron and/or
rudder. But which variables shall we choose and what functions of them
shall we use? Here the “flight dynamicist’s approach” of looking at the
feedback control system as a way of modifying the aerodynamic derivatives
(Sec. 11.1) is helpful. The full set of synthetic changes that can be made in
the six lateral moment derivatives is described by the relations

Ls;, N,

AlL, N,|=1[k])"| * _° (11.4,1)
Ls, N,
LT _NT T T

where (k] is the 2 X 3 matrix of feedback gains, i.e.

p

A k 11.4,2
{A(SJ—[ﬁ]P (11.4,2)

r
Thus for example,

Ad, = kyyf + kpop + Eyar

(11.4,3)
and AN, = kyuN; + ksl

Equations (11.4,2) are written in dimensional rather than nondimensional
form, since the sensing devices used to generate the feedback signals would
ordinarily operate on the dimensional physical variables.

These relations must now be applied with good engineering judgment.
Stumbling about blindly in the six-dimensional parameter space of the k; is
not a satisfactory way to find the solution. First, the number of nonzero k,;
must be kept to a minimum, since each one entails extra hardware or circuitry,
adding to weight, cost, complexity, and failure probability. Second, the engi-
neer must take advantage of his understanding of the system and of the
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fault to be corrected. Here the fault is that the spiral mode is unstable, the
other two modes being stable. We know that the criterion for spiral stability
in horizontal flight is (9.7,6)

(C1yC, — C1,Cg) > 0 (11.4,4)

and that it must be the violation of this criterion that is the cause of the
instability. On examining Table 9.9—for example at (' = 4.0—we find
the left hand side of (11.4,3) to be

(.010)(—.25) — (.67)(.120) < 0

We also observe that there is no hope of correcting the situation without
changing the sign of one of the four derivatives. In fact the one to which
our attention is naturally directed is C, ” which is here positive, but is ordi-
narily negative for “well-behaved” airplanes. A “synthetic” €, of the
required sign can be introduced by aileron feedback of the form

A, = kyf, ky >0

In fact, an attempt at a solution based on this sideslip feedback for Oy, = 4.0
was unsuccessful. When k;; was made large enough to stabilize the spiral
mode, the lateral oscillation was driven unstable. Now we observe from
(9.7,13) that €, is the main factor available to control the damping of the
lateral oscillation and hence an increase in |C, | is indicated. This is also
beneficial in meeting (11.4,4) when combined with a change of sign of C, .
We therefore choose a second nonzero gain, k,3, so that the control de-
flections are given by
Ady =kuf  ky >0

AS, = kot kg >0 (11.4,5)

The control derivatives assumed for this example, representative of those
that pertain to a deflected slipstream configuration, are

0y, = —13frad  C,, = —30/rad
Crs, = +.04/rad Cy,, = +-04/rad

With these derivatives, and a control law given by (11.4,5), values of %,
and k,; can readily be found that eliminate the instability in the spiral mode
while maintaining a stable lateral oscillation. In point of fact it is only a
little more difficult in this case to incorporate a more realistic feedback law
than the simple gains of (11.4,5). Consequently the example has not been
computed with (11.4,5) but rather by assuming that each control actuator
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is a first-order dynamic system of fast response time. The corresponding
control equations used were

éajl 10 A6, K, 078 a6
e el R

which implies that the time constants of the aileron and rudder position
servos are, respectively, £5 and [ sec, that there are zero time lags in the
B and 7 sensors, and that the steady-state gains are

Aileron: k;; = K,,/10 deg/deg
Rudder: ky,, = K,/12 deg/(deg/sec)

Equations (11.4,6) are now incorporated into the basic lateral equations
of motion to yield the final mathematical system. After converting (11.4,6)
to nondimensional form, we get the result (11.4,7). The eigenvalues of (11.4,7)

I~ T T oy | o c 1 Cuw ; ar
D pid) it M ¢ 0 0 B T
2u 2u 20 4 2u
D A ClB Clp OlT 0 Olﬁa Cl61~ A
! I, | I 7 n T !
Cn Ca, Cn Cn, Cn
D? i —2 5 0 -——?" 6[, #
- I I il ? 1
1
D¢ 0 i 0 0 0 0 é
Dé, K, t* 0 0 0 —104* 0 Ad,
Dé 0 0 Ko 0 0 —12* Adr
IR 4 AL .
(11.4,7)

were calculated for ranges of K,; and K,;, and a typical root locus is shown on
Fig. 11.7. There is a substantial range of practical gains for which stability
is achieved. For example for K,; = 10, K,; = 20, the spiral and Dutch-roll
characteristics are

Spiral: ty, = 7.4 sec
Oscillation: 7' = 12.4 sec, N, = .21 cycles

The corresponding control gains are, respectively, 1 deg/deg for the aileron,
and 1.67 deg/(deg/sec) for the rudder. These are both quite modest, and
would not likely present any exceptional problems of control design.
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Fia: 11.7 Root loci for stability augmentation system.

ELIMINATION OF STEADY-STATE RUDDER ANGLE

The solution presented above contains a feature which could possibly be
undesirable—i.e. there is a steady-state rudder angle associated with constant
yaw rate r. This means that the autopilot would generate a rudder deflection
during steady turns, with §, > 0 for right turns and vice versa. This is
opposite to the rudder deflection wanted in the turn (see Sec. 10.4), and
hence we have the autopilot opposing the human pilot. If this situation
occurred with any frequency, the pilot rating of the aircraft would be ad-
versely affected. On the other hand, Oy, = 4.0 represents a very low speed,
presumably associated only with landing and take-off, and not ordinarily
with turning flight. Thus it would depend on factors somewhat outside the
scope of this example whether this steady-state behavior of the autopilot
presented a problem or not.

In cruising flight this problem would be more serious, and it would be
desired to eliminate it. We illustrate here how it could be done.

The steady-state response of the rudder system can be eliminated by
incorporating what amounts to a high-pass filber with zero static gaint in
the rudder loop, as shown in Fig. 11.8. The feedback element Ky57s/(1 4 75)

1 A ““washout’ cireuit.
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Fia. 11.8 Stability augmentation system for STOL airplane.

has zero static gain (see Sec. 3.2), so that J, is zero when r = const. The
frequency response of this element is

Kozt

Gliw) = 14wt

(11.4,8)

so that for wr — 00, G(iw) — K,,. Thus by proper choice of 7, the filter can
be made to behave like a simple gain of K,; above a chosen frequency w,.
To analyze the system with the filter incorporated, we could find the overall
transfer function of the closed-loop system and calculate the roots of the
characteristic equation, or alternatively we can modify (11.4,7) to correspond
to Fig. 11.8. The latter procedure is by far the simpler in the present
instance. The only respect in which (11.4,7) does not apply is in the last of
the equations, which now must correspond to

Kats 12 A5, (11.4,9)
14+ 7 s+12
or [12 + (1 4 127)s + %] A, = K,y7s7

The corresponding differential equation is
12 AS, + (1 + 127) 8, + 70, = Kayri (11.4,10)

After conversion to nondimensional form, this becomes

D2, (1 + 127) Da + Aa ~K23 D¢ (11.4,11)
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On defining a new variable {, we can replace this second-order equation by
a pair of first-order ones, i.e.

Ds, =1
pr =Eup, 19
A

%2 *
t7 As, — (1 + 121-); ¢ (11.4,12)
The last of (11.4,7) has now to be replaced by the pair (11.4,12). In doing so
we eliminate D7 from (11.4,12) by using the third equation of (11.4,7). The
result is shown as (11.4,13).

Computations made with (11.4,13) show that the effect of the autopilot
in correcting the spiral instability is very much reduced by the filter unless
7 is very large (Fig. 11.9), in which case the effectiveness of the washout
circuit is impaired. As has been pointed out previously, however, a slow
divergence of the spiral mode is not unacceptable, so a compromise solution
is possible without excessive values of 7. For example, with K, = 15,
K3 = 20 and 7 = 10 sec the modal characteristics are

Spira].: tdouble = 18-1 sec
Oscillation: 7' = 11.4 sec, N, e = .56 cycles

Im
51
15 5 4771 0.040
T=co
— 0.020
[N N VR N %< S N N
T=o 0 0010  0.020

Fie. 11.9 Effeet of washout circuit on lateral roots. K,y = 15, Kpy = 20.
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1.5 EXAMPLE—ALTITUDE AND GLIDE-PATH CONTROL

One of the most important problems in the control of flight path is that of
following a prescribed line in space, as defined for example by a radio beacon.
This is crucial in the landing situation under poor visibility when the airplane
flies down the ILS glide slope. We shall discuss this case by considering first
a simple approximate model that reveals the main features, and then
examining a more realistic, and hence more complicated case.

FLIGHT AT EXACTLY CONSTANT HEIGHT—SPEED STABILITY

The first mathematical model we consider can be regarded as that corre-
sponding to horizontal flight when a “perfect’”” autopilot controls the angle
of attack in such a way as to keep the height error exactly zero. The result
will show that the speed variation is stable at high speeds, but unstable at
speeds below a critical value near the minimum drag speed. Neumark (11.2)
recounts that this criterion was first discovered in 1910 by Painlevé, and
that it was at first accepted by aeronautical engineers and scientists, but
later, on the basis of the theory of the phugoid which showed no such effect,
was rejected as false. In fact, to the extent that a pilot can control height
error by elevator control alone, i.e. to the extent that he approximates the
ideal autopilot we have postulated, the instability at low speed will be
experienced in manual flight. Since speed variation is the most noticeable
feature of this phenomenon, it is commonly referred to as speed stability.

The analysis that follows is essentially that of Neumark, but adapted to
the notation and methods of this book. The basic assumption that the flight
path is exactly horizontal implies y = 0, or § = «, (see Fig. 4.4.), whence
Af = Aa. An exactly horizontal flight path also implies L = W. The
pitching moment equation is specified to be identically satisfied by means
of an appropriate but unspecified control device that supplies the needed
pitching moment as required. The system equations are then (5.13,19) with
Ao = Af, y, = 0 and the third equation missing. We further specify that
oy = 0. The equations are then

1 1 i A |
p — (Cp, —C, — (Cz, — CUp,) | — e A
F5Y% 2,u( r, — Cp,) b (Cr, — Cn,) 0 20 V
............. Ao
b = Ci, + 20w, Cop+Cp, | 28—0Cp, o
o 2 + Oz 2u+Cre | 2u+Crg g
Da 0 0 1 0 Aa

(11.5,1
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We now make some simplifying approximations, i.e. that the speed deriv-
atives Oy and Oy, are negligible and that 2u > Cp , Op . Actually these
are very weak approximations for a conventional airplane in cruise con-
figuration. On combining the A« terms of the first two equations, eliminating
g by means of the third, and observing that ¢y = Cy,, we get

2uDV = Cp, AV — Cp Aa

0 =20y AV + C;,_Aa (11.5,2)
Elimination of A« yields the first-order speed equation
A OL A
2uDV = \Cp, + 20Da (—)—‘) AV (11.5,3)
Ld

The speed variation following an initial speed error AV, is clearly expo-
nential,

AV = AV it

with time constant given by

qA‘l—l =L(CTV + 20L CDa)
2p ‘Oz,
and time to half by
ty, = —.693t*T sec (11.5,4)
We must now specify a propulsion system in order that C may be deter-
mined. The result finally obtained depends on this choice, but only in the

actual value of the critical speed, not its existence. We arbitrarily choose a
constant-thrust engine, for which (see Table 7.1)

Cp, = 20Te = —20p,
Equations (11.5,4) then yield
Cr (C c -
by — —.693* [_L (l _ _2)] (1L.5,5)
H OLa OL,
The factor in the inner parentheses can be rewritten as
(i% _ Qz_))
ac, 0

where dC;[/dC, is the slope of the tangent to the drag polar, and C/C}, is
the slope of the secant, see Fig. 10.2. Just as in Sec. 10.2, Eq. (10.2,17), this
factor passes through zero at the point C7, Cp where L/D is a maximum.
It is positive for O > C7 and negative for 0 < Cp. If V' be the speed
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corresponding to (L/D),,., then the speed variation is seen to be stable for
V > 7, but unstable for ¥ < V’. That is, speed errors will die out at high
speeds, but grow at low speeds. This phenomenon is seen to be related to
the change of sign of K,; that occurs at the same critical speed (Sec. 10.2).

NUMERICAL EXAMPLE

The jet transport of Sec. 9.1 is used for the example, in horizontal flight
at sea level. The data needed for the calculation is as follows:

e o, 2
Cp = .016 + —= ; C; = 4.88; — =0
De t . Fa e, T ¢

W|S = 60 psf; u=1018; p = .002378
Ve =[2(W[8)/pCr 1%  #* =1.70/V,

With this data, the values of Oy and V, at (L/D)y,y are, respectively,
Oz = .595 and ¥V’ = 290 fps. The' result of the calculation with (11.5,5)
is shown in Fig. 11.10. There is positive “speed stability”’ above 290 fps,
but the characteristic time to half is large, in excess of 75 sec. In the low-
speed range (sometimes referred to as “the backside of the polar,” with
reference to the 07 — €y, “polar” diagram), the motion is unstable, with
time to double falling as low as 30.5 sec at C 1, = 1.6. A low-speed landing
approach with this speed characteristic is undesirable from a handling-
qualities standpoint (see Sec. 12.8). On the other hand, the example corre-
sponds to cruising flight, not landing, since wheels and flaps are retracted.

400 | 1 =y x T
: Clean configuration
300 |- tdouble ! o
1
:
@ 200 -
E B Landing | ,'
configuration l| /
/
100}~ / _
/
) / ]
1 X
0 | ) | ] ]
0 100 200 300 400 500 600

Ve, Tps

Fie. 11.10 Speed stability of jet transport at sea level.
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The speed stability is in fact quite sensitive to the drag characteristics
of the airplane. Thus, suppose that undercarriage and flaps have been lowered
on the jet transport, with large increases in parasite and included drag
reflected in the polar equation

1.20;2
w
The results for this case, also shown on Fig. 11.10, are very different. The

divergence time to double is now greater than 30 sec for all speeds above
about 99 mph.

(11.5,6)

FLIGHT ON ILS GLIDE SLOPE

In the above analysis, we assumed that the airplane was under the control
of an ideal autopilot that kept the height error exactly zero. A more realistic
model incorporates a feedback control that senses height error and actuatesthe
elevatort in response (see Fig. 11.11). The time lag associated with response
of height to elevator input may be expécted to lead to stability characteristics
significantly different from those of the simple model.

Let us assume then that the airplane is making an automatically controlled
approach on ILS. That is, a radio beam defines the glide path, and the pitch
autopilot is coupled to the radio signal in such a way that height error is
sensed and actuates the elevator. The autopilot and control system are

. AS,
LS S )Height L topilot z Aircraft —>2g
signal error

Xg . OE

Flight path
ILS glide path

Fie. 11.11 Automatic control of glide path.

+ A still more sophisticated system uses control of thrust as well as of elevator. This
is capable of producing better system performance provided that thrust responds
quickly enough to the control command.
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relatively fast-acting compared to the pitch response of the vehicle, so we
may reasonably assume a simple gain for the transfer function of these
elements. Thus the mathematical model is obtained from (5.13,19) with the
additional control law

A8, = Kye + Kyé (11.5,7)

where ¢ is the height error and we have included both proportional and
rate terms.

For the class of airplane considered, the standard glide slope is about 21
to 3°, so little error is introduced by using the equations for y, = 0, and this
we do. The height error is defined as

€=zp —2p (11.5,8)
where 25, is the commanded altitude. Thus combining (11.5,7 and 8) we get
Ab, = — K2y — Kty + Kizp, + Ko,

which in nondimensional form is
AS, = —-Klg 5y — KV, Dip + K, -; tg, + KoV Diy,  (11.59)

From the last of (5.13,19), for y, = 0, we have

Dig = —Ay = Aa — A
from which we get

,

Ady = K, 2 by — KoV (Ao — A0) + K, ;3 by, -+ KoV, Dig, (115,10)

For the control inputs in (5.13,19) we take

ACp, = ACp = AC, =0
and AC,,, = C,; Ad, (11.5,11)
We assume additionally that a number of derivatives are zero (as in Sec. 9.1),

ie.

ODV= OLV:—_ OmV: OLq= OL& :0

The basic system derived from (5.13,19) is then 5 X 5, with variables AV,
Aa, 4, A8, 25, with AC’,,,c eliminated via (11.5,10 and 11). The result is given



as (11.5,12),

Closed-loop control 483

ob | [ Oz, = Oy
?/; 2u 0
Do ~Cw, Cr, + Cp .
" 2u
Db _ CrneCre e _ CingCry + Cb,) R Oy + Cmy
! T £, e 2u mgale 5,
DO 0 [} 1
Diz | _ 0 1 0
—C r- 7 — —
Ze 0 AV 0
2u
0 0 Ao 0
(11.5,12)
E,V.C, ¢, K + c
2% e mg m‘s 1© N mg n .
q —— (Kyzzp; -+ K,V Dzg,;
-21! 2f1’ Y ( 13~%4 2V e )
0 0 A6 0
—1 0 A 2y » 0 |

NUMERICAL EXAMPLE

Computations of the stability and performance were carried out with
(11.5,12) for the same jet transport airplane used in preceding examples,
flying at sea level. The drag polar is (11.5,6) corresponding to the landing
configuration. The data that differ from those of Sec. 9.1 are as follows:

Cp, = -959,
V, = 167.4 fps,

t* = .0460 sec,
Cw, = 1.8,

4 = 1018,
Cp, = 371

The eigenvalues corresponding to a range of K, and K, are shown on Fig.
11.12 in the form of root loci. Point A corresponds to the uncontrolled
phugoid, and increasing proportional gain K; with zero rate gain produces
the branch AB of the locus. The system rapidly goes unstable without
error-rate control, but is easily stabilized with a modest value of K,. For
example, at point C on Fig. 11.12, with K; = .002 (about 12° elevator per
100 ft of height error) and K, = .010 (about 12° elevator per 20 ft/sec
height error-rate), the eigenvalue characteristics are:

Phugoid: period = 10.4 sec
N % == .54
Three real roots: 4 = 94.0, 1.68, 0.86 sec
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F16.11.13 Response of automaitic glide-path controller. (@) Amplitude. (b) Phase angle.
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The short-period mode has disappeared, being replaced by a pair of real
roots, and the third real root is associated with the extra degree of freedom.

The performance of the system, i.e. its ability to track the glide slope, can
be in part inferred from the frequency response associated with zg, input
and 2 output. This is computed by taking the Laplace transform of (11.5,12)
(which simply changes D to s wherever it occurs), replacing s by ¢¢), and
solving the resulting complex algebraic equations for the ratio zg/zp, as a
function of @. The result is shown on Fig. 11.13. The system is seen to be
able to follow waves in the ILS beam fairly closely down to wavelengths
of the order of 1 mile (& = 2 X 10~2) at which point a phase lag of 40° has
developed. This calculation is not, of course, sufficient to decide on the
acceptability of the chosen gains. For that purpose one should caleulate
actual flight paths in the presence of wind shear and turbulence, and relate
the dispersions to what is acceptable for a given mission.

1.6 STABILITY OF CLOSED-LOOP SYSTEMS

We have seen in previous examples how “closing the loop” can modify
the basic stability of an airplane. In Sec. 11.4 feedback was used to stabilize
an unstable vehicle, and in Sec. 11.5 the addition of a feedback loop to lock
on to an altitude or glide reference made a stable vehicle go unstable. We
have also seen in the examples how the stability of a linear feedback system
can be calculated by formulating the appropriate system matrix and treating
it as we would any other linear system.
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Fie. 11.14 (@) Simple feedback system. (b) Single-pulse input: G = Ke™Ts.

For complicated multiloop systems there is relatively little that can use-
fully be said in a general way about closed-loop stability. For simple systems,
however, as in Fig. 11.14 we can arrive at some general conclusions about
the effect of loop gain and phase lag on stability.

CHARACTERISTIC EQUATION

As has been seen in the examples treated, the addition of a feedback loop
modifies the characteristic equation, and hence the stability of a system.
If the transfer function of Fig. 11.14 is a ratio of two polynomials

G(s) = l_\ﬁs_)

D(s)

then the overall system transfer function is
G  ND N

¥
e =2 = — -
= =i e 118D N+D

The characteristic equation is then

f(s) = N(s) + D(s) =0




Closed-loop control 487

which is to be constrasted with the open-loop equation D(s) = 0. Thus the
change in the characteristic equation is produced by the numerator N(s),
and the least possible change is the addition of a constant.

EFFECT OF GAIN

The effect of gain is well illustrated by the familiar public-address acoustic
system, in which “whistling” or oscillation occurs when the volume control
is set too high. As a model for this case, consider the transfer function Ke~7s,
a simple gain with time delay.

If the system input were a single short pulse (of duration << < T') asin Fig.
11.14b, the signals in the € and y channels would be as shown, a sequence
of alternating pulses at time interval 7', all of the same width, but with
magnitudes 1, K, K?. ... It is clear that if K <C 1 the pulses form a dimin-
ishing sequence that ultimately dies out, and that if K > 1, there is an in-
creasing series which is a divergent, or unstable situation. This would
correspond in the case of the P.A. system to an acoustic pulse travelling
from the loudspeaker to the microphone and arriving there stronger than the
one originally fed in.

EFFECT OF PHASE LAG

Suppose now that the input is a series of pulses, equally spaced but
alternating in sign. If the time lag 7T is such that the feedback pulses fall
in the “empty spaces’” between the input pulses there is no interference of
the pulses, each input can be considered individually, and the criterion for
divergence is the same as above, i.e. K > 1. If, however, the time lag is
such that each return pulse coincides exactly with the next input, as illus-
trated by the dotted pulses in Fig. 11.14b, then the error signal and the ouput
form the sequences
e:1 —(14-K) 1+K+K?) —(14+K+K*+ K9
E K —K1l+K)y KQl+K+ K% -« K+ K+ K24--)
The output is seen to contain the sum of a geometric progression of factor K,
which is divergent if KX > 1 and converges to the limit (1 — K)71if K << 1.
Thus in the case of the alternating input we find again that the stability
criterion is K <C 1. This is clearly the “worst’ phase lag for a pulse train
since each return pulse arrives at such a time that it provides the maximum
reinforcement to the next input.

SINUSOIDAL INPUT—NYQUIST CRITERION

The above consideration of pulse trains (which can be so easily analyzed)
has shown the important effects of loop gain and phase lag on system stability.
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These concepts are brought into a somewhat more useful perspective when
we consider a sinusoidal input, for all inputs to linear systems can be Fourier-
analyzed into separate sinusoids, the individual responses to which can be
linearly superposed to construct the output. Suppose then that there is a
steady sinusoidal input represented by

x = Xt
and a steady sinusoidal output
y = Yoez‘wt

(This implies of course that the system is stable.) The erroris e = 2 — y =
€™’ where €y = X, —¥,. Now we recognize that the critical phase lag is
180°, since this generates the maximum error signal, just as in the case of
the pulse train. So let

Y, = Kee ' = —Kg,
Then we get

1—K
Xy =, + Yo=Y — Yo/K = — 7,

The input required to maintain a steady oscillation of given amplitude is
seen to diminish as K increases until it vanishes altogether at K =1, i.e.

Il
[ !
!
lal 10 I
l | | Gain margin
l |
|
[ 1
| |
0 1
{ I
° 1 %
[}
™ [ 1
< | |
[
§ < 5 Phase margin
T ~180°
|
Crossover : !
frequency\l |
w] W3 @

Fic. 11.15 Stability margins.
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at K = 1 and phase lag of 180°, the system oscillates steadily with no input.
This situation clearly represents a stability boundary; further increase in
gain corresponds to instability.

The Nyquist criterion (11.4) rigorously derived from a theorem of Cauchy
contains the conclusion derived somewhat heuristically above. It uses the
frequency response curve for the open-loop system, i.e. G(iw), and its relation
to the point (—1, 0) of the complex plane, to assess stability. The amount
by which the frequency response curve “misses’ the critical point (—1, 0)

leads to the concepts “gain margin” and ‘“phase margin” illustrated in
Fig. 11.15.
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Human pilots and
handling qualities

CHAPTER 12

By L. D. ReEmp anp B. Errin

2. THE HUMAN PILOT

Although the analysis and understanding of the dynamics of the airplane
as an isolated unit (which has been the burden of the preceding chapters) is
extremely important, one must be careful not to forget that for many
flight situations it is the response of the total system, made up of the human
pilot and the aircraft, that must be considered. It is for this reason that the
designers of aireraft should apply the findings of studies into the human
factors involved in order to ensure that the completed system is well suited
to the men who must fly it.

Some of the areas of consideration include:

1. Cockpit environment; the occupants of the vehicle must be provided
with oxygen, warmth, light, etec., to sustain them comfortably.

2. Instrument displays; instruments must be designed and positioned to
provide a useful and unambiguous flow of information to the pilot.

3. Controls and switches; the control forces and control system dynamics
must be acceptable to the pilot, and switches must be so positioned
and designed as to prevent accidental operation. Tables 12.1 to 12.3
present typical pilot data concerning control forces.

490
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Table 12.1

Estimates of the Maximum Rudder Forces that can be
Exerted for Various Positions of the Rudder Pedal
(Ref. 12.1)

Distance from
Rudder Pedal Position Back of Seat, in Pedal Force, 1b

Back 31 246
Neutral 342 424
Forward 381 334

Table 12.2

Typical Rates of Stick Movement in Flight Test Pull-ups Under
Various Loads for 6 in. to 8 in. Deflection (Ref. 12.1)

Maximum Stick Average Rate of Stick Time for Full

Case load, Ib Motion, in/sec Deflection, see
1 35 51.85 0.162
2 74 15.58 0.475
3 77 11.00 0.600
4 97 10.27 0.750

4. Pilot workload; the workload of the pilot can often be reduced through
proper planning and the introduction of automatic equipment.

The care exercised in considering the human element in the closed-loop
system made up of pilot and aircraft can determine the success or failure
of a given aircraft design to complete its mission in a safe and efficient
manner.

122 MATHEMATICAL MODEL OF HUMAN PILOTS—
COMPENSATORY DISPLAY

Many critical tasks performed by pilots involve them in activities that
resemble those of a servo control system. For example, the execution of a
landing approach through turbulent air requires the pilot to monitor the
aircraft’s altitude, position, attitude, and airspeed and to maintain these
variables near their desired values through the actuation of the control
system. It has been found in this type of control situation that the pilot
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Table 12.3

Hand-Operated Control Forces (From Flight Safety Foundation Human
Engineering Bulletin 56-5H) (see figure on page 495)

Direction of Movement| 180° | 150° | 120° | 90° | 60°
Rt. hand 52 56 42 37 24
Pull
Lft. hand | 50 42 34 32 26
Rt. hand 50 42 36 36 34
Push
Lft. hand | 42 30 26 22 22 | Values given
represent
Rt. hand | 14 18 24 20 20 maximum
Up exertable
Lft. hand 9 15 17 17 15 foree in
pounds by
R#t. hand 17 20 26 26 20 the 5
Down percentile
Lft. hand | 13 i8 21 21 i8 man
Rt. hand 14 15 15 16 17
Outboard
Lft. hand 8 8 10 10 12
Rt. hand 20 20 22 18 20
Inboard
Lft. hand | 13 15 20 16 17

Note: The above results are those obtained from unrestricted movement of
the subject. Any force required to overcome garment restriction would reduce
the effective forces by the same amount.

can be modeled by a set of constant-coefficient linear differential equations
(termed “human-pilot describing functions’). Much of the original research
in the field of human-pilot describing functions has concentrated on the
pilot’s performance in a single degree of freedom compensatory tracking
tagsk with random-appearing system inputs. In a single-degree-of-freedom
task the pilot controls a single state variable through the actuation of a single
control. A compensatory display is one in which the tracking error is pre-
sented, regardless of the source of the error. Fig. 12.1 shows the block diagram
for such a task. Here a pilot is concentrating on controlling the pitch attitude
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Turbulent air
disturbance

i i l Pitch
Artificial horizon P'tChefr'glrtUde Human pilot attitude
(compensatory and control Aircraft
display) column

Fie. 12.1 Typical compensatory task.

of the aircraft through the use of the artificial horizon display. The system
input in this case is turbulent air which produces random pitching motion
of the vehicle.

The pilot model used in compensatory tasks consists of the describing
function and the remnant as shown in Fig. 12.2. (See also Sec. 3.5.) Here
the task is the same one presented in Fig. 12.1, but the human pilot has
been replaced by a mathematical model. The model consists of two parts, as
shown: Y(s), the linear describing function (written in Laplace transform
notation), and n(t) the remnant. Since a linear model is never able to deseribe
the pilot completely, Y(s) is insufficient by itself, and it is necessary to
include the remnant #(¢), which is that signal that must be added in order
to have all the time signals circulating in the system of Fig. 12.2 correspond
exactly to those of Fig. 12.1 when the identical input is present. The Y(s)
selected to describe the pilot in any particular task is chosen so as to minimize
that part of the input signal to the aircraft which arises from n(¢). Thus the
linear pilot model that results is that which accounts for as much pilot input
to the aircraft as possible, and a measure of its adequacy is the fraction of the
pilot input to the aircraft accounted for by ¥ (s).

Turbulent air

r ________ ] disturbance
| n(t)
Sy l
Artificial horizon | T tch altitude i 1 ch
(compensatory T Y(s) Aircraft
display) | :
| : |
L. Filot model |

Fie. 12.2 Compensatory task with pilot model.
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The human-pilot describing function is useful in studying two classes of
problems. In the first the describing functions derived from previous re-
search are utilized to aid the systems designer. With a mathematical de-
seription of the pilot at hand he can close the loop around the mathematical
description of the proposed vehicle in order to predict the overall system
response. The second type of study involves the measurement of actual
human-pilot describing functions as the pilot flies a particular vehicle in
order to obtain an objective measure of how the task affects the pilot.

Due to the complex nature of the situation it is possible to model the pilot
in many ways and to measure the model by employing a variety of techniques.
One of the most successful approaches to the measurement problem utilizes
power-spectral-density measurements of signals circulating in the control
loop. The general case of a tracking task of one degree of freedom with a
compensatory display is illustrated in Fig. 12.3a. In this task the pilot must
control the aireraft response m(t) in such a fashion that it matches as closely
as possible the desired aircraft response ¢(f). The pilot does this by viewing
the instantaneous error e(?) and altering his input o(f) to the aircraft. It is
found that the pilot’s control technique is primarily influenced by the type
of input i(¢), the dynamics of the control system, the type of display and the
dynamics of the aircraft. Any useful pilot model must reflect these influences.

Past research in this field has concentrated on tasks with random appearing
input signals () because so many real-world situations involve this type of
disturbance. Thus the pilot models that have been developed apply strietly
only to tasks with the above type of input. The system of Fig. 12.3a is
modeled by that of Fig. 12.3b. Note that the model includes the dynamics
of the control system and that the signal o(f) corresponds to the position
of the control column. It has been found that in the frequency band of
primary interest and for the type of controls normally found in aircraft,
such a model is fairly insensitive to the exact control system used and that
pilot models developed on this basis are quite general. Now the linear system
of Fig. 12.3b can be redrawn as the point by point sum of the two linear
systems of Fig. 12.4 (if the aircraft is assumed to be a linear system). It follows
that

elt) = ey(t) + exlt)
o(t) = 04(2) + 04(¢)
m(E) = my(t) + my(t)

The describing function Y(s) is chosen to minimize the r.m.s. value of o,(f).
Note that this is not the same criterion as used in defining the open-loop
describing function in Sec. 3.5, where the mean-square-remnant was mini-
mized in the presence of a fixed input. The difference of course is that we
are dealing here with a closed-loop system, in which signals derived from the
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remnant circulate the loop and appear at the input to the pilot. The process

of minimizing 0,%(f) can be carried out in a manner basically similar to that
used in Sec. 3.5 with the result (ref. 12.2)

Y (i) = Dy ()] Py() (12.2,1)

where @, (w) is the cross-spectral density of (f) and o(t) etc. (See Sec. 2.6).

We also find that @, (w) = 0,—i.e. the remnant is uncorrelated with the

input signal ¢(f). This linear model, Y (s), is a best fit in the root-mean-square
DIRECTION OF MOVEMENT
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Up

180°

Outboard

Inboard

|

QOutboard
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Fig. 12.3 (a) General compensatory task. (b) Model.

sense. It will not describe the pilot’s output exactly. The remnant =(f) is the
difference between the actual pilot output and the linear approximation to it.
In order to obtain a measure of the adequacy of the linear model, Y{(s), a
parameter p? has been defined as

®,,,,(@)

2
=1 —
p®) ()

When p? is near unity, i.e. when o,(f) ~ 0, the model Y (s) is a good approxi-
mation of the pilot. Another useful form for p? can be found by using the

i(t) (TD er(t) Y(s) o1(t) Aircraft mi(t)
n(t)

?ﬂ_» Y(s) (L/”“’ Aircraft ma(t)

Fia. 12.4 Two-part linear model of the compensatory task.
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relationships among the variables in Fig. 12.4 to derive

| Dso(@)|?
(Dii(w)(boo(w)

This form is preferred for measurement because it is not possible to measure
0,(t) directly. The remnant »(f) exists because in actuality the human pilot
is not operating exactly as a linear/invariant mathematical system. The
signal »{¢) is a random-appearing variable and hence is not predictable.
However, some measurements have been made of its statistical properties
(ref. 12.6) over a range of task variables. Figure 12.5 shows a typical experi-
mentally measured pilot describing function together with p?. In this task
the input to the pilot was the deflection of the artificial horizor display (in
inches) and his output was control column deflection (in degrees). It is seen
from the plot of p? that the describing function models the low-frequency
performance of the pilots quite well, but is less satisfactory for w > 5 rad/sec.

plw) =
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The following form for the describing function has been developed to
cover the single-degree-of-freedom compensatory tracking task with a
random-appearing input (ref. 12.3):

Y(S) — er—rs (TLS + 1) (TKS + 1) 5
Tt D o+ e+ ] (Z) 4220 +1]
Dy wN

' (12.2,2)
In this formulation ¢ represents the pure transmission time delay within
the pilot associated with nerve conduction and stimulation. 7 is estimated
to range from .06 to .10 sec. The factor in curly brackets is a reasonable
representation of the dynamics of the neuromuscular system of the arm
with typical values: 1/Ty = 10sec™!, wy = 16.5 rad/sec, and {y = .12.
(Tgs + 1)[(Tgs -+ 1) represents a very low frequency lag-lead component.
The remaining terms K [(Ts + 1)/{T;s + 1)] are the adaptive portions of
the model; the values of K, T';, and T'; are altered by the pilot to suit the
particular system being controlled. It is found that for most engineering
applications, in which an exact pilot model is not required at very low and
very high frequencies, an adequate approximation is

() = Ko — TS £ 1) (12.2,3)
T+ D(Tys + 1)
The following set of adjustment rules for the pilot model have been
developed by McRuer et al. (ref. 12.3).

1. Stability: The human adopts a model form to achieve stable control—
i.e. one that produces a stable closed-loop system.

2. Form selection—Low frequency: The human adopts a model form to
achieve good low-frequency closed-loop system response to the input
signal. A low-frequency lag, 7T, is generated when both of the following
conditions apply:

(a) The lag would improve the low-frequency characteristics of the
system.

(b) The aircraft dynamics are such that the introduction of the low-
frequency lag will not result in destabilizing effects at higher fre-
quencies that cannot be overcome by a single first-order lead, 7'z,
of somewhat indefinite but modest size.

3. Form selection—Lead: After good low-frequency characteristics are
assured, within the above conditions, lead is generated when the aircraft
dynamics together with the pilot time delay are such that a lead term
would be essential to retain or improve high-frequency system per-
formance.
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4. Parameter adjustment: After adoption of the model form, the describing
function parameters are adjusted so that:

(a) Closed-loop low-frequency performance in operating on the input
signal is optimum in some sense analogous to that of minimum
mean-squared tracking error.

(b) System phase margin, ¢, (see See. 11.6), is directly proportional
to o, the input signal bandwidth (loosely defined as the frequency
above which the input spectrum decreases rapidly), for values of
w; less than about 2.0 rad/sec. The strong effect of forcing-function
bandwidth on the phase margin is associated with the variation of
T with w;.

. (¢) Equalization time constants 7, or T;: when form selection
requires 1/7; or 1/T; << w,, the system crossover frequency (the
frequency at which |G(iw)| |H(¢w)| equals unity—see Fig. 11.15), it
will be adjusted such that low-frequency response will be essentially
insensitive to slight changes in T or T'; (for w; << w,).

5. w, Invariance properties:

(a) Independence of w, w.r.t. K,: Let the aircraft static gain be K,
and that of the pilot be K [see (3.2,4) and (3.4,26)]. After initial
adjustment, changes in K, are offset by changes in the pilot gain,
K ; i.e. system crossover frequency, w,, is invariant with K.

(b) Independence of w, w.r.t. w,: System crossover frequency depends
only slightly on the input bandwidth for w; < 0.8w,,. (w,, is that
value of w, adopted for w, << w,.)

(c) w, Regression: When w, nears or becomes greater than 0.8w,,, the
crossover frequency reduces to values much lower than cw,,.

Although the above pilot model was developed to describe the single-
degree-of-freedom compensatory tracking task, it is finding more and more
use in the general situation of the multiple-loop tracking task. In such a
task the pilot controls a number of vebhicle variables simultaneously. It
has been found that the same basic form of pilot model can be applied in
many cases with slight modification to the values of some of the parameters
(such as the time delay 7) to account for the additional complexities of the
task (such as visually sampling the outputs of several instruments). In this
application a single describing function is used to close each control loop
actually closed by the pilot. For example, if the task is to control both the
pitch and roll attitudes (assuming the pitch and roll modes to be uncoupled),
one describing function would close the roll loop while a second would close
the pitch loop.
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12.3 MATHEMATICAL MODEL OF HUMAN PILOTS—
PURSUIT DISPLAY

Pilot models are being developed to describe the control situation when
displays other than the compensatory type are utilized. An example of this
is the pursuit display. The single-degree-of-freedom tracking task with a
pursuit display is identical to the compensatory task of Fig. 12.3a except
that the displayed variables are different—i.e. the pilot has different infor-
mation. In the compensatory task only e(f) is displayed (Fig. 12.3) whereas
in the pursuit task both i(f) and m(t) are separately displayed. Figure 12.6
illustrates the difference between the two displays for the same system state.
It can be seen that additional information is presented to the pilot on the
pursuit display. Although e(t) is available in both cases, only the pursuit display
separates the error into its components and conveys this information to the
pilot. For example, a pursuit display tells the pilot whether his tracking
error is due to a difficult input signal, #(¢), or due to erratic pilot control of
the aireraft, m(t), which in turn can affect his strategy in bringing the tracking
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Fie. 12.7 Typical pursuit task.

error under control. Whether the one display or the other is best for the
mission at hand is a complex function of the task performed.

A technique for measuring human-pilot describing functions has been
developed for the single-degree-of-freedom tracking task with a pursuit dis-
play for situations where a secondary disturbance signal is present. This
task is shown in Fig. 12.7. It might for example represent a mid-air refueling
task where i(t) represents the tanker’s altitude and the secondary disturbance
g(t) represents turbulence acting on the controlled aircraft. The model
of this task can be formulated in several ways. Figure 12.8 shows two
useful forms of the model. The pilot is represented by a pair of describing
functions (¥(s), Y4(s)) or (¥4(s), Y,(s)) since the pilot is considered to have
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Fi6. 12.8 Two models of the pursuit task.
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two inputs and one output. [Since e(f) = i(f) — m(f) it is redundant to con-
sider a case with three inputs.] Again n(f) represents the remnant. The
describing function pairs are chosen to minimize the root mean square of
that part of the vehicle input signal o(f) which is accounted for by n(t) (as
was done for the compensatory display). The describing functions that
result are [where the aircraft transfer function is 4(s)]:

1
‘?51((0)

YMM=( +AMJ1

Yy(io) = (1 — Yy(iw)A(iw)) - $o(w)

Yy(io) = Y,(io)
Y (iw) = Y(io) + Yalio)

— cI)go(w)q)iz'(w) — (Dzo(w)(bgz(w)
D,(0) Dy (w) — (Dig(w)q)gi(w)

— q)io(w)q)yg(w) - (Dyo(w)(big(w)
D,(0)D, (@) — ©, (0)D,,{)

The denominators of (12.3,1) both vanish if either (i) ¢g(¢) = 0 or (ii)
g(t) = const X i(t). In either of these cases the measurement of ¢, and ¢,,
and hence of the describing function pairs, would not be possible. In addition
the following are found to hold:

where di(w)
(12.3,1)

¢2(w)

d)in(w) = (Dgn(w) =0 (12.3,2)
B 1 * 1
1 = Yi(iw) A(io) | Do)
X 1Y (i) (@) + | ¥ (i0)’D,,(0) + 2 Re [Yi(iw) (12.3,3)

X Y y(i)®;,(0)]}

p(w)

As yet no general set of rules comparable to those for the compensatory
task has been developed to cover this model. A typical measured pursuit model
is shown in Fig. 12.9. It was found that the measured data could be fitted
quite well by describing functions of the form (12.2,2). The task in this
example was the same as the one used for Fig. 12.5, except that a pursuit
display was used and a secondary disturbance added. If g(f) is made very
small it is assumed that such models will also approximate pursuit tasks with
no secondary disturbances.
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2.4 THE FUTURE ROLE OF THE HUMAN PILOT

In an age where more and more of the aircraft control task is being devolved
to automatic equipment (e.g. autopilots, blind landing systems, stability
augmentation systems) the role of the human pilot will perhaps slowly
change from that of an active element in the man/machine system to that of a
manager overseeing the operation of the automatic controls. In this situation
the pilot must monitor the performance of the equipment and be prepared
to take over in the event of a failure. This philosophy quite rightly predicates
that the human pilot should make the final decisions that determine the
fate of the craft under his command. Moreover, human pilots are uniquely
capable of assessing the meaning of complex data patterns which indicate
the state of the vehicle under conditions that the automatic equipment has
not been designed to handle (witness Apollo 13!). On the other hand, this
modus operandi poses a serious problem for the pilot, for he is then expected
to assume manual control of a vehicle at a critical time, following a system
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failure. If he is unable to make the transition from passive to active
control with sufficient speed and precision, disaster could well be the
result.

Thus it appears that if the pilot is expected to assume manual control
at any time, the system should be so structured that he is either kept
actively in the control loop at all times or is constantly made aware of the
feel of the present aircraft configuration through some auxiliary task which
he can practice on during critical phases of the flight. Research on the ability
of pilots to control vehicles following stability augmentation system (SAS)
failures has indicated that the resulting step change in vehicle dynamics
can lead to an unstable man-machine system and loss of control (ref. 12.29).
The mechanism behind this problem is as follows. With the SAS operating
properly the vehicle dynamics are satisfactory and the pilot adopts a control
technique to suit. The sudden SAS failure results in less satisfactory vehicle
dynamics, which demands a much more concentrated effort on the part of
the pilot in order to maintain control. Immediately following SAS failure,
however, the pilot attempts to continue to employ the control technique
he has been using previously with the SAS operative. This combination of
man-machine dynamics can lead to an unstable system. If the system is
to be fail-safe the pilot must be able to detect the change quickly and alter
his control technique in time to recover from the upset. Consequently the
advent of more automatic equipment does not diminish the need to study
the role of man in the vehicle control loop. On the contrary, it generates
new and more difficult problems requiring an even better understanding of
the human pilot.

12.5 AIRCRAFT HANDLING QUALITIES

The assessment of handling or flying qualities of airplanes depends in the
final analysis on pilot opinion. The earliest requirement (ref. 12.30) simply
stated, “During this trial flight of one hour it (the airplane) must be steered
in all directions without difficulty and at all times be under perfect control
and equilibrium.” From this simple but hard-to-interpret statement has
evolved a much more quantitative and sophisticated set of criteria. These
are still far from perfect, and the introduction of each new class of vehicle,
STOL (ref. 12.30), rotorcraft, SST, etec., requires a reassessment of the
existing criteria for application in the new situation. ‘

When a pilot flies an aircraft he forms subjective opinions concerning the
suitability of the man-machine system for performing the assigned task.
In arriving at an assessment he is influenced by many parameters. These
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range over a wide spectrum and include:

1. Aircraft stability; response to external disturbances such as turbulence.

2. Atrcraft controllability; the response of the aircraft to actuation of the
controls.

3. Cockpit design; the ease with which instruments can be read ; the comfort
of the seat.

4. View from the cockpit; on landing approach is a sufficiently clear view

of the ground provided ?

. Mission; e.g. high-altitude cruise, landing approach in a crosswind.

6. Pilot’s background and emotional and physical state; the familiarity of
the pilot with the present aircraft and mission; impaired functioning
arising from emotional and physiological factors.

7. External environment; visibility and weather conditions.

<

The term handling qualities is used to refer to those characteristics of the
asreraft which the pilot considers to influence the ease of performing the
mission. Much of the work in the area of handling qualities has centered on
the determination of the influence of aircraft stability and control. It is the
aim of this research to establish general specifications, to ensure that future
vehicles can complete their intended missions safely, efficiently, and with a
minimum of pilot fatigue.

THE RATING OF HANDLING QUALITIES

To be able to assess aireraft handling qualities one must have a measuring
technique with which any given vehicle’s characteristics can be rated. In
the early days of aviation this was done by soliciting the comments of pilots
after they had flown the aircraft. However, it was soon found that a communi-
cations problem existed with pilots using different adjectives to describe
the same flight characteristics. These ambiguities have been alleviated
considerably by the introduction of a uniform set of descriptive phrases by
workers in the field. The most recent set (ref. 12.12) is referred to as the
“Cooper-Harper Scale” where a numerical rating scale is utilized in con-
junction with a set of descriptive phrases. This scale is presented in Table 12.4
and is similar but not identical to previous scales developed separately by
Cooper and Harper. Care must be taken in interpreting past research, to
determine which scale the results are based on. To apply this rating technique
it is necessary to describe accurately the conditions under which the results
were obtained. In addition it should be realized that the numerical pilot
rating (1 to 10) is merely a shorthand notation for the descriptive phrases
and as such no mathematical operations can be carried out on them in a
rigorous sense. For example a vehicle configuration rated as 6 is not necessarily
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Table 12.4
Cooper-Harper Rating Scale (Ref. 12.12)
Demands on the Pilot in Selected Task | Pilot
Aircraft Characteristics or Required Operation Rating
Excellent; highly desirable | Pilot compensation not a factor for 1
desired performance
Good; negligible Pilot compensation not a factor for 2
deficiencies desired performance
Fair; some mildly Minimal pilot compensation required 3
unpleasant deficiencies for desired performance
Minor but annoying Desired performance requires 4
deficiencies moderate pilot compensation
Moderately objectionable Adequate performance requires 5
deficiencies considerable pilot compensation
Very objectionable but Adequate performance requires 6
tolerable deficiencies extensive pilot compensation
Major deficiencies Adequate performance not attainable 7
with maximum tolerable pilot
compensation. Controllability not
in question.
Major deficiencies Considerable pilot compensation is 8
required for control
Major deficiencies Intense pilot compensation is 9
required to retain control
Major deficiencies Control will be lost during some 10
portion of required operation

twice as bad as one rated at 3. The comments from evaluation pilots are
extremely useful and this information will provide the detailed reasons for
the choice of a rating.

Other techniques have been applied to the rating of handling qualities.
For example, attempts have been made to use the overall system performance
as a rating parameter. However, due to the pilot’s adaptive capability, quite
often he can cause the overall system response of a bad vehicle to approach
that of a good vehicle, leading to the same performance but vastly differing
pilot ratings. Consequently system performance has not proved to be a good
rating parameter. A more promising approach involves the measurement of
the pilot’s physiological and psychological state. Such methods lead to
objective assessments of how the system is influencing the human controller.
The measurement of human pilot deseribing functions is part of this technique.
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12.6 FLIGHT SIMULATORS

Research in the field of aircraft handling qualities is undertaken for two
primary reasons. These are (i) to formulate a set of design criteria which if
met will ensure that a new flight vehicle will have adequate handling qualities
and (ii) to better understand how the various vehicle and mission parameters
affect the human pilot. These problems are tackled by means of experi-
mental programs involving trained pilots and actual aircraft or flight
simulators, or through theoretical analyses involving human-pilot describing
functions. Most of the recent research has been experimental work carried
out with flight simulators.

The flight simulator is a device that creates the illusion of flight to a certain
extent for a pilot seated in its cockpit. This is achieved partly by con-
structing the cockpit to appear like that of the real aircraft. The simulator
is then programmed to respond to the actuation of the controls in a fashion
which resembles the response of the actual vehicle. This is accomplished by
programming the vehicle’s equations of motion on an analog or digital
computer, using the pilot’s control movements as the inputs to the computer
system and driving the response system of the simulator with the computer
output. The realism achieved with a given simulator depends to a great extent
upon the visual and motion cues provided by the response system. The motion
response of the simulator can range from none at all for fixed-base simulators,
through limited motion in some degrees of freedom, to complete six-degree-
of-freedom motion with a variable stability aircraft, which is in fact a flying
simulator. The visual cues provided can include instrument displays, closed-
circuit television representations of the outside world, or the full visual and
instrument display provided by a variable stability aircraft. Figure 12.10
depicts a typical simulator system.

The advantages offered by the flight simulator to researchers in the field
of handling qualities are many. With the simulator it is possible to isolate a
single system parameter for study, allowing it to vary while holding all other
parameters fixed. Situations that would involve an element of danger if a real
aircraft were utilized can be simulated with no risk to life or equipment.
The lower cost of operating the simulator and the control over environ-
mental factors such as turbulence also favor the simulator. However, care
must be exercised in interpreting the results of simulator studies. Since the
simulator is usually only an engineering approximation to the actual flight
system, the pilot must extrapolate his experience in the simulator in order
to relate it to an actual flight situation. The ability of a pilot to do this and
hence achieve meaningful handling qualities ratings depends upon his
previous flight and simulator experience. In addition, care must be taken to
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Fic. 12.10 Integrated simulator complex (from ref. 12.25).

provide the pilot with the pertinent stimuli. For example, it would not make
sense to use a fixed-base simulator to rate a vehicle in the performance of a
mission which normally requires the pilot to sense vehicle motions.

12.7 RESULTS OF HANDLING QUALITIES RESEARCH

Research into aircraft handling qualities is aimed in part at ascertaining
which vehicle parameters influence pilot acceptance. It is obvious that the
number of possible combinations of parameters is staggering, and conse-
quently attempts are made to study one particular aspect of the vehicle
while maintaining all others in a “satisfactory” configuration. Thus the
task is formulated in a fashion which is amenable to study. The risk involved
in this technique is that important interaction effects can be overlooked.
For example, it is found that the degree of difficulty a pilot finds in controlling
an aircraft’s lateral-directional mode influences his rating of the longitudinal
dynamies. Such facts must be taken into account when interpreting test
results. Another possible bias exists in handling qualities results obtained
in the past because most of the work has been done in conjunction with
fighter aircraft.

12.8 LONGITUDINAL HANDLING QUALITIES

In investigating the handling qualities related to longitudinal dynamics,
many workers in the field separate the problem into two parts, associated



512 Dynamics of atmospheric flight

Very good

Good - o o

Acceptable

Pilot rating
[
(oe]
\
C

Poor | Phugoid period = 50 sec

[o]

tabl O O
Unaceeptable) 02 0 02 04 06

Phugoid damping, g}J

F1c. 12.11 Effect of phugoid damping, {,, on pilot rating (from ref. 12.15).

with the short-period response and phugoid response. Attempts are then
made to correlate pilot opinion with the various parameters or with the
characteristics of these two modes.

First consider the phugoid response. This mode was discussed at length
in Chapter 8, and approximations to the period and damping were given in
Sec. 9.2. For conventional fixed-wing airplanes the period is very long and
not a significant factor in pilot rating. The damping is important however,
and some experimental results (ref. 12.15) are shown on Fig. 12.11. These
were obtained in flight under instrument conditions. As the damping of the
phugoid mode decreases more attention must be devoted to controlling the
associated low-frequency motion, which can be excited by movement of
the aireraft controls or by gusts. It is seen that, generally speaking, a
divergent phugoid mode (a negative {,) must be avoided. The same study that
produced these results found that under visual flight conditions, a reduction
in the damping from .32 to —.12 had little influence on pilot ratings.

Studies of the effect of the short-period response on pilot ratings have
been made using variable stability aircraft (ref. 12.15). Although a range
of results have been noted for various tasks and aircraft, the general pattern
is as illustrated on Fig. 12.12. It shows a typical plot of pilot “iso-opinion”
curves from such an experiment. The solid lines represent curves of constant
pilot rating as the values of w, and { are altered. The regions of satisfactory,
acceptable, poor, and unacceptable handling qualities are indicated along
with the pilot comments for the various areas in the unacceptable region.

OTHER LONGITUDINAL HANDLING QUALITIES PARAMETERS

Substantial disagreement among results based on correlating pilot ratings
with short-period damping and natural frequency (ref. 12.16) has resulted
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in a search for more meaningful parameters. One such was derived by noting
that the pilot’s opinion of an aircraft’s longitudinal dynamics is very much
influenced by the response of the vehicle to control inputs. This in turn
depends on terms in both the numerator and denominator of the longitudinal
transfer functions, whereas the short.period characteristics appear in the
denominator only [see (10.2,11)]. An important transfer function is the
approximate one relating pitch rate response to elevator angle input, given
by (10.2,11¢c and b). (See also Figs. 10.6, 10.3.) If we neglect Oy, Cr,, and
Cp;in (10.2,12b) and convert to dimensional form, we get the approximation

_ ML, 1+ mVs|L,
AS, mIV (s* + 2lw,s + w,?)
where ¢ is in rad/sec, and s corresponds to-d/df, not d/df. w, (in rad/sec)
and  are, of course, the approximate short-period‘frequency and damping,
respectively. The quantity (L,/m V) in the numeratoriis.the lead time constant
in this response and has ‘been identified as -an 'important parameter for
longitudinal handling qualities (ref. 12.31). Iniref. 12.16 itis argued that the
appropriate correlation of pilot ratings is withithe parameters shown in Fig.
12.13. Tt is stated that when the aircraft load factor response to angle of

L]

(12.8,1)
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attack (n, = (0L W)[0o = L,/W)isless than 15 gfrad, pilot opinion correlates
well with

L

a

mVw,,

and 4

The importance of L,/mV can easily be inferred. Figure 10.6 shows that
the early part of the response to elevator separates clearly into two phases—
an initial pitch-up to a nearly steady Aw«, and a subsequent flight-path
curvature associated with the lift increment AL = L, Ax. The magnitude
of the curvature is approximately AL/mV = (L,/mV) A«a. The changeover
in correlating parameter at about n, of 15 appears to be due to the pilot’s
concern to control load factor at large n,, whereas he concentrates on flight
path at low n,. Figure 12.13 shows iso-opinion curves based on the use of
these parameters.

An additional parameter has been developed based on the consideration
of pilot comments and the physiology of the pilot (ref. 12.17). It is called the
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“Control Anticipation Parameter” or CAP. The CAP is defined to be the
ratio of the instantaneous angular acceleration in pitch to the steady-state
change in load factor when the pilot applies a step input to the longitudinal
control. Thus

cAp = Lo (12.8,2)

nss

This theory is based on the fact that in order to make precise adjustments
to the flight path, the pilot must infer from the initial attitude response of
the vehicle, the ultimate response of the flight path. It is found that the
best cue for sensing attitude response is the initial angular acceleration in
piteh (g,) which the pilot senses through his inner ear. For precision control
tasks the pertinent steady-state parameter is taken to be the change in
steady-state load factor (An,,), which is related to flight-path curvature (see
Sec. 6.10).

It is found that if an aircraft has a CAP which is too small, the pilot
tends to overcontrol and rates the pitch response as sluggish. This comes
about as follows.

When the flight path requires adjustment the pilot moves the controls
and monitors the effect of this action by noting the size of the ¢, generated.
If the C4 P is too small no ¢, will be detected because it is below the threshold
of the pilot’s inner ear. Consequently he will apply more control input until
a ¢ is finally sensed. The result is an extremely large An,, and the desired
response is exceeded. k

On the other hand, if the CAP is too large, the pilot tends to undershoot
his desired flight-path corrections, and rates the response as fast, abrupt, and
too sensitive. This occurs because any slight pitch control inputs from the
pilot generate a large g, which is interpreted as the prelude to a gross change
in vehicle state and not the small desired change. As a result the pilot tends
to reduce or reverse his pitch control input to avoid this, resulting in a steady-
state response that is too small. :

The CAP can easily be derived from relations previously given. ¢, is
simply the initial pitching moment divided by I, i.e.

i — M,AS,
o I

v

(12.8,3)

The steady-state load factor is obtained from (10.2,9), in conjunection with
the short-period approximation (10.2,11) (note that G,; = 0 in this approxi-
mation). The aerodynamic transfer functions are replaced by stability
derivatives, we let s = 0, and neglect ', and Uy to get the approximate
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result for the static gains:
Cr.

C,

KmS =

K ad

_ 2uC 5
© 2ul,é,

Ay g Ore. Oms (12.8,4)
A, Co, L.

After conversion to dimensional form we get

An,, LM,
AS, WIw,?
and
do L n,
OAP = 20 — o _ "= (12.8,5)

2
n

The acceptable range in C4 P extends upward from about 15 deg/sec?/g.
The upper limit has not been determined, with good pilot ratings obtained
from 25-50 deg/sect/g. Figure 12.14 compares the pitch response of two
different jet fighters. Under the conditions which prevailed for this test, the
F-105A with a CAP of 16 degfsec?/g received an adverse rating while the
F-84F was rated as “good” with respect to formation flying.

2
An, Wo,® o

SPEED STABILITY

In addition to the vehicle’s attitude response, the pilot also considers the
speed stability of the aircraft when rating its handling qualities. This is
especially true when performing such rectilinear maneuvers as the landing
approach. In Sec. 11.5 it was shown that the aircraft response to a disturbance
AV, in forward speed could be written as AV e!/T. The response is convergent
for T negative. Although no clear criterion for speed stability exists it appears
that if in all other respects the aircraft is rated as satisfactory, then the pilot
will rate the speed response as satisfactory if it is convergent with a time to
half amplitude less than 35 sec. However, it is found that under certain
conditions a vehicle can be rated as acceptable even if the speed response is
divergent, provided that the time to double amplitude is greater than 17 sec.

LONGITUDINAL CONTROL SYSTEM CHARACTERISTICS (““FEEL”)

The pilot commands longitudinal vehicle response mainly through control
column inputs. Hence it is found that the characteristics of the control system
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influence the handling qualities of the vehicle. An otherwise satisfactory
vehicle can be rated as poor due to a control system that does not “feel”
right to the pilot. Figure 12.15 shows the manner in which pilot rating varied
with stick movement per g and stick forece per ¢ in an aircraft with an irre-
versible control system. It is seen that there is only a relatively small region
where a satisfactory rating is achieved, indicating the importance of the
proper selection of control system characteristics. The studies which produced
these results also determined that pilots do not object to break-out or
frictional forces if they are not large when compared to the stick force per g.

12.9 LATERAL-DIRECTIONAL HANDLING QUALITIES

Generally speaking, lateral-directional control is more complex than
longitudinal control. This, of course, is due to the fact that two axes of
rotation are involved, leading to cross-coupling effects and the use of two
primary control surfaces. As a result many groups of parameters are presently
being studied to determine their correlation with pilot ratings. The following
is intended to introduce the reader to some of these handling qualities
parameters and to indicate the trends of research.

The primary lateral-directional control task facing the pilot is the control
of bank angle through the aileron control system. The transfer function
relating bank angle response to aileron input can be derived from (5.11,10) by
putting AL, = L; Ad,, AN, = N; A, and solving for the ratio $/AJ,. The
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result is
é _ A¢(82 + 20048 + w¢2) (129.1)
Ad, s 4 l) s+ L) (8% + 20,048 + ©2) -
Ts TR

Here the factors in the denominator represent the spiral mode (time constant
T,), the roll mode (time constant 7'z), and the lateral oscillation of radian
frequeney (w4) and damping ({;). The values of these four constants come from
the solution of the eigenvalue problem, discussed at some length in Chapter 9,
where approximate solutions for them are also given. The user of the approxi-
mations should note their restricted range of validity. The numerator
constants are given below with the aerodynamic transfer functions replaced
by the corresponding stability derivatives, and with ¥, =Y, =1y, = 0.

A¢ =Lj (@)

Y
%%={M+ﬂ+mma (®) (12.92)
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A partial list of parameter groups used in handling qualities studies includes
w(ﬁ/wd’ Zdwd’ TR’ Ts’ |¢/ﬁ!’ |¢/”E|» a’ndj) where (UE = v\/P/Po)-

SPIRAL MODE

The spiral mode time constant, 7', determines the aircraft’s tendency to
maintain a given course when cruising. It is generally found that in the case

of a divergent spiral mode, pilots will rate the aircraft as satisfactory provided
that | 7] > 20 sec.
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ROLL CONTROL

If wy=w,; and {;, = {; so that the two quadratic terms in (12.9,1)
cancel, or if only the initial vehicle roll response is considered, then for cases
where 1/T is negligible the roll-to-aileron transfer function reduces to

e A (12.9,3)

.
A3, s(s—}——l—)

Tg

which corresponds to the single-degree-of-freedom approximation (9.7,7).
It has been found that this transfer function affects pilot ratings significantly.
When considering this response it is convenient to look at closed-loop and
open-loop control situations separately. Closed-loop control tasks involve the
continuous monitoring of system error by the pilot and his responses to this
stimulus. Examples of this type of control include formation flying, instru-
ment flight, and landing. Open-loop control differs in that a previously-
learned pattern is utilized to respond to a particular flight situation. No
continuous monitoring of system error as such is involved and often the
maneuver is of very short duration. Examples of this form of control are
obstacle avoidance, rapid turn entry, and recovery from sudden upsets.

CLOSED-LOOP ROLL CONTROL

The pilot model of Sec. 12.2 has been used by Ashkenas (ref. 12.21) to
study the handling qualities associated with the closed-loop control of bank
angle. This application demonstrates the use of pilot models in analyzing
the pilot/aircraft system. Figure 12.16 presents the closed-loop situation.
It is assumed that the pilot is functioning in a compensatory fashion to

{' ____________ 1 ()
1 O
f b
e(t) | | 8alt) TrAe N\
,l Y(s) N\ ‘ S(Tps +1) 7 = o)
; . { Aircraft
Lo Pilot model |

Fig. 12.16 Compensatory elosed-loop roll control.
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control external disturbances [represented by %,(f)] to the vehicle’s bank
angle. [Note that this control situation is similar to that of Fig. 12.3b with
14(8) = —i(t).] In an attempt to achieve the equalization outlined in Sec.
12.2 the pilot adopts a form of deseribing function that reduces the combined
transfer function of the pilot and aircraft as nearly as possible to K/s. This
results in an attempt by the pilot to generate a lead equalization term to
cancel the 1/(T'gs + 1) lag present in the aireraft. In addition, if the analysis
is restricted to frequencies near the system crossover frequency, it is found
that to a reasonable approximation all the dynamicsassociated with the pilot’s
neuromuscular system can be lumped in with the effective time delay as 7.
This is found to be sufficient for the present application. The forward-loop
transfer function is thus of the form

—TES .
() - % _ K™ (Tys+1)- ATy (12.9.4)
Ad, 8(Tps + 1)
which reduces to
—TES .
K™ - AT (12.9,5)

8

if the pilot can generate T'; = T p. It is found that human pilots are generally
limited to 7', < 5 sec because of physiological factors. In addition, as 7' is
reduced to zero it is found that pilots do not attempt to keep T';, equal to
T'. It appears that as soon as the phase lag contributed by 7' becomes
acceptably small the pilot no longer feels the need to compensate for it.
Figure 12.17 shows the T'; adopted by pilots for a range of T'gs.

In this isolated control situation, it would appear that the pilot rating
could depend upon closed-loop system performance, the gain generated by
the pilot, K, and 7';. Since the forward-loop transfer function always appears

Fie. 12.17 Approximate T, vs. T'p relationship (from ref. 12.21).
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to be approximately K/s, all systems studied will tend to have similar
response characteristics. If an experiment is performed wherein 7'y, is varied
and the pilot is allowed to select the system gain 4, at each step so as to be
optimum in his opinion, then the rating assigned to each configuration
should be mainly influenced by the 7'; required of the pilot. The results of
such an experiment (ref. 12.21) are given in Fig. 12.18. Here A R is the increase
in pilot rating associated with 7'y above the basic rating for the complete
vehicle. The rating becomes less favorable as the pilot is required to generate

Fi1e. 12.18 Effect of Ty on pilot rating (from
ref. 12.21).

lead (the generation of lead can be thought of as an attempt to anticipate
the future input signal).

The optimum gain A4, selected by the pilot for a particular value of 7',
is assumed to be uniquely related to the pilot gain generated at the crossover
frequency, w,. At crossover |Y (iw,)| * |$/AS,(iw,)] = 1, and for a particular
value of 7', the optimum value of pilot gain, | ¥ (iw,)|opt. is assumed to be
unique. Based on these assumptions the gain 4, selected by the pilot can be
found from (12.9,4) to be

_onJolTg +1

— 12.9,6
¢ TR Yo, ( )

)Iopt

OPEN-LOOP ROLL CONTROL

When investigating open-loop roll control it is appropriate to consider the
ratio of the roll time constant 7'y, to some typical maneuver time {,,, and/or
the maximum roll acceleration following a unit step aileron input. The Laplace
transform of the roll acceleration following a unit step aileron input (A§, =
1/s) can be found from (12.9,3)

T4,

SﬁzTRfs‘—l—l
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The maximum roll acceleration occurs at ¢ = 0, and from the initial value
theorem is

. T
$(0) = lim s Trds
s TRS -|— 1
=4 &

Figure 12.19 gives the pilot rating boundaries obtained from roll response
studies of fighter-type aircraft (ref. 12.15). The lower boundary on these
iso-opinion curves is blamed on oversensitivity of the controls and probably
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emergency

(| |
0.1 05 10 5 10 Frie.12.19 Pilot rating of open-loop roll re-
Ty sec sponse (from ref. 12.15).

has the same basis as the poor ratings achieved with overly large values of
the CA P discussed in the section on longitudinal handling qualities.

DUTCH-ROLL CHARACTERISTICS

The Dutch-roll oscillation may. from a piloting standpoint be termed a
nuisance factor. Its oscillatory nature is not purposely induced to perform
any maneuver, and its presence may hinder the maintenance of precise
flight-path control. Originally attempts were made to correlate pilot opinion
with the ratio ¢/f of the eigenvector and the damping of the oscillation.
However, when it was found that pilots desired more damping for a given
$/B at lower flight speeds, the parameter ¢/(uy8) or /v was introduced to
replace ¢/f. Additional studies indicated that the altitude was also important
with more damping being desired at higher altitude. This lead to the us
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Fic. 12.20 Pilot opinion boundaries for Duteh-roll characteristics (from ref. 12.15).

of qS/v\/ plpo or dfvg. Further refinement then replaced cycles to half amplitude
by the inverse of the time-to-half-amplitude, 1/T'y. Figure 12.20 illustrates
the pilot rating boundaries plotted on a 1/T; vs. ¢fvy diagram. This is
typical for fighter-type aircraft.

As is often the case in the field of handling qualities, this is not the final
answer. In fact some results can be shown to correlate better with bank
angle response to rudder input and root-mean-square bank angle response
to random gust inputs.

wylw, AS A HANDLING QUALITIES PARAMETER

The ratio wy/w, is a significant parameter when studying lateral-directional
handling qualities. If [w,, {5] = [w,, {;] then the quadratic factors in the
numerator and denominator of (12.9,1) cancel. Or, to put it another way, the
associated poles and zeros exactly cancel. The major consequence of such an
occurrence is that the ¢ response to aileron becomes non-oscillatory, a very
desirable circumstance. Another consequence would be the disappearance
of the valley-peak sequence in the frequency response for ¢/d,, as illustrated
in Fig. 10.12c. When this special circumstance is not the case, then aileron
inputs produce oscillatory responses. The cancellation of the quadratic



Human pilots and handling qualities 525

9._

8_

7_
26

(=}
£ 4T

3_

2._-

Gy I N TN OO R SN SUN TS AN NN IS A
02 04 06 08 10 12 14 16

g /wd

Fia. 12.21 Pilot ratings for a range of wg/w, {from ref. 12.21).

factors depends mainly on the values of &, and w; and less on {, and {;.
Hence the importance of w,/w,; as a parameter.

Detailed analysis shows that for wy/w; > 1 favorable yaw is generated
the opposite being true for wy/w,; < 1. The yaw that occurs determines the
amount and direction of rudder deflection needed to execute a coordinated
turn. In addition, closed-loop bank angle control is difficult when wy/w, > 1.
The general trend of pilot rating with w,/w, is shown in Fig. 12.21. The
general and marked preference for w,/w, = 1 is apparent. Figure 12.22 gives
typical pilot iso-opinion curves for a range of (w,/wy)* and {;- These curves
indicate that, depending upon the value of {;, the optimum value of ws/w,
may differ from unity.
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Fra. 12.22 Pilot iso-opinion eurves for lateral-directional eontrol (from ref. 12.21)-
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ROLL CONTROL SYSTEM CHARACTERISTICS (“FEEL”)

The roll control system dynamics are important in establishing the handling
qualities of an aircraft. From the small amount of research performed in
this area the following general remarks apply:

1. Full aileron deflection with a wheel-type control should not require a
rotation exceeding 90°.

2. Control sensitivities as high as 0.5 deg/sec rate of roll per degree of
wheel displacement can be satisfactory.

3. The force required to apply full control should be about 40 Ib.

12.10 HANDLING QUALITIES REQUIREMENTS

As a result of inability to carry out completely rational design of the
man-machine combination, it is customary for the government agencies
that are responsible for the procurement of military airplanes, or for licensing
civil airplanes, to specify compliance with certain handling qualities require-
ments (e.g. refs. 12.26 to 12.28).

These requirements have been developed from extensive and continuing
flight research. In the final analysis they are based on the opinions of research
test pilots, substantiated by careful instrumentation. They vary from country
to country and from agency to agency, and, of course, are different for
different types of aircraft. They are subject to continuous study and modifi-
cation in order to keep them abreast of the latest research and design infor-
mation.

The purpose of these regulations is to ensure the safety of operation of new
aircraft. If the rules are too lenient or incomplete the result can be degraded
performance, poor flight safety, and perhaps an inability to complete the
intended mission. On the other hand, if the rules are too stringent the penalties
can be degraded performance, added complexity, and reduced economic
efficiency. When a new aircraft is designed with novel features and per-
formance characteristics, the old regulations are not always sufficient to cover
the situation, and subsequent prolonged vehicle flight testing is then required
before it can be certified. In the past, regulations have merely specified minima
for the various aspects of handling qualities. It is anticipated that ongoing
research in this field will lead to the specification of optimum values for the
various handling qualities parameters and the definition of acceptable ranges
for these parameters.
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The following is intended to show the nature, not the detail, of typical
handling qualities requirements. Most of the specific requirements can be
classified under one of the following headings.

CONTROL POWER

The term control power is used to describe the efficacy of a control in
producing a range of steady equilibrium or maneuvering states. For example,
an elevator control which by taking positions between full up and full down
can hold the airplane in equilibrium at all speeds in its speed range, for all
configurations and C.G. positions, is a powerful control. On the other hand
a rudder that is not capable at full deflection of maintaining equilibrium
of yawing moments in a condition of one engine out and negligible sideslip
is not powerful enough. The flying qualities requirements normally specify
the specific speed ranges that must be achievable with full elevator deflection
in the various important configurations, and the asymmetric power condition
that the rudder must balance. They may also contain references to the elevator
angles required to achieve positive load factors, as in steady turns and pull-up
maneuvers (“elevator angle per g,” Sec. 6.10).

CONTROL FORCES

The requirements invariably specify limits on the control forces that must
be exerted by the pilot in order to effect specific changes from a given
trimmed condition, or to maintain the trim speed following a sudden change
in configuration or throttle setting. They frequently also include requirements
on the control forces in pull-up maneuvers (“stick force per g, Sec. 6.10).

STATIC STABILITY

The requirement for static longitudinal stability (see Chapter 6) is usually
stated in terms of the neutral point (defined in Sec. 6.3). It is usually required
that the relevant nentral point (stick-free or stick-fixed) shall lie some distance
(e.g. 5% of the mean aerodynamic chord) behind the most aft position of
the C.G. This ensures that the airplane will tend to fly at a constant speed
and angle of attack as long as the controls are not moved.

The requirement on static lateral stability is usually mild. It is simply
that the spiral mode (see Chapter 9) if divergent shall have a time to double
greater than some stated minimum (e.g. 4 sec).
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DYNAMIC STABILITY

Generally the requirement on dynamic stability takes the form of a specifi-
cation on the time to damp to half amplitude. The damping required for
good flying qualities varies with the period.

STALLING AND SPINNING

Finally, most requirements specify that the airplane’s behavior following
a stall or in a spin shall not include any dangerous characteristics, and that
the controls must retain enough effectiveness to ensure a safe recovery to
normal flight.
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Flight in a turbulent
atmosphere

CHAPTER I3

13.1 INTRODUCTION

Of those obstacles with which nature confronts man in his use of the air
as a medium of transportation, two are transcendent in importance—poor
visibility that prevents him from seeing where he is going, and turbulent
movement of the surrounding air that disturbs his vehicle and its flight path.
To overcome these obstacles has always been and continues to be a major
challenge to aviation. Poor visibility is associated with both darkness and
weather, turbulence with weather alone. The former of these obstacles has
to a great extent been overcome—modern navigation techniques permit blind
flying with adequate safety for all but the critical phases of landing and
take-off, and there is hope that the safety margins for these too will ultimately
be acceptable.

The subject of this chapter is the second obstacle, turbulence. The motion
of an aireraft in turbulence is akin to that of a ship on a rough sea, or an
automobile on a rough road. It is subjected to buffeting by random external
forces and as a result the attitude angles and trajectory experience random
variations with time. The time scale and intensity of these responses are
governed by the scale and intensity of the turbulence, as well as the speed
and characteristics of the vehicle. Their effect is to produce fatigue in both
the pilot and the structure, to endanger the structural integrity of the air-
craft, to produce an uncomfortable, possibly even unacceptable, ride for

529
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Fia. 13.1 Breakdown of the turbulence problem.

the passengers and cargo, and to impair the precise control of flight path
needed for collision avoidance and safe landing.

To understand and analyze these responses, which is to provide the basis
for ameliorating them, we dissect the total phenomenon into several parts,
as illustrated in Fig. 13.1. The first is to describe the turbulence itself, the
“output” of this description being the velocity field in which the airplane
is immersed. Next, it is necessary to determine how these velocities result in
aerodynamic forces and moments; these in turn become inputs to the
mechanical/structural system whose mathematical modelling was the subject
of Chapter 5. Finally, the motions and stresses that result serve to define
the problems faced by the structure and the pilot. The diagram indicates
that the pilot feeds back into the dynamic system via the controls—a feature
that cannot be overlooked for realistic analysis. A study of all the problems
embraced by the figure clearly spans the disciplines of meterology, aero-
dynamics, vehicle and structural dynamics, metal fatigue, and human
factors. We make no attempt here to go in depth into all of these! The aim
of the following is to extend the mathematical models previously given to
embrace a description of the turbulence and the inputs provided by it. This
model then provides the tool for calculating the responses of interest for
any design or operational problem.

Since turbulence is a random process that cannot be described by explicit
functions of time, only a statistical, probabilistic approach can be taken.
The basic random-process theory needed was presented in Secs. 2.6 and 3.4,
and the following relies heavily on that material. In particular the role of
input spectra in computing output spectra should be recalled at this point
[see (3.4, 48 to 51)], and the role of output spectra in calculating response
probabilities (Sec. 2.6).
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13.2 DESCRIPTION OF ATMOSPHERIC TURBULENCE

The total velocity field of the atmosphere is variable in both space and
time, composed of a “mean’ value and variations from it. The mean wind
is a problem primarily for navigation and guidance and is not of interest
here. We eliminate it by choosing as our reference frame the atmosphere-
fixed frame F, (see Sec. 4.2.4) relative to which the mean motion is zero.
Let the velocity of the air relative to ¥4 at position r = [z,2,%,]T and time
t be

u(r, t) = [wugusl” (13.2,1)

Then u,(r, t) are random functions of space and time, i.e. we have to deal
with the statistics of a random vector function of four variables (z;, z,, 25, £).

Associated with any given point r and time ¢ there is a 3 X 3 correlation
matriz (second-order tensor)

R(E, 1) = <uyr, tyu,(r + &, ¢ + 7)> (13.2,2)t

As indicated, it is the ensemble average of the product of , at r and ¢ with
u; at the different point r 4 & and the later time ¢ + 7. The associated four-
dimensional Fourier integral is the 3 X 3 matrix of four-dimensional spectrum
Sfunctions

1

Bl 0) =55 fm R(E e et dg, dg,dE,dr (13.2,3)

(2

The inverse relation for Fourier integrals gives
R,(E, 1) = ffff@ij(ﬂ, )e! TN 40 dQ, dQsdow  (13.2,4)

The functions B; and 6,; serve (together with the assumption of normality)
to describe the needed statistics of the turbulence. From them all the
pertinent results can be derived (see Sec. 2.6); a principle objective of re-
search into atmospheric turbulence is to ascertain their forms, and how their
parameters depend on meteorological conditions, terrain, ete.

T B;;(0, 7) should not be confused with the time-delayed correlation measured by a
fixed instrument in a flow passing it at a mean speed U.



532 Dynamics of atmospheric flight

SIMPLIFYING ASSUMPTIONS

Although there is some evidence that atmospheric turbulence is not
necessarily normal, or Gaussian (ref. 13.1), many researchers have concluded
that it is for practical purposes in many situations. There are great gains in
simplicity in calculating the probabilities of exceeding given stress or motion
levels if the process is Gaussian (see Sec. 2.6), for then one needs only the
information given by the spectral distribution of the variables in question.
We therefore assume that the random functions we have to deal with have
normal distributions. (This assumption only enters when probabilities are
being calculated, not correlations and spectra.)

The most general case, covered by (13.2,2 to 4) allows the turbulence
statistics to vary from point to point and time to time—i.e. B, and 0,; are
functions of the base point r and base time ¢. One assumption made almost
universally is that there is no dependence on ¢, i.e. that the turbulence is a
stationary process. A second widely employed assumptionisthat the turbulence
is effectively homogeneous i.e. that R,; and 0,; are independent of r at least
along the path flown by the vehicle. At high altitudes, turbulence appears
to occur in large patches, each of which can reasonably be taken to be
homogeneous—but with differences from patch to patch. At low altitudes,
near the ground, there are fairly rapid changes in the turbulence with altitude.
However, for airplanes in nearly horizontal flight, homogeneity along the
flight path is a reasonable approximation.

In general, the functions R,; and 6,; depend on the directions of the axes
of F,. This is especially so in the ground boundary layer. When this de-
pendence is absent, and the evidence is that this is the case at high altitudes,
then the turbulence is isofropic, i.e. all the statistical properties at a point are
independent of the orientation of the axes. In this case it follows that the
three mean-square velocity components are equal, i.e. the infensily is

0% = <uyt> = <ult> = <ugt> (13.2,5)

When the turbulence is stationary and homogeneous it is also ergodic, so
that time averages can replace ensemble averages—a matter of no small
importance for experimental work.

Finally, the last simplifying assumption relates not so much to the
turbulence itself but to the nature of the present problem. Airplanes fly for
the most part at speeds large compared to the turbulent velocities and to
their rates of change. Thus the vehicle can traverse a relatively large patch
of turbulence in a time so short that the turbulent velocities have not had
time to change very much. This amounts to neglecting ¢ in the argument
of u(x, t), i.e. to treating the turbulenceas a frozen pattern in space. This
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assumption is known as “Taylor’s hypothesis.” Its consequence is that
R, 7) — By(§) and 0482, w) — 0,,(82)

and the Fourier integrals of (13.2,3) are triple rather than quadruple. The
problem of computing aerodynamic forces and vehicle responses is corre-
spondingly simplified.

Finally, then, the simplest model we can obtain is of homogeneous,
isotropic, Gaussian, frozen turbulence. This is the model most commonly
used for analysis of flight outside the ground boundary layer. Unfortunately,
the strong anisotropy of boundary layer turbulence makes it unsuitable for
landing and take-off; and for hovering flight the assumption of frozen
turbulence is clearly also invalid.

Batchelor (13.2) has shown that in isotropic turbulence R, () can be
expressed in terms of two fundamental correlations, f(£) and g(§), viz.

8 = 1) — 91 5 + 00, (13.26)
where & = |E|, J,; is the Kronecker delta, and ¢? is given by (13.2,5). It
should be observed that R,;is zero whenever ¢ 7 j and either £, or &; vanishes,
so that RB;;(0) = 0 for ¢ 7 j. Other situations are illustrated in Fig. 13.2, a
wing-fin system; the correlation of #, at 4 with either , or u; at B vanishes
because §; and &; are both zero, but that of u, at A with u, at C is not zero
because &; and £; are both nonzero. Furthermore, the equation of continuity
for an incompressible fluid imposes the condition

g =1+ ¥f (13.2,7)

f(&) is known as the longitudinal correlation, typified by R,4(£,,0, 0) and is
associated with the condition illustrated in Fig. 13.3a. ¢(&) is the lateral

Fie. 13.2 Illustrating vanishing and nonvanishing correlations.
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Fia. 13.3 Correlations in isotropic turbulence. (a) Longitudinal correlation, f(§) =
(uu'). (b) Lateral correlation, g(£) = (uu’). (¢) Typical forms of f and g.

correlation, typified by R,4(0, &,,0) and is associated with the condition
illustrated in Fig. 13.3b. The typical forms of these correlations are shown
in Fig. 13.3¢, when normalized to unity at £ = 0.

The spectrum function in isotropic turbulence is expressible in terms of
the basic energy spectrum function E(Q), i.e.

)
470*

E(Q) is a scalar function that describes the turbulent energy density as a
function of wave number magnitude, Q = |€2| such that

oij(ﬂ)

(Q%,; — Q,Q,) (13.2,8)

Mot + 1 + 1) = f “B(©Q) d0.
[\]
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As with B, the spectral density 0,; is zero whenever ¢ £ j and Q, or Q;
vanishes. Thus 0,,(0) = 0 for ¢ =~ j, and for many special values of the wave
number vector.

The mean product of two velocity components at one point in frozen
turbulence is R;(0), which is from (13.2,4) (for frozen turbulence, w and
7 do not appear, and it is a triple integral)

0 = f f f 0,,(Qy Q. Q) 40, 4O, dQ, (13.2,9)

Integration successively w.r.t. €, and , yields the fwo-dimensional (V')
and one-dimensional (®) spectrum functions, i.e.

o

o, — f ¥,(Q,, Q) dQ, dQ, — f © 0,0Q)dQ, (13.2,10)

0

where

lyij(ng2) =f eij(gls Qza Qs) dQs

®,,(Q)) =f W0y, Q5)dQ, (13.2,11)
Note that the mean-square value of any velocity component is [cf. (2.6,11)]

wi=|"0,d0 (13.2,12)
) i 1

There is a more direct physical interpretation of the one-dimensional spec-
trum functions than the formal one given above. In homogeneous frozen
turbulence consider the measurement of u; and u; along the x; axis (corre-
sponding to measurement in flight along a straight line, or at a fixed point
on a tower when the frozen field sweeps by it with the speed of the mean
wind). The corresponding correlation is RE,;(&,, 0, 0) and its one-dimensional
transform is @,;(Q,) i.e.

®,{Q) = ZLWJ‘ B, (&, 0, 0)ehsrdg, (13.2,13)

Furthermore, if the x, axis is traversed at speed U (or the wind past the tower
has speed U), then £, = U, where 7 is the time interval associated with the
separation &;.

Corresponding to the two basic correlations f(£) and g(&) for isotropic
turbulence, are their two Fourier integrals, the longitudinal and lateral
one-dimensional spectra, i.e. ®1(£,) and @g4(€2,), respectively. By virtue of the
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relation between f and g, Batchelor shows that

ddy,(Q
Dys(y) = §D1(2y) — 31Q, M (13.2,14)
dQ,
The isotropy, of course, requires the symmetry relations
q)ii(Qa‘) = Byy(€2)) ifi#£j

= 0,,(Q) ifi=j (13.2,15)
Most of the experimental information collected about atmospheric turbulence,
on towers and by aircraft, is in the form of the above two one-dimensional
spectra.

SPECTRAL COMPONENT OF TURBULENCE

We showed in Sec. 2.6 that a one-dimensional random function could be
represented as a superposition of sinusoids (2.6,4). The analogous relation
for three-dimensional turbulence is

ll(l‘) =J‘J\J‘ei(9‘r) dC(Q) (13'2,14)

which indicates that the individual spectral component is a velocity field of
the form exp ¢(Q,z; + Qux, + Qyz,) and amplitude dC. The triple integral
signifies that integration is over — o0 to + o0 in each of the wave number com-
ponents; or to put it ancther way, individual sinusoidal waves of all possible
wave numbers are superimposed to make up the turbulent field. The in-
dividual spectral component has been shown by Ribner (ref. 13.3) to be an

Q.
Q

F16. 13.4 Sinusoidal wave of shearing motion. (After H. S. Ribner, ref. 13.3.)
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inclined shear wave as illustrated in Fig. 13.4. The velocity vector is per-
pendicular to the wave number vector, and is constant in planes normal to
it. It is no more surprising that a superposition of waves like that shown can
represent turbulence than that an infinite Fourier series can represent an
arbitrary random function of time.

The spectral component in two dimensions, say Q, and £,, has the form
exp 1(Q,x; + Qux,); and is the sum (more properly integral) of all the three-
dimensional waves having the given values Q,, Q,, but differing Q,. It can
be pictured as in Fig. 13.5, which shows the node lines and the distribution

S

\m
09’ g =%
/\(X\I: / A__—é

A/\VWQ A

us

Section | through wave

Fi1c. 13.5 Elementary spectral component in two dimensions. (After H. S. Ribner, ref.
13.4.)

of u, through a section of the wave. The two-dimensional wave number vector
is ' = [Q,;, Q,]7, and is seen to lie at an angle § to the =, axis. The wave-
length is A = 27/Q’ and associated with the components of &' are the wave-
lengths along the coordinate axes, 4, = 27/Q, and 4, = 27/Q,.

Finally, the one-dimensional spectral component is a sinusoid on one axis,
e.g. €*1®1 and is the sum of all two-dimensional components having the
same €, or A,. This is the familiar spectral component of one-dimensional
Fourier analysis.

INTEGRAL SCALE

There is an intuitive notion of the scale of turbulence. Clearly there are
significant differences of ‘‘size’ between the turbulence in the wing boundary
layer, in the wake of the airplane, and in the atmosphere itself. These differ-
ences are quantified by a definition of integral scale derived from the corre-
lation function. Thus let

L; = —1—2 waﬁ(’é) dg; (13.2,15)
uz. [}
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be a line integral on the £; axis. It might be called “the j scale of the i velocity
component.” There are in general nine such scales, e.g. for «, measured along
the x, axis, or u; measured along the z, axis, ete.

A second notion of scale derives from the spectral representation of
turbulence. The wavelength at which the energy density peaks (see Fig. 13.6)
is also a scale parameter, and for any given spectrum shape is uniquely
related to L (defined below).

In isotropic turbulence, only two different scales are found, associated
with the basic correlations f and g, and these are of course simply the areas

T T T T T T T T T T T T T '
Structure
7 A
oa} hugoi £ < ]
Phugoid »  Short-period
%
“* 03~ Lateral, &35 ]
g
°,
g 0.2 - B$a3*, Qo' =0.01 ]
1~ Limit of validity,
01l {“point" approximation _
2 i ¢=20ft
0 , ,
10-5 1074 1073 102 107! 10°

€

F16. 13.6 One-dimensional spectra. Isotropic turbulence. Scale L = 5000 ft.

under the f and g curves. Because the maximum ordinate is unity, L, is
equal to the width of a rectangle that contains the same area as the corre-
lation curve—i.e. it is a measure of the spatial extent of significant correlation.
The two scales are

L = L, i = j = area under f(&) = longitudinal scale
L' = L, i # j = area under ¢(&) = lateral scale

The continuity condition (13.2,7) yields L = 2L'.
The situation with respect to scale is unfortunately more complicated in
the ground boundary layer where isotropy does not hold.

MODEL OF HIGH-ALTITUDE TURBULENCE

The experimental data on turbulence in clear air and in thunderstorms,
and from altitudes below 5000 to 40,000 ft have been reviewed by Houbolt
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et al. (ref. 13.5). They have examined it from the standpoint of scale, in-
tensity, shape of one-dimensional spectra, homogeneity, isotropy, and
normality. Their general conclusion is that an adequate model for analysis
purposes is the simplest one described above—isotropic, homogeneous,
Gaussian, and frozen. The intensity ¢ varies from very small to as much as
16 fps, and the scale is large, typically of order L = 5000 ft. The one-
dimensional spectrum function that best fits the data for the vertical com-
ponent of turbulence is the von Karman spectrum

oL 1 + 3aLQ,)?
27 [1 + (aLQ,)7%

a = 1.339

®33(CYy) = (13.2,16)

This spectrum function yields ® ~ Q,~* as Q, — o0, a condition required
to satisfy the Kolmogorov law in the so called inertial subrange (ref. 13.6).
The energy spectrum function and some useful two- and one-dimensional
spectrat of the von Karman model are

55 o (aLQ)

E e
ah = 977 [1 + (aLQ)}™ (@
- )2 14+ (‘ZLQ1)2 l(ang)2
W Qo) = 7,‘ D e o ©
Foi0n O = & (aryp Lt PELQ) + @iy PR
ag\S41, 8dg) = 6 [1 +a2L2(le+ sz)]%
_ 40%(aL) Q2%+ Q)
Pl Q) = R e (@)
%L 1
®;(Qy) = m ()
(I)22(Ql) = (I)33(Ql) (f)

The inverse Fourier integrals of @,, and ®,, provide the associated corre-
lation functions (ref. 13.5).

2,

b A
f(&) = Z—= Ky (0) (@)
P<3)
(13.2,18)

9(&) = $(0) — LKD) ®)

l1()

+ Note that the spectra used herein are two-sided, such that for example ¢2 =
2o ©(Q)) dQ,. In ref. 13.5 and in many others, one-sided specira are used that are
double those herein, and the integration is from zero to infinity.
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where { = £/(aL), and I', K denote gamma and Bessel functions, respectively.

With the typical value L = 5000 ft, the longitudinal and lateral one-
dimensional spectra are as shown in Fig. 13.6. With this form of plot-
ting, Q® vs. log,,Q, the area under an element of the curve is d4 =
const X QB(1/Q) dQ = const x D(Q) dQ which is proportional to the contribu-
tion of the bandwidth dQ to ¢2. Hence the shape of the curve truly shows
the turbulent energy distribution.

The peak of Q,®;; oceurs at L2 = 1.33, which shows directly how scale
affects the spectrum. It also yields the “dominant wavelength,” i.e.

My = 92" = %L =47L
Ipeak *
Thus for turbulence of 5000 ft scale, the dominant wavelength is about 43
miles, and the energy level is down by a factor of 25 at a wave length of
100 ft, the order of the size of an airplane.

For comparison, the ranges of Q associated with typical rigid-body and
structural-mode frequencies are indicated on Fig. 13.6. These show what
relative excitation levels of these modes are to be expected from turbulence
of this scale. The spectrum shifts without change of shape to the right for
smaller L and to the left for larger. For example at a scale L = 500 ft, the
spectra move to the right by one decadein{, and by two decadesfor L = 50ft.
This drastically alters the relative intensity of excitation of the various
rigid-body and elastic modes. We shall see later that the difficulty of com-
puting the response in any mode is very much affected by the wavelength 1
associated with it. If very large compared to the dimensions of the airplane,
the simplest analysis results. On the other hand, for structural modes of
relatively short wavelength this condition is not met, and more sophisticated
analysis is needed.

MODEL OF LOW-ALTITUDE TURBULENCE

Turbulence near the ground is of the boundary-layer variety (see Fig. 9.36),
being variable with height and anisotropic. A model for this case should
ideally give the following:

(i) Variation of mean wind with height as function of ground roughness.
(ii) Variation with height of u,2, up?, ug.
(iii) Variation with height of all significant scales.
(iv) The form of the spectrum function 0,;, or the correlation function B,;.

Since the scales are much smaller than at high altitude, it becomes more
important to have the two-dimensional spectrum functions ¥ ;(Q;, Qs,), which
enable both streamwise and spanwise variations of turbulent velocity to be
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taken into account. The anisotropy also leads to the nonvanishing of the
correlation R,; = (u,u;) (where z, is in the wind direction and z, vertical),
which is simply related to the turbulent shear stress (Reynolds stress) in
the boundary layer.

An interesting fact about low-altitude turbulence is the existence of a gap
in the spectrum at a rather useful location. There is considerable evidence
to show that the spectrum of wind speed measured by van der Hoven is
representative, Fig. 13.7. This is a spectral density of horizontal wind speed
taken as a function of time at a fixed point. The gap occurs for periods
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Fi1a. 13.7 Schematic spectrum of wind speed near the ground estimated from a study
of van der Hoven (1957) (from ref. 13.6, p. 43).

greater than 6 min, or frequencies less than 10 cycles per hr. The lobe on
the right corresponds to the turbulent energy of interest for flight (cf. Fig.
13.6).

The extensive information available on the wind-induced turbulence near
the ground—much of it inconclusive and even contradictory—has recently
been reviewed in refs. 13.7, 13.8. From these we adopt the following model
as a reasonable representation of presently-available information: the
turbulence is Gaussian, stationary, and homogeneous w.r.t. horizontal
translations; it is anisotropic, but the one-dimensional spectra display
isotropic behavior at the highest wave numbers; the turbulence is symmetric
w.r.t. vertical planes.

VELOCITY PROFILE, MEAN WIND:

w_ (i) (13.2,19)
e \hg |
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where W = mean wind, 4 = height above ground, W4 and k. are the speed
and height outside the friction layer, and « and hy depend on surface
roughness (see Fig. 9.36).

COMPONENT INTENSITIES:
In the layer below about 300 ft:
01105 05 = 1:0.8:0.5 (13.2,20)

where ¢,2 = (u,%), z, is in the wind direction, and z, is vertical. Above this
height the ¢, tend toward equality at about 1000 ft.

SPECTRUM SHAPES:

The one-dimensional spectra are given by the von Kirman equations
(13.2, 16 and 17e), with ¢ in ®@,, replaced by o¢,. Thus because of (13.2,20)
there are three different one-dimensional spectra.

SHEAR AND CROSS SPECTRA:

The turbulent shearing stress in the boundary layer results in nonvanishing
%,%s, but symmetry requires u,u, = u,uy; = 0. The data suggests

U\ Ug = 0.30'10‘3

The one-dimensional cross spectrum @,,(Q,) is taken to be real, and given
by (ref. 13.8)

(Qy) B2 Q1) 7%
O(Q,) = 071030 1[11 1) Do ]
13(521 [1 N Lglz} P4 o 0,2
10

in which a representative value of y, is 0.5.

INTEGRAL SCALES:

For the boundary layer as a whole.

Ly, = 20Vh
Ly = Ly, = 0.4k
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Above about 200 ft, slightly better values are given by

L;, = 4.2k
L, = L, = 213"

13.3 THE INPUT TO THE AIRPLANE

The input to the airplane is the set of incremental aerodynamic forces
and moments that derive from the turbulence—six associated with the
rigid-body degrees of freedom and others with the elastic degrees of freedom.
All of these inputs are, of course, random functions of a single variable,
time, and are described statistically by the methods previously given.
Once they are known, the problem of calculating system response is relatively
routine. Let us illustrate the structure of the problem with a linear/invariant
aerodynamic model. Let g be a vector (g for “gust”) that somehow defines
the atmospheric velocity field (specific forms for g are given below), let f
be the associated aerodynamic force vector, and let T be a matrix of “gust
transfer functions” that relates them:

£(s) = T(s)E(s) (13.3,1)

The determination of the input then consists of two parts—defining g and
finding the elements of T. When both of these are known, (13.3,1) yields
the force vector, which can then be incorporated into the vehicle system
equations in a more or less straightforward manner. The details of the process
depend very much on the degree of idealization used and the assumptions
made; examples are given below.

One approximation that is almost always made is to ignore the departure
of the airplane from rectilinear flight, i.e. to assume it samples a frozen
field on a straight line. The input statistics can then be derived quite readily
from those of the turbulence given in frame F,. Thus let F, have axes
parallel to Fy, and zero time be chosen so that the coordinates of the
airplane mass center relative to F, are (V ¢, 0, 0). The connection between
(z, ¥, 2), the coordinates of a point in Fy, and (,, %,, x5) the coordinates of a
point in F, is then

2, =Vit-+a Ty =y, 23 =2 (13.3,2)

‘We now change notation for the turbulent velocities, to emphasize that they
are parallel to the axes of Fy,, denoting them (u,, v,, w,). Being functions of
(%y, %5, 5) they become functions of (x, y, z,t) via (13.3,2)—or for a fixed
point of the airplane, functions of ¢ only. The spectral component (see after
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13.2,14) is then a velocity field of the form

exp i[O (V,t + x) + Quy 4+ Quz] = ™MV elei izt 102 (13.3.3)

or for the two-dimensional case, the above with the z term absent. 1t is
seen to consist of a time-periodic velocity at any fixed point (x, y, 2} of the
vehicle.

Even when the system is linear, it is not in general true (as was erroneously
stated on p. 321 of Dynamics of Flight—Stability and Control) that the
response to turbulence can be constructed of a superposition of the three
separate responses to u,, v,, and w,. This is the case only when there are no
cross-correlations between elements of the input vector associated with
different components of the turbulence. Equations (3.4,48 and 49) make it
clear that there are contributions to response power and cross spectra that
derive from cross spectra of the input components. Such cross spectra exist
even in isotropic turbulence if variations over the vehicle are allowed for, as
illustrated in Fig. 13.2 for the points 4 and C of a wing-fin combination.
In spite of the above theoretical condition, practical calculations of gust
response are often made for one input component at a time. There is no
assurance, however, that significant errors of omission will not occur when
that is done.

THE AIRPLANE AS A POINT

The simplest approximation is that in which the variations of (u,, v,, w,)

over the vehicle are neglected. The airplane is in effect treated as a point

" traversing the z, axis, with coordinates (¥, 0, 0). The input vector is then
clearly

g= 17, (13.3,4)

Furthermore, the usual aerodynamic assumptions that lead to decoupling
of the system equations into lateral and longitudinal sets make it possible
to separate the response problem into two parts—the longitudinal response

to
Uy
g = (18.3,5)
w

g = [v,] (13.3,6)

and the lateral response to
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The associated force vectors and gust transfer functions are

(MG, [Gpu, Cra, [,]
- AGy, _ G, Cpa, | LT (13.3,7)
ACr|  |Gru, Ore,
(ACn,| |G, G,
=T,§,
[AC,T [,
£,=|AC, | = |4, |5, = T8 (13.3,8)
AC, | 1G]

where [4,0,%,] = [upw,] = V,.
The dlsturbmg forces ACT ete. can be incorporated in (5.13, 18 to 20) or
(56.14, 1 to 3) by adding them to the associated control term, i.e. by replacing
ACyp by (ACy, + ACg), ete. Now in the point approximation there is no
difference between aerodynamic forces associated with relative translation
of the airplane w.r.t. the air whether it is the air that moves or the airplane,
and in linear approximation 9, = f§,, @, = a,. Thus the eleven transfer
functions above are recognized as being identical to those previously used to
relate airplane motion to aerodynamic forces, as follows (note the minus
signs, u, reduces the relative velocity, etc.):

éTV CA‘!:l‘az é

T, = — S . N G:: (13.3,9)
GLV GLu é
cA¥mV éma e

The adoption of the point approximation means that the airplane is
assumed to be vanishingly small with respect to the wavelengths of all
significant spectral components (e.g. A >> span in Fig. 13.3). The non-
dimensional frequency parameter used in the Theodorsen and Sears functions
for unsteady flow effects is k = w2V ,, which we can relate to Q, by (13.3,3).
It gives w = Q,V,, whence

k= S nl

13.3,10
5= (13.3,10)

Thus (¢/4,) — 0 implies QG — 0 and %k — 0. Hence it is consistent in this
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approximation to use the quasistatic aerodynamic representation by aero-
dynamic derivatives. Finally then the gust transfer functions are

OTV OTa c
c c ¢
T, = —| > Pa . = 0, (13.3,11)
Oy, Oz, o
Crg Cing + 5Co, e

RANGE OF VALIDITY OF THE POINT APPROXIMATION

It should be observed at the outset that the only excitation of the lateral
modes that can exist in this approximation is that provided by v,. In fact
comparable inputs may arise from the spanwise gradients in w, and u,,
which are explicitly excluded in this approximation. It must therefore be
considered of limited usefulness for caleulating lateral response.

In considering the validity for longitudinal response, we must ascertain
for what limiting values of (Q,, ) or (4;, ;) the airplane of Fig. 13.5 can be
considered to be vanishingly small. We consider the limits on Q; and Q,
separately.

For Q, we use the criterion that the complex amplitude of the lift on a
finite wing flying through a sinusoidal inclined wave of upwash shall not
depart too far from its value at k = 0. This problem has been solved by
Filotas (ref. 7.16), and from his results we may take as a reasonable upper
limit k& = .05. It follows that the range of validity is

Q g < .05

» (13.3,12)
LA
g .05

For an airplane with mean chord of 20 ft, this yields Q, < .005, and as shown

on Fig. 13.6 for large-scale turbulence a small part of the turbulent energy is

contained in the spectral components of wavelength shorter than this. This

fraction increases rapidly, however, with decrease in L or increase in chord.

For the limit on Q, we again use Filotas’ result for finite wings. He finds
that the effect of spanwise variation is given by the factor

2 %’)

Qb 2
where J; denotes a Bessel function of the first kind and b is the wing span.
This factor is unity when Q, = 0, and decreases by roughly 10 9 at {2,5/2 = 1.
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We therefore take this value as the upper limit for Q, in the point approxi-
mation, i.e.
— <
2
Ay
~ > 17
b
For an airplane of span 100 ft, the upper limit on Q, is 2 x 1072 Its effect
is not immediately apparent, however, as was the case with the Q, limit.
To evaluate it, we must calculate the truncated one-dimensional spectra

1
(13.3,13)

o,
DHQy) = f_n, ¥,(Qy Q) 40, (13.3,14)

in which the integration excludes those wave numbers that exceed the valid
limit. These truncated spectra cannot be evaluated explicitly in terms of
elementary functions for the von Karmén spectra, but can be for the Dryden
spectra. Formulae and graphs of the latter are given in ref. 13.10. To show
the effect of truncation, ®3(Q,) has been evaluated numerically for the von
Kéarman spectrum, with L = 5000 ft, 5 = 200 ft, and Q; = 2/b. The result
is shown on Fig. 13.6. It is seen to be quite close to the basic spectrum @,
for these values of scale and span, the difference being confined to the high
wave numbers. The areas under ®,, and @3 differ by only a few percent.
For smaller scale of turbulence the difference increases.

In summary we may conclude that for many cases, especially for large-scale
turbulence and small airplanes, the point approximation can give useful
results of good accuracy for the longitudinal rigid-body responses. It is
probably better, and certainly simpler, to use the basic (not truncated) one-
dimensional spectra, on the grounds that including the small contribution
from the short-wavelength components of the spectrum with an inaccurate
theory is better than leaving them out altogether. On the other hand, no
such general statement can be made about the responses in the structural
or lateral rigid-body modes.

THE FINITE AIRPLANE

The finite extent of the airplane is seen to be important when significant
variations of gust velocity can occur between one point and other—e.g.
between right and left wing tips, or between wing and tail. An example of
these effects for a wing is seen in the experimental results of Nettleton (ref.
13.14), a sample of which is shown in Fig. 13.8. This is a rather extreme case
in that the scale of the turbulence L is about equal to the wing chord. The
aspect ratio is effectively infinite. Here w is the upwash measured a short
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Fia. 13.8 Spanwise cross-correlations of a wing in small-scale turbulence.

distance in front of the wing, L is the lift measured on a small strip of wing,
Ay is the spanwise separation of two lift strips, or of one strip and the upwash
probe, and 7* is the time delay for which R, r(Ay, 7) is a maximum. A rel-
atively small correlation length for w is seen to lead to a larger correlation
length for (w, L) and a still larger one for (L, L).

To allow for such effects, i.e. to remove altogether or in part the limitations
we found above on wave number, naturally entails some cost in additional
complexity of analysis or experiment. We outline below the principles of
five methods of doing this that seem adequately to span the spectrum of
possible approaches, although they are not all-inclusive. In all the analysis
methods the approximation is made that the airplane has no significant z
dimension, i.e. that variations of the gust field with z are negligible. The tur-
bulence is then characterized by a two-dimensional spectrum function
¥(Q,, Q,) or its associated correlation function. Each of the methods has
advantages and limitations, and the choice for any particular study will re-
flect the problem itself, the kind and extent of aerodynamic information
and computing machinery available, and the tastes of the analyst.

THE “PANEL” METHOD (ref. 13.5)

In this method the principle aerodynamic surfaces are divided into N
panels, as illustrated in Fig. 13.9. At a reference point of the nth panel the
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Fic. 13.9 The panel method.

turbulent velocities are [v, (t), v, (t), w, (1)], and the gust vector g is the 3NV
column of all these components. The force vector is then

f=1g (13.3,15)

where fis an (M x 1) vector, M being dependent on the problem, and T =
(t;] is an (M x 3N) matrix of aerodynamic coefficients. To carry out the
analysis of f and subsequently of the spectra of vehicle response one must
first evaluate all the 3MN transfer functions ¢y(s) and then apply the
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input/output theorem (3.4,48). The latter includes all the cross-spectral
densities of the components of g, which do not all vanish.

When the method is applied for one velocity component only, say w,,
and for a relatively small number of panels, the matrix T is not excessive
in size. The time functions for the input elements are obtained by using
(13.3,2), and the relevant cross spectra are derived from them (note that in
this formulation each input and output quantity is a function of time only).
Consider for example the w, components at the mth and nth panels, w, (t)
and w, (¢). The cross-correlation is

B (1) = w, (8) - w, (¢ + 7)

which by using Fig. 13.9b we can identify as

'R"mn(T) = R33(‘§1 + Ve'r, 52; 0)

where &, and &, are as shown, and R, is obtained from (13.2,6) as

By = 0'29{(51 + Ve7)2 + 522}-

g(&) for the von Karmén model is given by (13.2,18). The Fourier integral
of R,,.(7) is then the required one-dimensional input spectrum

B = — [ Rppyeior dr.

2ar —o0

For further details of the panel method the reader is referred to ref. 13.5
and the literature cited therein.

SKELTON’S METHOD

A method proposed by Skelton (ref. 13.11) for a study of a VTOL airplane
is in some respects similar to both the preceding and following methods,
yet different from each. In it three points on the vehicle, for example two
wing tips and the tail, are used to identify nine inputs—three gust components
at each of these three control points, thus

g = [ugl, Vgpp oo s wga]T,
a (9 X 1) vector. The method is therefore similar to the panel method in that
the gust vector is defined by the turbulent velocities at a discrete set of
points. To compute the aerodynamic transfer functions Skelton assumes
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that the disturbance velocity field is linear in both = and y, so that a change
in w, for example implies a change in w, over the whole vehicle of an amount
proportional to the perpendicular distance from the line passing through
points 2 and 3. In making an assumption about the whole velocity field
associated with each input it resembles the following method. The complete
gust matrix T in this formulation of the analysis, for six degrees of freedom
would be a (6 X 9) matrix. However it would with the usual assumptions
separate into two smaller matrices for lateral and longitudinal subsystems.
For further details the reader is referred to ref. 13.11.

THE POWERS SERIES METHOD

A method proposed by the author (refs. 13.9, 13.10) is a “natural”’ ex-
tension of the point approximation to higher order. In it the velocity field
of the airplane is expanded in a Taylor series around the C.G. Thus a typical
component such as w, would be described by

wy(x, ¥, 1) = w,(t) + w, ()r + w,, ()y + Jw, ()2* +--- (13.3,16)

in which w,(t), w, () - - - denote values of w,, dw,/0x - - - at the C.G. Since
the velocity field is now completely fixed by the coefficients of series like
(13.3,16), the vector describing the gust field is the column of all these
coefficients. In ref. 13.10 the elements of the vector are separated into those
that produce longitudinal and lateral forces, i.e.

uy — —
vg
wg
v,,
u,
w oy
g = 0z D g = w, (13.3,17)
v, v
L a

where only the coefficients of the linear terms in the Taylor series expansions
have been listed. The number of terms retained fixes both the domain of
validity in wave number space and the complexity of the analysis.

We consider now the limits of validity of the first-order Taylor expansion
corresponding to (13.3,17). The method of ref. 13.9 [Eqgs. (9.1) et seq.] when
applied to the linear part only of the velocity field yields values of Oy and
C,, in good agreement with the exact Sears function for k << .5. Thus the
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limit on Q, is given by [cf. (13.3,12)]
é
Qlé < .b

hse
é

or (13.3,18)

A large gain in the valid range of Q, (one decade) is obtained relative to the
point approximation, but only at the cost of using transfer functions for
unsteady oscillatory motion to represent the aerodynamics. If quasi-steady
aerodynamics is used (e.g. G, = Cr_ ete.) then (3.3,12) still holds. It may
well be questioned why the power-series method should be used at all with
unsteady aerodynamics—why not preferably go directly to the exact two-
dimensional transfer functions for gust penefration (see Ribner’s method
below)? The advantage, if any, of this method rests in the availability, or
ease of obtaining, results for oscillatory translation and rotation of the
vehicle.} The theoretical and experimental problems posed by the oscillatory
boundary condition have proved more tractable in the past than that of the
“running wave” characteristic of gust penetration; solutions for oscillatory
motions have been vigorously pursued in connection with flutter analyses,
and measurements of oscillatory transfer functions, although by no means
easy, are much simpler than those for gust penetration.

The limit on Q, is assessed from a consideration of the rolling moment
acting on the wing. An argument based on symmetry considerations (only
antisymmetric distributions of velocity produce rolling moments) shows that
an expansion in wave number would be of the form

) b\2
C, = ae™Qy— — bl Qy=}+ - - - (18.3,19)
l 2 29

Filotas’ approximate solution for rolling moment can in fact be expressed
in this form, with & = L. Now the linear power series approximation, as we
show below, is equivalent to retaining only the first term in (13.3,19). Hence
the error can be assessed from the ,® term, leading to the limit for about
109, error, ;b << 2 which is the same as (13.3,13) for the lift in the point
approximation.

In summary then, the first-order power series method, with quasi-steady
aerodynamics, has the effect of extending the point approximation to embrace
lateral responses, with the limitations

Afe>60  Ab>a

If unsteady oscillatory aerodynamies are used, the 2, limitation is relaxed
to Ayfé > 6.

+ The method was presented at a time when no “two-dimensional Sears function”
was available,
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We turn now to the gust transfer function for the power series method.
As an example let us consider the equations for rigid-body response, and
use the first-order series. Then from (13.3,17) we get [cf. (13.3,7)—for sim-
plicity of notation, the subseript g has been omitted here]

A A e A A
GTu GTw GTu, GTwz GT’U,,
A

A A A
GDu GDw GDu,, GD'w, GDv,,

Tl = A A A A A (13-3,20)
GLu GLw GLu,a GL'w:E GL@:,,
Cou Cnw Gnu, Cro, G,

with an obviously similar matrix for T,. In the quasi-steady approximation,
some of these matrix elements would be neglected, and the remaining ones
would be expressed as aerodynamic derivatives. We have already discussed
the aerodynamic forces associated with (u,, v,, w,), i.e. the elements of the
first two columns above, which are identical with (13.3,7). The remaining
elements describe the effect of “gust-gradients” on the airplane. The gradient
terms w,, w, correspond to linearly varying downwash over the airplane
surface, which provides boundary conditions on relative motion precisely
equivalent to rigid-body pitch and roll rotations of the vehicle—see Fig.
7.13, which illustrates the w, case. The equivalent rates of pitch and roll
are readily found for an upwash wave of unit amplitude given by [see (13.3,3)]

wg(x’ y,t) = i1V et 2+ Q50) (a)
0 ,
ie. P, = — il ) —w, = —ildw,
X 9y o () (13.3,21)
P, = -——wg”t*
ow,
and b= B o = iQw, )
g, = qt*
note that QVt=Q, g § =i

Associated with these velocity-gradient terms are aerodynamic forces and
moments exemplified by

AC, = O,Tﬁg = —C, t*w,
AC,, = Oy, t*w,
ete.

The x and y gradients of u, and v, that appear in (13.3,17) do not have
correspondingly elegant general interpretations. For example, the influence
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of u, on unswept wings of large aspect ratio is clearly like that of yaw rate,
with equivalent value
=2 — 0 =i, (13.3,22)
oy lo ¢

However, for small aspect ratio or swept wings the situation is not so
simple. For a further discussion of the gradient terms, see ref. 13.10.

Finally, the matrix of input spectra is needed to complete the analysis.
For the vector g; of (13.3,17) and for isotropic turbulence this would be
the 5 x 5 Hermitian matrix:

®, 0 o0 0 @

&= - - @, 0 O (13.3,23)
. . Dy 0
) ®’U"U

The zero elements arise from isotropy (ref. 13.10).

Formulae and graphs of the above spectrum functions associated with
the Dryden model of the turbulence are given in ref. 13.10. (No corresponding
information is available for the von Kérman spectrum, although it can
readily be derived.)

RIBNER’S METHOD

The method proposed by Ribner (ref. 13.4) does not fit the pattern of
the foregoing ones in that no function equivalent to g(¢) is explicitly defined.
Instead the response is found as a superposition of responses to individual
spectral components like that pictured in Fig. 13.5. Thus let the w, component
of a single wave be described by [cf. (13.3,21a)]

dWeikfei(glac-f.sz)

This time-periodic velocity field induces periodic incremental pressure dis-
tributions that integrate to periodic incremental forces and moments, of
which for example the lift is described by

dLeilcf
The relationship between the lift and the velocity is given by an aero-
dynamic transfer function, I'(€),, Q,), i.e.
dL = T(Q,, Q,) dW

(note that & = Q,é/2). The mean-square incremental lift produced by the
whole turbulent field is then given by the basic response theorem [(3.4,51)
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extended to two dimensions]

= f f IT(Q), Qo) Pas(Qy, Qp) dQ, O,
and the one-dimensional spectrum for lift is

(I)LL(QI) :f IF(QI’ Qz)|2 33(91: Qz) sz

Any vehicle response variable such as angle of attack or load factor is treated
like the lift above, but the transfer function is of course different.

The heart of this approach is the availability of aerodynamic transfer
functions like T", of which a whole matrix is in general required for all the
generalized forces and moments associated with rigid and elastic degrees
of freedom, and with u,, »,, and w, inputs. There are methods available
for calculating some of these transfer functions for some wing shapes (refs.
7.16, 13.12), and for propellers (ref. 13.13).

In view of the fact pointed out previously, that the spectra of vehicle
responses to w,, v,, w, cannot in general be simply superposed (owing to
the nonvanishing of certain cross-correlations or cross spectra), the three
velocity components should, strictly speaking, be considered simultaneously.
Ribner’s method has not yet been explicitly extended to cover this case.

THE SIMULATION METHOD

When the system equations are nonlinear or the input is nonstationary
the foregoing methods of analysis all fail. In such situations one approach
is to construct an appropriate mathematical model of the system—analog or
digital —and feed in random inputs representing the turbulence. The statisti-
cal properties of the output can then be determined by analogue or digital
analysis techniques.

In this connection mention should be made of a possible experimental
technique that does not appear to have been applied yet. It would consist
of exposing a rigid model of the vehicle to a wind-tunnel flow simulating
the real turbulence. Force transducers could then produce time records of
the actual input forces, thus bypassing the whole problem represented
by the second box of Fig. 13.1. The measured forces and moments provide
directly the required inputs to the mathematical model, which could be
connected on line. In transient situations an ensemble of records could supply
the appropriate statistics.
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134 AN EXAMPLE

We shall calculate the longitudinal response of the jet transport used in
previous examples, cruising at 30,000 ft through turbulence of 5000 ft scale.
In this situation the point approximation is valid, and (13.3,7 and 11) give
the needed input function. For the aerodynamic derivatives we use the same
numerical values as in Sec. 9.1. The system equations are used in Laplace
transfrom form, i.e. (5.14,2) with «, and y, both zero.

We noted in Sec. 11.2 that the phugoid oscillation could be suppressed by
the pilot by a simple feedback of pitch-attitude to the elevator deflection.
We provide for this in the following equations by including the control
equation Ad, = —K6. On combining the equations we get:

p— ng
A(s)y(s) = B(8)[ ]

Wy

(13.5,1)

where (i,, @,) are Laplace transforms of the nondimensional gust velocities
(#,, ¥,), and

{Cr, — Cp, — 2y5) Cz, — Co, 0 —Cw 0
~(Cz,+ 20w) | —(Cs,+ Cp, +2us) | 22—y 0 | —Cy
—Cm,, ~Cmy 4 50mg) | —Om,— L) i 0 | —Cumy | (13.5,2)
[} 0 1 —s 0
0 0 0 K 1|
F=I[AV Aa g A6 AG,T (13.5,3)
_OTV - CDV _ODa_
—0g, i —0p, ]
B=| -¢C,, |—C, (13.5,4)
0 0

The required frequency-response functions are found by substituting s =
th(=1Q,V t*) and solving the resulting complex algebraic equation for the
ratios §,(ik)/a@, and F,(ik)/®,.

A response variable of interest not directly included in the above is the
load factor. It is defined by An = AL/W. The lift increment AL is taken
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as the sum of two parts, that due to aircraft motion (Ax, A¥) and that due
to atmospheric motion (u,, w,). The result obtained is

n O Aa AV
— = 1) 42—
@,  Cp\®, B, (@)
A ©, ha AV (13.5,5)
———e 2(—-— —1 )
i, C’We a, i,

Some of the more interesting transfer functions and output spectra are
plotted in Figs. 13.10 and 13.11. In Fig. 13.10 we show the squares of the
moduli of the transfer functions for speed, angle of attack, pitch attitude,
and load factor for vertical gust input. Both stick-fixed and controlled
motion are shown. All the motion responses fall off rapidly at high wave
number (or high frequency), but the load factor response tends to the constant
value associated with flight on a rectilinear path at constant speed (i.e. no
motion response). At wave numbers above 10-2 the load factors are pro-
gressively more approximate because of the neglect of unsteady aerodyna-
mics. Much more accurate values could be obtained by the simple expedient
of multiplying these by a reduction factor for finite wings in sinusoidal
gusts—obtained from the generalized Sears function as given by Filotas
(vef. 7.16). [The appropriate factor is actually Filotas’ [S(k,, 4)[2.]

The effect of the simple elevator-control law (the simple gain is not, of
course, the optimum control law for reducing gust response) is seen, as
expected, to eliminate the phugoid peaks and substantially to reduce the
pitch response for all frequencies lower than that of the short-period mode.
With respect to « response, the airplane is seen to act like a low-pass filter,
with cut-off frequency at the short-period mode.

On combining these transfer functions with the input spectrum, we get
the output spectra, e.g. for speed response

2

AV
- ®33(Q1) (13-5,6)

(DVV(Q1) =

g

ete. These are shown on Fig. 13.11. (Note that these are two-sided spectra—
twice the area gives the mean square.) It is seen that the point approximation
is quite adequate in this example for giving the responses in the motion
variables (AV, Aa, 6) but is less satisfactory for the load factor, for which
a substantial fraction of the mean-square value is contributed by frequencies
above the limit of validity of this approximation. The use of a corrected
transfer function as noted above would improve the accuracy of this result
appreciably.

If the gust input vector were extended to include the gust-gradient term
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ow,[0x = q,, then the right-hand side of (13.5,1) would read

ﬁy

s =B(s)| ®, (13.5,7)

q
where g, is the Laplace transform of §, = ¢,#*, and B'(s) would be like B(s)
but with the additional column [0 — Cp — Oy 0 0]%. In this case the
general response theorem (3.4,49) would have to be used to calculate outputs,
since the cross spectra of both u, and w, with ¢, are not zero (ref. 13.10). This
would entail the caloulation not only of the moduli of the transfer functions,

but of their real and imaginary parts. [An alternative but equivalent method

for this case was given in Dynamics of Flight—Stability and Control (Sec. 10.6),
that does not use the input cross spectra.]

13.5 GUST ALLEVIATION

The term gust alleviation interpreted in its broadest sense can mean the
reduction of any response variable associated with the turbulence. If in
these responses we include structural stresses and vehicle accelerations as
well as attitude and trajectory variables it may well be that reducing one
response increases another. For example, if pitch attitude is controlled to
try to keep the lift constant, then a reduction in AL? would be associated
with increases in A62 and q_2 The term gust alleviation is sometimes used in a
more restricted sense, applied to the load factor only.

‘When one tries to control load factor by a feedback control to the elevator,
the inherent time lag associated with pitching motion is usually such as to
make this approach not highly effective (ref. 13.15). When a wing flap
control is simultaneously used, however, to control the wing lift almost
instantaneously in response to aircraft normal acceleration, pitch rate, and
pitch attitude, reductions of an order of magnitude in An? can be achieved
(vef. 13.186).

This illustrates the direction in which we must go in striving for ideal
gust alleviation (no doubt unachievable in practice). That is, the per-
turbations in all forces and moments produced by the gust field should
be just cancelled by automatic fast-acting aerodynamic devices, such as
flaps and spoilers, circulation control, etc. The ideal result would be a vehicle
that would have the same motion and structural stresses in rough air as in
smooth—i.e. rectilinear translation and unity load factor, but with its various
automatic gust alleviation devices being very active indeed. To be successful
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such a system would probably need gust field sensors (perhaps angle of
attack and sideslip vanes much like those used in the measurement of
turbulence by aircraft) located at strategic points such as wing tips and tail.
With suitable input-rate terms incorporated, sufficient lead time for actu-
ating the aerodynamic devices might be obtained. There does not appear
to be any fundamental technological impediment to achieving very sub-
stantial reductions in gust response by this approach. Considerations of

weight, cost, and reliability, however, may present serious economic and
operational impediments.
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Errata

Some of these errata are simple typos, while others are more technically important.

The symbol = means “should be replaced by.”

Line n T means “line 7 from the bottom.”

The collaboration of Prof. P.C.Hughes in the preparation of these Errata is gratefully acknowledged.

tine3 ™
1 1
' -nH)+o’ (s—n) +@’
tine2 T
Table 3.3 > Table 2.3
line 10:
£=7 > =07
Eqs. (3.4,47) and (3.4,48):
4T > 4AxT
in five places.
Eq. (3.5.8):
AT > 4xT
in two places.
parag following Eq. (4.6,2), line 1:
Lab > ’Lnb
first line of Eq. (5.1,6):
Pz > qz

Page 148] Fig. 5.4, Block 4, Input 1:

Py By 2 Gy By

Page 150, Fig. 5.6, Block 4:

Pv: Ty 2 dyp. Iy

Fig. 5.7, Block 2:
b > p

line 2 after Eq. (5.13,14):
dimensional = nondimensional

580

Eq. (5.15,7), eighth equation:
Should read
(Z2,) =Z, cose + X sing

Eq. (6.5,6) should be labeled Eq. (6.6,5)
Eq. (6.10,11):
Chqé > Cheqé
[Page 241]Eq. (6.10,12):
CthLu > Cheg L,
Egs. (7.1,2) and (7.1,3):
ca > C. .«

Fig. 7.4, caption:

“. .. (b) Constant thrust and power, and z, = 0.~

Eqs. (7.3,4) and (7.3,5):

siny > tany
Eq. (7.3,6¢), RHS:
sﬁ _p.ZtPCz/Z
W\N2w ¢
[Page 252)Eq. (7.3,6d), RHS:
=§£ LZTPQ/Z
2WN2w €

Eq. (7.3,6d), RHS:

Insert equation label (7.9,3) to the right of the equation
for C,

heq *



Page 284| Eq. (7.10,11), RHS:

Delete minus sign, i.e.,

—2ay, %
oo
Eq. (87.5):
Should read
AN, =-m'E’
2
26, (8)
. Vb

J

Table 8.1:

Regarding the expression for AC, :

-aV, (2%+g—?) > —a.V, (2%+ aac:)

6 2[5 e (4]

7 J

line 8:
[see (7.8,5)] > [see(7.8,2)]
Eq. in line 3:
v dp | Vidp
ge d gc dz

and

Page 351 line 4 above Fig 9.16:

Remove the comma in “The period goes to infinity, and

»
N, ,tozeroat. ..

lineGT:

Should read
B:p:7=-0.0136:1.0:-0.0291
Eq. preceding Eq. {9.7,13):

Nr > N7

line 13T -

Should read:

B

¢ ... matrix. For the given rudder input it yields asymptotic
slopes of —2 for ﬂand ¢, and —1 for ¥ . These
slopes are reached approximately by @=0.1 for rand
ﬂ , but not for (Z) ”

[pages 139 fes7]

The heading “DUTCH ROLL APPROXIMATION" should be
the first line on p. 436, and the heading “SPIRAL/ROLL

Errata 581

APPROXIMATION” should directly precede the last
paragraph on p. 436.

Page 444 Eq. (10.7,3), 2™ row of square matrix, last

element:

[age 445]tine s 1

*. .. can change sign.” = “. . . can change from positive to
zero.”

[Page 445]Eq. 10.7,7):
Should read
(71, -1)+C, T >0
Eq. (10.7,8), numerator:
G, > C,
Eq. (11.3,7), second integral on RHS:
dem > J.x(g dm
second line of Eq. (11.3,11):
Should read
Fo= ZTW =k, P+k,J

J
Page 472] just below Eq. (11.4,4):
Table 9.9 > Table 9.6
[Bq.] (114,3) > [Eq] (11.4,4)

Page 473/ Eq. (11.4,7), the 3-3 element of the square

matrix:
G B ",
I I
Page 481,|just below Eq. (11.5,6):
Should read
1.2C;
Cp=02+—"2L
r
Page 517,|Eq. (12.8,5):
Should read

-1 -1
CAP:m:[ Lazj :(l’a_J
W, w,

[Pages 556]&[557]and[page 562

Egs. (13.5,1)(13.5,7) should be labeled (13.4,1)-
(13.4,7).
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