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Abstract A new three-dimensional chaotic system
with fan-shaped Poincaré maps is proposed. Based on
merely six terms, the system is easy to implement.
Its dynamic behaviors, such as equilibrium points,
Poincaré maps, power spectra, Lyapunov exponent
spectra, bifurcation diagrams and forming mechanism,
are analyzed theoretically and numerically. Results of
theoretical analyses and numerical simulations indicate
that the proposed system possesses complex chaotic
attractors. Its equilibrium points are unstable, and the
system can keep chaotic when its parameters vary in a
wide domain. Furthermore, circuit simulations of the
system are discussed. The results of numerical simula-
tions and circuit simulations coincide very well. By
virtue of its complex dynamic behaviors and wide-
range parameters, the system can be adopted in some
application fields where wide-range parameters and
complex behaviors are usually preferred, such as secure
communication, data encryption, information hiding.
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1 Introduction

Chaos, known by its deterministic, unpredictability and
extremely sensitive dependence on initial conditions,
stems from nonlinear systems [1]. Since Lorenz dis-
covered a three-dimensional autonomous chaotic sys-
tem [2] with quadratic terms, many chaotic systems
have been proposed and studied [6–19]. Among the
existing chaotic systems, some belong to three dimen-
sions and others belong to four or higher dimensions.
Because of their simple algebraic structures for easy
implementation, some three-dimensional chaotic sys-
tems are welcome in many engineering application
fields, for instance, the Rössler system [3], the Gen-
esio and Tesi system [4], the Sprott system [5,6], the
Chen system [7] and Lü system [8], the Liu system [9]
and so on. By now, Chaos can be applied inmany areas,
such as mechanics [20], flow dynamics [21], biomed-
ical engineering [22], communications [23] and infor-
mation security [24]. Due to the widely applications of
chaotic systems in various fields, it is meaningful to
design and study new chaotic systems that are simple
to implement.

In our research, we designed a new three-dimensio-
nal chaotic system with only six terms. The system is
not only convenient to realize, but also possess pecu-
liar fan-shaped Poincaré maps. Moreover, the system
can keep chaotic in a wide range of parameters, so it
would be a good candidate for some engineering fields
such as secure communications, information security,
etc.
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This paper is organized as follows: Mathematic
model, dynamical features of the new three-dimensio-
nal chaotic system are briefly introduced in Sect. 2;
dynamical behaviors such as equilibriumpoints, Poinc-
aré map, power spectra, Lyapunov exponent spectra
and bifurcation diagrams of the system are discussed in
Sect. 3; forming mechanism of the system is described
in Sect. 4. Circuit simulations are discussed in Sect. 5.
Section 6 is the conclusions.

2 A new 3-D chaotic system

A new three-dimensional chaotic system is established
by the following equations.

⎧
⎨

⎩

ẋ = −ax + by
ẏ = −xz
ż = cx2 + xy − d

(1)

where a, b, c and d are the system parameters. In the
equation, nonlinear terms are formed by one cross-
product and one square term. Figure 1 shows phase dia-
gramsof the system (1)when (a, b, c, d) = (1, 2, 1, 3),
with initial states (x0, y0, z0) = (0.1, 0.1, 0.1).

Figure 2 shows phase diagrams of the system (1)
when (a, b, c, d) = (1, 5, 1, 3). From Figs. 1 and 2,
it can be seen that the system exhibits complex and
strange attractors. Figures 3 and 4, respectively, show
the Poincaré maps projected in the y–z, x–z and x–y
plane with different parameters.

For system (1), ∇V = ∂ ẋ
∂x + ∂ ẏ

∂y + ∂ ż
∂z = −a.

In order to ensure the dissipation of the system, it
is required that −a < 0. Then the system can con-
tract at an exponential rate e−at . When a is positive,
the system converges at a rate of e−at . Therefore, each
volume cell containing the system orbits finally con-
verges into zero as t → ∞. In order tomake themotion
of the system (1) settle onto an attractor, a > 0 is
required.

3 Some properties of the new chaotic system

3.1 Symmetry

The system (1) is symmetrical under the transformation
(x, y, z) → (−x,−y, z). Besides, the system (1) is
invariant under the transformation (x, y, z, a, b, c, d)

→ (x,−y,−z, a,−b,−c,−d).

Fig. 1 Phase diagrams
when (a, b, c, d) =
(1, 2, 1, 3): a x–y, b
y–z, c x–z, d x–y–z
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Fig. 2 Phase diagrams when (a, b, c, d) = (1, 5, 1, 3): a x–y, b y–z, c x–z, d x–y–z

Fig. 3 Poincaré map when (a, b, c, d) = (1, 2, 1, 3): a x = 0, b y = 0, c z = 0

Fig. 4 Poincaré map when (a, b, c, d) = (1, 5, 1, 3): a x = 0, b y = 0, c z = 0
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3.2 Equilibrium points and stability

For calculating equilibria, let

⎧
⎨

⎩

−ax + by = 0
−xz = 0
cx2 + xy − d = 0

(2)

When bd
a+bc > 0, the system possesses two equi-

librium points E1

(√
bd

a+bc ,
a
b

√
bd

a+bc , 0
)
and E2

(
−

√
bd

a+bc ,− a
b

√
bd

a+bc , 0
)
.

For an equilibrium point E(x, y, 0), its Jacobian
matrix is

JE =
⎡

⎣
−a b 0
0 0 −x

2cx + y x 0

⎤

⎦ (3)

Let |λI − JE | = 0, we get

λ3 + aλ2 + x2λ +
[
(a + 2bc) x2 + bxy

]
= 0 (4)

For E1

(√
bd

a+bc ,
a
b

√
bd

a+bc , 0
)
and E2

(
−

√
bd

a+bc ,

− a
b

√
bd

a+bc , 0
)
, we have

λ3 + aλ2 + bd

a + bc
λ + 2bd = 0 (5)

According to criterion, Eq. (5) has one negative real
root and one pair of complex conjugate roots with pos-
itive real part if and only if

abd

a + bc
− 2bd < 0, 2bd > 0 (6)

So, when bd > 0, bc > 0, a > −bc, the equi-
librium points E1 and E2 are unstable. According to
Sect. 2, a > 0 should be satisfied. Therefore, we can
get the following remark.

Remark 3.1 Equation (6) is satisfied and the E1 and
E2 are all unstable saddle points when either of the
following conditions is satisfied:

(1) a > 0, b > 0, c > 0, d > 0.
(2) a > 0, b < 0, c < 0, d < 0.

Theorem 3.1 When a > 0, b > 0, c > 0, d > 0 or
a > 0, b < 0, c < 0, d < 0, the vector fields of the
system satisfy the conditions for generating chaos.

Proof Let A = a2 − 3bd
a+bc , B = abd

a+bc − 18bd, C =
(

bd
a+bc

)2−6abd, D = B2−4AC,U = Aa+1.5(−B+√
D), V = Aa + 1.5(−B − √

D).
We get the following solutions of Eq. (5):

⎧
⎪⎨

⎪⎩

λ1 = −a−
(

3√U+ 3√V
)

3

λ2,3 = −a+0.5
(

3√U+ 3√V
)

3 ± j

√
3
(

3√U− 3√V
)

6

(7)

According to Shil’nikov theorem, for the eigenval-
ues γ and σ ± jω, the vector fields of the system sat-
isfy the conditions for generating chaos if γ σ < 0 and
|γ | > |σ |. Here, let W = 3

√
U + 3

√
V , then

{
γ = −a−W

3
σ = −a+0.5W

3
(8)

In fact, when a > 0, b > 0, c > 0, d > 0 or a >

0, b < 0, c < 0, d < 0, we obtain

Aa + 1.5(−B) = a3 + 22.5a + 27bc

a + bc
bd > 0 (9)

Then, we can get U > 0 and |U | > |V |. Therefore,
W = 3

√
U + 3

√
V > 0. According to Eq. (8), we have

|γ | > |σ |. That is to say, when a > 0, b > 0, c >

0, d > 0 or a > 0, b < 0, c < 0, d < 0, the vec-
tor fields of the system (1) satisfy the conditions for
generating chaos. The proof is finished.

3.3 Lyapunov exponents and Lyapunov dimension

Lyapunov exponent is a quantity that indicates the aver-
age exponential rates of divergence or convergence of
adjacent orbits in phase space. If a system is of one
or more positive Lyapunov exponents, it is proved to
be chaotic. When a > 0, b > 0, c > 0, d > 0 or
a > 0, b < 0, c < 0, d < 0, the system has at least
one positive Lyapunov exponent.

We calculate the Lyapunov exponents using the
Wolf algorithm. When (a, b, c, d) = (1, 2, 1, 3), the
Lyapunov exponents are λL1 = 0.4135, λL2 =
−0.0006, λL3 = −1.4129. Its Lyapunov dimension
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Fig. 5 Bifurcation
diagrams: a versus a,
b versus b

Fig. 6 Bifurcation diagram
and Lyapunov exponent
spectrum versus d:
a bifurcation diagram,
b Lyapunov exponent
spectrum

is 2.2922 . When (a, b, c, d) = (1, 5, 1, 3), the Lya-
punov exponents are λL1 = 0.4845, λL2 = −0.0021,
λL3 = −1.4824. Its Lyapunov dimension is 2.3254 .
The attractor of the system (1) is of fraction dimen-
sion.

Figure 5a shows the bifurcation diagram of the sys-
tem (1) versus a with (b, c, d) = (2, 1, 3); Fig. 5b
shows the bifurcation diagramversusbwith (a, c, d) =
(1, 1, 3). Besides, with different ratio of a and b, the
system shows the strange-shaped attractors with differ-
ent layers. This is obvious according to the difference
between Figs. 1 and 2.

Figure 6a, b shows the bifurcation diagram and Lya-
punov exponent spectrum of the system versus d with
(a, b, c) = (1, 2, 1).

3.4 Time-domain waveform and frequency spectrum

When (a, b, c, d) = (1, 2, 1, 3), we get a waveform
x(t) of the chaotic system (1) shown in Fig. 7a and its
frequency spectrum Log|x | shown in Fig. 7b. We can
see from Fig. 7 that the system exhibits complex time
behaviors and the bandwidth is about 0–15Hz.

4 Forming mechanisms of the system

In order to reveal the forming mechanisms of the
dynamical system, we add a control parameter u to
the system:

⎧
⎨

⎩

ẋ = −ax + by
ẏ = −xz + u
ż = cx2 + xy − d

(10)

We set (a, b, c, d) = (1, 2, 1, 3) for the following
analyses. When u = −1.5, one half part of the original
attractors is generated as shown in Fig. 8; when u =
1.5, another half part is obtained as illustrated in Fig. 9.
That is, Fig. 1 is separated into Figs. 8 and 9 by varying
the control parameter u.

Figure 10 demonstrates the dynamical behavior
development of the controlled system with (a, b, c, d)

= (1, 2, 1, 3).

When |u| ≤ 1.62, the system shows complex orbits
and chaotic behaviors.
When 1.63 ≤ |u| ≤ 2.57, the system demonstrates
period-doubling bifurcations.
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Fig. 7 Waveform and
frequency spectrum of x :
a waveform, b spectrum

Fig. 8 A half part of attractor when u = −1.5: a x–y, b y–z, c x–z

Fig. 9 Another half part of attractor when u = 1.5: a x–y, b y–z, c x–z

When 2.58 ≤ |u| ≤ 7.1, the system orbit becomes
a limit cycle.
When |u| > 7.24, the system orbit converges to a
point.

To be more specific, bifurcation diagram of the con-
trolled system versus u is shown in Fig. 11, where the
dynamical features of the system are evident with dif-
ferent u.

5 Circuit simulation of the system

In order to implement the system (1) with analog inte-
grated operational amplifiers and other electronic ele-

ments, the system orbits should be roughly confined
into (−14, 14). We can see from Fig. 1 that the orbits of
system (1) exceed (−14, 14). Therefore, we construct
the following system:

⎧
⎨

⎩

ẋ = −ax + by
ẏ = −kxz
ż = ckx2 + kxy − d/k

(11)

where k �= 0. Obviously, the system (11) is a shrink
version of the system (1) and orbits of the two systems
are of the same shape. More specifically, the orbits of
the system (11) are 1/k times those of the system (1).
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Fig. 10 Phase diagrams on
the x–y plane of the
controlled system: a
u = 2.7, b u = 2.2, c
u = 1.64, d u = 1.62

Fig. 11 Bifurcation diagram of the controlled system versus u

We use the Multisim 11 to do circuit simulation.
When (a, b, c, d) = (1, 2, 1, 3), we set k = 2 to limit
the orbits of the system (11) into the working voltage
scope of for operational amplifiers and analog mul-
tipliers. Electronic circuit of the system (11) is indi-
cated in Fig. 12, where C1 = C2 = C3 = 1µF,
R1 = R3 = R5 = R6 = R8 = R9 = R14 = R15 =
10k�, R2 = 5k�, R4 = R11 = R18 = 100k�,
R7 = R13 = R16 = 1k�, R10 = R17 = 20k�,
R12 = 40 k�, V 21 = 3V. The circuit can implement
the calculations of the system (11) which is the shrink
version of the system (1). The orbits of the system (11)
should be 1/2 times those of the system (1).

Circuit simulation results are shown in Fig. 13,
where the scales of x- and y-axis are 5V. For (a, b, c, d)

= (1, 2, 1, 3), the attractors shown on oscilloscope
in the circuit simulations are coincide with those of
Fig. 1 obtained by numerical simulations. Because we
set k = 2, the orbits of Fig. 13 are 1/2 times those of
Fig. 1.

For (a, b, c, d) = (1, 5, 1, 3), we change R2 to 2k�
and keep others no change. Its circuit simulation results
are shown in Fig. 14 which is similar to Fig. 2 obtained
by numerical simulations.

Furthermore, we set the shrink version of the system
(10) with control parameter u and ratio parameter k as
follows:

⎧
⎨

⎩

ẋ = −ax + by
ẏ = −kxz + u/k
ż = ckx2 + kxy − d/k

(12)

where k �= 0. Obviously, orbits of the system (12) and
those of the system(10) are of the same shape. The
circuit diagram of the system (12), shown in Fig. 15,
is formed by adding the resistor R19 and the voltage
source VC on the basis of Fig. 14.We set R19 = 40k�
and remain other resistors no change, so u = VC,
(a, b, c, d) = (1, 2, 1, 3) and k = 2. The orbits of
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Fig. 12 Circuit diagram for the system (11) that is the shrink version of the system (1)

Fig. 13 Phase diagrams for
(a, b, c, d) = (1, 2, 1, 3)
shown on oscilloscope
whose scales of x- and
y-axis are 5V: a x–y, b y–z,
c x–z

Fig. 14 Phase diagrams for
(a, b, c, d) = (1, 5, 1, 3)
shown on oscilloscope
whose scales of x- and
y-axis are 5V: a x–y, b y–z,
c x–z
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Fig. 15 Circuit diagram for the system (12) that is the shrink version of the controlled system (10)

Fig. 16 x–y phase diagrams of the system (12) shown on oscilloscope whose scales of x- and y-axis are 1V: a u = VC = 2.7, b
u = VC = 2.2, c u = VC = 1.64, d u = VC = 1.62

the system (12) should be 1/2 times those of the system
(10).

Circuit simulation results of Fig. 15 with different
voltage source VC are shown in Fig. 16, where the
scales of both x- and y-axis are 1V. We can roughly
see that the orbits shown in Fig. 16 are approximately
1/2 times those shown in Fig. 10. That is to say, the
circuit simulation results of the system (12), which is

the shrink version of the controlled system (10), coin-
cide well with the numerical simulation results of the
system (10).

In order to compare the circuit simulation results
with the numerical simulation resultsmore specifically,
we take the following example. We choose 10 groups
of sample data from the circuit simulation results of
the controlled system (12) with u = 2.7 and list the
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Table 1 (x, y, z) sample data of the circuit simulations of Fig. 15
with u = 2.7

No. x y z

1 1.0088 1.2434 0.7575

2 1.1222 −0.2363 2.4084

3 1.1550 1.1715 1.1330

4 1.1667 1.1585 1.1719

5 1.2096 1.0946 1.3316

6 1.2370 1.0337 1.4542

7 1.2756 0.3660 2.1809

8 1.2910 0.7506 1.8537

9 1.1410 −0.1870 2.4013

10 1.0928 −0.3071 2.4146

Table 2 (x ′/2, y′/2, z′/2) sample data of the numerical simu-
lations of the system (10) with u = 2.7

No. x ′/2 y′/2 z′/2

1 1.0088 1.2305 0.7902

2 1.1203 −0.2383 2.4017

3 1.1550 1.1769 1.1153

4 1.1667 1.1657 1.1513

5 1.2100 1.1026 1.3124

6 1.2370 1.0167 1.4702

7 1.2756 0.3531 2.1858

8 1.2910 0.7711 1.8262

9 1.1410 −0.1983 2.4040

10 1.0928 −0.3086 2.4104

(x, y, z) in Table 1. Accordingly, we also choose 10
groups of sample data (x ′, y′, z′) from the numerical
simulation orbits of the system (10) with u = 2.7,
multiply them with 1/2 and list the (x ′/2, y′/2, z′/2)
in Table 2. The (x, y, z) shown in Table 1 and the
(x ′/2, y′/2, z′/2) listed in Table 2 should be very sim-
ilar if the circuit simulation results coincide well with
the numerical simulation results.

By comparing Tables 1 and 2, we can see that the
(x, y, z) sample data of the numerical simulations are
very close to the (x ′/2, y′/2, z′/2) sample data of the
circuit simulations. That is to say, the circuit simulation
results of the controlled system (12) which is the shrink
version of the system (10) are roughly 1/2 times the
orbits of the system (10), for k = 2 and u = 2.7.

From the above analyses, we can conclude that the
results of circuit simulations are consistent well with
those of the numerical simulations.

6 Conclusions

A six-term three-dimensional autonomous chaotic sys-
tem with fan-shaped Poincaré maps is proposed. The-
oretical analyses and numerical simulations prove that
the proposed simple system with only six terms can
keep complex chaotic behaviors within a wide range of
parameters. Besides, circuit simulations testify that the
system can be realized by electronic circuits. Results of
numerical simulations and circuit simulations coincide
with each other perfectly.

As we know, chaotic systems with wide-range para-
meters are usually welcome in some engineering appli-
cations, such as secure communications, information
security, information hiding. Therefore, the proposed
three-dimensional chaotic system featured by simple
structure and wide-range parameters can find its way
in many application fields. It deserves further detailed
investigations on its theoretical analyses and simula-
tions.
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