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1 Introduction

Solitons are solitary waves that propagate with constant velocity while main-
taining their shape. A soliton is a fundamental and widely occurring type of
nonlinear wave. In contrast to typical linear wave-trains, a soliton is highly local-
ized and characterized by a single, well-defined peak—hence the term “solitary
wave.” Remarkably, it maintains its shape during propagation and even after
interacting with other solitons. This stability arises from a delicate balance
between two competing effects: nonlinearity, which causes higher amplitude
waves to travel faster, and dispersion, which tends to spread waves of different
frequencies at varying speeds.[1]

In the nineteenth century, solitons were first observed by the Scottish civil
engineer John Scott Russell. Russell observed that when a canal barge struck
an underwater obstruction and stopped suddenly, the bow wave did not dissolve
into numerous little ripples through dispersion. Instead, a smooth, bell-shaped
crest, approximately a half meter high and independent of the cross-channel
direction, emerged from the forth. He followed the stable and unchanging crest
for several kilometers until it disappeared.[2]

In this paper, we will discuss the derive the solution of the solitons, the
stability of the k-dV equation by using the xxxx method and calculate solitons’
propagation and interaction.

2 Theory

2.1 Characteristics of Russell’s Solitary Wave

This type of wave later termed the “Russell’s solitary wave” or “soliton”. The
solitary wave has the following characteristics:

1. Permanent form: The wave is long and shallow, with amplitude a much
smaller than the wavelength

(λ) :
a

λ
≪ 1.
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2. The speed of the solitary wave is given by:

c2 = g(h+ a) (1)

where:

• c is the wave speed,

• g is the gravitational acceleration,

• h is the constant depth of the channel,

• a is the wave amplitude.

Figure 1: Solitary wave evolution at t= -0.2 , t=0 and t0.2

Figure 1 shows a solitary wave subject to gravitational acceleration g=9.8
m/s in a channel of uniform depth h=2.0 with amplitude a=1.0. Substituting
the given parameters yields c =

√
29.4.

At this time, Russell’s observations conflicted with Airy’s linear wave theory
(1841), which predicted that small amplitude waves could not maintain a con-
stant profile in finite-depth water. This contradiction led to the development of
more advanced nonlinear wave theories.[2]

2.2 Contributions of Boussinesq and Lord Rayleigh

In 1871, Boussinesq and, in 1876, Lord Rayleigh provided theoretical explana-
tions for Russell’s solitary wave. Both based their analyses on the equations of
motion for an ideal fluid, assuming it to be incompressible and inviscid. They
considered the solitary wave to have a wavelength λ0 much larger than the water
depth h, specifically:

δ2 =

(
h

λ0

)2

≪ 1 (2)

where δ2 is called the square of the frequency dispersion parameter.

2.2.1 Boussinesq(Dynamic)

Boussinesq indicated that Airy neglected the vertical acceleration in his wave
theory which is responsible for dispersion. Boussinesq derived the wave profile
as:
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Governing Equation

Boussinesq starts from the shallow water wave equation, modified to include
both nonlinear and dispersion effects:

∂2η

∂t2
− gh

∂2η

∂x2
= gh

∂2

∂x2

(
3

2h
η2 +

h2

3

∂2η

∂x2

)
(3)

where η(x, t) represents the free surface elevation.

Traveling Wave Ansatz

Assume a traveling wave solution:

η(x, t) = η(ξ), ξ = x− ct (4)

Then, time derivatives become:

∂

∂t
= −c d

dξ
(5)

Substitute into the equation and integrate appropriately, simplifying to obtain
an ordinary differential equation in ξ.

Solitary Wave Solution

After simplification, Boussinesq derives the solution:

η(x, t) = a sech2 (β(x− ct)) (6)

for any a > 0. is the amplitude and:

β2 =
3a

4h2(h+ a)

resulting in a stable solitary wave profile.

• a: Amplitude, wave height,

• β: Controls the width of the wave,

• c: Wave speed,

• λ0: Wavelength related to β,

• The specific expression of β2 indicates that the larger the amplitude, the
narrower the wave.
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Figure 2: Enter Caption

The waveform is a function sech2 that is sharply peaked and decays rapidly to
zero at infinity, ensuring the wave is localized and does not disperse. (like an
isolated crest), this is correct only if (2) is satisfied, which means in the shallow
water.

2.2.2 Rayleigh(Static)

Lord Rayleigh treated the problem as a steady motion (time-independent), and
formulated the following ODE:(

dy

dx

)2

=
3(y − h)2

h2

(
1− gy

c2

)
(7)

The ODE (4) governs long one-dimensional, small amplitude surface gravity
waves in a channel of water with uniform depth h, where c represents the uniform
velocity of the fluid far from the wave, both ahead and behind.

Detailed Derivation of Rayleigh’s ODE Solution

Starting with the ordinary differential equation:(
dy

dx

)2

=
3(y − h)2

h2

(
1− gy

c2

)
(8)

Step 1: Take the square root

dy

dx
= ±

√
3(y − h)

h

√
1− gy

c2
(9)

Step 2: Variable separation

dy

(y − h)
√

1− gy
c2

= ±
√
3

h
dx (10)

Step 3: Substitution

Let:
Y = y − h ⇒ y = Y + h
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Then:
dY

Y
√
1− g(Y+h)

c2

= ±
√
3

h
dx (11)

Step 4: Simplify the square root

Using:
c2 = g(h+ a)

We get:

1− g(Y + h)

g(h+ a)
=
a− Y

h+ a
(12)

Thus:
dY

Y
√

a−Y
h+a

= ±
√
3

h
dx (13)

Step 5: Simplify

dY

Y
√
a− Y

= ±
√
3(h+ a)

h
dx (14)

Step 6: Integrate

Left side: ∫
dY

Y
√
a− Y

= − 2√
a
tanh−1

(√
a− Y√
a

)
+ C1 (15)

Right side:

±
√
3(h+ a)

h
x+ C2

Step 7: Combine constants

− 2√
a
tanh−1

(√
a− Y√
a

)
= ±

√
3(h+ a)

h
x+ C (16)

Step 8: Solve for y(x)

After simplification:

tanh−1

(√
a− Y√
a

)
= −

√
a

2

(
±
√
3(h+ a)

h
x+ C

)
(17)

Using hyperbolic function identities, final solution:

y(x) = h+ a sech2(β(x− x0)) (18)
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where:

β =

√
3a

4h2(h+ a)

The constant x0 is determined by the integration constant C and represents
the horizontal shift of the wave profile.

From ODE (4), it can be seen that the elevations where the tangents to the

solution curves are horizontal occur when y = h or when y =
c2

g
. Since 1− gy

c2

is non-negative, the maximum elevation corresponds to:

ymax =
c2

g
(19)

This implies there is no depression below the free surface in the wave profile,
meaning the wave has only one elevation. Denoting the maximum height above
the free surface by a, we obtain:

c2 = gymax = g(h+ a) (20)

Solving leads to the solitary wave speed:

c2 = g(h+ a) (21)

Figure 3: Russell’s solitary wave as explained by Lord Rayleigh for c =
√
29.4,

g = 9.8, and h = 2.

Figure 2 presents the same solitary wave profile as shown in Figure 1. Lord
Rayleigh’s solution incorporates the channel depth h into the formulation and
focuses on a steady-state scenario, without considering time dependence. In
contrast, Boussinesq introduced time as a variable to capture the dynamic evo-
lution of the wave, making his approach suitable for explaining the propagation
behavior of solitary waves.

The Ursell number, denoted as U , is introduced to characterize the balance
between nonlinearity and dispersion in long surface gravity waves. It is defined
as:

U =
aλ20
h3

=
a/h

δ2
(22)

where:
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Figure 4: Ursell numers

• a = amplitude (wave height),

• h = water depth,

• λ0 = wavelength,

• δ2 =
(

h
λ0

)2
= dispersion parameter.

Physical Meaning

The Ursell number U measures the relative strength of the nonlinearity in the
wave. Specifically:

• When U ≪ 1, dispersion dominates, and the wave behaves almost linearly,

• When U = O(1), nonlinearity and dispersion are balanced, leading to the
formation of solitary waves,

• When U ≫ 1, nonlinearity dominates, and strong wave steepening or
breaking may occur.

Figure 3 illustrates that when U = O(1), a balance is achieved between
nonlinearity and dispersion. Nonlinearity acts to steepen and amplify the wave
crest, whereas dispersion tends to spread and flatten the wave profile. This
interplay results in the formation of a solitary wave—a localized, stable, single-
peaked structure that can propagate over long distances while maintaining its
shape.

3 Soliton Perturbation

This part uses the energy method to prove the linear stability of KDV solitons
under small perturbations. By introducing a small perturbation and linearizing
the system, we derive an energy functional that quantifies the deviation from
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the soliton profile. Proving that the energy functional does not increase with
time, we ensure the linear stability of the soliton against perturbations.

Introducing a small perturbation ε:

u(x, t) = u(x, t) + ε(x, t) (23)

Substituting the new solution into the KDV function gives the following.

(u+ ε)t − 6(u+ ε)(u+ ε)x + (u+ ε)xxx = 0 (24)

Expanding the equation:

ut − 6uux + uxxx + εt − 6εux − 6uεx − 6εxε+ εxxx = 0 (25)

Since u is a solution of the KDV equation, after ignoring higher order terms,
the equation simplifies to:

εt − 6(uε)x + εxxx = 0 (26)

Define the energy functional as:

E(t) =
1

2

∫ ∞

−∞
ε2x dx (27)

We chose εx instead of ε because the soliton solution is in the form x-ct,
which the soliton will retain its form under spatial translations. This will in-
troduce a zero mode in the linearized perturbation, it is the perturbation in
the form: εzero(x, t) ∝ ∂xu(x − ct) this kind of perturbation will only shift the
soliton position without altering its stability or shape. It does not act like a
perturbation but will still increase the functional energy if we choose ε.

The time derivative of the energy fractional is:

dE

dt
=

∫ ∞

−∞
εxεxt dx =

∫
εx∂x (−εxxx + 6(uε)x) dx (28)

The equation has four individual terms:∫ ∞

−∞
(−εxεxxxx) + (6uxxεxε) + (12uxε

2
x) + (6uεxεxx) dx (29)

For the first term, we use integration by parts:

∫ ∞

−∞
−εxεxxxx dx = −εxεxxx

∣∣∣∞
−∞

+

∫ ∞

−∞
εxxxεxx dx = 0 +

1

2
ε2xx

∣∣∣∞
−∞

= 0 (30)

This is because the KDV equation obeys the conservation of (horizontal
momentum): ∫ ∞

−∞
u2 dx = constant (31)
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This conservation law bounds the evolution of perturbation, it requires the
perturbation to be square integrable, meaning it must be 0 at infinite.

Before we integrate the other parts of the equation. We need to look at some
properties of the soliton solution, it has the form of sech2(x). This is an even
function. And its first, second, and third derivatives are odd, even, and odd
function, respectively.

Now for the second term:∫ ∞

−∞
6uxxεxε dx =

∫ ∞

−∞
3uxx(ε

2)x dx = −3

∫ ∞

−∞
uxxxε

2 dx (32)

Since the third derivative of u is an odd function, and the integration is from
negative to positive infinity, the integration is zero.

For the third term: ∫
12uxε

2
x dx = 0 (33)

Since it is an odd function,
The last term:∫ ∞

−∞
6uεxεxx dx =

∫ ∞

−∞
3u(ε2x)x dx = −3

∫ ∞

−∞
uxε

2
x dx = 0 (34)

Since the first derivative of u is also an odd function.
Thus, we have proven that the energy does not increase with time, meaning

that the perturbation is linearly stable.

4 Korteweg-de Vries (KdV) Equation

The Korteweg-de Vries (K-dV) equation is a partial differential equation that
describes certain types of wave phenomena. It is given by:

ut − 6uux + uxxx = 0 (35)

This was independently dervied by Boussinesq in 1877 and later by Diederik
Korteweg and Gustav de Vrise in 1895. It plays a significant role in modeling
wave propagation in shallow water environments. [5]

A Brief Derivation of the Solution

For the single soliton solution, let u(x, t) = f(X) = f(x − ct), where c is the
wave speed. Substituting into the KdV equation:
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0 = −cf ′ − 6ff ′ + f ′′′

f ′′′ = cf ′ + 6ff ′ = cf ′ + 3(f2)′ (36)

f ′′ = cf + 3f2 +A

(f ′)2 = cff ′ + 3f2f ′ +Af ′

1

2

[
(f ′)2

]′
=
c

2
(f2)′ + (f3)′ +Af ′ (37)

Since solitons are localized f, f ′, f ′′ → 0 as X → ±∞, we set A = 0, yielding:

1

2
(f ′)2 = f3 +

c

2
f2 = f2

(
f +

c

2

)
(38)

One can perform a transformation and obtain:

f ′ =

√
2f2

(
f +

c

2

)
(39)

Then, by changing variables on both sides, we can write:

df√
2f2

(
f + c

2

) = dX (40)

This integral is tractable, and the solution is:

f(X) = − c
2
sech2(θ) = − c

2
sech2

(√
c

2
(X −X0)

)
(41)

As for the multi-soliton solutions of the KdV equation, since the equation is
integrable1, analytical solutions can be obtained using the Hirota method. The
original function u(x, t) can be expressed in terms of a τ -function as:

u(x, t) = 2
∂2

∂x2
[lnF (x, t)] , (42)

where

F (x, t) = 1+

N∑
i=1

eθi+
∑

1≤i<j≤N

Aije
θi+θj+· · · (a sum of multiple exponential terms),

and

θi = kix− 4k3i t+ θi0. (43)

For the KdV equation, there is a well-known result:

11
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Aij =

(
ki − kj
ki + kj

)2

. (44)

For the two-soliton case (i.e., N = 2), the function F can be simplified as:

F (x, t) = 1 + eθ1 + eθ2 +A12e
θ1+θ2 , (45)

where

θ1 = k1x− 4k31t+ θ10, θ2 = k2x− 4k32t+ θ20,

and

A12 =

(
k1 − k2
k1 + k2

)2

.

Therefore, the two-soliton solution can be written as:

u(x, t) = 2
∂2

∂x2
ln

(
1 + eθ1 + eθ2 +

(
k1 − k2
k1 + k2

)2

eθ1+θ2

)
.

= 2
∂2

∂x2
ln

[
1 + ek1x−4k3

1t+θ10 + ek2x−4k3
2t+θ20 +

(
k1 − k2
k1 + k2

)2

e(k1+k2)x−4(k3
1+k3

2)t+θ10+θ20

]
(46)

Here, θ10 and θ20 represent the initial positions of the two solitons.

Consistency between the Hirota method and the single-soliton ODE
solution

When it degenerates into a single soliton, we have u(x, t) = 2 ∂2

∂x2 lnF (x, t) with
F = 1 + eθ1 .

Let:

θ1 = kx− 4k3t+ θ0,

then:

u(x, t) = 2
∂2

∂x2
ln
(
1 + ekx−4k3t+θ0

)
=
k2

2
sech2

(
1

2
(kx− 4k3t+ θ0)

)
. (47)

Consistent with the form of the single-soliton solution above.
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5 Numerically computation

Figure 5: At t=0

Figure 6: At t=20

Figure 7: At t=28
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Figure 8: At t=34

Figure 9: At t=78

Figure 10: At t=118

These diagrams illustrate the typical interaction behavior of two solitons during
their propagation. Initially, the two solitons are well-separated, each maintain-
ing a stable shape. As time progresses, the faster soliton gradually approaches
and collides with the slower one. During the collision, their waveforms ex-
hibit nonlinear distortion rather than simple linear superposition. After the
interaction, both solitons recover their original shape and speed, continuing to
propagate independently with only a slight phase shift in position. This process
highlights the soliton’s remarkable stability and resilience, which is a defining
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feature of soliton interactions described by the KdV equation.[10]

6 Conclusion

This study examined the key properties of Russell’s solitary wave, characterized
by its permanent, localized form and speed relation c2 = g(h+ a). Boussinesq’s
dynamic approach incorporated nonlinearity and dispersion, yielding a stable
sech2 wave solution. Rayleigh’s static method led to the same result through a
steady-state analysis. The Ursell number was introduced to describe the bal-
ance between nonlinearity and dispersion, highlighting conditions under which
solitary waves form. Together, these contributions deepen our understanding of
solitary wave behavior in shallow water.

Proof of the integrability of the KdV equation1

To determine whether a system is integrable, the most commonly used method
is to find a Lax pair such that

dL

dt
= [P,L],

where L and P are operators.
For the KdV equation, let

L = − d2

dx2
+ u(x, t), P = −4

d3

dx3
+ 6u

d

dx
+ 3ux.

∂L

∂t
=

∂

∂t

(
− d2

dx2
+ u

)
=
∂u

∂t
= −6uux − uxxx

[P,L] = PL− LP

PLψ =
(
−4∂3x + 6u∂x + 3ux

)
(−ψ′′ + uψ)

LPψ =
(
−∂2x + u

) ((
−4∂3x + 6u∂x + 3ux

)
ψ
)

Here, ψ is an arbitrary function. Then one can combine PLψ and LPψ,

[P,L] = −6uux − uxxx =
dL

dt

Hence the integrability of KdV equation.
After we perform numerical simulations, we observe that solitons temporarily

deform during collision due to nonlinear interaction, but after the collision, they
retain their original shape and speed, only exhibiting a slight phase shift. This
stability is a key feature distinguishing solitons from ordinary waves.

14



References

[1] Dauxois, T., & Peyrard, M. (2006). Physics of solitons. Cambridge Univer-
sity Press. ISBN 978-0-521-85421-4.

[2] Craik, D. D. A. (2004). The origins of water wave theory. Annual Review of
Fluid Mechanics, 36 (1), 1–28.

[3] Boyd, J. P. (2014). Dynamical meteorology: Solitary waves. In
Encyclopedia of atmospheric sciences. https://doi.org/10.1016/

B978-0-12-382225-3.00374-1

[4] Yu, H., & Yan, J. (2006). Direct approach of perturbation theory for kink
solitons. Physics Letters A, 351 (1–2), 97–100.

[5] Drazin, P. G., & Johnson, R. S. (1996). Solitons: An introduction. Cam-
bridge University Press.

[6] Hietarinta, J., Kosmann-Schwarzbach, Y., Tamizhmani, K. M., & Gram-
maticos, B. (2007). Introduction to the Hirota bilinear method. In Integra-
bility of nonlinear systems (pp. 95–103). Springer. https://doi.org/10.
1007/BFb0113694

[7] Benjamin, T. B. (1972). The stability of solitary waves. *Proceedings of the
Royal Society of London. Series A, Mathematical and Physical Sciences*,
328(1573), 153-183. https://doi.org/10.1098/rspa.1972.0074

[8] Bona, J. L. (1975). On the stability theory of solitary waves. Proceedings of
the Royal Society of London. Series A, Mathematical and Physical Sciences,
344(1638), 363–374. https://doi.org/10.1098/rspa.1975.0106

[9] Grillakis, M., Shatah, J., & Strauss, W. (1990). Stability theory of solitary
waves in the presence of symmetry. Journal of Functional Analysis, 94(2),
308–348. https://doi.org/10.1016/0022-1236(90)90016-E

[10] Oliphant, T. E., & Contributors. (n.d.). KdV Equation. Retrieved March
23, 2025, from https://scipy-cookbook.readthedocs.io/items/KdV.

html

15


