
o LECTURE 2
w History of computing: von Neumann architecture
w Developments that have led to:

Fortran, Unix, C, and IBM PC & Apple hardware
w Linux OS
w Languages of HPC (High Performance Computing)
w Physics of integrated circuits and the transformation
of technical civilization in the last 50 years

PHYD57 Advanced Computations in Physical Sci
(c) Pawel Artymowicz UofT, 2024. Only for use by enrolled UTSC students

Literature
1. Haigh & Ceruzzi “A new history of modern computing (2021)
2. Joshua Izaac & Jingbo Wang, “Computational Quant. Mechanics”
(Undergrad. Lecture Notes in Physics, Springer, 2018) – chapters on Python
and Fortran
3. A whole page of literature suggestions for this course
http://planets.utsc.utoronto.ca/~pawel/PHYD57/xx (xx = secret sauce)

http://planets.utsc.utoronto.ca/~pawel/PHYD57/xx

Von Neumann computer implements the logic of Turing machine – a model,
where data and program are stored in the same memory. Von Neumann architecture
repeatedly performs fetch-decode-execute-store operations.

A modern computer architecture:

RAM = Random Access Memory (volatile:
transistors need some power to keep states 0 & 1)

Storage = Nonvolatile Memory
(hard disk, solid state memory, replacing earlier:
magnetic drum or tape, punched paper)

Several buses are etched on motherboards, fastest
ones for CPU-RAM communication. Also important:
PCIe = data bus for peripheral devices such as:
GPU, MIC, NIC (ethernet), SATA for storage, etc.

CPU= Central processor unit

cache RAM

RAM

RAM

RAM

CPU

PCIe

SATA (to nonvolatile hd/sse memory)

I/O ports: kbd, mouse, A/V
NIC (LAN)

A modern motherboard (ca. 2017) Still clearly shows the CPU, RAM, starage, and
multi-wire buses that connect everything – a von Neumann architecture remained
essentially unchanged for 70+ years! Is this good? (cf. Backus 1978)

• Data processing needs large permanent storage
IBM (International Business Machines Co.) grew when it transitioned from decks of
punched cards (very popular among businesses)

... and perforated tape storing programs
to magnetic media: tape, drums, disks

Q: How many times more data was stored
on a 2013 hard-disk than on 1956 version?

Mid-1960s and 1970s

deck of cards

At the end of 1950s and beginning of 1960s many advances gradually appeared:
• Magnetic tape as mass storage of von Neumann architecture:
• Separate operating mem and mass storage, processor, data and program in the

same memory
• Magnetic drums playing the role of hard disks, developed later by IBM
• Binary digits have won with decimal digits
• From among many different data formats, 8-bit bytes became de facto standard
• They were handy for character (text) processing, as 1 byte holds 1 ASCII character
• Instead of setting up the computer by hand or from punched paper media, the

programming was now done from magnetic media, and the code was no longer
a low-level machine assembly code (list of fairly elementary commands

understood by the processor (such as, for instance: shift value from register A to B,
add register B to register C, store result in register C, write register C to RAM
location whose address is stored in register D.)

• instead, compilers of high-level programming languages appeared

• compiler = program that checks and translated your program into the set of low-
level instructions for processor (still readable by humans, but program in such
assembly language was ~20 times longer than the high-level code in language
similar to English+math symbols). Finally the so-called linker (part of compiler in
modern times) was translating the assembly language to binary executable
containing 0001110011010100100010101011...

1950s to 1960s

mark_description "Intel(R) Fortran Intel(R) 64 Compiler XE for applications running
on Intel(R) 64, Version 15.0.3.187 Build 2”; .file "fortran+om-laplace-sp.f90”
(Dis)assembly code – CPU’s can only understand such language
(...) Much too low-level; we will not code in assembler!
Instructions to shift bytes (data, addresses) into and out of registers, do conditional
jumps, write to RAM, do logical operations such as XOR, and more. Many lines of
assembly program are needed to do each instruction in hi-level language.
(...)

movsd %xmm1, data_mp_t1_(%rip) #113.5
movl 1950048+data_mp_grid_(%rip), %r12d #114.2
jne ..B1.18 # Prob 50% #115.10

LOE rbx r14 r15 r12d r13d xmm1
..B1.13: # Preds ..B1.12

movl $-1, %esi #115.14
lea 32(%rsp), %rdi #115.14
movq $0x1208384ff00, %rdx #115.14
movl $__STRLITPACK_9.0.3, %ecx #115.14
xorl %eax, %eax #115.14
lea 232(%rsp), %r8 #115.14
movq $15, 232(%rsp) #115.14
movq $__STRLITPACK_8, 240(%rsp) #115.14
movsd %xmm1, 288(%rsp) #115.14

call for_write_seq_lis #115.14
LOE rbx r14 r15 r12d r13d

movsd 288(%rsp), %xmm1

• Hardware and software, previously inextricably bound, now became
independent:

• The first widely use computer language which was hardware platform-
independent was FORTRAN (1957) = Formula Translator, created by

John Werner Backus, who worked at IBM on the IBM 704.
• Read: J. Backus “History of Fortran I, II, and III” (1978) on our /xx page.

• This language was loved by academia and the first computer science departments
(CS = computer science, just trying to emerge and define itself in opposition to
EE). Fortran resembled meta-code written in plain English language.

• It produced executable programs running as fast as a hand-coded assembly code.
Nobody believed at first that automatic compilation project will do that! Many
businesses were ask about the required features, but the only company that took it
seriously was United Aircraft Corp., which delegated an engineer to work full-time
with the Fortran team at IBM (cf. Backus 1978).

• Then COBOL was created by the U.S. government committee & mandated on all
machines it was purchasing. (COBOL = Common Business Oriented Language.)
This forced a compatibility/uniformity across different machines. It was good for
databases, payrolls, and some airline reservation systems

1950s to 1960s

COBOL was also supposed to encourage long variable names for better clarity of programs

(to supplement/replace comments?) but it failed at that, which was realized when the

software engineers looked at some ancient codes, fearing the so-called Year 2000 Problem

(Y2K). Very few COBOL programs are in use. COBOL was not a general programming

language, and was never popular in academia.

However, if you know it, today the US government and some banks will pay you top salary

figures for maintaining some ancient legacy codes that they have trouble modifying.

While COBOL is now as good as dead, Fortran (Fortran 90, 95, 2003, 2015 versions)

thrives in academia, though is now almost unknown in businesses and in Computer

Science departments, which have switched to teaching programming in C, C++, Java
and now mostly in Python (to which we return below).

In 70s and 80s, CS gurus worked hard at giving Fortran a bad name (based on

supposed harmfulness of ‘goto’ instruction, cf. Dijkstra 1968), while promoting new

languages, trying to make programming easier, more reliable, and easier to prove

correct. CS was quickly creating them and then dropping. Even today, scores of

programming languages are created every year. They number in thousands, some

useful for certain purposes and some just amusing.

The programming paradigms such as object-oriented and more recent functional
programming do not aim at producing fast code, as a priority. Therefore, most such

languages are not good at number crunching (C++ can do it with some effort despite,

not thanks to object-oriented slant. The functional programming promotes the

exclusive use of immutable objects, a no-no in efficient numerical science.)

chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https:/homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf

• The was ALGOL, an extra clean definition of a language, but mainly for writing
metacode in papers.

• There was Pascal, and for a while Turbo-Pascal had popularity and performance
•
• Python is a scripting language, an interpreter, and on its own will always produce a

relatively slow-running program (slow runtime execution).

• Writing and debugging a program in Python is often simpler than in the other, more
powerful, languages. One reason is the huge user base, allowing inexperienced
programmers to understand & fix errors by browsing for answers on internet.

• So many snippets of code exist on the web that LLMs (Large Language Models like
ChatGPT) are getting proficient in cobbling together Python scripts for often
appearing tasks.

• Pre-packaged modules help Python tap into the strength of more powerful
languages. Guess in what language the crucial modules Matplotlib and Numpy of
now-dominant Python were originally written? Fortran, the language explicitly
created to perform numerical calculations.

• The only language other than Fortran, starting from the same goal of top-speed,
large-scale scientific computation (including parallelism), is Julia created at MIT.
However it is not widespread yet, or demonstrably superior to Fortran or C(++).

Trying to make a long story [of languages] short

IBM captured 70% of global computer sales, mostly with very expensive mainframes
(or supercomputers, bought by big firms, government centers and the universities).
The rest of the market was served by Univac, Computer Data Corp., Sci. Data
Systems, and Cray, which tried to emulate IBMs scale, salesforce and success.

DEC = Digital Equipment Corporation appeared as a small company in 1960s,
located in old Abbotts Mills near Boston, benefitting from MIT connections.
DEC, later called Digital, started a quiet revolution in the market by offering:

• much smaller minicomputers, costing much much less than mainframes. For
instance, model PDP-8 costed $18k instead of IBM/360 for $2 million. It was
interactive.

• similar speed on some tasks, while much less data storage
capability [All circuits in 1960s were non-integrated but based
on fast-switching transistors.]

Mid-1960s to 1970s hardware

• innovation in comp. architecture: the interrupts in CPU operation
to serve input/output requests from the peripheral devices
(printers, storage, keyboards, monitors, NICs)

• different & much less pretentious culture in workplace & sales

OEMs (Orig. Equip. Manufacturers) appeared when Digital opened up their
architecture, encouraging modifications & add-ons

• PDP-7 on which Unix
was born, see below,
4k 18-bit op. memory

• PDP-8 (left picture)
still little RAM
but fast and cheap

• PDP-11: 128k RAM
• 2 MB removable hard disk
• > 30 kFLOPS arithmetic speed
• interactive consoles, time-sharing operating system, as opposed to batch input on

mainframes

• Languages such as ALGOL, Pascal, and other became popular but later
faded away. IBM’s PL/I (Programming Lang. I) was a commercial failure.

• DEC offered the first UNIX operating systems on PDP-line computers
• C appeared in 1973 and later C++, high-level languages that unlike numerical

computation-oriented Fortran for “number crunching”, were not meant for scientific
simulations. They were great for writing operating systems (fully C-based Unix in
1973, later Linux in 1990s, which is a modified Unix), and for interfacing at low
level with hardware (low-level here means using elementary, simple instructions).

1970s and later...

http://www.linfo.org/pdp-7.html

Apple Computer Inc. was founded in 1976
by Steve Jobs and Steve Wozniak, with a
vision to improve on that achievement & go
much further toward
• miniaturization allowed by small
microprocessors, and

• personalization: personal computing,
personal publishing and all other things
personal & social on Apple, Mac, ibook,
imac, macbook, itunes,,iphone, ipad,

Interactive use of Digital’s PDP-11 minicomputers (here shown in year 1977)
was a harbinger of and a model for personal computers invented right then
and getting huge popular in 1980s.

• Programmable calculator and PC revolution based on
semiconductor technology in microchips or microprocessors.

• In 1971-1974, Intel (4004; 8008, 8-bit) and Motorola (8-bit 6800)
• Intel 8086 was a 16-bit CPU (central processing unit) from 1978,
à “x86_16” (today: x86_64, i.e. 64-bit processors).

• Motorola 68000 was a 16/32-bit CPU from 1979
• In 1980s and 1990s computers spread outside academia, big business and military.

Microcomputers or desktop Personal Computers (PCs) moved into every house and
school, into the backpacks as laptops, and finally into our pockets as smartphones,
not for scientific computation but rather for a simpler(?) task of communication
(networking). This interesting history is outside the scope of our course, even though
for your computing you will likely choose a laptop.

• Simple languages like BASIC, and in late 1970s/early 1980s the scripting languages
MATLAB, and IDL have appeared. One of their descendent is now hugely popular:

• Python interpreter was created in 1989 and became popular in 1990s and 2000s.
• Creator, Guido van Rossum, was named the Benevolent Dictator for Life. Now the

project is guided by Steering Council. Current version: Python3, appeared in 2008.

• In the 2004 a new and still not widely known but powerful and elegant language Julia
was created by professors and students at MIT. Produces multithreaded code
often executing almost as fast as C/Fortran. One day it may replace Python in
science applications, though not necessarily in other worlds, such as business.
Computer Sci. & Computational Sci. have different goals & favor different languages.

Commercial Unix:

Sun Micro:Solaris

Hewlett-P:HP-UX

SCO: Xenix

AT&T: System V

SGI: Irix

AT&T Bell Labs in 1969-1971:

Thomson and Ritchie use

PDP-7 to create Unix OS.

In 1973 rewritten in new

language C, and unveiled.

At UC Berkeley in late 70s

a strain of Unix called BSD

appears (Berkeley Software

Distribution)
GNU Project starts in 1984,

with a goal of a free version

of Unix. Created many

programs but failed to

produce an OS kernel
In 1991 in Finland, Linus

Torvalds begins creation out

of GNU, BSD and X-windows

software of a Unix-like OS

kernel. Calls it Linux
1994-2007 Linux OS & flavors/distributions =

packaged OS filled with slightly different

components appear:

Red Hat, Fedora, FreeBSD, Caldera, Debian,

SuSE, Mint, Gentoo, Ubuntu, CentOS, etc.

Also: MacOS, and Linux-kernel OS’s with

quite different GUI = graphical user interface:

Android (2007), Chrome (2009)

1980s and 1990s From Unix to Operating Systems created as community projects

Sobell – A practical guide to Linux Commands – 2018
Gedris – Intro to Linux Command Shell for Beginners – 2003

Good web resources:
www.linfo.org - on various topics about Linux, see all the
links on that page, among others
www.linfo.org/command_index.html - list commands with
further explanations on the use
www.linfo.org/how-to_index.html - how-to guides
Also, see the Links section on our course web page.

We will return to the further historical
development of hardware a bit later,
after we explore the operating
system types that conquered the
world (not only of HPC, but also of
web servers). Incidentally, learn
some Internet history here.

http://www.linfo.org
http://www.linfo.org/command_index.html
http://www.linfo.org/command_index.html
https://en.wikipedia.org/wiki/History_of_the_Internet

A funny and informative history of a myriad of programming languages

is on Youtube under the title

“The Worst Programming Language Ever - Mark Rendle - NDC Oslo 2021”

URL (Universal Resource Locator)

https://www.youtube.com/watch?v=vcFBwt1nu2U

It tries to gather all the WORST features of the discussed languages to create
the title language. (No criticism of Fortran? I guess it does not have to
many bad features.)

APPENDICES

https://www.youtube.com/watch?v=vcFBwt1nu2U

RAM

RAM

CPU

PCIe

SATA (to nonvolatile hd/sse memory)

I/O ports: kbd, mouse, A/V
NIC (LAN)

A modern motherboard for Linux
workstations (art-1, art-2, …) ca. 2017

