
LECTURE 4
Numerical calculus and differential equations

Discussion of assignment set A1 solutions, & A2 problems.

Random walks, and the diffusion of fragrance. Random 
walks, and the ubiquity of 1/√N scaling.

Integration of functions. Accuracy of  n-th order method, 
vs. the Monte Carlo (MtC) method. Finding " by MtC. 

PDE (partial diff. equations), example: 
Diffusion equation-based unsharp-masking in image 
processing – stencil method. Detailed look at timing program 
execution.
(please see our code page https://planets,utsc.utoronto.ca/~pawel/progD57)
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Numerical Calculus: Differentiation (Assign. 1.1-2)
Numerical Calculus: Integration
Developing coefficients c0, c1, ... of approximation polynomials 
in a small interval covered by just several computational points 
(samples of data or math function).

Def.:   Order of the method is  m if it integrates polynomials
or piecewise polynomials up to order m exactly, 
and exhibits error proportional to hm+1
where h is the interval’s width, for other functions.

Require that method is of order m, and write m+1 equations
(for n=0,1,2,...,m) binding m+1 coefficients of the method. 
Solve for cn.
The integration points may be uniformly spaced in the x-interval  
or their positions in the interval may also be unknown (there 
must be exactly m+1 unknown x’s and c’s – read all about Gauss integration 
formulae on p. 56 of textbook)



Euler(left value)
1st order 

Midpoint method
2nd order

Trapezoid method
2nd order

Simpson’s rule – green
3rd order



Numerical integration of  functions 
see http://planets.utsc.utoronto.ca/~pawel/progD57 (also art-1:  ~/progD57)

• Integrate exp(-x) from 0 to 1:             integ-p124-exp.py
• Integrate 1/(1+x2) from 0 to 1:            integ-p124-arc.py
• Integrate the length of a curtain: integ-p124-cur.py
• Integrate ¼ circle (area): integ-p124-Acirc.py
• Integrate ¼ circle (length): integ-p124-Lcirc.py

We implement in Python and compare these methods :
qEuler’s method
qMidpoint method
q Trapezoid rule
qSimpson’s rule (so-called 1/3 rule, a 3-point rule)
qPythagoras rule for line integrals

http://planets.utsc.utoronto.ca/~pawel/progD57


N+1 points forming N uniform intervals covering x-interval [a,b].
We have equal integration steps h = (b-a)/N = xn+1 – xn, for all intervals n=0,1,2,...
• Euler (left) S = (f0 + f1 + f2 + ... fn-1) h     
• Euler (right) S = (f1 + f2 + f3 + ... fn) h     
• Midpoint     S = (f1/2 + f3/2 +... + fn-3/2 + fn-1/2) h,       f1/2 := f(½ (x0+x1)) etc.

• Trapezoid     S = ( ½ f0 + f1 + f2 + f3 + ...+ fn-1 + ½ fn) h     
• Simpson’s 1/3 rule: S = (1/3) (f0 + 4f1 + 2f2 + 4f3 + 2f4 +...+ 4fn-1+ fn) h   
• Pythagoras length summation: Σ(n=1..N)   [(xn+1-xn)2 + (fn+1-fn)2]1/2

• Notice that integration errors accumulate and will be N times larger than 
single-interval error for basic formulae. N = (b-a)/h ~ h-1.

• If the error on one sub-interval was ~hp, then the error on bigger interval 
[a,b], made of N sub-intervals, will be ~N hp ~ hp-1      (method of order p-1)

• Therefore, on the interval [a,b]  we lose one power of h in accuracy scaling,
or in other words one unit in the order of the method.

Composite integration formulae – combining N 
small sub-intervals of width h. 



Integrate exp(-x) from 0 to 1:      integ-p124-exp.py

a nice, smooth, function with 
well-behaved derivatives



integ-p124-exp.py  

Algorithms give expected convergence
because the function is  smooth

Everything works here as advertised!



Find area under function  1/(1+x2)   from 0 to 1:
integ-p124-arc.py

another nice, smooth function

Analytical value of integral 
= atan(1) – atan(0)
= π/4

Thus we could find π  
by integrating the area numerically



better than expected   

Again, everything works as advertised or better (Simpson’s rule error~h6 instead of h4)!



Integrate ¼ area of circle from 0 to 1:  integ-p124-Acirc.py

Notice the steep descent 
near the end.
This will cause problems..



Methods don’t work as advertised, because the 
function is very difficult to integrate accurately with 
constant step dx near x=1, where the function 
graph of a quarter-circle becomes vertical & 
derivatives blow up to infinity, and with them the 
error terms.



The sharp peak of dy/dx and other derivatives at x=1 promises trouble in this analytical 
approach to line integral giving the length of the circular curve (cf. the vertical axis label). 

Integrate length of ¼  circle x=0...1   integ-p124-arc.py



Algorithms don’t have the expected 
convergence, because the function is very 
difficult to integrate accurately near x=1 

Breakdown of normal convergence rules of all the discussed methods except Pythagoras 
summation, which is less sensitive to derivatives. Error dominated by a few h intervals near x~1.



Application of numerical calculus to PDEs
Differentiation formulae (cf. assignment 1.1 & 1.2) provide ways 
to compute n-dimensional stencils for 1st and 2nd derivatives. 
They include Laplacian operators such as

(d2/dx2 + d2/dy2)  f(x,y)                   in 2D, or
(d2/dx2 + d2/dy2 + d2/dz2)  f(x,y,z)   in 3D.

This enables us to find curvature of functions that change in time. 
In fact, time evolution of thing that diffuse, such as thermal energy 
(=temperature T), or concentration of fragrance in a room, or molecules in a 
container, is governed by diffusion equation, which says that:

)        or 



Application of numerical calculus: Diffusion equations
3D:   df/dt = D (d2/dx2 + d2/dy2 + d2/dz2) f(x,y,z)
2D:  df/dt = D (d2/dx2 + d2/dy2) f(x,y)

We will derive the criterion of stability 
for the numerical solution 
(2nd order in  both t and x)



Application of numerical calculus: Image processing, blurring images

laplacian-4.py in our code repository

Used the basic second derivative stencil to do   
(d2/dx2 + d2/dy2) F(x,y)  on an image F(x,y). 

d2/dx2 d2/dy2

+
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Application of numerical calculus: Image processing, blurring images

laplacian-4.py      numerically solves a 2-D heat (diffusion) eq. 
The basic second derivative stencil to do   
(d2/dx2 + d2/dy2) F(x,y)  on an image F(x,y). 

ś

= 

Stencil for Laplacian operator in 2D.  Discretization scheme:

F(x,y,z,t+dt)  = F(x,y,z,t) + dt D h-2 [F(x+dx) +F(x-dx) +F(y+dy) +F(y-dy) – 4F(x,y,z,t)] 
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Application of numerical calculus: Image processing, blurring 

Solving  dF/dt = (d2/dx2 + d2/dy2) F(x,y),   
beginning with an image F(x,y).   Diffusion equation is discretized as 

F(x,y, t+dt)  = F(x,y,t)   + dt D h-2 *
*  [F(x+dx,y,t) + F(x-dx,y,t) +F(x,y+dy,t) + F(x,y-dy,t) – 4 F(x,y,t)]

Let  q := dt D h-2 , a nondimensional quantity.

F(x,y, t+dt)  = (1-4q) F(x,y,t) + q [F(x+dx,y,t) + F(x-dx,y,t) +F(x,y+dy,t) + F(x,y-dy,t)]

For stability of calculation, q < 1/4, otherwise negative F(x,y,t+dt) can appear, which for 
temperature, or concentration of particles, or images, is non-physical. We can prove the 
necessary criterion of stability: q < 1/(2n), where n = dimensionality of space, like this: 
Above we had 1-4q standing, in fact, for 1-2nq, and we need 1-2nq>0, so q < 1/(2n).
Maximum reasonable q (you can call it: practical, sufficient criterion) is however 1/5 not 
¼,  and that q results in spreading of one single peak (1 pixel) to neighboring 5 pixels, 
each getting value 1/5: 1 – 4 q = 1 – 4/5 = 1/5 = q
If we went with the allowable q=1/4, we’d spread a single pixel into 4 neighbor cells but
leave zero value in the center, in next time step. That would still work but it’s weird. 

Let’s apply such a blurring procedure to astronomical image of grand-design spiral 
galaxy M81. laplacian-4.py



M81 galaxy





Unsharp masking technique: 
Subtract a blurred image from the original image to remove the 
smooth background, enhance visibility of overexposed features. 







Finally, consider programs in other languages below, 
placed in art-1 subdirectory  ~/progD57,   i.e.   /home/phyd57/progD57/              
(art-1 has CentOS 6, and tcsh by default)

They perform the same task: to blur the monochromatic NxM pixel image, 
according to a 3x3 cross stencil of a Laplacian operator Δf. 

q
q  (1-4q)  q       stencil of Δf operator, sum of coefficients must be & is = 1.

q

Read, copy, compile with all possible compilers, and execute these programs

laplacian-5.py  laplacian-5t.py
ifor-laplace3-sp.f90 ifor-laplace3-dp.f90
cudafor-laplace3-sp.f95 cudafor-laplace3-dp.f95

(python3 programs, run on your own machine, as all modules aren’t installed 
on art-1)



Example compilation with Intel ifort compiler. Code is in double precision (dp)

art-2[174]:~/progD57$ ifor-laplace3-dp.x
t=  2.797E-04 s       3654 fps,  val=  0.2769022      host OMP
t=  2.691E-04 s       3716 fps,  val=  0.2769022      host OMP
t=  3.757E-04 s       2661 fps,  val=  0.2769022      host OMP i
t=  3.264E-04 s       3063 fps,  val=  0.2769022      host slices
t=  2.532E-04 s       3949 fps,  val=  0.2769022      host slices 1
t=  9.322E-04 s       1072 fps,  val=  0.2769022      host squares
t=  8.695E-04 s       1150 fps,  val=  0.2769022      host
t=  3.720E-03 s        268 fps,  Numpy (written in C or F)
t=  0.1562400 s            6.4 fps,  plain Python

Time t  is the execution of 1 Laplacian blurring pass on array of 1 M pixels in seconds.
The corresponding number of sweeps per second is given as fps = frames per sec.

Results show that this problem is solved extremely slowly by 2 nested Python loops
(6.4 Mpix/s), 42 times faster by NumPy methods of vectorized array operations
(268 Mpix/s), but even much much faster in Fortran (different methods mentioned in 
the rightmost column). 

This however is beaten by single precision versions of the program and by a
CUDA (GPU version)!



Example compilation with pgf95 PGI compiler. Code in double precision (dp)
run on CPU = i7 6 cores, 4GHz overclock, and Nvidia GTX 1080ti graphics 
card.

art-2[177]:~/progD57$ nvidia-smi –p 1  
(it’s good to make sure that the so-called persistence mode of the 
Nvidia driver is on, or switch it on as above) 
art-2[177]:~/progD57$ cudafor-laplace3-dp.x
t=   5.7930E-05 s       17261 fps,  val=   0.3449662 CUDA kernel 0
t=   5.7928E-05 s       17262 fps,  val=   0.3449662 CUDA kernel 1
t=   3.1855E-04 s        3139 fps,  val=   0.3449662 host OMP slices
t=   3.7507E-04 s        2666 fps,  val=   0.3449662 host OMP
t=   8.8273E-04 s        1132 fps,  val=   0.3449662 host (CPU)
t=   3.7199E-03 s         268 fps,  Numpy dp
t=   0.1562400  s         6.4 fps,  Python out of the box

Time t refers to execution of one sweep of Laplacian blurring operator on array of 1 M 
pixels, and the corresp. fps or frames per sec. are shown (i.e. Mpix/s) 

Results show that this problem is solved extremely fast by PGI CUDA Fortran
(~1000x faster than Python,  and 23x  faster than Numpy)

This can only be beaten by a single precision CUDA run....



Example compilation with pgf95 PGI compiler. Code in single precision (sp)
run on host CPU = i7, 6 cores, 4GHz overclock, and Nvidia GTX 1080ti  GPU.
art-1[183]:~/progD57$  cudafor-laplace3-sp.x
t=   3.4939E-05        28621 fps,  val=   0.3449661 CUDA kernel 0
t=   3.4926E-05        28631 fps,  val=   0.3449661 CUDA kernel 1
t=   3.4950E-05        28612 fps,  val=   0.3449661 host OMP slices
t=   1.0031E-04         9963 fps,  val=   0.3449661 host OMP
t=   3.6699E-04         3756 fps,  val=   0.3449661 host (CPU)
t=   3.7199E-03          268 fps,  Numpy dp
t=   1.5624E-01          6.4 fps,  Python as is

Maximum speed of Laplacian blurring seems to be 29k fps = 29 Gpix/s. (This value, however, is
suspiciously constant in 3 different runs. A possible problem with the accuracy of internal timer! 
The speed values may be in error, but not their order of magnitude.)
If each pixel requires about 10 arithmetic operations to be updated using values from
its neiborhood, then CUDA Fortran processes the image at about 290 GFLOPs. 
This is an impressive speed, even though even not close to ~7 TFLOPs = 7000 GFLOP 
of which the 1080ti card is actually capable in computationally dominated tasks, applications that
do not rely (as this code does) on the GPU-RAM bandwidth. 
On the same server, the sp calculation can be done ~4500x faster on GPU than in 
(dp) Python on CPU, and ~100x faster than on the same CPU in Numpy.
This record can further be beaten by parallel computation on a multi-node cluster, 
especially with a faster hardware. (But the best hardware, CPUs and GPUs, in 2024 was 
no more than about 3 times faster than we have on art-1.) 
We have proven that PYTHON IS NOT AN HPC LANGUAGE. That‘s ok, since it was never meant
for large computations.  This is also one of the main reasons why you take this course: 
to go beyond Python in programming, as well as encounter new algorithms, methods, and Linux 
shells.


