
LECTURE 5
Algorithms. Optimization and stability.
- Analysis of the quickest algorithm for Toronto Census 

- Why (sometimes) we see deviations from expected scaling 

law of error of integration scheme with the number of points

(catching up with lecture 4)

- PDEs discretization limitations (timestep in heat diffusion)

- non-negativity constraint 

- von Neumann analysis of algorithms for PDEs

Tutorial 4
- Assignment 2: detailed discussion of solutions

- Learn C by programming Kruskal sequences

PHYD57. Advanced Comp. Methods in Physics.

(c) Pawel Artymowicz UofT, 2024. Only for use by enrolled UTSC students

Literature: see links on our course home page, the references page, 
and the coding page available from the course page. 



Census algorithm: problem description  
N is the constant number of processors people involved, and we try to engage them 
as concurrently as possible. The goal of the census is deriving averages of some 
data every inhabitant possesses. 
Two time constants are given: ! and t. They stand for single communication time 
ofincoming data and single computation time using the freshly obtained data. We can 
start thinking of ! = 10 s and t = 10 s, but later consider other ratios. 
Comm and comp are serial operations, a person cannot perform multitasking while 
talking on a phone to obtain data, or punching numbers on a calculator. 

We have earlier (in L3) figured out that concurrency of data processing requires 
some kind of tree of connections, but the number of branches from each stem (k) is 
not known. Perhaps k=2 is best, i.e. at each level of the census each person tasked 
with processing data will combine own data with data coming from k-1 = 1 other 
person. 
The number of people working on the census will go down by a factor of k in every 
level. Therefore, the number of levels is a ceiling (rounding up to integer) of the 
logkN. For example, if there are 10 people, who combine the data pairwise (k=2), 
more than 3 levels (4 levels) are needed. 

To do more quantitative evaluation of various k-schemes, we need to write a formula 
for total wall clock time of the census. 

Since each person needs to receive via voice call k-1 data packages, that will take 
time  (k-1) ! seconds.  Computing will take each person k t seconds. 



Census algorithm 
The total wall-clock time of census is thus 

T = [logkN]ceiling [(k-1) ! + k t ]

For k=2,3,4 we have [logkN]ceiling = 20,13, 10 levels.
Evaluating the rest of the expression, we saw that the total time is
minimized by the binary tree (k=2) if 
The ratio of comm:comp = 1. The same happens if that ratio is > 1, 
i.e. if the communication is slower than computation (per one n bytes 
of data transmitted, all arithmetic operations that process that amount 
of data take less time than transmission). 

But the result changes when ! >> t, the optimum k = 3 then, although 
the T(k=2) is very close behind, and other trees are not too bad. We 
saw this when we tried ! = 0.1 t. 
Such an example is similar to a long computation time, relative to a 
faster inter-node communication. This happens when a cluster node 
is doing calculations about some assigned volume of space, while 
sharing with neighbors only the surface data of that volume, or some 
other limited set of data.



Census algorithm: digression 

The duration of census:       T(k)  = [logkN]ceiling [(k-1) ! + k t ]
can be semi-analytically minimized. This requires assuming that k is a continuous variable, which 
allows minimum finding by calculus. Also, the rounding up of log function to integer is omitted. So 
– some shortcuts and assumptions are made in the hope that a more general, simple result can 
be written down without computing a table of results for every choice of time scales. Let’s see 
what we got along that path.

Requiring that  dT/dk = 0, we found that the best " satisfies a very tough equation 
ln " = 1 - (1/")  ! /(!+t).

No analytical solutions! Graphical, yes. We can solve it numerically, either by bisection, or 
iteratively. 
We didn’t do it, but it turns our after checking two possible iterative expressions that this iteration 

k(next) = exp[1 - (1+t/!)-1/k(previous) ]
is non-divergent and gives reasonable values after rounding, if one starts from k(0) = 2.
But you should be warned that:
(i) Assumptions done in analytical work can return a different rounded-off optimal integer k than 

a simple evaluation of T(k), k=2,3,4,… and 
(ii) We did not get a nice analytical solution after all. Numerical iteration or bisection is still 

needed (notice: a binary tree there), so all the hopes did not really pan out.  

Conclusion: in this problem, don’t do it. 



PDEs
• On a computer, PDEs use stencils  (see L4 for the intro to 2nd

derivative and Laplacian stencil)
• Depending on the stencil, there may be limitations on discretization 

steps in time and/or space.

• The implicit schemes often avoid these limitations, but take time to 
solve implicit equation set in every timestep. (Implicit: when an 
unknown is found both on the left and right sides of equation.) 

• Explicit schemes are fast but have timestep and/or spatial 
discretization limits

• Courant-Friedrichs-Levy is an example for wave-type and 
hydrodynamics equations

• Diffusion equation has a maximum limit on dt as well

• Sometimes, like in the heat diffusion problem, we can write the 
numerical evolution equation and guess what the limiting condition 
is (in that problem, it boils down to requiring that there is no chance 
for negative values of temperature, of concentration, or light 
intensity, to appear)



Von Neumann stability analysis of PDE algorithms:
diffusion equation.

If parameter r is too large, the algorithm is violently unstable: 
It grows (out of noise) spurious numerical oscillations with the shortest wavelength representable on 
a grid. They are known as even-odd decoupling. To study the error propagation on a grid, we study 
the behavior of harmonic (sinusoidal) waves.  This yields a condition parameter r must obey.



Von Neumann stability analysis of PDE 
algorithms:
diffusion equation (done below),   
wave equation (exercise for you)

n

You should apply the von Neumann stability
analysis to the wave equation, and derive the 
so-called CFL, or Courant-Fredrichs –Levi
criterion, limiting either dx or dt, if the other 
value is known. Since c=soundspeed, 
dimensional analysis already suggests the 
form of the answer. But the unknown 
coefficient in the box is important in practice: 


