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n Random and Biased Random Walk in 1D (Gambler’s Ruin)
n The rate of exponential growth of technical civilization 

(1974-2024): Moore’s law
n Dennard’s law, which enabled Moore’s law. Derivation

from the physics of electrical circuits.  
n The great slow-down of exponential growth, its causes  

and effects for supercomputers and programmers today
n The need for parallelism
n Concurrent execution and Amdahl’s law
n Programming and parallelism:   C, Fortran, OpenMP 
w Simple benchmark loop (simpler-nb-3da and -3aa)  C, F95         
heap vs. stack variables, comp-bound and comm-bound 
programs; timing and benchmarking programs

LECTURE 6



Gambler’s ruin problem

• Simplest version: variable X is integer & evolves by sudden jumps by ± 1, with 
probabilities q and 1-q, correspondingly. 

• For example, q =1/2 produces an unbiased random walk on a line of integers.  
• Starting from value x,  quantity X wanders around until either condition occurs:

X=0 (ruin),  or X=N (happy ending).   N >> 1 is some large integer number. 
• What is the probability of gambler’s ruin,   P(X=0 | x; q, N) ? 

Numerical solution involving a 1-loop random walk simulations yields a statistical, MtC
solution. But there is a more elegant way.

Analytical solution can be obtained by using an approach formerly used by the co-creator 
of MtC method, Stanisław Ulam, in Manhattan project at Los Alamos, and surely others 
even earlier.
Random walk has no memory of the past steps. It is a Markov process. Probability of ruin, 
starting at x, which we shorten to P(x), does not depend on prior history. Consider where 
one step of the walk starting at x leads, with what probabilities, then express P(x) using 
P(x+1) and P(x-1): 

P(x)   =   q P(x+1)   +   (1-q) P(x-1) 
upper branch        lower branch x+1

x-1
x

q

1-q

Ruin
P(x+1) 

P(x-1) 

Walk to ruin:  1st step         The rest of steps    (independent events) 



• Gambler’s ruin problem  (The case of unbiased random walk)

Rearrange the equation to read 

! "($ + 1) − "($) + (1 − !) "($ − 1) = 0 (1)

If  ! = 1/2 (unbiased random walk), then the equation is the estimator of the second derivative of 
"($), with step h (the smallest amount of change of x) equal unity in the denominator: 

"’’($) = "($ + 1) − 2 "($) + "($ − 1) = 0

"’’ = 0 implies "’ = ./012. , so "($) is a linear function of x of the form " = . $ + 5, where 
., 5 = ./012. Since the probability of ruin when starting from ruin condition is 1, and probability of 
ruin when starting from success condition is 0, those two cases provide two boundary conditions 
for the 2nd order ODE:     P(0) = 1,   P(N) = 0,  making the solution unique. Boundary conditions 
are: "(0) = 5 = 1, and  "(1) = . + 5 = 0, 1/ 5 = 1, . = −1.

The ruin after an unbiased random walk starting at x happens with probability
"($) = 1 – $/7. (2)

1

N 0

"($)



• Gambler’s ruin problem (The case of biased random walk)

! "($ + 1) − "($) + (1 − !) "($ − 1) = 0 (1)

More generally, introduce a bias parameter  + as 

+ ∶= ! − ½ or     ! =: ½ + +

Positive bias b=0...½  means a greater tendency to increase x than to 
decrease it, in any biased random walk step. Conversely, negative bias will 
bias the walk to end up at smaller x than the starting value 

(think of roulette game at  the casino, which has + < 0). 

Plugging  ! = ½ + + into eq. (1), and using the symmetric (2nd order) 
numerical approximation to 1st derivative 

"’($) = ["($ + 1) – "($ − 1)]/(2 · 1), we obtain 
"‘’ $ + 4+ "’ $ = 0 (3)

with the same two boundary conditions as in unbiased walk. " 0 = 1,
and " 1 = 0. We can solve this ODE analytically.



• Gambler’s ruin problem  (continued)

!’’($) + 4( !’($) = 0;             ! 0 = 1, !(-) = 0.
One integration reduces this 2nd order ODE to 1st order:

!’($) + 4( !($) = /, / = 01234. (4)

The general solution consists of the homogeneous part !ℎ($), satisfying

!ℎ’ $ + 4(!ℎ($) = 0, (5)

[multiplied by a constant chosen for the full solution to satisfy boundary 
conditions], plus the particular solution of the inhomogeneous eq. 4, 

!67 = !8 ∫
:
!8
;< / =$. (6)

Homogeneous solution (cf. eq. 5) is obtained by separation of variables

!ℎ $ = exp −4($ (7)

and the full solution, satisfying the boundary conditions (verify!), reads

! $ =
BCD(EFG) ;<

BCDE ;<
(8)

Analyze the behavior of this solution for ( → 0, and for very large bias 

(( →
<

I
1J −

<

I
). Show that the ruin is less likely with ( > 0 than 

with ( → 0,which is the same ! $ as when ( = 0. That’s good.

But what if |(| =
<

I
212 − J/2=1W X/YZ & 0 < $ < - ?

Why are the probabilities of ruin not exactly 0 or 1?

Evaluate ! 1 , ! - − 1 according to eq. 8, for N=10. N
0

1

!($)



60 years of technical civilization, 1960-2020, 
in graphs and numbers

Literature: 

• https://hasler.ece.gatech.edu/Published_papers/Technology_overview/gor
don_moore_1965_article.pdf

• https://www.tha.de/Binaries/Binary20965/Post-Dennard-HSA-
Forschungstag2014.pdf

• https://top500.org/ the ‘Top 500’ site about top supercomputers, lists 
published 2x a year. 

https://hasler.ece.gatech.edu/Published_papers/Technology_overview/gordon_moore_1965_article.pdf
https://www.tha.de/Binaries/Binary20965/Post-Dennard-HSA-Forschungstag2014.pdf
https://top500.org/


The rise and the present slow-down of the 
exponential growth of our TECHNICAL CIVILIZATION

~10 G transistors, acting like RC 
circuits, are etched in every CPU 
and GPU chip of a modern 
Workstation, and even the phone.



Name of 
technology 
cycle:

10 µm – 1971
6 µm – 1974
3 µm – 1977

1.5 µm – 1981
1 µm – 1984

800 nm – 1987
600 nm – 1990
350 nm – 1993
250 nm – 1996
180 nm – 1999
130 nm – 2001

90 nm – 2003
65 nm – 2005
45 nm – 2007
32 nm – 2009
22 nm – 2012
14 nm – 2014
10 nm – 2016

7 nm – 2019
5 nm – ???

The surface 
density of 
transitors up to
~100 MT/mm2

these names do not directly
give the size of transistor but
are ~proportional to it



THE RISE  & CURRENT SLOWDOWN 
of the exponential growth of our technical civilization

the power wall in front of 
homo smartphoniensis



1970s—2010s, the integrated circuit revolution
as a basis of all our current technical civilization: 50 years of Moore’s law

This processor looks like a 4-core CPU or old GPU (Central or Graphics Processing Unit). 
It is not easy to execute one calculation simultaneously on many cores (~ sub-CPUs) of a CPU.
We call such processors multicore, and programs running on all cores multithreaded.

A highly integrated circuit (IC) has 
both arithmetic + logic units (ALU), 
fast cache memory hierarchy, and 
communication circuits, all in a small 
package of a Central Processing Unit 
(CPU).

N = up to 1011 transistors (2024)

21

3 4

28 core 



Moore’s law: Transistor density grew exponentially.
It used to double every 2 years, partly a self-fulfilling prophecy of the 
chip industry.



TECHNICAL CIVILIZATION in the last quarter of 20th century

The physics of transistors over the last half-century allowed a complete 
and unprecedented transformation of the way we store, process, transfer and use
information in modern society. 

Hardware was historically ahead of software.
Sometimes, vary rarely, our bad programming is actually dangerous (we lost to it
space probes; two B737 MAX airplanes crashed recently) but these are exceptions.

Our bicycles, cars, ships & airplanes do not travel twice as fast every year... 
(estimate how fast we’d travel if they did!)

But soon only bicycles may do well without the help of computers, although even 
that is changing. There are computer-equipped gear changers on modern bikes :-|

An empirical observation made in 1964 by Fairchild Semiconductor &  Intel Corp. 
co-founder Gordon Moore spelled out the past rate of development of computing 
hardware from 1959. It deals with # of transistors per unit surface of a microchip. 
Similar laws described similar, exponential, growth of bandwidth and other aspects 
of computing.  

https://www.cs.utexas.edu/~fussell/courses/cs352h/papers/moore.pdf

https://www.cs.utexas.edu/~fussell/courses/cs352h/papers/moore.pdf


Moore’s law is alive but less well today



Moore’s law: Transistor density grew exponentially because of increasing 
integration factor. Density used to double every 2 years, satisfying a partly
self-fulfilling prophecy of the chip industry.



Why? What happened here?!

Ans:  Clock frequencies stopped
growing due to Power Barrier.

CPU
40 years of evolution



Broadly similar to CPUs,

something worrying happens

with RAM evolution too!

https://www.nextbigfuture.com/2019/02/the-end-of-moores-law-in-

detail-and-starting-a-new-golden-age.html = a DARPA talk

(memory)

https://www.nextbigfuture.com/2019/02/the-end-of-moores-law-in-detail-and-starting-a-new-golden-age.html


slowdown of rapid 
doubling (Moore’s law)

Something happened with the performance (speed) of
top 500 supercomputers in the world.   Since 2008-2013, 
it still grows exponentially but slower than before. 



stagnated

stagnated

after ~2004:

hit a wall

started
rapidly 
climbing

still goes up,
a bit slower



stagnated

stagnated

after ~2004:

hit a wall

started
rapidly 
climbing

still goes up,
a bit slower



TOP 500.: The 1970-2010 rate of exponential increase
would give us today a 100x larger performance
of #500 computer, and 10x larger perf. of #1. 

double perf. 
eve

ry 
1.17 ye

ars

235/1.17 = 109

235/2.11 = 105

Perf ~ 2 t/!

Total perf. n
ow doubles in 2.11 years

! = 1.17 à 2.11 years

240/1.17 = 5·1010

240/2.11 = 2 ·105



TOP 500:  The 1970-2010 rate of exponential increase
would give us today a 100x larger performance
of #500 computer, and 10x larger perf. of #1. 

doubled perf. 
eve

ry 
1.17 ye

ars

235/1.17 = 109

235/2.11 = 105

235/4.57 = 2·102

Perf ~ 2t/!

#500 perf. now

doubles in 4.57 years

! = 1.17 à 2.11 (4.57) yr

240/1.17 = 5·1010

240/2.11 = 2 ·105

240/4.57 = 4·102

Sum of top 500 perf. n
ow doubles

in 2.11 years



Had the current slowdown occurred at the beginning of the era of integrated circuits 
in 1975, there would have been 40 years of slow instead of fast evolution. 
That would produce a much much smaller growth factor: 

Perf ~ 2 t/!

! = 1.17  yr à 2.11 (4.57) yr
pre-2010                 post-2010

Our computers & phones might now be 200000x or
100000000x slower, like they were around 1997 or 1988

240/1.17 = 5·1010

240/2.11 = 2 ·105

240/4.57 = 4·102

Motorola MicroTAC
19991984 Nokia 3210 

1989

Early 1990s

We had been very lucky!



This is how individual electronic elements look inside an Integr. Circuit (IC)

Their scale was deceasing by a factor of 

S=√2 

in each new generation if ICs, introduced roughly every 2 years.

The name like “28 nm”  or  “14 nm”  or  “5 nm technology”  is related to the width of 

conducting lanes.  The spacing between transistors is ~10 times bigger than the 

indicated number. 

MOSFET = 

Metal-Oxide

Semiconductor

Field-Effect

Transistor 

technology also called

CMOS     =

Complementary 

Metal-Oxide Semicond.

Understanding the changes in circuit production



Moore’s law says that the number of elements (logical gates, transistors)
on an integrated circuit (on 1 cm2 area), grows exponentially with time,
such that it doubles every ~2 years. It was an empirical observation. 

This was not a coincidence, but a combination of:
(i)   repeated shrinkage cycles of circuitry etched onto silicon wafers, &
(ii) physics of materials, which after the shrinkage allowed to keep the same amount 

of electric power to the increasing number of logical gates
Let’s prove it using physics of RC circuits.

A transistor on an Integrated Circuit has capacitance C and some stored charge Q.
It also has resistance R, on which the current’s energy can be dissipated. 
Transistors discharge and re-charge, under voltage V. 

The process of charging/discharging is not for free; it dissipates energy equal to 
ΔE = CV2, half of it during charging, which is like pushing electrons up the growing 
potential hill.  Energy drawn from voltage source by charge Q is 
~QV = (CV)V = CV2. Usually all of that energy must be supplied but is wasted as heat 
during discharge through resistance R, however ΔE does not depend on R.
If the chip works with clock frequency f, then the rate of energy dissipation (power) is
P ~ N C V2 f    + N*(leakage current*V) Dennard’s law
where N is the number of transistors. 



Now let’s shrink the circuitry on an IC. Each side of the chip is constant but the 
pattern of circuits is shrunk by a factor S = √2 =1.4128.. on a side, as it was in fact 
done every 2 years or so  for 4 or 5 decades. 
Q: What is happening to quantities C, V, and f of a transistor, and their number N?

N grows by a factor S2         [1.41x transistors on each side of chip]

C grows by a factor           1/S          0.707x
[this follows from electrostatics: C ~ area of capacitor/spacing between electrodes 
~(1/S2)/(1/S) = 1/S]

V was increased by a factor                  1/S           0.707x        (because ‘why not?’)

f  was increased by a factor S  
[because (i) a smaller transistor can switch its state proportionally faster, and (ii) why 
not?]

We have estimated that power needed to do calculations scales like  P ~ N C V2 f.

P grows by a factor of:           S2 (1/S)  (1/S)2 S   == 1 (!)

We have shown why ~17 cycles of shrinkage of transistors & circuits on a microchip
over 4 decades required neither more efficient cooling nor more power supply to the 
chip. (Electric power requirement did in fact grow, as the IC’s area slowly grew.) 



The exponentially growing number N was utilized to complicate the logical structure of 
CPUs, e.g., by introducing more and more levels of cache memory inside the processor. 
This memory is much fast but much smaller than RAM. It can be used as 
a buffer between CPU and the outside operational memory (RAM).

This allowed to mask the fact that CPU-RAM communication and the speed of the 
RAM (memory) was growing slower than the processing needs of CPU. As a result,
frequency  f  grew ~2 times, instead of just 1.41 in each new generation of processors. 

The progress was phenomenal. Among others, it allowed a similar exponential Internet 
bandwidth growth with doubling time ~18 months.

If our cars were increasing in speed at the rate equal to the increases in computing 
power, then we would now drive at about  the speed of light, once around the Earth per 
second.

No other area of human activity saw a million-, let alone a billion-fold quantitative 
improvement in one human generation, but computing did.

It was Physics that allowed us to keep providing a similar power to faster, smaller 
processors.  We wer fortunate that Dennard’s law was working. 

So why did the size reduction and exponential growth of clock speed have to end 
around 2004?  



Transistors inside the microchips, now counted in billions, became so small 
that, due to microscopic material imperfections, electric power gets dissipated in new, 
unavoidable way, via the leakage current in volatile memory (RAM, CPU). 

Transistor should either block or transmit current, but now the blocked state became 
not 100% blocked. Electric energy is slowly going to waste, without carrying out any 
computation. That’s how the doped semiconductors work. 
Leaks occurred before, but were masked by much larger heat dissipation due to 
(useful) toggling from state “0” to state “1”, and from “1” to “0”, during binary data 
processing.
Now:        P ~ N C V2 f    + N (Ileak V)                 Dennard’s law
(i)  size of circuitry still diminishes (with manufacturing problems! ASML lithography ok)
(ii)  number of transistors in new generations of processors still grows (a bit slower)
(iii) f ~ const. ~2-5 GHz  (speed of 1 core of CPU inches forward imperceptibly)

in order to try to keep energy supply and dissipation at a reasonable level! 
(iv) Cost of manufacturing next chip technology increases very rapidly, and the number 
of microchip foundries decreased to 2 or 3. Will the 3nm technology cycle be the last?



Post-Dennard era, leakage current contributes about the same 
as the re-charging power losses:

Shrink the circuitry as before by a factor √2 =1.4128.. 
Q: What is happening to quantities C, V, and f of a transistor, and their number N?

N  still grows by a factor ~2  

C  grows by a factor           1/√2   
[electrostatics; C ~ area of capacitor/spacing,  as before]

V  has to be kept constant (~1 Volt)         ~1  

f  has to practically stay constant ~1

We have estimated that power needed to do calculations scales like 
P    ~     N C V2 f     +   N V Ileak

The 1st term grows by a factor        2 [1/√2]  12 (~1)  ~ 1.4x, the second likely too

Dark silicon: switching off temporarily unused transitors. In your phone and 
laptop there are so-called fast and slow CPU cores  à overall ~1 (?)

https://www.hs-augsburg.de/Binaries/Binary20963/PostDennard.pdf

https://www.hs-augsburg.de/Binaries/Binary20963/PostDennard.pdf


• The problems boil down to the power barrier, although there is also a rising 
manufacturing difficulty and cost. So the wait for 2x performance lengthens...

• It is no longer possible to play the game of “increase clock speed and keep one 
core”, as before.  On the contrary, increasing the number of cores in a processor 
comes cheap (power-wise), and therefore is now practiced by manufacturers. 

• We are (and will be, in the future) getting processors with more and more cores. 
Each core will NOT be much more capable to crunch numbers than in the previous 
generation. Hardware engineers can’t keep up doing miracles. They hope that you
as a programmer will do them, adjusting to the changing world. 

• Power barrier forces us to use more and more cores in parallel, if we hope to 
practice HPC and computational branch of all science

• This task is significantly more difficult in Python than e.g. in C, Fortran, or Julia.  
Therefore we are going to learn parallelization and other, less effective speedup 
methods, such as vectorization, in the rest of this course.

Serial program & execution    K Parallel program: concurrent execution J
(try to avoid!) 



1. One of the most successful parallelization paradigms is the fork-join scheme 
(on all platforms; Message Passing Interface = MPI, essential on supercomputers,  
OpenMP mostly in shared memory sys.:  multithreading on many cores).

2. Every thread may, in addition, be vectorized, using a growing set of long AVX 
registers  (on CPU, MIC, currently mostly 256 bit = 8 single prec. or 4 dp floats)

Vectorization:
• manual 
(intrinsic C/C++
functions)

• automatic
(compiler + SIMD 
directives) 

If you find a fork in a road,
take it.

‘Yogi’ Berra

Some of the modern programming methods: 



Derivation of Amdahl’s law  of parallel program’s speedup 

f = fraction parallelizable = 4/5 = 80%  (for example!) 

S = Speedup factor =  5/2 = 2.5x

In general:      S  =

n = 4    (# of threads)

1  : (1-f   + f/n)        <      1/(1-f)

e.g., if   1-f = 1/20   then S < 20 even if n = 512

1-f          f/n

1-f          



We have already seen an example of 40x speedup over Python possible with Numpy,
and 40x over Numpy with Fortran (OpenMP & CUDA), Here’s someone’s success 
story with the matrix multiplication algorithm, which has  f~1  (is ~fully parallelizable) 



CLUSTERS, SUPERCOMPUTERS:
additional, final boost by their hardware’s massive scale.
But these beasts should run efficient, smart codes.

# stars ~ # cores
in supercomputer



Processor architecture & instruction set: Out of creative chaos of different CPUs 
before ~2004, Intel’s x86_64 processors emerged as a big winner. Your CPU and 
CPUs in supercomputers, until 2019 were likely all x86_64 microprocessors. They 
understand the same instruction set. Here is the full story, in 1993-2015: 

Intel 
x86_64

Sparc

AMD
x86_64

IBM Power

Alpha

MIPS

RISC

Cray

201520101993 2000



i7-5820K    Haswell CPU     6 cores, 12 threads
3.3 GHz, cache L1/L2/L3 = 64k/1.5MB/15MB,   140W





Intel       Alder Lake   10-core  desktop  CPU

socket : LGA 1200
area :  200 mm2



A8 SoC (system on a chip)
designed by Apple Inc.  for:
iPad mini 4, iPhone 6(+)

produced by TSMC
(Taiwan Semiconductor)

process:   20 nm

area :  89 mm2

# of transistors:    3 billion

instruction set:  ARMv8-A

dual CPU:  64 bit,   1.5 GHz
caches:       L1    / L2   / L3

64+64kB/2MB/4MB
1.1 – 1.4 GHz clock freq.

GPU: 8 cores, 
148/296 GFlops (FP32/FP16)



16 G trans.,        32 G trans.                       57 G  trans. M1 Max processor
5 nm process  (N5)
10-core CPU,  
32-core GPU

64 GB unified memory 
400 GB/s bandwidth 

RISC = Reduced Instruction Set Comp.
RISC proliferated after 1990 (when it was 
introduced in Sun Microsystems 
workstations). Used a reduced instruction 
set for faster code  execution. Sun also 
had the top compilers.
_________________________________
Apple used CPU with:  
Motorola (1980s), PowerPc (1990s),
Intel (2000s), and ARM (2020s). 
_________________________________
ARM = (orig.) Advanced RISC Machines
An architecture different from x_86 Intel, 
It’s a 40-year old architecture(!). In 2000s
used in 95-98% of smartphones. 
_________________________________
In 2024, the top version of  M2 Apple
Processor (ARM) has a record # of 
transistors: 134 G trans.



= Open Multiprocessing (cf. wiki)

"Hands-on intro to OpenMP", a slide show by Intel programmers from SC08, Austin, 
TX

Full description of OpenMP (fairly tedious reading but good to have for reference)

Examples of good and erroneous application of OMP. Lots of interesting 
code snippets in C/C++ and Fortran:

Intel’s writeup about performance limitations of OpenMP-instrumented codes.

Our code page http://planets.utsc.utoronto.ca/~pawel/PHYD57/
has links to program tetra*.f90/.f95 that solves a computationally demanding task

https://www.openmp.org/wp-content/uploads/omp-hands-on-SC08.pdf

https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

https://www.openmp.org/wp-content/uploads/openmp-examples-4.5.0.pdf

https://software.intel.com/en-us/articles/performance-obstacles-for-
threading-how-do-they-affect-openmp-code

https://en.wikipedia.org/wiki/OpenMP
http://planets.utsc.utoronto.ca/~pawel/PHYD57/
https://www.openmp.org/wp-content/uploads/omp-hands-on-SC08.pdf
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.openmp.org/wp-content/uploads/openmp-examples-4.5.0.pdf
https://software.intel.com/en-us/articles/performance-obstacles-for-threading-how-do-they-affect-openmp-code


Our code page http://planets.utsc.utoronto.ca/~pawel/PHYD57/
&
Your account  phyd57@art-1.utsc.utoronto.ca:/home/phyd57/progD57
as well as phyd57@art-1.utsc.utoronto.ca:/home/phyd57/math
have links to many programs using omp. 
Ø tetra*.f90/.f95 which solves a comp. demanding task of finding the 

chance that a random tetrahedron inscribed in a sphere contains the 
sphere’s center

Ø buckets-1000.f90 tries to find the optimum way of distributing a given 
amount of water in each move into 8 buckets, 2 fullest of which get 
emptied, so that maximum amount is reached in one of the buckets.

Ø There is always something to play with, e.g.
Ø vary  num_threads, or schedule, or collapse, options in OMP directives
Ø Also, come back to the iterated 2-D Laplace operator in 

cudafor-laplace3-dp.f95 and cudafor-laplace3-sp.f95. These codes 
contain sequential and parallel parts: host code, OMP, and a 
comparison with  CUDA Fortran. 

(Tutorial T4 material)

http://planets.utsc.utoronto.ca/~pawel/PHYD57/
mailto:phyd57@art-1.utsc.utoronto.ca:/home/phyd57/progD57
mailto:phyd57@art-1.utsc.utoronto.ca:/home/phyd57/math


• Tutorial programs for Fortran and C are on our web page.
Use the last link in the Languages section to review the usage of C.

• Programs are placed in /progD57 directory and in art-1 program directory

• Look at C-version of arithmetic/bandwidth demonstration program  
simpler-nb-3ra.c, which does not work (produces Segmentation fault, 
problem with memory management, as we say this code ‘segfaulted’). 
The reason is that the program tries to deposit results in a  non-existing 
array element tab[6][k] . This needs to be changed to tab[5][k]  because 6 
indices of the 1st dimension are: 0,1,..,5.  (C, like Numpy, has 0-base 
arrays!)

• simpler-nb-3ra.f90 is the corrected F90 program, and the version with 
swapped indices is called simpler-nb-3da.c

• simpler-nb-3da.f90 and simpler-nb-3ra.f90 are the Fortran versions, 
which we will analyze during day 7. 


