
LECTURE 7

PHYD57. Advanced Comp. Methods in Physics.
(c) Pawel Artymowicz UofT, 2024. Only for use by enrolled UTSC students

Literature: see links on our course home page, the references page, and on the 
coding page. 

v Supercomputers today

v Numerical solution of Ordinary Differential Equations
o Euler method
o Leapfrog  (symplectic 2nd order)
o RK4 algorithm
o Symplectic 4th order algorithm

v Programming and parallelism:   C, Fortran, OpenMP (cont’d)
w Massively parallel processing of tetrahedrons (tetra-Dc) in Fortran [and tetra-
Dg in CUDA Fortran]
w Analysis of the Laplace stencil program     (art-1: ~/progD57)
ifor-laplace3-dp.f90,  -sp.f90.  cudafor-laplace-sp.f90

Ø Tutorial



Modern supercomputing 
clusters compute in parallel. 
They consist of many nodes 
(workstations running Linux 
operating system), connected by a 
fast network  in order to work in 
parallel on a single problem (or on 
many problems simultaneously).
Hierarchical hardware inside as 
well.

Even though the modern networks
(Ethernet, Infiniband) transfer from 
10 to 50 GB/s between arbitrary two 
nodes using networking switches,
data can flow up to 40x faster, at 
250-790 GB/s, inside the Xeon Phi 
and GPU computational cards. 

Node connectivity can therefore be 
a bottleneck for some (fortunately 
not all) parallel computer tasks

20 GB/s Infiniband switch present
on art cluster



Picture shows some of the 28 nodes 
of the UTSC supercomputer 
designed and built in 2017 by your 
lecturer & a summer student. 

• CPUs (6-core, 4GHz overclock),
• GPUs (graphics cards), and/or
• Intel Xeon Phi cards (57-core 

processors)

Each node contains CPU + 2 Nvidia
graphics cards capable of combined 
~10 TFLOPs in single precision. 

This cluster can compute 1012 

(trillion) times faster than ENIAC in 
1946, and 

~6 billion times faster than similarly
sized PDP-11 (1970), using 

~10 million times larger memory 
(RAM, disks) than PDP-11/45.

It costs 40x less than did PDP-11
(60k vs. 2400k, in today’s $) 



Title of media report in November 2017: “China overtakes U.S in the Top 500 
Supercomputers List”. China had two fastest supercomputers in 2017 (Sunway & 
Tianhe-2), including one based on own 240-core processors and one on Intel Xeon 

Phi processors (60-core).           Up to date statistics available at   top500.org 

0.2%(0.2%) of top500 sys(perf) China, 58%  (61%)   USA    in 1999  
4%  (3.5%)                                            58%  (61%)                   2009  

44%  (30%)                                             23%  (39%)                   2019
16%  (4%)                                               34%  (53%)                   2024

2019

U.S. performance
U.S. #

China perf.

China #
of systems



Title of article in June 2018:  

“Linux Powers ALL Top 500 Supercomputers in the World. U.S. beats China for #1”

Classified computer called Summit in the U.S. was the fastest machine in the world. 

Linux followed Unix in its domination of HPC (High Performance Computing);

MacOS (Linux derivative) plays no role in HPC, Windows OS as well  



to be continued

Summit installed in 2018 as #1 in the world, had 4608 nodes, 9216 IBM POWER9 
CPUs and 27648 Nvidia Tesla GPUs. Most computational power is from those Tesla 
V100 graphics cards. 
The combined performance is measured at ~150 PFLOPS, out of the theoretical number 
of 200 PFLOPS (Summit could de facto perform 150,000,000,000,000,000 arithm.op./s) 

Modern top supercomputers:
rows of 19”-wide racks filling basketball 
fields, 1000s of nodes (workstations), 
consume  18 to 23 MW of electric 
power and emit heat at that rate. 
Cost ~$300 million. 
Not environment-friendly (e.g. UofTs
SciNet was warming/damaging envir., 
whose warming it was meant to study.)

However, let’s put things into 
perspective!  That’s about the price 
of   ONE Boeing 777 airplane, whose 
engines also produce 23 MW of power 
in cruise & much more while climbing. 
There are 1600  B777s,
and 10000 Airbuses!
Each costs as much as 
a big supercomp center

https://www.top500.org/statistics/sublist/

https://www.top500.org/statistics/sublist/


to be continued

Suppose 1000 scientists want to do high-resolution simulations in 3D, simultaneously. 
Each of them divides simulated object or region of space into, say, 2000x2000x2000 
cells, or 8G cells [(2K)3 = 8G].  Each cell must hold 5-10 floating point numbers of length  
8 Bytes (double precision). For instance, in a fluid simulation those would be density and 
pressure, as well as 3 components of velocity vector in each cell.  Storage of at least 40 
to 80 B/cell is usually needed.

The total volume of simulated data may thus be ~1000* 8G*(40-80 B) ~ 500 TB.  

Modern top supercomputer:

150,000,000,000,000,000 arithmetic    
operations/second.  
Who’d ever need that?

No single user is allowed to hog the 
whole supercomputer, there are 
thousands of users at national 
supercomputing centers. 

We will do a realistic estimate of how long 
one scientific model runs on Summit. 

[Do not memorize it! It’s informative, but not 
exact to better than on order of magnitude.
Read this & the next 2 slides for fun.]



If the total volume of simulated data is ~500 TB, 
and ~30K graphics cards do simultaneous number crunching on Summit, then 

~500GB/30 ~16 GB 
of this data must be processed by each GPU in each time step. (Today, 16 GB can fit on 
the biggest RAM available on GPUs, avoiding transfer from/to CPU RAM, a good thing!)
Constantly shuffling data back and forth to RAM at a bandwidth of ~300 GB/s, the GPU 
card takes at least 

~(16 GB) /(300 GB/s)  = ~0.05 s 
to process its allotted data in a given time step of the simulation (inter-processor and 
inter-node communication takes additional time, sometimes majority of time, but let’s 
assume this does not apply to CFD = Computational Fluid Dynamics.) 

Next, how many time steps are needed? 

Modern top supercomputer:

150,000,000,000,000,000 
arithmetic ops/s (0.15 ExaFLOP)
Is this not an overkill and a waste 
of money?!



A high resolution simulation may need ~1 million time steps to complete. (That’s 
because the computational cells are small and modeled physical signals propagating 
through the grid of cells cannot cross more than 1 cell per time step (CFL condition). In 
practice, a physical disturbance of some sort crossing 50 times a grid of 2000 cells in 
both directions needs a minimum of 500K steps, in agreement with the 1M estimate).

If so, then each of our hypothetical 1000 researchers have to wait a minimum of   
1M * (0.05s) ~ 14 hours 

for their simulations to complete, if everything works at 100% efficiency.  

So the seemingly ‘ridiculously large’ number of arithmetic ops per second (>1017), of 
which Summit is capable, is not so ridiculous after all when shared among the waiting 
scientists.

Modern supercomputers:
Large-scale simulations take a lot of time & use all available 
resources! There is never “too much resolution” or “too 
much precision” in science or engineering. 
Think of simulating a new passenger jet flying with 
complicated wing flaps. Is 2000x2000x2000 resolution 
sufficient? (Assume the length of aircraft is 70m. Estimate 
average cell size. Boundary layer of air is a few mm thick.)



• Taking into account bandwidth limitations (decisive for most computations!), Summit 
was not excessively fast. Neither did it have performance of 1 EFLOPS =  Exaflop = 
1018 FLOP/s in double precision (8B/floating point number). Such computers were 
supposed to arrive by 2020, it was a decade-long goal. 

• They first arrived around 2022
• Summit fell to #9 in 2024 list of Top 500 computers   
• the fastest machine of 2024 is Frontier (also at Oakridge National Lab); it uses
• AMD Optimized 3rd Gen EPYC 64Core 2GHz CPUs  (8.7M cores)
• In 2022 did 1.2 EFLOP in tests, 1.7 EFLOP in theory
• Runs Cray OS

• Second is Aurora, 1.8 times more power (38 kW), 
at Argonne Lab. Aurora has theor. speed 2 EFLOP, 
in tests 1 EFLOP. It is Inter-CPU based

What about 2024?



v Special theory of perturbations
(old name for numerical calculations,
Usually the solution of ODEs)

1856-1927

Leonard Euler
Carle Runge Martin Kutta

1867-1944

Most popular numerical integration methods for differential eqs
Euler method  (1st order)         &   Runge-Kutta (2nd - 8th order)



The Euler method
We want to approximate the solution of the differential equation

For instance, the Kepler problem which is a 2nd-order equation, can be
turned into the 1st order equations by introducing double the number of 
equations and variables: e.g., instead of handling the second derivative
of variable x, as in the Newton’s equations of motion, one can integrate the 
first-order (=first derivative only) equations using variables x and vx = dx/dt 
(that latter definition becomes an additional equation to be integrated).

Starting with the differential equation (1), we replace the derivative 
y' by the finite difference approximation, which yields the following formula

which yields

This formula is usually applied in the following way. 



The Euler method (cont’d)

This formula is usually applied in the following way. 

We choose a step size h, and we construct the sequence t0, 
t1 = t0 + h, t2 = t0 + 2h, ... We denote by yn a numerical estimate of 

the exact solution y(tn). Motivated by (3), we compute these estimates 

by the following recursive scheme

yn + 1 = yn + h f (tn,yn).

This is the Euler method (1768), most probably 

invented but not formalized earlier by Robert Hook.

It’s a first (or second) order method, meaning that 

the total error is ~h 1 (2) It requires small time steps 

& has only moderate accuracy, but it’s very simple!



The classical fourth-order Runge-Kutta method
One member of the family of Runge-Kutta methods is so commonly used, 
that it is often referred to as "RK4" or simply as "the Runge-Kutta method".
The RK4 method for the problem

is given by the following equation:

where

Thus, the next value (yn+1) is determined by the present value (yn) plus the 
product of the size of the interval (h) and an estimated slope. 



Runge-Kutta 4th order (cont’d)

Thus, the next value (yn+1) is determined by the present value (yn) plus the 
product of the size of the interval (h) and an estimated slope. In RK4, the 
slope is a weighted average of derivatives:
• k1 is the slope at the beginning of the interval; 
• k2 is the slope at the midpoint of the interval, using slope k1 to determine 
the value of y at the point tn + h/2 using Euler's method; 
• k3 is again the slope at the midpoint, but now using the slope k2 to 
determine the y-value; 
• k4 is the slope at the end of the interval, with its y-value determined using 
k3. 
When the four slopes are averaged, more weight is given to the midpoint.
The RK4 method is a fourth-order method, meaning that the total error after 
a fixed simulated time behaves like ~h4. It allows larger time steps & better 
accuracy than lower-order methods.

Thus, the next value (yn+1) is determined by the present value (yn) plus the 
product of the size of the interval (h) and an estimated ‘slope’  or 1st

derivative  (in fact, a space-time average of the r.h.s. of ODE)



In symplectic integration of Hamiltonian systems, the (x,p) volume of phase-

space is preserved in time. This means that the total energy of the system 

does not drift in time, unlike in RK methods: a great advantage in very long 

astronomical simulations, for instance. Today RK integration is much less 

used in large-scale simulations of planetary systems, unless it is of very high 

order (RK78), or in applications not involving Hamiltonian dynamics of 

particles. (Heads up: not everything is Newtonian/Hamiltonian dynamics!)

____________________________________________________________________

Leapfrog method is a 2nd order symplectic integrator – always use it for 

simple tasks in particle dynamics!

f = f(x,v)            # compute forces, usually just depending on position x

v = v + dt*f        # it is implied that v&x are time-shifted (de-sync’ed) by dt/2

x = x + dt*v       # so that x evaluations leapfrog over v evaluations. 

(the order of uptades is important!) 

____________________________________________________________________

For Newtonian/Hamiltonian dynamics of particles, 4th order symplectic
method in one timestep evaluates r.h.s. of ODE only 3 times. (RK4 does it 4 

times.) So you get better accuracy behavior at a smaller cost, than in RK4. 

Symplectic integrators



Algorithm: 4th Order Symplectic
Forest and Ruth (1990)

1. Push position: x = x + c1*v
2. Calculate force (at an updated position)
3. Kick velocity: v = v + d1*a

4. Push position: x = x + c2*v
5. Calculate force (at an updated position)
6. Kick velocity: v = v + d2*a

7. Push position: x = x + c3*v
8. Calculate force (at an updated position)
9. Kick velocity: v = v + d3*a

10. Push position: x = x + c4*v



Yoshida (1993) paper about symplectic integration delves into 
more details, including some disadvantages w.r.t. RK4:

https://planets.utsc.utoronto.ca/~pawel/PHYD57/Yoshida-paper-1993.pdf

4th Order Symplectic integrator coefficients

https://planets.utsc.utoronto.ca/~pawel/PHYD57/Yoshida-paper-1993.pdf


• Tutorial programs for Fortran and C are on our web page.
Use the last link in the Languages section to review the usage of C.

• Programs are placed in /progD57 directory and in art-1 program directory

• Look at C-version of arithmetic/bandwidth demonstration program  
simpler-nb-3ra.c, which does not work (produces Segmentation fault, 
indicating a problem with memory management; as we say, this code
‘segfaulted’). The reason is that the program tries to deposit results in a  
non-existing array element tab[6][k] . This needs to be changed to 
tab[5][k]  because 6 indices of the 1st dimension are: 0,1,..,5.  (C, like 
Numpy, has 0-base arrays!)

• simpler-nb-3ra.f90 is the corrected F90 program, and the version with 
swapped indices is called simpler-nb-3da.c

• simpler-nb-3da.f90 and simpler-nb-3ra.f90 are the Fortran versions 



v Massively parallel integration on the 
newest HPC platforms: CPU, GPU and  
MIC

Concurrent simulation of 200 or 7000 planetary systems on 
CPUs or MIC

Collisionless gigaparticle disks. Interaction with binary system.

Hybrid algorithm (4th order symplectic with collisions) 
Implementation and optimization in Fortran90 on 1..32  MIC (Φ)
Migration problem
Tests and preliminary results
Fast migration in particle disks as type III CR-driven migration

from a conference talk at UTSC, 2017, 
discussing work by P. Artymowicz
and u/g student F. Horrobin



1990s and 2000s was the era of clusters

MPI for  parallelization. 



MIC = many integrated cores
(Intel’s term for many-core, massively parallel, CPU-like 
processors)

GPU = Graphics Processing Unit (processor inside graphics 
card, actually more capable of quick computation than CPU).

It seemed that the we won’t bother to build clusters any more, but it wasn’t 
true.



MIC = many 
integrated CPU-like 
cores (~60)
Intel Xeon Phi accelerators 

Knights Corner: 
~1 TFLOP dp
~2 TFLOP sp

Knights Landing: ~3x more 
TFLOPs

TFLOP = 1 T FLOP/s.

1 T = ~1018 exa
1 P = ~1015 peta
1 T = ~1012 tera
1 G = ~109 giga
1 M = ~106 mega
1  K = ~103 kilo



In 2014, CERN Researchers considered which of the platforms makes the most sense 
for distributed Worldwide LHC Computing Grid, processing data for Large Hadron 
Collider experiments in 170 computing centers, in 40 countries (incl. UofT). The height
of the bar is proportional to the estimated speed in CERN simulations with then-current
hardware. .Nowadays GPU have somewhat more advantage over CPU & MIC
[dp = double precision (8B/float like in Python, 15 accurate decimal places), 
sp = single precision (4B/float, 7 decimal places accuracy)]

ARM

GPU
sp

CPU       Φ

GPU  
dp



with the help of an 
undergraduate student 
we assembled 20+ 
computers in the
summer  of 2018

...we didn’t actually 
use GTX 480s J

We have a mix of
gtx 970, Titan,
and gtx 1080ti GPUs



The coprocessors in these Linux boxes with dual 
power supplies are 4 Intel Xeon Phi (KNL)





N  =  10 K ... 1 M 

CPU (i7-5820K 4GHz)          MIC (KNC) GPU (gtx 980, Titan) 

0.28 TFLOP sp 1.33 TFLOP sp 3.5  TFLOP sp (gtx980)
14 G interac/s                   67  G interac/s              190 G interac/s

0.09 TFLOP dp 0.51 TFLOP dp 0.81  TFLOP dp (Titan)
4.5 G interac/s                   25 G interac/s              40 G interac/s

!
!    on MIC the calculation is  2.8 times slower than on GPU (sp)
!    1.6 times slower than on GPU (dp)
!    CPU (6c.) is                      9..13  times slower than  GPU 
!

note:   this is a rare fully compute-bound calculation!

Large N-body systems by direct summation
20 arithmetic operations per one pairwise grav. interaction

leapfrog (Fortran90) leapfrog (CUDA C)



n8b-aug14.3.f90 Same double precision program. Compiled with ifort 
Concurrent 8-body systems by 4th order symplectic code 

platform CPU MIC

compiler flag -xhost -mmic

number of N-body 
systems per processor

12 224

N [#threads per sys.] 8 [1] 8 [1]

exec. time per step 0.871 μs 4.58 μs

steps per orbit 360 360

exec. time of 1 orbit 0.313 ms 1.65 ms

exec. time (1G orbits) 3.63 days 19.1 days

system clock 4 GHz 1.1 GHz

throughput 13.8 M sys-step/s 49 M sys-step/s

# concurrent systems 
(SciPhi cluster UTSC)

192 10752



Practical capabilities of processor platforms for dynamical astro-
calculations. Single (co)processors
CPU ~ E5 and i7 ser. (Intel),  MIC = Knights Corner  (Intel 2013),
GPU = Nvidia GTX970..1080 (sp) and Titan (dp) run:

1. Gravit. N-body problem O(~N2). N ~106 real-time  (~1 fps) 
GPU > MIC ~ CPU (mostly comput. limited, > TFLOP)

2. Disks of particles (stars; asteroids, planetesimals, meteoroids and dust).  
~ 109/s,  ~108 in RAM, (~10 fps)
GPU ~ MIC > CPU     (bandwidth-limited to 150 GB/s)

3.  Pure CFD = fluids, cells: ~108/s,  ~108 in RAM
GPU ~ MIC ~ CPU (mostly bandwidth limited) , (~1 fps)

GPU – some have decent double precision, most don’t.
Somewhat difficult to program and optimize, compared to x86 platforms. Very 
fast on direct summation.

Collisionless gigaparticle disks can be simulated with the
4th order symplectic algorithm described earlier in this lecture.



Collision with a Binary and Variable dt

Inside rL

Inside planet 
radius

Outside 
Planet radius

• Store particle and set to large r in 
main array

• Remove from array
• Transfer momentum and cm 

position
• Increase mass and spin

• Store particle and set to larger r in 
main array

• Perform same scheme but with 
variable dt

• Range 1e-8 – dt1(0.004)

source: Fergus Horrobin, UTSC



The codes described here are 
massively parallel and require
very large number of particles to 
run with full efficiency.

source: Fergus Horrobin, UTSC



relative error of energy integral 
increases ~2e-8 per 1000 orbits

source: Fergus Horrobin, UTSC



We study type III migration in Disks
• Very rapid migration in gas disks: 40-50 

orbits timescale for Jupiter-mass planet in a 
solar nebula disk
(Papaloizou et al. in Protostars and Planets V, 2005)

• Rate does not depend on mass of planet
• Criterion compares disk (in CR = corotation

region) and planet masses:
– Mp < Mdeficit . Difficult to satisfy by 

planetesimals...

source: Fergus Horrobin, UTSC



Previous results: Kirsh et al. 2009 identified the fast migration
and offered an explanation [without noticing a connection with type III 
migration, e.g. as reviewed by Papaloizou et al. 2006, PP V]

Much slower migration by 
mean-motion resonant 
scattering (w/similarly v. 
massive disks) proposed 
by Murray et al (1998).



3Gp Simulation of Jupiter-
mass planet. Disk Mass 
0.01Msun

No planet-disk interaction for 
5 initial orbits

The rate of migration 
agrees with analytical 
estimate with corotation 
region depleted by 25%

a(t)

source: Fergus Horrobin, UTSC



source: Fergus Horrobin, UTSC



source: Fergus Horrobin, UTSC



Conclusions of Fergus Horrobin’s summer 
research in 2017

For large-scale particle integrations in non-collisional 
disks, codes can run v. fast on MIC cluster (Xeon Phi)
• 3+ billion particles (150M per MIC), timestep ~0.2 s 
• Hybrid parallelization method combining OpenMP

and MPI seems best for this type of platform
• We’ve implemented 4th order symplectic integrator.
• Though deeper analysis must be made, we see 

similarities between gas and particle disks in the 
context of rapid migrations



N-body simulations of the Universe 

• https://www.youtube.com/watch?v=YjUICiYlCYE
• Millenium – 10+G particles Gadget code, 
• kept the main supercomp at MPI Inst of Astronomy in 

Garching, Germany, busy for a month in 2004
• (700 MPc)3

• https://www.youtube.com/watch?v=32qqEzBG9OI
(350Mpc)3, 5e4 galaxies,  12G particles, 8k CPUs
• Millenium XXL

https://www.youtube.com/watch?v=YjUICiYlCYE
https://www.youtube.com/watch?v=32qqEzBG9OI


N-body simulations of the Universe 

• https://www.youtube.com/watch?v=YjUICiYlCYE
• Millenium

• https://www.youtube.com/watch?v=32qqEzBG9OI
(350Mpc)3, 5e4 galaxies,  12G particles, 8k CPUs
• Millenium XXL

https://www.youtube.com/watch?v=YjUICiYlCYE
https://www.youtube.com/watch?v=32qqEzBG9OI


N-body simulations of the Universe 
• https://www.youtube.com/watch?v=YjUICiYlCYE
• https://www.youtube.com/watch?v=32qqEzBG9OI

(350Mpc)3 = (1 billion ly)3 , 50K galaxies,  12G particles 
• Simulation name: Bolshoi
• Run on Pleiades cluster (supercomputer) at NASA Ames 

Research Center in Mountainview, California.

https://www.youtube.com/watch?v=YjUICiYlCYE
https://www.youtube.com/watch?v=32qqEzBG9OI


N-body simulations of the Universe 
12G particles create 50000 galaxies,   gas:  Adapt. Mesh 
Refinement  grid,     8k CPUs used for Bolshoi-Planck simulation 

Pleiades has theor. peak performance 7.3 PFLOPS



1. Astrophysical problems for CPU and GPU calc’s:
Disk-planet interaction and migration
Disks with structure: IRI (irradiation instability in particle and gas
disks)

Flow of gas around Super-Earth (5 ME)  

2. Massively parallel numerics on mini-supercomputers:
Comparison of HPC platforms: CPU, GPU, and MIC (Φ)
UTSC clusters



Binary-disk interaction

Artymowicz and Lubow (1996)

SPH = smoothed hydrodynamics: cf. wiki



Binary-disk interaction
method: grid-based CFD (Computational fluid dynamics) 



CPU 2-d

2nd order
ZEUS 
hydro

notice mass
flow through 

gap



One-sided disk (inner/outer disk only). The rapid inward migration is 
OPPOSITE to the expectation based on shepherding (Lindblad 
resonances).

Like in the well-known problem of “sinking satellites” (small satellite galaxies 
merging with the target disk galaxies),
Corotational torques cause rapid inward sinking. 



A few snapshots from a 2-D simulation of a brown dwarf circling a star, 
interacting with the circum-binary disk.   Density of gas is color-coded.









An edge mode of spiral density waves appears, grows non-linear, and 
forms a vortex-like structure in disk.  Density of gas is color-coded.

This computation used CPU, and a 
Fortran hydrocode algorithm called 
PPM (Piecewise Parabolic Method).  





Code:  PenGUIn.

CUDA C++.   Processes up to ~20 Mcells/s (dp), ~40 Mcell/s (sp) 

for comparison, Xeon Phi can run the same size problems at
~30 Mcell/s (sp)

and a modern 6-core CPU does ~28 Mcell/s.

These codes are bandwidth-bound.   GPU > MIC ~ CPU



We have found big differences between 2-D and 3-D flow pattern 
of gas from a protoplanetary disk around a planet. These differences may influence
the way planets form and migrate in disks. 



Computational box, the bottom part of which lies in the disk midplane. 
Up-down symmetry is assumed. Planet’s position is (0,0,0), indicated by a circle)
but the size is exaggerated.



Gas flow approches planet on one side of the disk (say, further from the star than the
orbit of the planet) and after curious vertical compression (into a vortex) departs on the
other side (closer to the star than planet). 

top view



Such vortex, because of up-down and far-near symmetry is found near the  
protoplanet in 4 copies (2 counterrotating pairs). A planet sheds vortices familiar to 
flows patterns in aerodynamics, where there are called wingtip vortices. 



x

z
y

A planet acts like two airfoils placed 
vertically in the disk



Novel results from 3D simulations

New 3D phenomena, absent in 2D flows, including new 
columnar topology  

vorticity generation mechanism around a small planet, 
have a potential to resolve the long-standing problems in 
planet formation theory: 

migration and cooling/contraction of the growing planet, 
occasional transmutation into a giant gaseous planet.



DUST/RADIATION PRESSURE-RELATED INSTABILITIES
including the IRI = IrRadiation Instability

Jeffrey Fung (UC Berkeley)  
used workstations at UofT with 3 GPUs 
for parallel computations 



tau = 4,   β = 0.2

0 180 deg 360 deg

radius

0.7

1.0

1.6

azimuthal angle

Particle disks have IRI instab. too!

1.3



IRI



GAS DISK HYDRODYNAMICAL SIMULATION (PPM method, 2-D)
R.h.s. shows a background-removed picture of density of growing modes.
Analytical predictions are in agreement with calculations.
Models of disks were running faster on 3 GPUs than on UCB 128-cpu cluster.

Opaque disks are unstable under illumination by the central object



Program tau-nopgpl.f that Jeffrey Fung used 
to calculate IRI:   

240 essential lines 
+ 200 lines of plotting routines


