
LECTURE 7

PHYD57. Advanced Comp. Methods in Physics.
(c) Pawel Artymowicz UofT, 2024. Only for use by enrolled UTSC students

Literature: see links on our course home page, the references page, and on the
coding page.

v Supercomputers today

v Numerical solution of Ordinary Differential Equations
o Euler method
o Leapfrog (symplectic 2nd order)
o RK4 algorithm
o Symplectic 4th order algorithm

v Programming and parallelism: C, Fortran, OpenMP (cont’d)
w Massively parallel processing of tetrahedrons (tetra-Dc) in Fortran [and tetra-
Dg in CUDA Fortran]
w Analysis of the Laplace stencil program (art-1: ~/progD57)
ifor-laplace3-dp.f90, -sp.f90. cudafor-laplace-sp.f90

Ø Tutorial

Modern supercomputing
clusters compute in parallel.
They consist of many nodes
(workstations running Linux
operating system), connected by a
fast network in order to work in
parallel on a single problem (or on
many problems simultaneously).
Hierarchical hardware inside as
well.

Even though the modern networks
(Ethernet, Infiniband) transfer from
10 to 50 GB/s between arbitrary two
nodes using networking switches,
data can flow up to 40x faster, at
250-790 GB/s, inside the Xeon Phi
and GPU computational cards.

Node connectivity can therefore be
a bottleneck for some (fortunately
not all) parallel computer tasks

20 GB/s Infiniband switch present
on art cluster

Picture shows some of the 28 nodes
of the UTSC supercomputer
designed and built in 2017 by your
lecturer & a summer student.

• CPUs (6-core, 4GHz overclock),
• GPUs (graphics cards), and/or
• Intel Xeon Phi cards (57-core

processors)

Each node contains CPU + 2 Nvidia
graphics cards capable of combined
~10 TFLOPs in single precision.

This cluster can compute 1012

(trillion) times faster than ENIAC in
1946, and

~6 billion times faster than similarly
sized PDP-11 (1970), using

~10 million times larger memory
(RAM, disks) than PDP-11/45.

It costs 40x less than did PDP-11
(60k vs. 2400k, in today’s $)

Title of media report in November 2017: “China overtakes U.S in the Top 500
Supercomputers List”. China had two fastest supercomputers in 2017 (Sunway &
Tianhe-2), including one based on own 240-core processors and one on Intel Xeon

Phi processors (60-core). Up to date statistics available at top500.org

0.2%(0.2%) of top500 sys(perf) China, 58% (61%) USA in 1999
4% (3.5%) 58% (61%) 2009

44% (30%) 23% (39%) 2019
16% (4%) 34% (53%) 2024

2019

U.S. performance
U.S. #

China perf.

China #
of systems

Title of article in June 2018:

“Linux Powers ALL Top 500 Supercomputers in the World. U.S. beats China for #1”

Classified computer called Summit in the U.S. was the fastest machine in the world.

Linux followed Unix in its domination of HPC (High Performance Computing);

MacOS (Linux derivative) plays no role in HPC, Windows OS as well

to be continued

Summit installed in 2018 as #1 in the world, had 4608 nodes, 9216 IBM POWER9
CPUs and 27648 Nvidia Tesla GPUs. Most computational power is from those Tesla
V100 graphics cards.
The combined performance is measured at ~150 PFLOPS, out of the theoretical number
of 200 PFLOPS (Summit could de facto perform 150,000,000,000,000,000 arithm.op./s)

Modern top supercomputers:
rows of 19”-wide racks filling basketball
fields, 1000s of nodes (workstations),
consume 18 to 23 MW of electric
power and emit heat at that rate.
Cost ~$300 million.
Not environment-friendly (e.g. UofTs
SciNet was warming/damaging envir.,
whose warming it was meant to study.)

However, let’s put things into
perspective! That’s about the price
of ONE Boeing 777 airplane, whose
engines also produce 23 MW of power
in cruise & much more while climbing.
There are 1600 B777s,
and 10000 Airbuses!
Each costs as much as
a big supercomp center

https://www.top500.org/statistics/sublist/

https://www.top500.org/statistics/sublist/

to be continued

Suppose 1000 scientists want to do high-resolution simulations in 3D, simultaneously.
Each of them divides simulated object or region of space into, say, 2000x2000x2000
cells, or 8G cells [(2K)3 = 8G]. Each cell must hold 5-10 floating point numbers of length
8 Bytes (double precision). For instance, in a fluid simulation those would be density and
pressure, as well as 3 components of velocity vector in each cell. Storage of at least 40
to 80 B/cell is usually needed.

The total volume of simulated data may thus be ~1000* 8G*(40-80 B) ~ 500 TB.

Modern top supercomputer:

150,000,000,000,000,000 arithmetic
operations/second.
Who’d ever need that?

No single user is allowed to hog the
whole supercomputer, there are
thousands of users at national
supercomputing centers.

We will do a realistic estimate of how long
one scientific model runs on Summit.

[Do not memorize it! It’s informative, but not
exact to better than on order of magnitude.
Read this & the next 2 slides for fun.]

If the total volume of simulated data is ~500 TB,
and ~30K graphics cards do simultaneous number crunching on Summit, then

~500GB/30 ~16 GB
of this data must be processed by each GPU in each time step. (Today, 16 GB can fit on
the biggest RAM available on GPUs, avoiding transfer from/to CPU RAM, a good thing!)
Constantly shuffling data back and forth to RAM at a bandwidth of ~300 GB/s, the GPU
card takes at least

~(16 GB) /(300 GB/s) = ~0.05 s
to process its allotted data in a given time step of the simulation (inter-processor and
inter-node communication takes additional time, sometimes majority of time, but let’s
assume this does not apply to CFD = Computational Fluid Dynamics.)

Next, how many time steps are needed?

Modern top supercomputer:

150,000,000,000,000,000
arithmetic ops/s (0.15 ExaFLOP)
Is this not an overkill and a waste
of money?!

A high resolution simulation may need ~1 million time steps to complete. (That’s
because the computational cells are small and modeled physical signals propagating
through the grid of cells cannot cross more than 1 cell per time step (CFL condition). In
practice, a physical disturbance of some sort crossing 50 times a grid of 2000 cells in
both directions needs a minimum of 500K steps, in agreement with the 1M estimate).

If so, then each of our hypothetical 1000 researchers have to wait a minimum of
1M * (0.05s) ~ 14 hours

for their simulations to complete, if everything works at 100% efficiency.

So the seemingly ‘ridiculously large’ number of arithmetic ops per second (>1017), of
which Summit is capable, is not so ridiculous after all when shared among the waiting
scientists.

Modern supercomputers:
Large-scale simulations take a lot of time & use all available
resources! There is never “too much resolution” or “too
much precision” in science or engineering.
Think of simulating a new passenger jet flying with
complicated wing flaps. Is 2000x2000x2000 resolution
sufficient? (Assume the length of aircraft is 70m. Estimate
average cell size. Boundary layer of air is a few mm thick.)

• Taking into account bandwidth limitations (decisive for most computations!), Summit
was not excessively fast. Neither did it have performance of 1 EFLOPS = Exaflop =
1018 FLOP/s in double precision (8B/floating point number). Such computers were
supposed to arrive by 2020, it was a decade-long goal.

• They first arrived around 2022
• Summit fell to #9 in 2024 list of Top 500 computers
• the fastest machine of 2024 is Frontier (also at Oakridge National Lab); it uses
• AMD Optimized 3rd Gen EPYC 64Core 2GHz CPUs (8.7M cores)
• In 2022 did 1.2 EFLOP in tests, 1.7 EFLOP in theory
• Runs Cray OS

• Second is Aurora, 1.8 times more power (38 kW),
at Argonne Lab. Aurora has theor. speed 2 EFLOP,
in tests 1 EFLOP. It is Inter-CPU based

What about 2024?

v Special theory of perturbations
(old name for numerical calculations,
Usually the solution of ODEs)

1856-1927

Leonard Euler
Carle Runge Martin Kutta

1867-1944

Most popular numerical integration methods for differential eqs
Euler method (1st order) & Runge-Kutta (2nd - 8th order)

The Euler method
We want to approximate the solution of the differential equation

For instance, the Kepler problem which is a 2nd-order equation, can be
turned into the 1st order equations by introducing double the number of
equations and variables: e.g., instead of handling the second derivative
of variable x, as in the Newton’s equations of motion, one can integrate the
first-order (=first derivative only) equations using variables x and vx = dx/dt
(that latter definition becomes an additional equation to be integrated).

Starting with the differential equation (1), we replace the derivative
y' by the finite difference approximation, which yields the following formula

which yields

This formula is usually applied in the following way.

The Euler method (cont’d)

This formula is usually applied in the following way.

We choose a step size h, and we construct the sequence t0,
t1 = t0 + h, t2 = t0 + 2h, ... We denote by yn a numerical estimate of

the exact solution y(tn). Motivated by (3), we compute these estimates

by the following recursive scheme

yn + 1 = yn + h f (tn,yn).

This is the Euler method (1768), most probably

invented but not formalized earlier by Robert Hook.

It’s a first (or second) order method, meaning that

the total error is ~h 1 (2) It requires small time steps

& has only moderate accuracy, but it’s very simple!

The classical fourth-order Runge-Kutta method
One member of the family of Runge-Kutta methods is so commonly used,
that it is often referred to as "RK4" or simply as "the Runge-Kutta method".
The RK4 method for the problem

is given by the following equation:

where

Thus, the next value (yn+1) is determined by the present value (yn) plus the
product of the size of the interval (h) and an estimated slope.

Runge-Kutta 4th order (cont’d)

Thus, the next value (yn+1) is determined by the present value (yn) plus the
product of the size of the interval (h) and an estimated slope. In RK4, the
slope is a weighted average of derivatives:
• k1 is the slope at the beginning of the interval;
• k2 is the slope at the midpoint of the interval, using slope k1 to determine
the value of y at the point tn + h/2 using Euler's method;
• k3 is again the slope at the midpoint, but now using the slope k2 to
determine the y-value;
• k4 is the slope at the end of the interval, with its y-value determined using
k3.
When the four slopes are averaged, more weight is given to the midpoint.
The RK4 method is a fourth-order method, meaning that the total error after
a fixed simulated time behaves like ~h4. It allows larger time steps & better
accuracy than lower-order methods.

Thus, the next value (yn+1) is determined by the present value (yn) plus the
product of the size of the interval (h) and an estimated ‘slope’ or 1st

derivative (in fact, a space-time average of the r.h.s. of ODE)

In symplectic integration of Hamiltonian systems, the (x,p) volume of phase-

space is preserved in time. This means that the total energy of the system

does not drift in time, unlike in RK methods: a great advantage in very long

astronomical simulations, for instance. Today RK integration is much less

used in large-scale simulations of planetary systems, unless it is of very high

order (RK78), or in applications not involving Hamiltonian dynamics of

particles. (Heads up: not everything is Newtonian/Hamiltonian dynamics!)

__

Leapfrog method is a 2nd order symplectic integrator – always use it for

simple tasks in particle dynamics!

f = f(x,v) # compute forces, usually just depending on position x

v = v + dt*f # it is implied that v&x are time-shifted (de-sync’ed) by dt/2

x = x + dt*v # so that x evaluations leapfrog over v evaluations.

(the order of uptades is important!)

__

For Newtonian/Hamiltonian dynamics of particles, 4th order symplectic
method in one timestep evaluates r.h.s. of ODE only 3 times. (RK4 does it 4

times.) So you get better accuracy behavior at a smaller cost, than in RK4.

Symplectic integrators

Algorithm: 4th Order Symplectic
Forest and Ruth (1990)

1. Push position: x = x + c1*v
2. Calculate force (at an updated position)
3. Kick velocity: v = v + d1*a

4. Push position: x = x + c2*v
5. Calculate force (at an updated position)
6. Kick velocity: v = v + d2*a

7. Push position: x = x + c3*v
8. Calculate force (at an updated position)
9. Kick velocity: v = v + d3*a

10. Push position: x = x + c4*v

Yoshida (1993) paper about symplectic integration delves into
more details, including some disadvantages w.r.t. RK4:

https://planets.utsc.utoronto.ca/~pawel/PHYD57/Yoshida-paper-1993.pdf

4th Order Symplectic integrator coefficients

https://planets.utsc.utoronto.ca/~pawel/PHYD57/Yoshida-paper-1993.pdf

• Tutorial programs for Fortran and C are on our web page.
Use the last link in the Languages section to review the usage of C.

• Programs are placed in /progD57 directory and in art-1 program directory

• Look at C-version of arithmetic/bandwidth demonstration program
simpler-nb-3ra.c, which does not work (produces Segmentation fault,
indicating a problem with memory management; as we say, this code
‘segfaulted’). The reason is that the program tries to deposit results in a
non-existing array element tab[6][k] . This needs to be changed to
tab[5][k] because 6 indices of the 1st dimension are: 0,1,..,5. (C, like
Numpy, has 0-base arrays!)

• simpler-nb-3ra.f90 is the corrected F90 program, and the version with
swapped indices is called simpler-nb-3da.c

• simpler-nb-3da.f90 and simpler-nb-3ra.f90 are the Fortran versions

v Massively parallel integration on the
newest HPC platforms: CPU, GPU and
MIC

Concurrent simulation of 200 or 7000 planetary systems on
CPUs or MIC

Collisionless gigaparticle disks. Interaction with binary system.

Hybrid algorithm (4th order symplectic with collisions)
Implementation and optimization in Fortran90 on 1..32 MIC (Φ)
Migration problem
Tests and preliminary results
Fast migration in particle disks as type III CR-driven migration

from a conference talk at UTSC, 2017,
discussing work by P. Artymowicz
and u/g student F. Horrobin

1990s and 2000s was the era of clusters

MPI for parallelization.

MIC = many integrated cores
(Intel’s term for many-core, massively parallel, CPU-like
processors)

GPU = Graphics Processing Unit (processor inside graphics
card, actually more capable of quick computation than CPU).

It seemed that the we won’t bother to build clusters any more, but it wasn’t
true.

MIC = many
integrated CPU-like
cores (~60)
Intel Xeon Phi accelerators

Knights Corner:
~1 TFLOP dp
~2 TFLOP sp

Knights Landing: ~3x more
TFLOPs

TFLOP = 1 T FLOP/s.

1 T = ~1018 exa
1 P = ~1015 peta
1 T = ~1012 tera
1 G = ~109 giga
1 M = ~106 mega
1 K = ~103 kilo

In 2014, CERN Researchers considered which of the platforms makes the most sense
for distributed Worldwide LHC Computing Grid, processing data for Large Hadron
Collider experiments in 170 computing centers, in 40 countries (incl. UofT). The height
of the bar is proportional to the estimated speed in CERN simulations with then-current
hardware. .Nowadays GPU have somewhat more advantage over CPU & MIC
[dp = double precision (8B/float like in Python, 15 accurate decimal places),
sp = single precision (4B/float, 7 decimal places accuracy)]

ARM

GPU
sp

CPU Φ

GPU
dp

with the help of an
undergraduate student
we assembled 20+
computers in the
summer of 2018

...we didn’t actually
use GTX 480s J

We have a mix of
gtx 970, Titan,
and gtx 1080ti GPUs

The coprocessors in these Linux boxes with dual
power supplies are 4 Intel Xeon Phi (KNL)

N = 10 K ... 1 M

CPU (i7-5820K 4GHz) MIC (KNC) GPU (gtx 980, Titan)

0.28 TFLOP sp 1.33 TFLOP sp 3.5 TFLOP sp (gtx980)
14 G interac/s 67 G interac/s 190 G interac/s

0.09 TFLOP dp 0.51 TFLOP dp 0.81 TFLOP dp (Titan)
4.5 G interac/s 25 G interac/s 40 G interac/s

!
! on MIC the calculation is 2.8 times slower than on GPU (sp)
! 1.6 times slower than on GPU (dp)
! CPU (6c.) is 9..13 times slower than GPU
!

note: this is a rare fully compute-bound calculation!

Large N-body systems by direct summation
20 arithmetic operations per one pairwise grav. interaction

leapfrog (Fortran90) leapfrog (CUDA C)

n8b-aug14.3.f90 Same double precision program. Compiled with ifort
Concurrent 8-body systems by 4th order symplectic code

platform CPU MIC

compiler flag -xhost -mmic

number of N-body
systems per processor

12 224

N [#threads per sys.] 8 [1] 8 [1]

exec. time per step 0.871 μs 4.58 μs

steps per orbit 360 360

exec. time of 1 orbit 0.313 ms 1.65 ms

exec. time (1G orbits) 3.63 days 19.1 days

system clock 4 GHz 1.1 GHz

throughput 13.8 M sys-step/s 49 M sys-step/s

concurrent systems
(SciPhi cluster UTSC)

192 10752

Practical capabilities of processor platforms for dynamical astro-
calculations. Single (co)processors
CPU ~ E5 and i7 ser. (Intel), MIC = Knights Corner (Intel 2013),
GPU = Nvidia GTX970..1080 (sp) and Titan (dp) run:

1. Gravit. N-body problem O(~N2). N ~106 real-time (~1 fps)
GPU > MIC ~ CPU (mostly comput. limited, > TFLOP)

2. Disks of particles (stars; asteroids, planetesimals, meteoroids and dust).
~ 109/s, ~108 in RAM, (~10 fps)
GPU ~ MIC > CPU (bandwidth-limited to 150 GB/s)

3. Pure CFD = fluids, cells: ~108/s, ~108 in RAM
GPU ~ MIC ~ CPU (mostly bandwidth limited) , (~1 fps)

GPU – some have decent double precision, most don’t.
Somewhat difficult to program and optimize, compared to x86 platforms. Very
fast on direct summation.

Collisionless gigaparticle disks can be simulated with the
4th order symplectic algorithm described earlier in this lecture.

Collision with a Binary and Variable dt

Inside rL

Inside planet
radius

Outside
Planet radius

• Store particle and set to large r in
main array

• Remove from array
• Transfer momentum and cm

position
• Increase mass and spin

• Store particle and set to larger r in
main array

• Perform same scheme but with
variable dt

• Range 1e-8 – dt1(0.004)

source: Fergus Horrobin, UTSC

The codes described here are
massively parallel and require
very large number of particles to
run with full efficiency.

source: Fergus Horrobin, UTSC

relative error of energy integral
increases ~2e-8 per 1000 orbits

source: Fergus Horrobin, UTSC

We study type III migration in Disks
• Very rapid migration in gas disks: 40-50

orbits timescale for Jupiter-mass planet in a
solar nebula disk
(Papaloizou et al. in Protostars and Planets V, 2005)

• Rate does not depend on mass of planet
• Criterion compares disk (in CR = corotation

region) and planet masses:
– Mp < Mdeficit . Difficult to satisfy by

planetesimals...

source: Fergus Horrobin, UTSC

Previous results: Kirsh et al. 2009 identified the fast migration
and offered an explanation [without noticing a connection with type III
migration, e.g. as reviewed by Papaloizou et al. 2006, PP V]

Much slower migration by
mean-motion resonant
scattering (w/similarly v.
massive disks) proposed
by Murray et al (1998).

3Gp Simulation of Jupiter-
mass planet. Disk Mass
0.01Msun

No planet-disk interaction for
5 initial orbits

The rate of migration
agrees with analytical
estimate with corotation
region depleted by 25%

a(t)

source: Fergus Horrobin, UTSC

source: Fergus Horrobin, UTSC

source: Fergus Horrobin, UTSC

Conclusions of Fergus Horrobin’s summer
research in 2017

For large-scale particle integrations in non-collisional
disks, codes can run v. fast on MIC cluster (Xeon Phi)
• 3+ billion particles (150M per MIC), timestep ~0.2 s
• Hybrid parallelization method combining OpenMP

and MPI seems best for this type of platform
• We’ve implemented 4th order symplectic integrator.
• Though deeper analysis must be made, we see

similarities between gas and particle disks in the
context of rapid migrations

N-body simulations of the Universe

• https://www.youtube.com/watch?v=YjUICiYlCYE
• Millenium – 10+G particles Gadget code,
• kept the main supercomp at MPI Inst of Astronomy in

Garching, Germany, busy for a month in 2004
• (700 MPc)3

• https://www.youtube.com/watch?v=32qqEzBG9OI
(350Mpc)3, 5e4 galaxies, 12G particles, 8k CPUs
• Millenium XXL

https://www.youtube.com/watch?v=YjUICiYlCYE
https://www.youtube.com/watch?v=32qqEzBG9OI

N-body simulations of the Universe

• https://www.youtube.com/watch?v=YjUICiYlCYE
• Millenium

• https://www.youtube.com/watch?v=32qqEzBG9OI
(350Mpc)3, 5e4 galaxies, 12G particles, 8k CPUs
• Millenium XXL

https://www.youtube.com/watch?v=YjUICiYlCYE
https://www.youtube.com/watch?v=32qqEzBG9OI

N-body simulations of the Universe
• https://www.youtube.com/watch?v=YjUICiYlCYE
• https://www.youtube.com/watch?v=32qqEzBG9OI

(350Mpc)3 = (1 billion ly)3 , 50K galaxies, 12G particles
• Simulation name: Bolshoi
• Run on Pleiades cluster (supercomputer) at NASA Ames

Research Center in Mountainview, California.

https://www.youtube.com/watch?v=YjUICiYlCYE
https://www.youtube.com/watch?v=32qqEzBG9OI

N-body simulations of the Universe
12G particles create 50000 galaxies, gas: Adapt. Mesh
Refinement grid, 8k CPUs used for Bolshoi-Planck simulation

Pleiades has theor. peak performance 7.3 PFLOPS

1. Astrophysical problems for CPU and GPU calc’s:
Disk-planet interaction and migration
Disks with structure: IRI (irradiation instability in particle and gas
disks)

Flow of gas around Super-Earth (5 ME)

2. Massively parallel numerics on mini-supercomputers:
Comparison of HPC platforms: CPU, GPU, and MIC (Φ)
UTSC clusters

Binary-disk interaction

Artymowicz and Lubow (1996)

SPH = smoothed hydrodynamics: cf. wiki

Binary-disk interaction
method: grid-based CFD (Computational fluid dynamics)

CPU 2-d

2nd order
ZEUS
hydro

notice mass
flow through

gap

One-sided disk (inner/outer disk only). The rapid inward migration is
OPPOSITE to the expectation based on shepherding (Lindblad
resonances).

Like in the well-known problem of “sinking satellites” (small satellite galaxies
merging with the target disk galaxies),
Corotational torques cause rapid inward sinking.

A few snapshots from a 2-D simulation of a brown dwarf circling a star,
interacting with the circum-binary disk. Density of gas is color-coded.

An edge mode of spiral density waves appears, grows non-linear, and
forms a vortex-like structure in disk. Density of gas is color-coded.

This computation used CPU, and a
Fortran hydrocode algorithm called
PPM (Piecewise Parabolic Method).

Code: PenGUIn.

CUDA C++. Processes up to ~20 Mcells/s (dp), ~40 Mcell/s (sp)

for comparison, Xeon Phi can run the same size problems at
~30 Mcell/s (sp)

and a modern 6-core CPU does ~28 Mcell/s.

These codes are bandwidth-bound. GPU > MIC ~ CPU

We have found big differences between 2-D and 3-D flow pattern
of gas from a protoplanetary disk around a planet. These differences may influence
the way planets form and migrate in disks.

Computational box, the bottom part of which lies in the disk midplane.
Up-down symmetry is assumed. Planet’s position is (0,0,0), indicated by a circle)
but the size is exaggerated.

Gas flow approches planet on one side of the disk (say, further from the star than the
orbit of the planet) and after curious vertical compression (into a vortex) departs on the
other side (closer to the star than planet).

top view

Such vortex, because of up-down and far-near symmetry is found near the
protoplanet in 4 copies (2 counterrotating pairs). A planet sheds vortices familiar to
flows patterns in aerodynamics, where there are called wingtip vortices.

x

z
y

A planet acts like two airfoils placed
vertically in the disk

Novel results from 3D simulations

New 3D phenomena, absent in 2D flows, including new
columnar topology

vorticity generation mechanism around a small planet,
have a potential to resolve the long-standing problems in
planet formation theory:

migration and cooling/contraction of the growing planet,
occasional transmutation into a giant gaseous planet.

DUST/RADIATION PRESSURE-RELATED INSTABILITIES
including the IRI = IrRadiation Instability

Jeffrey Fung (UC Berkeley)
used workstations at UofT with 3 GPUs
for parallel computations

tau = 4, β = 0.2

0 180 deg 360 deg

radius

0.7

1.0

1.6

azimuthal angle

Particle disks have IRI instab. too!

1.3

IRI

GAS DISK HYDRODYNAMICAL SIMULATION (PPM method, 2-D)
R.h.s. shows a background-removed picture of density of growing modes.
Analytical predictions are in agreement with calculations.
Models of disks were running faster on 3 GPUs than on UCB 128-cpu cluster.

Opaque disks are unstable under illumination by the central object

Program tau-nopgpl.f that Jeffrey Fung used
to calculate IRI:

240 essential lines
+ 200 lines of plotting routines

