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Introduction

N-body Simulations and Galactic Mergers

For the better part of the last century, research in astrophysics and cosmology has made
significant progress thanks to the advent of numerical modeling, particularly through the wide
applicability of N-body simulations. From investigating the dynamics of a few-body system, to
understanding the evolution of the large-scale structure of the universe, N-body simulations pro-
vide insight into a dynamical system of particles under the influence of physical forces. Conceived
in the mid-20th century, N-body simulations have evolved alongside advances in computing power
and more effective and suitable numerical integrators, allowing more complex interactions to be
studied in a shorter amount of time.

The study of merging and interacting galaxies is one of the most dynamic areas of research in
computational astrophysics and is a perfect candidate for investigation through N-body simula-
tions. During such interactions, stars are rarely involved in direct collisions; instead, their motions
are governed by the collective gravitational potential of the system as they gradually coalesce.
These phenomena have been shown to be ubiquitous processes in the universe; observations reveal
that many of the most massive galaxies and dense star clusters likely formed through a series of
mergers.

A 2020 study by Adamo et al. [1], based on the HiPEEC (Hubble imaging Probe of Extreme
Environments and Clusters) survey, examined star cluster formation in six merging galaxies. Using
Hubble Space Telescope data, researchers were able to derive the ages and masses of star clusters,
and estimate star formation rates. Massive clusters with ages ranging from 1 to 500 million
years and masses exceeding 107 solar masses were discovered, with more advanced-stage galactic
mergers hosting more massive clusters compared to earlier-stage mergers. These six merging
galaxies were found to be among the most efficient star-forming regions in the local universe, and
further investigation is necessary to better understand the unique physical conditions that drive
this rapid cluster formation.

Challenges of N-body simulations

Despite the utility of N-body simulations, there are numerous considerations and challenges
in modeling the interaction of galaxies. Chief among these is the computational complexity of
modeling the gravitational interactions among millions or even billions of particles. Direct calcu-
lation of the gravitational force of each particle scales as N2, making this method impractical for
large systems. To address this, researchers employ efficient algorithms such as the Fast Fourier
Transform (FFT) to evaluate forces on a grid or tree-based methods like the Barnes-Hut algorithm.
Additionally, simulations must carefully balance resolution with computational feasibility. High
spatial and temporal resolution is necessary to accurately capture the dynamics of dense regions,
such as galactic centers or tidal tails, but this comes at a steep computational cost.

Another challenge is ensuring numerical accuracy and stability over long timescales. Small
errors in force calculations or integration schemes can accumulate, leading to non-physical results.
Techniques such as symplectic integration and adaptive time-stepping can be useful to maintain
energy and momentum conservation while resolving both global and local dynamics.
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Force Calculations and Integration Schemes

Computational astrophysicists studying galaxy and black hole mergers have used various tech-
niques to achieve their desired accuracy and computational efficiency, and these choices largely
depend on the nature of the research being conducted. In 2023, Hao et al. [2] investigated the
merging process of super-massive black holes using a direct summation N-body simulation of 64,000
particles, which included 3 SMBHs that each made up 1% of the system’s mass. By using a direct
summation method to calculate forces and zero softening, an extremely high level of accuracy was
maintained. The N-body code NBODY6++ was used to integrate the system, which employs a
hybrid parallelization strategy, combining GPU acceleration, MPI, and OpenMP to dramatically
increase computational efficiency.

For this project, we focus on the dynamics of a host galaxy interacting with a smaller, colliding
galaxy. Using an FFT-based gravity solver and a symplectic integrator, we model the evolution
of these systems and explore how the presence of SMBHs influences their post-merger configura-
tions. We employ the 3D graphics software, Houdini, to visualize the galactic merger over 100000
timesteps.

Method

Particle Initialization and Interpolation to Density Array

A total of 108 particles are initialized on a 512× 512× 256 grid. The initialize particles

subroutine arranges the particles in a spiral galaxy formation, where the tightness, pitch angle,
spiral arm separation, and initial velocity are specified. At the center of this galaxy is a super-
massive black hole represented by a particle of mass 1000m, where m = 1/(2N) is the mass of a
single particle. A second black hole of mass 100m is introduced to simulate the interaction of two
galaxies at an intermediate stage of their merger.

The particles to grid subroutine is the first to be called in each step, and its purpose is to
interpolate the particles to a mass density array. This allows a continuous density distribution to
be represented by discrete grid points that will later be used to compute the gravitational forces.
Our method of choice is a linear interpolation known as cloud-in-cell. This method is first order
but computationally inexpensive. It also conserves quantities like mass during interpolation; that
is, the total mass in the grid is equal to the total mass of particles. This interpolation step is
implemented by assigning weights to particle positions based on their proximity to grid nodes.
Say a particle has mass m and position r = (x, y, z). We first calculate the fractional position of
the particle within its cell. In the x dimension this looks like:

dx =
x− xnode

∆x
,

where xnode is the position of the node at the lower bound of the cell and ∆x is the width of the
cell. We then assign the particle’s mass to the eight surrounding nodes using a trilinear weighting
scheme, where weights are calculated based on the particle distance:

wx(i) =

{
1− dx, if i = lower node

dx, if i = upper node.
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An analogous formula is used for the y-direction (wy(j)) and the z-direction (wz(k)). These weights
are combined to determine the density contribution to a given node:

ρnode = m · wx(i) · wy(j) · wz(k).

Figure 1 (left) below shows the discrete particles of an initialized spiral galaxy, visualized in
the 3D graphics software, Blender. On the right, we see the interpolated density grid visualized as
a heat map. The super-massive black holes contributes substantially more mass, and thus greater
density to their surrounding nodes.

Figure 1: Left: Blender screenshot of the initialized galaxy. Right: Example of an interpolated
density grid of a previous version of the initialized system.

Fast Fourier Transforms and Computing Accelerations

Once the particles have been interpolated to a density grid, the compute accelerations subrou-
tine employs the Nvidia cuFFT library to perform a forward FFT. The cuFFT library makes use
of GPU parallelization to perform an FFT algorithm with N log(N) efficiency, greatly improving
upon the N2 efficiency of direct summation. At this stage the density field has been converted to
its frequency components ρ̂(k), where k = (kx, ky, kz) is the wave vector. To compute the force
field, we must retrieve these wavevector components. For a 3D grid of size Nx×Ny×Nz, the wave
numbers are

kx =
2πnx

Lx

, ky =
2πny

Ly

, kz =
2πnz

Lz

,

where nx, ny, and nz represent the indices of the Fourier transform grid and Lx, Ly, and Lz are the
physical lengths of the simulation domain. In real space, the gravitational force F is the negative
gradient of the gravitational potential Φ,

F = −∇Φ,

however, in frequency space, the gradient operator becomes a multiplication by ik, and the force
components are calculated as

F̂i(k) = ikiΦ̂(k).
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In frequency space, the potential is defined as

Φ̂ =
4πG

k2
ρ̂(k),

and the final force computation becomes

F̂i(k) = −i
4πGki
k2

ρ̂(k).

It is also important to note that when using cuFFT to transform data, input and output data
sizes will differ. Both real to complex and complex to real transformations require a separate array
to be created to account for this discrepancy. The newly computed force grid is mapped onto
the density grid to save memory, as this process must be performed every time step. The cuFFT
library is once again used to perform an inverse FFT so that we can apply the forces in real space.

After the accelerations have been calculated using the density grid, they are interpolated back
into the particles by the grid to particles subroutine. This subroutine calculates the weights
of the particles in the exact same way as mentioned in the previous interpolation step. It then
uses those weights to interpolate the accelerations—which are located on all eight nodes of the
cube—to the particles. For example, if ax is the x-component of a particle’s acceleration, we have

ax = ax + acceleration grid(i, j, k) · wx(i) · wy(j) · wz(k),

ax = ax + acceleration grid(i+ 1, j, k) · wx(i+ 1) · wy(j) · wz(k).

Since there are 100 million particles in the simulation, both subroutines are parallelized using
CUDA.

Integration Scheme

We use a 2nd-order leapfrog scheme to integrate the simulation forward in time by using the
accelerations calculated in the previous step. We solve the equation of motion

r̈ =
d2r

dt2
= A(r).

If we consider the acceleration of some particle at time step i, ai, the first stage of the integration
is to calculate an initial “kick” on the velocity, half a time step ahead:

vi+1/2 = vi + ai
∆t

2
.

This is then used to calculate the position of the particle a full step ahead, in what is called the
“drift” step:

xi+1 = xi + vi+1/2∆t.

Finally, in the second kick step, we update the velocity of the particle one time step ahead:

vi+1 = vi+1/2 + ai+1
∆t

2
.
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The benefit of using the leapfrog integration scheme in gravitational dynamics simulations is
its ability to handle a large number of particles while maintaining a reasonable balance of accuracy
and efficiency. The leapfrog scheme is a symplectic integrator, and as such, energy and momen-
tum can be conserved over long timescales. Leapfrog’s 2nd order accuracy is better than 1st order
schemes such as Euler’s method, while still achieving the order O(n) efficiency required to simulate
two galaxies of order 108 particles.

Additionally, in galactic merger simulations, strong gravitational interactions frequently occur
in dense galactic cores and in very close encounters between stars. In non-symplectic methods,
small energy errors can grow exponentially during strong interactions, potentially destabilizing the
simulation.

Challenges and Techniques Used to Overcome Them

1. GPU bandwidth limitations/host-device transfer bottleneck: Instead of simply parallelizing
the heavy computation and transferring back to the CPU for simpler tasks, it is essential to
keep all large datasets (ie. particles and grids) on device memory after initialization. Since
the data is roughly 7GB, even at a peak theoretical transfer speed of 11GB/s, this amounts
to over half a second of latency per step. As N approaches 100 million, this latency is
often longer than the computation itself. Keeping data on the GPU eliminates this transfer
latency entirely. Conversely, for scalars, pass by value from the host is often faster than pass
by reference, as the number of GPU cycles is lower and the transfer data is miniscule.

2. Using cuFFT optimal grid sizes: The cuFFT library is optimized for grid sizes that are
products of small prime factors, with powers of two being the most efficient. This is because
the library uses specialized algorithms to exploit regular factorization patterns in the input
size. For this reason, we stick to a 512× 512× 256 grid.

3. Dimension difference of FFT transform grid due to Hermitian symmetry: A dimensional
distinction must be accounted for when creating the gravity grid in complex space us-
ing the cuFFT transform functions. This is discussed in detail on the following page:
https://docs.nvidia.com/cuda/cufft/index.html#multidimensional-transforms

Results

Visualization of the Merger

The evolution of the galactic merger is visualized over 10000 timesteps, highlighting the dynamics
of the SMBH interactions and the eventual coalescence of the two galaxies. The visualizations
reveal distinct phases in the merging process:

1. Initial mass ejection: At the very start of the simulation, a large number of particles are
ejected from the system, which is partially expected from Jeans equations. We believe this
may also be due to a combination of the masses used for the black holes and the initial
velocities of the particles, and that this is a somwhat unphysical result. In a true galaxy
merger, there would be a loss of mass due to tidal stripping as the galaxies pass through one
another.
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2. Core coalescence phase: A fraction of particles do not escape from the system in the initial
mass loss phase. The black holes approach one another and the remaining particles in the
system orbit these black holes.

3. Post-merger configuration: The final configuration of the system shows a super-massive black
hole binary that continues to orbit at the same distance for the duration of the simulation.
A fraction of the initial particle distribution remains in orbit.

Figure 2: The initial distribution of particles (top left), an intermediate stage of the merger (top
right), and the final timestep (bottom) are shown above.
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Energy Conservation

We were not able to achieve the desired energy conservation in our final simulation. We consistently
have a stable energy error of approximately 0.27 with small fluctuations. An energy timeseries for
1000 timesteps is included below.

Figure 3: An relative energy error plot for 1000 timesteps (at dt=0.1) of the final simulation.

Discussion

The Final Parsec Problem and Its Implications for Galaxy Evolution

It is thought that a super-massive black hole exists at the center of every galaxy. Observations
show a correlation between a galaxy’s star mass and the mass of its central SMBH, suggesting
that the processes driving galaxy and black hole growth are linked. When galaxies merge, we
expect their central SMBHs—drawn together by violent gravitational interactions—to coalesce as
well. This process begins with dynamical friction, where the SMBHs lose energy by gravitationally
interacting with stars, gas, and other material. Over time, this energy loss allows the SMBHs to
migrate toward the center of the merged galaxy.

Despite the effectiveness of dynamical friction in the initial stages, it becomes less efficient
as the SMBHs approach one other. This inefficiency arises because the SMBHs, being orders of
magnitude more massive than the surrounding stars and gas, require countless interactions over
long timescales to lose sufficient energy. Eventually, the two black holes form a bound binary
system. At separations on the order of a parsec, the density of nearby material capable of inducing
further energy loss diminishes. This leads to the final parsec problem, where the binary stalls at
a separation of roughly one parsec.

This issue was first addressed in a 1980 paper by Begelman, Blandford, and Rees [3], who
demonstrated that SMBH binaries could remain stalled, unable to merge within the age of the
universe, unless additional mechanisms facilitated further energy loss. If SMBHs fail to merge, our
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interpretation of galaxy evolution must change. Conversely, if SMBHs do merge, existing theoret-
ical models may be incomplete or require revision.

Several potential solutions to the final parsec problem have been proposed:

• Three-body interactions involving a third SMBH during subsequent galaxy mergers could ex-
pel one black hole, driving the remaining two closer together (Iwasawa, Funato, and Makino)
[4].

• Interaction with a gas disk might provide an efficient mechanism for energy dissipation,
enabling the binary to shrink further (Berczik et al.) [5].

• Star replenishment, where new stars are brought into the vicinity of the SMBHs through
dynamical processes, could maintain energy dissipation over time (Milosavljević and Merritt)
[6].

Despite these proposed mechanisms, the resolution to the final parsec problem remains an open
question in astrophysics.

What our Simulation Tells Us

Although we believe to have some unphysical results due to complications with our code, we do
observe that the two super-massive black holes approach one another before they form an orbiting
binary. This appears to mimic the final parsec problem discussed above.

It is important to note that in addition to potential errors in our code, we are unable to account for
certain phenomena that may have given a different result, such as those discussed in the literature
mentioned in the previous section. Ultimately, we believe our simulation describes some of the
fundamental aspects of galactic merger dynamics.

Physical Limitations of our Model

While our simulation successfully models the foundational dynamical features of a galaxy merger,
there are several limitations that arise from simplifications and assumptions. In this section we
identify potential directions we could have gone, given more time and resources.

1. Gravitational Wave Emission from SMBH Binary: Our simulation aims to track the orbital
decay of the SMBHs due to dynamical friction, but it does not model the generation of
gravitational waves. At small separations, gravitational wave emission becomes the dominant
mechanism driving the SMBH merger. Without this, the final coalescence timescale and
configuration of the SMBH binary is over-simplified.

2. No Consideration of Gas Physics: Another simplification of our model is the absence of a gas
component, which contributes to processes such as angular momentum exchange, dynamical
friction, and energy dissipation in the system. Without accounting for gas physics, our model
may underestimate the rate at which the SMBH binary spirals inward, particularly during
later stages where gas drag might complement gravitational radiation.
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Computational Limitations of our Model

1. High Memory Overhead: Our model uses both an interpolated density grid and computed
force grid to increase computational efficiency. The density grid dimension is 512×512×265
and the force grid is 3 times larger since it holds x, y, and z components. This leads to a
very high memory overhead on the GPU, which pushes the limits of the hardware.
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