
Airliner Aerodynamics After Wing Loss

Yujun Liu, Shen Shen, Abdilahi Mohammed, Ming Yan
University of Toronto, Scarborough

November 28, 2024

1

Contents

1 Abstract 3

2 Introduction 3

3 Theory 4
3.1 Key Terms . 4
3.2 Infinite Wing . 5
3.3 Finite Wing . 6
3.4 Lifting-Body Panel method . 7

3.4.1 Integration Formula . 8
3.4.2 Numerical Solution . 8

4 Methods 10

5 Results and Discussion 10
5.1 Discussion and Further Improvements . 11

6 Conclusion 11

7 References 12

8 Appendix 13
8.1 Infinite Wing Lift Force Simulation . 13
8.2 Lifting force based on Lifting Line Theory-Undamaged Wings 15
8.3 Lifting force based on Lifting Line Theory-Damaged Wings 16

2

1 Abstract

This study investigates the aerodynamic forces acting on the TU-154 airliner, with a specific
focus on developing a lifting-line theory for both a symmetric and a damaged wing. The goal is
to model the lift distribution and resulting torque to analyze the controllability of the aircraft
following damage to approximately one-third of the left wingspan, caused by a collision with a
birch tree. The theoretical framework begins with thin airfoil theory to understand lift generation
for infinite wings, then progresses to finite wings using the Lanchester-Prandtl lifting-line theory
to incorporate spanwise variations in circulation Γ(y).

The lifting-line theory is formulated as an integral equation and discretized into a system of
N ×N linear equations, solved numerically using Python. For the damaged wing, the method
incorporates geometric asymmetries and structural discontinuities. Simulations evaluate lift
distribution, torque, and roll dynamics, providing insights into the stability and control of the
aircraft under these extreme conditions. This approach bridges classical aerodynamic principles
with modern computational methods, offering a robust framework for analyzing the effects of
wing damage on flight dynamics.

2 Introduction

On April 10, 2010, a Polish presidential aircraft, a Tupolev Tu-154, tragically crashed near
Smolensk, Russia, claiming the lives of all 96 passengers, including high-ranking officials.(Harro
Ranter, 2024) While the official investigation attributed the accident to a combination of pilot
error and adverse weather conditions, public and political discourse has since raised broader
questions about the dynamics of aircraft stability and control under extreme conditions. One
particular area of interest lies in the aerodynamic behavior of damaged wings and how they
impact the lift distribution and torque generated during flight.

This report focuses on analyzing the aerodynamic forces acting on aircraft wings, drawing
upon the Lanchester-Prandtl lifting-line theory and the insights from Pope’s Basic Wing and
Airfoil Theory (1951).(The History of Gaming: The Evolution of GPUs, n.d.) The study
begins with a detailed theoretical exploration of infinite wing models to establish fundamental
concepts. It then progresses to finite wings, examining the effects of wingspan, aspect ratio, and
wing shape on lift and induced drag. The theoretical framework includes the derivation of inte-
gral equations governing lift distribution, which are crucial for understanding the aerodynamics
of symmetrical and asymmetrical wings.

Following the theoretical discussion, the report implements numerical simulations using
Python, C, and Fortran. These simulations discretize the lifting-line theory into a system of
linear equations to compute lift distribution and torque across various wing configurations. The
simulations compare results for symmetrical and asymmetrical wings, quantifying the effects of
finite wingspan and damage-induced asymmetry on aerodynamic performance. This computa-
tional approach provides a robust foundation for modeling real-world aerodynamic behaviors.

Lastly, the study generalizes the method to analyze irregularly shaped wings, exploring how
physical constraints such as wing damage or asymmetry influence aircraft stability and control.
By simulating various scenarios, the report contributes to a deeper understanding of lift and
torque characteristics under challenging conditions.

Although this study does not directly examine the Smolensk air crash, its findings offer
valuable insights into the broader principles of aerodynamics and aircraft stability. By bridging
foundational aerodynamic theories with modern computational methods, the study highlights
the enduring relevance of classical works like those of Lanchester, Prandtl, and Pope. This
report systematically expands the analysis from infinite wings to finite and damaged wings,
demonstrating the versatility and robustness of classical aerodynamic tools in addressing com-
plex real-world challenges.

3

3 Theory

3.1 Key Terms

• Airfoil is the two-dimensional cross-sectional shape of an aircraft wing, designed to gen-
erate lift and reduce drag through aerodynamic properties.

• Infinite Wing is a hypothetical concept that refers to a wing with infinite wingspan.
Since there is no wingtip vortex, it does not produce induced drag and is a theoretical
model for studying airfoil performance.

• Lift Coefficient is a dimensionless parameter describing the magnitude of lift and is
defined as:

CL =
L

1
2ρV

2S

Where L is the lift force, ρ is the air density, V is the velocity of incoming flow, S is the
reference area of wings.

• Induced drag: due to the influence of the finite wing tip vortex, lift is generated accom-
panied by additional drag, which is called induced drag.

• Circulation, Γ is a parameter that describes the strength of air flow around a wing and
is defined as the velocity integral of a closed path around the airfoil:

Γ =

∮
C
v⃗ · d⃗l

• Biot-Savart Law: is a fundamental principle in physics that describes the magnetic
field generated by a steady electric current, it is also a fundamental principle used in
aerodynamics to calculate the induced velocity generated by vortex filaments. It describes
how the velocity at a point in space is influenced by a vortex segment, taking into account
the strength of the vortex, the relative position of the point, and the distance from the
vortex. Mathematically, it is expressed as:

V⃗ =
Γ

4π

∫
r⃗ × d⃗l

r3

where V⃗ is the induced velocity at a given point, d⃗l is the infinitesimal segment of the
vortex filament, r⃗ is the position vector from the vortex filament to the point, and r is the
magnitude of the position vector.

• Angle of Attack, α is the angle of attack is the angle between the chord of the wing and
the direction of the incoming flow, which directly affects the magnitude of the lift.Denote
by AOA.

• Tip Vortices is the rotational airflow generated at the wingtips due to pressure differences
between the upper (low pressure) and lower (high pressure) surfaces of a finite wing, where
air leaks around the wingtips, forming spiraling vortex structures.

• Effective AOA is the actual angle of attack experienced by the wing, reduced from the
geometric angle of attack due to the downwash induced by tip vortices.

• Downwash is caused by the wingtip vortices, which alters the local flow around the wing
and reduces the effective angle of attack.

• Induced Drag is a type of drag caused by the tilting of the lift vector due to downwash,
converting part of the lift into a rearward force.

4

• Potential Flow Theory: is a simplified fluid mechanics theory used to describe the flow
behavior of inviscid and incompressible fluids.

• Panel Method: is a numerical computational method based on potential flow theory,
the Panel Method is used to analyze the flow field distribution of incompressible, inviscid
fluid around objects such as wings, fuselages, or entire aircraft.

• Kutta Condition: is a fundamental principle in aerodynamics that ensures a smooth
flow of air over an airfoil, particularly at the trailing edge. It states that the flow leaves
the trailing edge of the airfoil smoothly, with the velocity on the upper and lower surfaces
of the airfoil meeting at a single point.

3.2 Infinite Wing

An infinite wing is an idealized aerodynamic model that assumes an infinitely long wingspan.
By eliminating wingtip vortices and induced drag, the infinite wing simplifies the analysis of
lift distribution, which is uniform along the span. For an infinite wing, lift is generated solely
by the two-dimensional airflow around the airfoil, governed by Bernoulli’s principle and the
Kutta-Joukowski theorem:

L′ = ρV∞Γ

where L′ is the lift per unit span, V∞ is the free-stream velocity. The lift coefficient (CL) is
linearly proportinal the the AOA (α) for an infinite wing:

CL = 2πα

In figure 2.2.1 and 2.2.2, simulations using python demonstrate the lift distribution on a small
airplane wing under the assumptions.

Figure 1: 2D-Simulation-View-1 Figure 2: 2D-Simulation-View-2

5

Figure 3: Cross-Section

Figure Description: The wing geometry
was defined with a span of 10 meters, di-
vided into 20 discrete sections along the
spanwise direction, with a linearly varying
chord length decreasing from 1.5 meters at
the root to 0.5 meters at the tip. The airfoil
shape was generated based on the NACA
4-digit airfoil equations, with a camber of
0.02, a camber position at 40% of the chord,
and a maximum thickness of 12% of the
chord length. Lift forces were calculated at
each spanwise section using the lift coeffi-
cient formula CL = 2πα , where the angle
of attack was set to 5◦ , air density was
1.225 kg/m3 , and freestream velocity was
50m/s . The results, representing the span-
wise lift distribution, were visualized using
3D plots, with arrows indicating lift vectors
at each section, their length and color de-
noting the lift magnitude.

While the infinite wing model provides a fundamental understanding of airfoil performance
and aerodynamic principles, it has inherent limitations when applied to real-world aircraft. By
transitioning from the idealized infinite wing to the finite wing, we can bridge the gap between
theoretical analysis and practical application, enabling a comprehensive study of lift, drag, and
aerodynamic efficiency under realistic conditions.

3.3 Finite Wing

In an idealized two-dimensional model, such as infinite wing theory, aerodynamic performance is
simplified by neglecting three-dimensional effects. However, when comparing this ideal model to
a real three-dimensional wing, significant differences arise due to finite wingspan effects. These
effects primarily stem from wingtip phenomena, where a pressure difference between the upper
and lower wing surfaces causes air to leak from the high-pressure region below the wing to the
low-pressure region above it, forming wingtip vortices.

6

As illustrated in Figure 2.1, the image provides a rearward view of one side of the wing,
highlighting the blue-colored wingtip vortices. These vortices weaken in intensity as the distance
from the wingtip increases. The wingtip vortices induce a downward velocity, known as down-
wash, which varies along the spanwise direction and is most pronounced near the wingtips. This
downwash modifies the local flow field, impacting the aerodynamic performance of the wing.

Figure 4: Tip Vortex

Downwash affects both the angle of attack (AOA) and the lift of an aircraft. As shown in
Figure 2.2, the green line represents the cross-section of the wing, while the blue arrow pointing
to the right indicates the free airflow (U∞). The red downward arrow represents the downwash,
which generates a downward induced velocity (Uinduced), a velocity component perpendicular to
U∞ .This induced velocity reduces the AOA of the wing, resulting in an effective AOA (αeff),
calculated as: αeff = α− αi. Where αi is the induced angle of attack caused by Uinduced .

Figure 5: Downwash

Furthermore, downwash changes the lift force’s direction, making it perpendicular to the
total velocity vector rather than aligned with the flight direction. This adjustment reduces the
vertical component of lift, as part of the lift is converted into induced drag.

The finite wingspan and downwash effects discussed earlier play a critical role in shaping the
aerodynamic performance of a wing. These phenomena alter the effective angle of attack along
the spanwise direction and lead to a non-uniform lift distribution, especially near the wingtips.
To address these challenges, lifting line theory was developed as a mathematical framework to
model the lift distribution and account for the influence of downwash on finite wings.

3.4 Lifting-Body Panel method

The Panel Method is a computational technique based on Potential Flow Theory used to calcu-
late the lift of an object. However, the assumptions of Potential Flow Theory can lead to issues
such as infinite velocity and indeterminate circulation at the trailing edge of an airfoil.

To resolve these problems, the Kutta Condition is introduced. It serves two main purposes:
first, it determines the circulation of the fluid, ensuring the lift can be accurately calculated,

7

and second, it enforces smooth separation of the fluid at the trailing edge by ensuring that the
velocities on the upper and lower surfaces meet with equal magnitude and direction.The Kutta
Condition also states that the pressure on the lower and upper surfaces of the airfoil at the
trailing edge must be equal. This ensures that the airflow does not curve around the trailing
edge but instead leaves tangentially. Additionally, the rear stagnation point must be located
precisely at the trailing edge.

Figure 6: Kutta Condition

3.4.1 Integration Formula

Building on this theoretical foundation, the integral equation governing the velocity distribution
on the airfoil is expressed as (Katz & Plotkin, 2001):

− 1

4π

∫
wing+wake

γy(x− x0)− γx(y − y0)

[(x− x0)2 + (y − y0)2]3/2
dx0dy0 = Q∞

(
∂ηc
∂x

− α

)
This equation is based on the no-penetration boundary condition, which ensures that the

induced velocity matches the free-stream’s normal velocity component with opposite sign. The
integral

∫
wing+wake covers the wing and wake surfaces, where γy(x−x0) and γx(y−y0) represent

vortex strength distributions in the y- and x-directions, respectively. The term [(x−x0)
2+(y−

y0)
2]3/2 gives the cubed distance between two points on the surface. On the right, Q∞ is the

free-stream velocity, ∂ηc
∂x is the camber slope, and −α accounts for the angle of attack. Together,

Q∞

(
∂ηc
∂x − α

)
defines the total normal velocity at the wing surface.

3.4.2 Numerical Solution

Directly solving the integral equation for an analytical solution is highly challenging. To simplify
the problem, the lifting characteristics of the wing can be approximated by a single lifting line.
Several other conditions also need to be considered.

Consider a thin, finite lifting wing moving at a constant speed in an undisturbed flow field.
The free-stream velocity forms a small angle of attack, α, with respect to the wing. The flow
around the wing can be described using a perturbation potential field Φ, which satisfies Laplace’s
equation:

∇2Φ = 0

On the surface of the wing, the following no-penetration boundary condition must hold:

∂Φ

∂z
(x, y, 0±) = Q∞

(
∂η

∂x
− α

)
Where Q∞ is the free-stream velocity, and η(x, y) represents the camber surface of the wing.

To further develop the lifting line model and establish a linear system to solve for the
circulation distribution Γ(y), we start by considering Prandtl’s lifting line theory. This theory
simplifies the complex three-dimensional flow around a wing into a two-dimensional problem by
assuming that the wing can be represented as a single bound vortex line (the lifting line) along
the spanwise direction y.

8

The circulation distribution Γ(y) varies along the span of the wing and is responsible for
generating lift. Due to this varying circulation, trailing vortices are shed into the wake, inducing
a downward velocity (downwash) w(y) at the wing. The induced downwash can be calculated
using the Biot-Savart law:

w(y) = − 1

4π

∫ b/2

−b/2

dΓ
dy

y′ − y
dy

The downwash also results in a change in the effective angle of attack (αeff). The relationship
between the induced velocity and the free-stream velocity u∞ is expressed as:

tan(αi) =
−w(y)

u∞

Assuming αi is small, the change in the angle of attack can be approximated as:

αi =
−w(y)

u∞

Substituting w(y) into the equation, the induced angle of attack αi becomes:

αi =
1

4π

∫ b/2

−b/2

dΓ
dy

y′ − y
dy

According to the Thin Airfoil Theory, the lift coefficient cL is given by:

cL =
2Γ

u∞c
= 2π(αeff − αL=0),

where Γ is the circulation, u∞ is the free-stream velocity, c is the chord length, αeff is the effective
angle of attack, and αL=0 is the zero-lift angle of attack. Rearranging this equation, the effective
angle of attack could be expressed as:

αeff =
Γ

πu∞c
+ αL=0.

In general, the above relationship leads to the Fundamental Equation of Lifting Line Theory:

α(y) =
Γ(y)

πc(y)u∞
+ αL=0 +

1

4πu∞

∫ b/2

−b/2

dΓ(y′)
dy′

y − y′
dy′

The remaining task involves determining the circulation Γ. Based on lifting line theory, the
wing span is discretized into N small segments, with corresponding control points and discrete
vortex elements defined for each segment. At each control point, the no-penetration boundary
condition is imposed, requiring that the sum of the normal velocity components induced by all
discrete vortices equals the normal component of the free-stream velocity. The Biot-Savart law is
utilized to calculate the induced velocity at each control point, linking the unknown circulation
to the known free-stream conditions and angle of attack. These equations are formulated into a
matrix system:

AΓ = b,

where:

• A is the influence coefficient matrix, representing the contributions of discrete vortices to
the induced velocity at each control point.

• Γ is the vector of unknown circulation values for the discrete vortex elements.

• b is the known vector determined by the free-stream velocity and angle of attack.

To ensure that the solution satisfies the physical boundary conditions, the Kutta condition is
applied. Discrete vortices are typically placed at the 3/4-chord position, while the control points
are located at the 1/4-chord position. At the wing tips, the circulation is constrained to be zero,
satisfying the requirement of no lift at the wingtips.

9

4 Methods

For the wing, more detailed theoretical considerations are necessary, as discussed in Katz’s book.
The lifting line, located at a quarter chord length from the leading edge, is first discretized.
Boundary conditions are imposed by evaluating the induced velocity and ensuring that air
does not penetrate through the wing surface. To avoid numerical issues associated with a
zero denominator, the circulation Γ(yi) is evaluated at the endpoints of each segment, while the
boundary conditions are evaluated at the midpoints. This configuration prevents zero differences
in the y-coordinate, ensuring numerical stability.

In the test case, the induced velocity is calculated for each segment from yi → yi+1, and
at each yi, the contributions from the lifting line to infinity are considered. At each point yi,
the system solves for Γ′(yi), resulting in an N × N system of equations, where N represents
the number of boundary condition points. Using Equation 2.69 from Katz’s book, a system is
constructed for the test case, and the cumulative sum of Γ′ provides the circulation Γ.

Using formula 2.69 in Katz’s book, a system was setup for the test case. The cumulative
sum of Γ′ will be Γ.

For the damaged wing, a similar set up was used, considering anhedral angle of the wing
about 3 degrees and -1 degree at wing tip, and uniform spacing of the wing.

5 Results and Discussion

The results are presented in two figures, showing the spanwise distribution of vortex strength Γ.

• Figure 1: This figure simulates the vortex strength distribution Γ(y) for a symmetric
wing. The circulation shows a general symmetry along the span, with the highest Γ
occurring near the center. However, on the right end of the wing, the circulation does not
reach zero, which may indicate numerical or modeling inconsistencies at the wingtip.

Figure 7: The distribution of vortex strength

• Figure 2: This figure represents the vortex strength distribution for a damaged wing,
specifically with the right wing bent upward. As expected, the left wing generates signifi-
cantly more lift compared to the damaged right wing. The asymmetry in Γ(y) aligns with
the physical expectation that the structural damage would reduce the lift on the right
side, demonstrating the validity of the model’s directional response. However, near the
location of the structural damage, the vortex strength Γ(y) shows an unexpected upward
trend. This anomaly could be attributed to several factors, including the sudden geometric

10

discontinuity at the break, which alters local airflow patterns and induces additional vor-
tex structures. Another potential cause is the numerical instability in calculating induced
velocities at points close to the discontinuity, leading to localized inaccuracies. Future
refinement of the model, such as increasing the discretization resolution or incorporating
more robust handling of geometric discontinuities, may help address this behavior.

Figure 8: Vortex Strength distribution for damaged wing

5.1 Discussion and Further Improvements

• Boundary Condition Optimization: To address the issue of Γ(y) not reaching zero at
the wingtip, improvements to the numerical model, particularly the Kutta condition, are
recommended.

• Higher Resolution Discretization: Increasing the number of discretized points along
the spanwise direction may enhance accuracy.

• Experimental Validation: Wind tunnel experiments could be conducted to measure
the vortex strength distribution and validate the model’s predictions.

6 Conclusion

This study investigated the aerodynamic behavior of finite and damaged wings using the lifting
line theory and numerical methods. The theoretical framework was based on discretizing the
wing span and solving for the spanwise distribution of circulation Γ(y) through a linear system of
equations. For a symmetric wing, the simulation results showed a nearly symmetrical distribu-
tion of Γ(y) with a peak near the center of the wing. However, discrepancies were observed near
the wingtips, where the circulation did not fully decay to zero, suggesting potential refinements
in the boundary conditions or numerical resolution.

For the damaged wing, the results accurately captured the expected asymmetry in lift dis-
tribution, with the left wing generating significantly more lift than the damaged right wing.
However, an unexpected upward trend in Γ(y) was observed near the structural damage point,
likely caused by geometric discontinuities or numerical instabilities in induced velocity calcula-
tions.

These findings demonstrate the effectiveness of the lifting line theory in modeling aerody-
namic performance, while highlighting the need for further refinement in handling geometric
discontinuities and wingtip effects. Future work could focus on improving numerical stability,

11

increasing discretization resolution, and validating results with experimental data. This ap-
proach provides a robust framework for understanding the aerodynamic characteristics of finite
and damaged wings, contributing to advancements in aircraft stability and design.

7 References

References

[1] Anderson, M. (2018, July 18). Famous Graphics Chips: NEC µPD7220 Graphics Dis-
play Controller. IEEE Computer Society. Retrieved from https://www.computer.org/

publications/tech-news/chasing-pixels/famous-graphics-chips

[2] AWS. (n.d.). GPU vs CPU - Difference Between Processing Units. Ama-
zon Web Services, Inc.. Retrieved from https://aws.amazon.com/compare/

the-difference-between-gpus-cpus/?nc1=h_ls

[3] Henne, P. A. (1990). Applied Computational Aerodynamics. American Institute Of Aero-
nautics And Astronautics.

[4] IEEE Computer Society. (n.d.). IBM’s PGC and 8514/A. IEEE Computer Society. Re-
trieved from https://www.computer.org/publications/tech-news/chasing-pixels/

Famous-Graphics-Chips-IBMs-professional-graphics-the-PGC-and-8514A

[5] Katz, J., & Plotkin, A. (2001). Low-Speed Aerodynamics: From Wing Theory to Panel
Methods. Cambridge University Press.

[6] Olena. (2018, February 22). A Brief History of GPU. Medium. Retrieved from https:

//medium.com/altumea/a-brief-history-of-gpu-47d98d6a0f8a

[7] Pope, A. (1951). Basic Wing and Airfoil Theory. Dover Publications.

[8] Shadow.tech. (n.d.). The History of Gaming: The Evolution of GPUs. Shadow.tech. Re-
trieved from https://shadow.tech/en-GB/blog/history-of-gaming-gpus

12

https://www.computer.org/publications/tech-news/chasing-pixels/famous-graphics-chips
https://www.computer.org/publications/tech-news/chasing-pixels/famous-graphics-chips
https://aws.amazon.com/compare/the-difference-between-gpus-cpus/?nc1=h_ls
https://aws.amazon.com/compare/the-difference-between-gpus-cpus/?nc1=h_ls
https://www.computer.org/publications/tech-news/chasing-pixels/Famous-Graphics-Chips-IBMs-professional-graphics-the-PGC-and-8514A
https://www.computer.org/publications/tech-news/chasing-pixels/Famous-Graphics-Chips-IBMs-professional-graphics-the-PGC-and-8514A
https://medium.com/altumea/a-brief-history-of-gpu-47d98d6a0f8a
https://medium.com/altumea/a-brief-history-of-gpu-47d98d6a0f8a
https://shadow.tech/en-GB/blog/history-of-gaming-gpus

8 Appendix

8.1 Infinite Wing Lift Force Simulation

The following Python code was used to simulate the lift force distribution along the wing span
based on infinite wing theory.

1 ##Required libraries

2 import numpy as np

3 import matplotlib.pyplot as plt

4

5

6 # Define the parameters of wing

7 span = 10

8 num_sections = 40 \

9 # Number of sections the span is divided into

10

11 # Define the root and tip chord lengths

12 chord_root = 1.5

13 # Chord length at the root (meters)

14 chord_tip = 0.5

15 # Chord length at the tip (meters)

16

17 # Create an array of spanwise positions from -span/2 to span/2

18 y_positions = np.linspace(-span / 2, span / 2, num_sections)

19

20 # Function to calculate chord length at a given spanwise position

21 def linear_chord(y, span , chord_root , chord_tip):

22 #Compute the chord based one liear relation

23 return chord_root - (chord_root - chord_tip) * (2 * np.abs(y) / span)

24

25 # Function to generate airfoil coordinates based on given chord length

26 def generate_airfoil(chord , points =100):

27

28 #Generates the upper and lower surface coordinates of an airfoil.

29 m, p, t = 0.02, 0.4, 0.12 # Camber , camber position , and thickness

30 x = np.linspace(0, 1, points) # Non -dimensional x-coordinates

31

32 # Camber line calculation

33 yc = np.where(

34 x < p,

35 m / (p**2) * (2 * p * x - x**2),

36 m / ((1 - p)**2) * ((1 - 2 * p) + 2 * p * x - x**2), # Max camber to

trailing edge

37)

38

39 # Thickness distribution

40 yt = 5 * t * (0.2969 * np.sqrt(x) - 0.126 * x - 0.3516 * x**2 + 0.2843 * x

3 - 0.1015 * x4)

41

42 xu = x - yt # Upper x

43 xl = x + yt # Lower x

44 zu = yc + yt # Upper z

45 zl = yc - yt # Lower z

46

47 return chord * xu, chord * zu, chord * xl, chord * zl

48

49 # Function to calculate lift force for a given chord length and flow conditions

50 def calculate_lift(chord , angle_of_attack , air_density , velocity):

51

52 Cl = 2 * np.pi * np.radians(angle_of_attack)

53 #lift coeeficient

54 area = chord * 1

55 # Reference area (chord x unit span)

13

56 lift = 0.5 * air_density * velocity **2 * area * Cl

57 # Lift force

58 return lift

59

60

61 angle_of_attack = 5 # AOA

62 air_density = 1.225 # Air density (kg/m^3)

63 velocity = 65 # Free -stream velocity (m/s)

64

65 # Calculate chord lengths and lift forces for all spanwise sections

66 chord_lengths = [linear_chord(y, span , chord_root , chord_tip) for y in

y_positions]

67 lifts = [calculate_lift(chord , angle_of_attack , air_density , velocity) for chord

in chord_lengths]

68

69 # Function to visualize the wing geometry and lift distribution

70 def plot_wing_view(elev , azim , view_title):

71 """

72 Creates a 3D plot of the wing geometry and visualizes the lift distribution.

73 elev: Elevation angle for the 3D view.

74 azim: Azimuthal angle for the 3D view.

75 view_title: Title of the plot.

76 """

77 fig = plt.figure(figsize =(12, 8))

78 ax = fig.add_subplot (111, projection=’3d’)

79

80 # visualize cross section

81 for y, chord_length in zip(y_positions , chord_lengths):

82 xu, zu, xl, zl = generate_airfoil(chord_length)

83 ax.plot(xu, [y] * len(xu), zu, ’b’) # Upper surface

84 ax.plot(xl, [y] * len(xl), zl, ’r’) # Lower surface

85

86 # Normalize lift values

87 norm = plt.Normalize(min(lifts), max(lifts))

88 colors = plt.cm.viridis(norm(lifts))

89

90 # lift vectors

91 for i, (y, lift) in enumerate(zip(y_positions , lifts)):

92 ax.quiver (0.5, y, 0, 0, 0, lift / 1000, color=colors[i], length =0.1) #

Scaled lift vector

93

94

95 sm = plt.cm.ScalarMappable(cmap="viridis", norm=norm)

96 sm.set_array ([])

97 cbar = plt.colorbar(sm, ax=ax, shrink =0.5, aspect =10)

98 cbar.set_label("Lift␣(N)")

99 ax.set_xlabel("Chordwise␣(X)")

100 ax.set_ylabel("Spanwise␣(Y)")

101 ax.set_zlabel("Lift␣(Z)")

102 ax.set_title(view_title)

103 ax.view_init(elev=elev , azim=azim)

104 plt.show()

105

106 # Visualize the wing and lift distribution from two different angles

107 plot_wing_view(elev=30, azim=-40, view_title="2D␣Lift␣Force␣Simulation␣-␣View␣1"

)

108 plot_wing_view(elev=30, azim=45, view_title="2D␣Lift␣Force␣Simulation␣-␣View␣2")

Listing 1: Lift Force Simulation Code

14

8.2 Lifting force based on Lifting Line Theory-Undamaged Wings

The following Python code implements the lifting line theory by constructing a linear system
to solve for the spanwise circulation distribution Γ(y). The system uses the Biot-Savart law to
compute the influence of discrete vortices and enforces the no-penetration boundary condition
at control points. The resulting system of equations is represented in matrix form:

AΓ = b,

where A is the influence coefficient matrix, Γ is the vector of unknown circulation values, and
b is the known right-hand side vector determined by flow parameters.

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 import numpy as np

5 from scipy.linalg import solve

6 import matplotlib.pyplot as plt

7 N=1000

8 l_wing_range=int (1055/3755*N)

9 fule_range=int (1385*N/3755)

10 half=int(N/2)

11 print(l_wing_range)

12 print(fule_range)

13 wing_span =37.5

14 aoa =2/180* np.pi

15 Uinf =150

16 dy=(wing_span)/N

17 BC=np.zeros ((N,2),dtype=np.float64)

18 LL=np.zeros ((N,2),dtype=np.float64)

19 b=np.zeros(N,dtype=np.float64)

20 chord=np.zeros(N,dtype=np.float64)

21 LE_slope=np.tan (50*np.pi/180)

22 LL_slope=np.tan (27*np.pi/180) +0.75*(np.tan (50*np.pi/180) -np.tan (27*np.pi /180))

23 BC_slope=np.tan (27*np.pi/180) +0.25*(np.tan (50*np.pi/180) -np.tan (27*np.pi /180))

24 for i in range(half):

25 chord[i]=2+i*2*(LL_slope -BC_slope)*dy

26 chord[N-i-1]= chord[i]+2*(LL_slope -BC_slope)*dy

27 BC[i,0]=- wing_span /2+(0.5+i)*dy

28 BC[i ,1]=(0.5+i)*dy*BC_slope

29 BC[N-i-1,0]=- wing_span /2+(0.5+N-i-1)*dy

30 BC[N-i-1 ,1]=BC[i,1]+dy*BC_slope

31 LL[i,0]=BC[i,0]-dy/2

32 LL[i,1]=i*dy*LL_slope+chord[i]/2

33 LL[N-i-1,0]=- wing_span /2+(N-i-1)*dy

34 LL[N-i-1 ,1]=LL[i,1]+dy*LL_slope

35 #print(BC[i,0])

36 #print(LL[i,0])

37 b[i]=Uinf*aoa

38 b[N-i-1]= Uinf*aoa

39 #Bound

40 A=np.zeros((N,N),dtype=np.float64)

41 #Induced

42 for j in range(N):

43 for i in range(half):

44 d_l=BC[j,0]-LL[i,0]

45 d_r=BC[j,0]-LL[N-i-1,0]

46 cb_l=(LL[i,1]-BC[j,1]) /((d_l*d_l+(LL[i,1]-BC[j,1]) **2) **0.5)

47 #cb_2=(LL[i,1] -0.75* chord[i]-BC[j,1]) /((d*d+(LL[i,1] -0.75* chord[i]-BC[j

,1]) **2) **0.5)

48 cb_2=-1

49 cb_r=(LL[N-i-1,1]-BC[j,1]) /((d_r*d_r+(LL[N-i-1,1]-BC[j,1]) **2) **0.5)

50 A[j,i]-=(cb_l -cb_2)*dy/(4*np.pi*d_l)

15

51 A[j,N-i -1]+=(cb_r -cb_2)*dy/(4*np.pi*d_r)

52 for j in range(N):

53 for i in range(half):

54

55 dl=(pow(BC[j,0]-LL[i,0] ,2)+pow(BC[j,1]-LL[i,1] ,2))**0.5

56 dr=(pow(BC[j,0]-LL[N-i-1,0],2)+pow(BC[j,1]-LL[N-1-i,1] ,2))**0.5

57 dm_l=(pow(BC[j,0]-LL[half -1,0],2)+pow(BC[j,1]-LL[half -1,1],2))**0.5

58 dm_r=(pow(BC[j,0]-LL[half ,0] ,2)+pow(BC[j,1]-LL[half ,1] ,2))**0.5

59 dp_middle_l =(BC[j,0]-LL[half -1 ,0])*dy+(BC[j,1]-LL[half -1 ,1])*dy*LL_slope

60 dp_middle_r =(BC[j,0]-LL[half ,0])*dy -(BC[j,1]-LL[half ,1])*dy*LL_slope

61 dp_left =(BC[j,0]-LL[i,0])*dy+(BC[j,1]-LL[i,1])*dy*LL_slope

62 dp_right =(BC[j,0]-LL[N-i-1 ,0])*dy -(BC[j,1]-LL[N-i-1 ,1])*dy*LL_slope

63 cb_l=dp_left /(dy*((1+ LL_slope*LL_slope)**0.5)*dl)

64 cb_r=dp_right /(dy*((1+ LL_slope*LL_slope)**0.5)*dr)

65 cb_ml=dp_middle_l /(dy *((1+ LL_slope*LL_slope)**0.5)*dm_l)

66 cb_mr=dp_middle_r /(dy *((1+ LL_slope*LL_slope)**0.5)*dm_r)

67 A[j,i]+=dy*(cb_l -cb_ml)/(2*np.pi*chord[j])

68 A[j,N-i-1]-=dy*(cb_r -cb_mr)/(2*np.pi*chord[j])

69 b=np.asarray(b)

70 gamma1=np.linalg.solve(A,b)

71 np.linalg.cond(A)

72 plt.plot(np.cumsum(gamma1)*dy)

8.3 Lifting force based on Lifting Line Theory-Damaged Wings

The following Python code implements the lifting line theory by constructing a linear system to
solve for the spanwise circulation distribution Γ(y), this time the wing is damaged.

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4

5

6 LE_slope=np.tan (50*np.pi/180)

7 LL_slope=np.tan (27*np.pi/180) +0.75*(np.tan (50*np.pi/180) -np.tan (27*np.pi /180))

8 BC_slope=np.tan (27*np.pi/180) +0.25*(np.tan (50*np.pi/180) -np.tan (27*np.pi /180))

9

10

11 N=500

12 dy = (37.5 -5.7) / N

13 dz = dy * 3 * np.pi/ 180

14 dz_t = -dy * 1 * np.pi/ 180

15 dt = 0.01

16 f_frac=int (18.75*N/(13.05+18.75))

17 tip_frac=int(N*0.02)

18 chord=np.zeros(N)

19 wing_span = 37.5

20 BC = np.zeros ((N, 3))

21 LL = np.zeros ((N, 3))

22 for i in range(int(tip_frac)):

23 idx = N - i - 1

24 chord[idx]=1.7+2* i * (LL_slope -BC_slope) * dy

25 BC[idx ,0] = (i + 0.5) * dy*BC_slope

26 BC[idx ,1] = wing_span / 2 - (i + 0.5) * dy

27 BC[idx ,2] = i * dz_t + 0.5 * dz_t

28 LL[idx ,0] = (i + 1) * dy * LL_slope

29 LL[idx ,1] = wing_span / 2 - (i + 1) * dy

30 LL[idx ,2] = i * dz_t

31

32 for i in range(int(tip_frac), f_frac):

33 idx = N - i - 1

34

16

35 chord[idx]=1.7+2*i*(LL_slope -BC_slope)*dy

36 BC[idx ,0] = (i + 0.5) * dy * BC_slope

37 BC[idx ,1] = wing_span / 2 - (i + 0.5) * dy

38 BC[idx ,2] = BC[N - int(tip_frac)][2] - (i - int(tip_frac)) * dz

39 LL[idx ,0] = (i + 1) * dy * LL_slope

40 LL[idx ,1] = wing_span / 2 - (i + 1) * dy

41 LL[idx ,2] = LL[N - int(tip_frac)][2] - (i - int(tip_frac)) * dz

42

43 #

44 for i in range(f_frac , N):

45 idx = N - i - 1

46

47 chord[idx]= chord[N-f_frac]-2*(i-f_frac +1)*(LL_slope -BC_slope)*dy

48 BC[idx][0] = BC[N-f_frac][0] - (i - f_frac + 1) * dy*BC_slope

49 BC[idx][1] = BC[N-f_frac][1] - (i - f_frac + 1) * dy

50 BC[idx][2] = BC[N-f_frac][2] - (i - f_frac + 1) * dz

51 LL[idx][0] = LL[N-f_frac][0] - (i - f_frac + 1) * dy*LL_slope

52 LL[idx][1] = LL[N-f_frac][1] - (i - f_frac + 1) * dy

53 LL[idx][2] = LL[N-f_frac][2] - (i - f_frac + 1) * dz

54

55 A = np.zeros((N, N))

56 for i in range(N):

57 for j in range(int(N-f_frac)):

58 diff=BC[i]-LL[j]

59 cb1=np.dot([-1,0,0],diff)/((np.dot(diff ,diff))**0.5)

60 A[i,j]-=(cb1+1) /(4*np.pi*(BC[i][1]-LL[j][1]))*dy

61 for i in range(N):

62 for j in range(int(N-f_frac),N):

63 diff=BC[i]-LL[j]

64 cb1=np.dot([-1,0,0],diff)/((np.dot(diff ,diff))**0.5)

65 A[i,j]+=(cb1+1) /(4*np.pi*(BC[i][1]-LL[j][1]))*dy

66 for i in range(N):

67 if (i<N-f_frac):

68 for j in range(int(N-f_frac)):

69 diff_l=BC[i]-LL[j]

70 diff_r=BC[i]-LL[N-f_frac -1]

71 delta =[LL_slope ,1,np.pi/60]

72 cb1=np.dot(delta ,diff_l)/(np.dot(delta ,delta)*np.dot(diff_l ,diff_l))

**0.5

73 cb2=np.dot(delta ,diff_r)/(np.dot(delta ,delta)*np.dot(diff_r ,diff_r))

**0.5

74 A[i][j]-=(cb1 -cb2)/(2*np.pi*chord[i])*dy

75 else:

76 for j in range(int(N-f_frac)):

77 diff_l=BC[i]-LL[j]

78 diff_r=BC[i]-LL[N-f_frac -1]

79 delta =[LL_slope ,1,np.pi/60]

80 d=(np.dot(diff_l ,diff_l)*(1-cb1*cb1))**0.5

81 cb1=np.dot(delta ,diff_l)/(np.dot(delta ,delta)*np.dot(diff_l ,diff_l))

**0.5

82 cb2=np.dot(delta ,diff_r)/(np.dot(delta ,delta)*np.dot(diff_r ,diff_r))

**0.5

83 A[i][j]-=(cb1 -cb2)/(4*np.pi*d)*dy

84 for i in range(N):

85 if (i<N-f_frac):

86 for j in range(int(N-f_frac),int(N-tip_frac)):

87 diff_l=BC[i]-LL[j]

88 diff_r=BC[i]-LL[int(N-f_frac)]

89 delta=[-LL_slope ,1,-np.pi/60]

90 cb1=np.dot(delta ,diff_l)/(np.dot(delta ,delta)*np.dot(diff_l ,diff_l))

**0.5

91 cb2=np.dot(delta ,diff_r)/(np.dot(delta ,delta)*np.dot(diff_r ,diff_r))

**0.5

17

92 d=(np.dot(diff_l ,diff_l)*(1-cb1*cb1))**0.5

93 A[i][j]-=(cb1 -cb2)/(4*np.pi*d)*dy

94 else:

95 for j in range(int(N-f_frac),int(N-tip_frac)):

96 diff_l=BC[i]-LL[j]

97 diff_r=BC[i]-LL[int(N-f_frac)]

98 delta=[-LL_slope ,1,-np.pi/60]

99 cb1=np.dot(delta ,diff_l)/(np.dot(delta ,delta)*np.dot(diff_l ,diff_l))

**0.5

100 cb2=np.dot(delta ,diff_r)/(np.dot(delta ,delta)*np.dot(diff_r ,diff_r))

**0.5

101 A[i][j]-=(cb1 -cb2)/(2*np.pi*chord[i])*dy

102 for i in range(N):

103 if (i<N-f_frac):

104 for j in range(int(N-tip_frac),int(N)):

105 diff_l=BC[i]-LL[j]

106 diff_r=BC[i]-LL[int(N-tip_frac)]

107 delta=[-LL_slope ,1,np.pi /180]

108 cb1=np.dot(delta ,diff_l)/(np.dot(delta ,delta)*np.dot(diff_l ,diff_l))

**0.5

109 cb2=np.dot(delta ,diff_r)/(np.dot(delta ,delta)*np.dot(diff_r ,diff_r))

**0.5

110 d=(np.dot(diff_l ,diff_l)*(1-cb1*cb1))**0.5

111 A[i][j]-=(cb1 -cb2)/(4*np.pi*d)*dy

112 else:

113 for j in range(int(N-tip_frac),int(N)):

114 diff_l=BC[i]-LL[j]

115 diff_r=BC[i]-LL[int(N-tip_frac)]

116 delta=[-LL_slope ,1,np.pi /180]

117 cb1=np.dot(delta ,diff_l)/(np.dot(delta ,delta)*np.dot(diff_l ,diff_l))

**0.5

118 cb2=np.dot(delta ,diff_r)/(np.dot(delta ,delta)*np.dot(diff_r ,diff_r))

**0.5

119 A[i][j]-=(cb1 -cb2)/(2*np.pi*chord[i])*dy

120 b=[]

121 U_inf =50

122 f_frac=int (18.75*N/(13.05+18.75))

123 aoa =12/180* np.pi

124 wind=[-np.cos(aoa) ,0,np.sin(aoa)]

125 for i in range(int(N-f_frac)):

126 n=[0 ,1 ,3/180*np.pi]

127 b.append(U_inf*np.dot(wind ,n)/(np.dot(n,n))**0.5)

128 for i in range(int(N-f_frac),int(N-tip_frac)):

129 n=[0 , -1 ,3/180*np.pi]

130 b.append(U_inf*np.dot(wind ,n)/(np.dot(n,n))**0.5)

131 for i in range(int(N-tip_frac),N):

132 n=[0 ,1 ,1/180*np.pi]

133 b.append(U_inf*np.dot(wind ,n)/(np.dot(n,n))**0.5)

134 g=np.linalg.solve(A,-np.asarray(b))

135

136 y=np.linspace (-13.05 ,18.75 , len(np.cumsum(g)))

137 plt.plot(y,np.cumsum(g)*dy)

138 plt.title("Vortex␣Strength␣distribution␣for␣damaged␣wing")

139 plt.ylabel("Vortex␣Strength␣(m^2/s)")
140 plt.xlabel("Wing␣(m)")

18

	Abstract
	Introduction
	Theory
	Key Terms
	Infinite Wing
	Finite Wing
	Lifting-Body Panel method
	Integration Formula
	Numerical Solution

	Methods
	Results and Discussion
	Discussion and Further Improvements

	Conclusion
	References
	Appendix
	Infinite Wing Lift Force Simulation
	Lifting force based on Lifting Line Theory-Undamaged Wings
	Lifting force based on Lifting Line Theory-Damaged Wings

