Lecture 10

Some assignment 3 problems – Titius law

Interpolation

- Lagrange polynomials and their limitations
- Splines

Ordinary Differential equations

- Single, 1st order ODE. Sets of 1st order diff.
- ODEs are equivalent to higher order eqs.
- Taylor expansions and integration schemes:
 - derivation of trapezoid and midpoint methods
 - RK4 scheme; comments on multistep methods
 - shooting method in split-point boundary conditions
- Examples of 1st order nonlinear equations:
 - $y' = -y \cos(x)$, $y' = -y \sin^3(x)$; accuracy, error drift, convergence
- ✤ y" = -g unusually simple and accurate 2nd ord. solutions
- chapter 7 in Turner et al (2018)

PSCB57. Intro to Scientific Computing.

(c) Pawel Artymowicz UofT, 2019. For use by enrolled UTSC students.

Titius-Bode rule problem

Minimum via f=dE/dx=0. Planetary distance law.

Interpolation

- Turner et al (2018) read chapter 6, starting with p. 189
- Interpolation by polynomials: Lagrange polynomials
 o problem: wiggly polynomials
 - $_{\odot}$ the trouble also explains why extrapolation is difficult
- Interpolation by piecewise polynomials:
 - **Splines**; much nicer than polynomials in general
 - cubic splines have continuous 0th, 1st and 2nd deriv.
 - they require solving a tri-diagonal linear system for constants of piecewise cubic functions.
 - \circ this is a cheap calculation, only O(N) arithm. operations
 - o f = scipy.interpolate.interpld(X,Y,'cubic')
 - offers several different interpolation schemes depending on string argument, input: X and Y (numpy arrays of length N). Result is a *function* that you can call with some other array of x's to interpolate & plot:
 - o plt.plot(x,f(x)); plt.show()

Interpolation, Extrapolation, Splines Turner et al. (2018) - textbook

Interpolation, Extrapolation, Splines Turner et al. (2018) - textbook

Fig. 6.10 Error of the interpolation from Fig. 6.9

ODES Turner et al. pp. 229+

- dy/dt = y' = f(x,y) simple first order ODE
- simple 1D 1st order differential equations:
- y' = -y sin(x)
- $y' = -y \sin^3(x)$ initial value problems, B.C.: y(0)=1
- $d^2y/dt^2 = f(x,y)$ simple second order ODE,
- Newtonian, Hamiltonian, and Langrangian dynamics is full of such ODEs, often f(x,y) = f(y) t==x not explicit
- Taylor expansion useful to create integration methods

 example: trapezoid rule is 2nd order.
- Similarities and differences with definite integrals of functions
- Basics of drag forces and their implementation
 - example: throwing a ball in vacuum vs. in air

vertical throw in vacuum – 2nd order 1D ODE

Trapezoidal rule. Equations so simple (no higher order derivatives that this scheme returns zero errors with sizeable step dt.

vertical throw $v_0=20.0$ m/s, dt=0.08 s

diff1-ex3.py

diff1-ex3.py, diff1-ex3L.py

convergence of schemes

diff1-ex4L.py

Х

Integration schemes read chapter 7 of the textbook

- Midpoint trapezoid and RK4 methods
- Turner pp. 239-242
- Multistep methods p. 245+
- Systems of equations
- Trajectories of chase

Chaotic solutions of simple regular ODEs

- Lorenz attractor a meteorological model – very few variables, only 3
- The butterfly effect present
- Definition of chaos. Non-periodic behavior, extremely sensitive to perturbation.
- Orbits of Pluto and *all* other planets are chaotic too