Lecture 10

- Some assignment 3 problems - Titius law
- Interpolation
- Lagrange polynomials and their limitations
- Splines
- Ordinary Differential equations

Single, $1^{\text {st }}$ order ODE. Sets of $1^{\text {st }}$ order diff.

* ODEs are equivalent to higher order eqs.

Taylor expansions and integration schemes:

- derivation of trapezoid and midpoint methods
- RK4 scheme; comments on multistep methods
- shooting method in split-point boundary conditions

Examples of $1^{\text {st }}$ order nonlinear equations:

- $y^{\prime}=-y \cos (x), y^{\prime}=-y \sin ^{3}(x)$; accuracy, error drift, convergence $y^{\prime \prime}=-g-$ unusually simple and accurate $2^{\text {nd }}$ ord. solutions
* chapter 7 in Turner et al (2018)

Titius-Bode rule problem

Old and newer forms of Titius rule

Interpolation

- Turner et al (2018) - read chapter 6, starting with p. 189
- Interpolation by polynomials: Lagrange polynomials
- problem: wiggly polynomials
- the trouble also explains why extrapolation is difficult
- Interpolation by piecewise polynomials:
- Splines; much nicer than polynomials in general
- cubic splines have continuous $0^{\text {th }}, 1^{\text {st }}$ and $2^{\text {nd }}$ deriv.
- they require solving a tri-diagonal linear system for constants of piecewise cubic functions.
\circ this is a cheap calculation, only $\mathrm{O}(\mathrm{N})$ arithm. operations
○ $\mathrm{f}=\mathrm{scipy} . i n t e r p o l a t e . i n t e r p 1 d(X, Y, '$ cubic')
- offers several different interpolation schemes depending on string argument, input: X and Y (numpy arrays of length N). Result is a function that you can call with some other array of x 's to interpolate \& plot:
○ plt.plot(x,f(x)); plt.show()

Interpolation, Extrapolation, Splines

Turner et al. (2018) - textbook

Interpolation, Extrapolation, Splines

Turner et al. (2018) - textbook

- there is a problem with polynomials

splines have continuous $1^{\text {st }}$ and $2^{\text {nd }}$ order derivatives across intervals
To get their coefficients, one solves a linear algebraic set of eqs., which has a band structure -> fast solution

Fig.6.9 Interpolation of the Runge function with a cubic spline

Fig. 6.10 Error of the interpolation from Fig. 6.9

- $d y / d t=y^{\prime}=f(x, y)$ - simple first order ODE
- simple 1D $1^{\text {st }}$ order differential equations:
- $y^{\prime}=-y \sin (x)$
- $y^{\prime}=-y \sin ^{3}(x) \quad$ initial value problems, B.C.: $y(0)=1$
- $d^{2} y / d t^{2}=f(x, y)$ - simple second order ODE,
- Newtonian, Hamiltonian, and Langrangian dynamics is full of such ODEs, often $f(x, y)=f(y) \quad t==x$ not explicit
- Taylor expansion useful to create integration methods - example: trapezoid rule is $2^{\text {nd }}$ order.
- Similarities and differences with definite integrals of functions
- Basics of drag forces and their implementation
- example: throwing a ball in vacuum vs. in air

vertical throw in vacuum $-2^{\text {nd }}$ order 1D ODE

Trapezoidal rule. Equations so simple (no higher order derivatives that this scheme returns zero errors with sizeable step dt.

ODE integration schemes of $\mathrm{dy} / \mathrm{dx}=-\cos (\mathrm{x}) \mathrm{y}$

convergence of schemes

ODE integration schemes of $d y / d x=-y \sin (x) * * 3$

Integration schemes read chapter 7 of the textbook

- Midpoint trapezoid and RK4 methods
- Turner pp. 239-242
- Multistep methods - p. 245+
- Systems of equations
- Trajectories of chase

Chaotic solutions of simple regular ODEs

- Lorenz attractor - a meteorological model - very few variables, only 3
- The butterfly effect present
- Definition of chaos. Non-periodic behavior, extremely sensitive to perturbation.
- Orbits of Pluto and all other planets are chaotic too

