Lecture 10

€ Some assignment 3 problems — Titius law

¢ Interpolation
€ Lagrange polynomials and their limitations

€ Splines

€ Ordinary Differential equations

& Single, 15t order ODE. Sets of 15t order diff.

¢ ODEs are equivalent to higher order egs.

*» Taylor expansions and integration schemes:
 derivation of trapezoid and midpoint methods
 RK4 scheme; comments on multistep methods
* shooting method in split-point boundary conditions

% Examples of 1st order nonlinear equations:

o Yy =-ycos(x),y =-ysind(x); accuracy, error drift, convergence

% y” =-g -unusually simple and accurate 2" ord. solutions

\/

¢ chapter 7 in Turner et al (2018)

PSCB57. Intro to Scientific Computing.
(c) Pawel Artymowicz UofT, 2019. For use by enrolled UTSC students.



Titius-Bode rule problem
Minimum via f=dE/dx=0. Planetary distance law.
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distance

Old and newer forms of Titius rule
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Johann Daniel Titius (1729-1796) d, = 0.4 + 0.3 * 2X

Mary Blagg (1858-1944) d,, =1.728"

Our fit (2019) d, =1.7506"




Interpolation

* Turner et al (2018) — read chapter 6, starting with p. 189

 Interpolation by polynomials: Lagrange polynomials
o problem: wiggly polynomials
o the trouble also explains why extrapolation is difficult

 Interpolation by piecewise polynomials:

o Splines; much nicer than polynomials in general
o cubic splines have continuous 0, 1st and 2"d deriv.

o they require solving a tri-diagonal linear system for
constants of piecewise cubic functions.

o this is a cheap calculation, only O(N) arithm. operations
o f = scipy.interpolate.interpld(X,Y,’cubic’)

o offers several different interpolation schemes depending on
string argument, input: X and Y (numpy arrays of length N).
Result is a function that you can call with some other array of x’s
to interpolate & plot:

oplt.plot(x,£f(x)); plt.show ()



Interpolation, Extrapolation, Splines
Turner et al. (2018) - textbook
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Interpolation, Extrapolation, Splines
Turner et al. (2018) - textbook

* there is a problem with polynomials

204 » example by Runge — blue curve /‘
very poorly interpolated by high-order
154 |° Lagrange polynomials
|\ part of a problem is uniform grid of points
ol |° but the true solution are piecewise pol}ynomials
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splines have continuous
1st and 2" order derivatives
across intervals

To get their coefficients, one solves
a linear algebraic set of egs., which
has a band structure -> fast solution




Fig.6.9 Interpolation of the
Runge function with a cubic
spline

Fig.6.10 Error of the
interpolation from Fig. 6.9

1.0 1

0.8 4

0.6 -

0.4 4

0.2 -

0.0 -

0.010 4

0.005 4

0.000 -

—0.005 -

—0.010 4

—0.015 4

—0.020




ODEs Turner et al. pp. 229+

dy/dt =y =1(x,y) - simple first order ODE
simple 1D 15t order differential equations:

y' = -y sin(x)
y' = -y sin3(x) initial value problems, B.C.: y(0)=1

d2y/dt? = f(x,y) - simple second order ODE,

Newtonian, Hamiltonian, and Langrangian dynamics is
full of such ODEs, often f(x,y) = f(y) t==x not explicit

Taylor expansion useful to create integration methods
— example: trapezoid rule is 2"d order.

Similarities and differences with definite integrals of
functions

Basics of drag forces and their implementation
— example: throwing a ball in vacuum vs. in air



vertical throw In vacuum - 2 order 1D ODE

Trapezoidal rule. Equations so simple (no higher order derivatives
that this scheme returns zero errors with sizeable step dt.

vertical throw vp=20.0 m/s, dt=0.08 s
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y, error 104

diff1-ex3.py

ODE integration schemes of dy/dx = -cos(x)y
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diff1-ex3.py, diff1-ex3L.py

ODE integration schemes of dy/dx = -cos(x)y
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convergence of schemes

mean error of solution to dy/x = -y cos(x), x=0 to x=n
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diff1-ex4L.py

ODE integration schemes of dy/dx = -y sin(x)**3
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Integration schemes
read chapter 7 of the textbook

Midpoint trapezoid and RK4 methods
Turner pp. 239-242

Multistep methods — p. 245+
Systems of equations

Trajectories of chase



Chaotic solutions of simple regular ODEs

Lorenz attractor — a meteorological model
— very few variables, only 3

The butterfly effect present

Definition of chaos. Non-periodic behavior,
extremely sensitive to perturbation.

Orbits of Pluto and all other planets are
chaotic too



