
 Lecture 12
u Solutions of 4th assignment set
u  ODEs. Ordinary diff. eqs. (cont.):

o  Astrophysical N-body problems:
 2-Body problem in pseudo-Newtonian GR, 3-Body
 problem, R3B (restricted 3B), circular R3B
o  Symplectic integrators for astrodynamics, 4th order
o  UTSC research on massive N-body calculations
o  Cosmological N-body simulations: Millenium & Bolshoi

u  Some PDEs (Partial differential equations):
o  Heat or diffusion equation (unsharp masking algorithm)
o  Wave equation in 2 dimensions:

 Pond or swimming pool surface,
o  Young’s double slit experiment
o  UTSC research on CFD

u  Overflow topics
o  FFT

PSCB57. Intro to Scientific Computing.
(c) Pawel Artymowicz UofT, 2019. For UTSC students only

Solution of some assignments #4 - problem 1
Compute diffraction pattern
•  diffraction-1.py

Solution of some assignments #4 – extension
Compute diffraction+interference pattern from 2 slits
interference-1.py

Solution of assignments #4 – problem 2

test data
solid line = hidden truth underlying
 synthetic data

•  CL ~ AOA
 lift coeff.

•  Cid ~ AOA2

 ~ CL
2

 induced drag coeff.
 Cpd ~ const

 parasitic drag coeff.

WHY IS THERE INDUCED DRAG?

Why is there induced drag?
Because of what goes on in 3-D!

Lift and drag according to airfoil theory
•  dynamic pressure pram = ½ ρV2 ~ V2; ρ = density of air, V = airspeed
•  force of drag = parasitic drag + induced drag
•  Fd = (Cpd + Cid) pram A A = area of wing

•  lift force = weight (by assumption)
•  FL = CL pram A = W = const. , CL ~ W/(A pram)
•  Cid = CL

2 A/(πL2) ß a result of airfoil theory (L = wingspan)
•  Drag force is then
•  Fd = Cpd pram A + W2/(πpramL2) ~ k V2 + q V-2

Constants k, q can be obtained from
testing the aircraft.

From k and q, one derivesV(Fd = min),
as well as V(power = V Fd = min),
and finally V(Fd dist/V=min).

•  Drag force
•  Fd = Cpd pram A + W2/(πpramL2) =: k V2 + q V-2

•  Fpd Fid

•  V(Fd = min) corresponds to longest range of glide:
 FL = W cos θ
 Fd = W sin θ

Using calculus,
dFd/dV = (2/V)(kV2-qV-2) = 0
 when Fpd = Fid

V(min Fd) = (k/q)1/4

min tan θ at minim. Fd/FL i.e. min Fd

Fd = Cpd pram A + W2/(πpramL2) =: k V2 + q V-2

•  V(VFd = min) corresponds to longest time of

glide without engine power, or minimum engine
power in horizontal flight, or minimum fuel burn
rate.

 Power = V Fd(V) = k V3 + q/V
Using calculus,
dPower/dV = (1/V)(3kV2-qV-2) = 0
 when 3Fpd = Fid
V(min Fd) = (k/q/3)1/4 =0.759 (k/q)1/4

Fd = Cpd pram A + W2/(πpramL2) =: k V2 + q V-2

•  Carson’s speed minimizes product of travel time and
fuel consumed between points A and B

 V(Fd/V= min)
time = distance / V,
fuel consumed ~ energy ~ Fd distance
 time * fuel ~ Fd(V)/V = k V + q/V3

Using calculus,
d (Fd/V)/dV = (1/V2)(kV2-3qV-2) = 0
 when Fpd = 3Fid

V(min Fd) = (3k/q)1/4 = 1.316 (k/q)1/4

linear combination of V2 and 1/V2

test data
solid line = hidden truth underlying
 synthetic data

Solution of assignments #4 – problem 2
•  Least Squared fit to aeronautical test data
•  fit-drag-1.py

•  Pawels-MacBook-Pro[136]:~/py3% python3 fit-drag-1.py

•  assumed A,M,L, 200 90000.0 37.7
•  Ap, W_L 6.0 23419.09814323607
•  v data [75. 81. 86. 88. 96. 99. 100. 104. 105. 112. 117. 120.
•  125. 134. 146. 150. 151. 160. 163.]
•  generated Fdata [T] [8.08596424 7.81498155 7.35682356

7.32279163 7.06857043 7.14673581 7.06621127 6.91026535
7.40488755 7.44936492 7.62545887 7.6619365 8.10453331
8.55727423 9.78611397 9.77122489 9.93360421 10.8494722
11.07041866]

•  fit?
•  obtained parameters: 335740760. 5.95166
•  obtained ratios : 1.0012410 0.991943
•  best speeds:
•  v_T_glide = v_min_pow = 86.6645386 m/s 311 km/h
•  v_glideslope = v_fuel = 103.06209 ,, 371 ,,
•  v_T_fuel = v_Carson = 135.63733 ,, 488 ,,

Why is Carson’s V optimizing time and fuel so different from real airspeeds of airliners? It
isn’t. The 488 km/h is instrumental speed (speed gauges are calibrated using standard
sea-level air density ρ = 1.225 kg/m3). But ρ at cruise altitude is 2.7 times lower, and true
airspeed is 2.71/2 times higher (TAS~800 km/h). Real speeds are similar to Carson’s V.

Solution of assignments #4 – problem 2

Solution of assignments #4

•  problem 3 - RK4 integration of Lorenz chaotic system

•  problem 4 – estimation of parameter uncertainty in Least
Squares Method

The only tricky point was to avoid the possible misunderstanding
of how much to perturb the data. The answer is this:

so much that the particulars of noise change (realization of
random perturbation differs)
but the amount of spread around the linear (in this case) trend is
remains the same.

I’m curious how you did that, we’ll see what approaches you
found.

: u ODEs. Ordinary diff. eqs.:
u N-body problems:
u  From our home page:

 3-Body problem, R3B (restricted 3B), circular R3B.
v  UTSC research on supercomputing N-body systems
v Cosmological simulations: Millenium, Bolshoi
u PDEs. Partial differential equations:
u Wave equation in 2 dimensions

Z_tt = c2 (Z_xx + Z_yy) PDE, c = speed of the wave
_tt = second time deriv., _xx = second deriv after x, etc.

u Pond or swimming pool surface
q pond1.py, pond3.py, pond4.py
q pond4-1obj.py,
q Young’s double slit experiment:

 pond4-2slit3.py, pond4-2slit4.py
u CFL condition
u research on CFD

PSCB57. Intro to Scientific Computing.
(c) Pawel Artymowicz UofT, 2019. For use by enrolled UTSC students.

: u ODEs. Ordinary diff. eqs.:
u N-body problems:
u  From our home page:

 3-Body problem, R3B (restricted 3B), circular R3B.

v UTSC research on supercomputing N-body systems

v Cosmological simulations: Millenium, Bolshoi

see program hill3.pro in IDL language
and all of its graphical output on our course page

Massively parallel integration on the
newest HPC platforms: CPU, GPU and MIC

(...)

3. Concurrent simulation of 200 or 7000 planetary systems on
 CPUs or MIC

Conclusions

4. Collisionless gigaparticle disks. Interaction with binary system.
 Hybrid algorithm (4th order symplectic with collisions)
 Implementation and optimization in Fortran90 on 1..32 MIC (Φ)
 Migration problem
 Tests and preliminary results
 Fast migration in particle disks as type III CR-driven migration

Conclusions

15 Aug 2017, UTSC

1990s and 2000s was the era of clusters

MPI for parallelization

For many years in 2000s we thought…

...but were wrong

many integrated cores
(Intel’s name for massively parallel CPU-
like processors)

MIC = many
integrated
CPU-like
cores (~60)

Intel Xeon Phi
accelerators

Knights Corner:
~1 TFLOP dp
~2 TFLOP sp

Knights Landing:
~3x more TF

In 2014, CERN Researchers considered which of the platforms makes the most sense
for distributed Worldwide LHC Computing Grid, processing data for LHC experiments
in 170 computing centers in 40 countries (incl. UofT)

ARM

 GPU
 sp
CPU Φ

 GPU
 dp

(< 4003 CFD on
Titan GPU)

 N = 10 K ... 1 M

 CPU (i7-5820K 4GHz) MIC (KNC) GPU (gtx 980, Titan)

 0.28 TFLOP sp 1.33 TFLOP sp 3.5 TFLOP sp (gtx980)
 14 G interac/s 67 G interac/s 190 G interac/s

 0.09 TFLOP dp 0.51 TFLOP dp 0.81 TFLOP dp (Titan)
 4.5 G interac/s 25 G interac/s 40 G interac/s
!
! on MIC the calculation is 2.8 times slower than on GPU (sp)
! 1.6 times slower than on GPU (dp)
! CPU (6c.) is 9..13 times slower than GPU
!

 note: this is a rare fully compute-bound calculation!

 Large N-body systems by direct summation
 20 arithmetic operations per one pairwise grav. interaction

 leapfrog (Fortran90) leapfrog (CUDA C)

 n8b-aug14.3.f90 Same double precision program. Compiled with ifort

 Concurrent 8-body systems by 4th order symplectic code

platform CPU

MIC

compiler flag -xhost -mmic

number of N-body
systems per processor

12 224

N [#threads per sys.] 8 [1] 8 [1]

exec. time per step 0.871 µs 4.58 µs

steps per orbit 360 360

exec. time of 1 orbit 0.313 ms 1.65 ms

exec. time (1G orbits) 3.63 days 19.1 days

system clock 4 GHz 1.1 GHz

throughput 13.8 M sys-step/s 49 M sys-step/s

concurrent systems
(SciPhi cluster UTSC)

192 10752

Practical capabilities of processor platforms for dynamical astro-
calculations. Single (co)processors
CPU ~ E5 and i7 ser. (Intel), MIC = Knights Corner (Intel 2013),
GPU = Nvidia GTX970..1080 (sp) and Titan (dp) run:

1.  Gravit. N-body problem O(~N2). N ~106 real-time (~1 fps)
 GPU > MIC ~ CPU (mostly comput. limited, > TFLOP)

2.  Disks of particles (stars; asteroids, planetesimals, meteoroids and dust).

~ 109/s, ~108 in RAM, (~10 fps)
 GPU ~ MIC > CPU (bandwidth-limited to 150 GB/s)

3. Pure CFD = fluids, cells: ~108/s, ~108 in RAM
 GPU ~ MIC ~ CPU (mostly bandwidth limited) , (~1 fps)

GPU – some have decent double precision, most don’t.
Somewhat difficult to program and optimize, compared to x86 platforms. Very
fast on direct summation.

Collisionless gigaparticle disks can be simulated with
4th order symplectic algorithm

Algorithm: 4th Order Symplectic
Forest and Ruth (1990)

1.  Push position: x2 = x1 + c1*v
2.  Calculate force (at updated position)
3.  Kick velocity: v2 = v1 + d1*a

4.  Push position: x2 = x1 + c2*v
5.  Calculate force (at updated position)
6.  Kick velocity: v2 = v1 + d2*a

7.  Push position: x2 = x1 + c3*v
8.  Calculate force (at updated position)
9.  Kick velocity: v2 = v1 + d3*a

10. Push position: x2 = x1 + c4*v

Collision with Binary and Variable dt

Inside rL

Inside planet
radius

Outside
Planet radius

•  Store particle and set to large r in
main array

•  Remove from array
•  Transfer momentum and cm

position
•  Increase mass and spin

•  Store particle and set to larger r in

main array
•  Perform same scheme but with

variable dt
•  Range 1e-8 – dt1(0.004)

The codes described here are
massively parallel and require
very large number of particles to
run with full efficiency.

relative error of energy integral
increases ~2e-8 per 1000 orbits

We study type III migration in Disks
•  Very rapid migration in gas disks: 40-50

orbits timescale for Jupiter-mass planet in a
solar nebula disk

 (Papaloizou et al. in Protostars and Planets V, 2005)
•  Rate does not depend on mass of planet
•  Criterion compares disk (in CR = corotation

region) and planet masses:
– Mp < Mdeficit . Difficult to satisfy by

planetesimals...

Previous results: Kirsh et al. 2009 identified the fast migration
and offered an explanation [without noticing a connection with type III
migration, e.g. as reviewed by Papaloizou et al. 2006, PP V]

Much slower migration by
mean-motion resonant
scattering (w/similarly v.
massive disks) proposed
by Murray et al (1998).

3Gp Simulation of Jupiter-
mass planet. Disk Mass
0.01Msun

No planet-disk interaction for
5 initial orbits

The rate of migration
agrees with analytical
estimate with corotation
region depleted by 25%

a(t)

Conclusions of Fergus Horrobin’s summer
research in 2017

For large-scale particle integrations in non-collisional
disks, codes can run v. fast on MIC cluster (Xeon Phi)
•  3+ billion particles (150M per MIC), timestep ~0.2 s
•  Hybrid parallelization method combining OpenMP

and MPI seems best for this type of platform
•  We’ve implemented 4th order symplectic integrator.
•  Though deeper analysis must be made, we see

similarities between gas and particle disks in the
context of rapid migrations

N-body simulations of the Universe

•  https://www.youtube.com/watch?v=YjUICiYlCYE
•  Millenium – 10+G particles Gadget code,
•  kept the main supercomp at MPI Inst of Astronomy in

Garching, Germany, busy for a month in 2004
•  (700 MPc)3

•  https://www.youtube.com/watch?v=32qqEzBG9OI
 (350Mpc)3, 5e4 galaxies, 12G particles, 8k CPUs
•  Millenium XXL

N-body simulations of the Universe

•  https://www.youtube.com/watch?v=YjUICiYlCYE
•  Millenium

•  https://www.youtube.com/watch?v=32qqEzBG9OI
 (350Mpc)3, 5e4 galaxies, 12G particles, 8k CPUs
•  Millenium XXL

N-body simulations of the Universe
•  https://www.youtube.com/watch?v=YjUICiYlCYE
•  https://www.youtube.com/watch?v=32qqEzBG9OI
 (350Mpc)3 = (1 billion ly)3 , 50K galaxies, 12G particles
•  Simulation name: Bolshoi
•  Run on Pleiades cluster (supercomputer) at NASA Ames

Research Center in Mountainview, California.

N-body simulations of the Universe
12G particles create 50000 galaxies, gas: AMR grid
8k CPUs used for Bolshoi-Planck simulation

Pleiades has theor. peak performance 7.3 PFLOPS

v Cosmological simulations: Millenium, Bolshoi are examples
of:

u PDEs. Partial differential equations:
u Wave equation in 2 dimensions

Z_tt = c2 (Z_xx + Z_yy) PDE, c = speed of the wave
_tt = second time deriv., _xx = second deriv after x, etc.

u Pond or swimming pool surface
q pond1.py, pond3.py, pond4.py
q pond4-1obj.py,
q Young’s double slit experiment:

 pond4-2slit3.py, pond4-2slit4.py
u CFL condition

u  research on astro-CFD at UTSC

PSCB57. Intro to Scientific Computing.
(c) Pawel Artymowicz UofT, 2019. For use by enrolled UTSC students.

1. Astrophysical problems for CPU and GPU calc’s:
 Disk-planet interaction and migration
 Disks with structure: IRI (irradiation instability in particle and gas
 disks)
 Flow of gas around Super-Earth (5 ME)

2. Massively parallel numerics on mini-supercomputers:
 Comparison of HPC platforms: CPU, GPU, and MIC (Φ)
 UTSC clusters

Binary-disk interaction

Artymowicz and Lubow (1996)

SPH = smoothed hydrodynamics method: see wiki

Binary-disk interaction
method: grid-based CFD (Computational fluid dynamics

CPU 2-d

2nd order
ZEUS
hydro

notice mass
flow through

gap

One-sided disk (inner/outer disk only). The rapid inward migration is
OPPOSITE to the expectation based on shepherding (Lindblad
resonances).

Like in the well-known problem of “sinking satellites” (small satellite galaxies
merging with the target disk galaxies),
Corotational torques cause rapid inward sinking.

Another timely issue crying out for analytical work is the appearance
 of unexpected asymmetries
 and blobs:
 v are they due streamers?

 ¤ are they edge modes?

Code: PenGUIn.

CUDA C++. Processes up to ~20 Mcells/s (dp), ~40 Mcell/s (sp)

for comparison, Xeon Phi can run the same size problems at
 ~30 Mcell/s (sp)

and a modern 6-core CPU does ~28 Mcell/s.

These codes are bandwidth-bound. GPU > MIC ~ CPU

x

z
y

RESULTS in 3D

New 3D phenomena, absent in 2D flows, including new
columnar topology

vorticity generation mechanism around a small planet,
have a potential to resolve the long-standing problems in
planet formation theory:

migration and cooling/contraction of the growing planet,
occasional transmutation into a giant gaseous planet.

DUST/RADIATION PRESSURE-RELATED INSTABILITIES
including the IRI = IrRadiation Instability

Jeffrey Fung (UC Berkeley)
used workstations at UofT with 3 GPUs
for parallel computations

GAS DISK HYDRODYNAMICAL SIMULATION (PPM method, 2-
D)
R.h.s. shows a background-removed picture of density of
growing modes.
Analytical predictions are in agreement with calculations.
Models of disks were running faster on 3 GPUs than on UCB
128-cpu cluster.

Opaque disks are unstable under illumination by the central object

tau = 4, β = 0.2

0 180 deg 360 deg

radius

0.7

1.0

1.6

azimuthal angle

Particle disks have IRI as well

1.3

Lecture 12 – overflow topics

u  Introduction to Fast Fourier transform
u Fourier series and Fourier integral. Convolution theorem.
u Why:
u (f*g)(x) = convolution in real space (or time) is costly O(N2)
u How:
u f(x),g(x)à f(k),g(k) àf(k)*g(k)à FFT-1(f*g)
v Digital FT,
v Fast Fourier Transform: O(N ln N)
v Examples

PSCB57. Intro to Scientific Computing.
(c) Pawel Artymowicz UofT, 2019. For use by enrolled UTSC students.

