
                       Lecture 12 
u Solutions of 4th assignment set 
u  ODEs. Ordinary diff. eqs. (cont.): 

o  Astrophysical N-body problems:  
     2-Body problem in pseudo-Newtonian GR,  3-Body   
     problem, R3B (restricted 3B), circular R3B 
o  Symplectic integrators for astrodynamics, 4th order 
o  UTSC research on massive N-body calculations 
o  Cosmological N-body simulations: Millenium & Bolshoi 

u  Some PDEs (Partial differential equations):  
o  Heat or diffusion equation (unsharp masking algorithm) 
o  Wave equation in 2 dimensions: 

 Pond or swimming pool surface,  
o  Young’s double slit  experiment 
o  UTSC research on CFD 

u  Overflow topics 
o  FFT  
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Solution of some assignments #4 - problem 1 
Compute diffraction pattern 
•  diffraction-1.py 



Solution of some assignments #4 – extension 
Compute diffraction+interference pattern from 2 slits 
interference-1.py 



Solution of assignments #4 – problem 2 

test data 
solid line = hidden truth underlying  
                  synthetic data 



•  CL ~ AOA  
   lift coeff.  

•  Cid ~ AOA2 

         ~ CL
2 

 
  induced drag coeff. 
   Cpd ~ const 
 
 parasitic drag coeff. 
 
 
 

WHY IS THERE INDUCED DRAG? 



Why is there induced drag? 
Because of what goes on in 3-D! 



Lift and drag according to airfoil theory 
•  dynamic pressure  pram = ½ ρV2  ~  V2;       ρ = density of air,  V = airspeed 
•  force of drag = parasitic drag + induced drag 
•  Fd = (Cpd + Cid) pram A           A = area of wing 

•  lift force = weight (by assumption) 
•  FL = CL pram A = W = const. ,         CL ~ W/(A pram) 
•  Cid = CL

2 A/(πL2)       ß  a result of airfoil theory (L = wingspan) 
•  Drag force is then  
•            Fd = Cpd pram A + W2/(πpramL2)    ~  k V2  + q V-2   

Constants  k, q  can be obtained from  
testing the aircraft. 
 

From k and q, one derivesV(Fd = min), 
as well as  V(power = V Fd = min), 
and finally V(Fd dist/V=min). 



•  Drag force  
•  Fd = Cpd pram A + W2/(πpramL2)   =:  k V2  + q V-2   

•                                                                                         Fpd         Fid 

•  V(Fd = min)  corresponds to longest range of glide: 
    FL = W cos θ   
    Fd = W sin θ 
 
Using calculus,  
dFd/dV = (2/V)(kV2-qV-2) = 0  
 when    Fpd = Fid 

V(min Fd) = (k/q)1/4 

 

min tan θ  at minim. Fd/FL  i.e. min Fd 
 



Fd = Cpd pram A + W2/(πpramL2)   =:  k V2  + q V-2   

 
•   V( VFd = min)  corresponds to longest time of 

glide without engine power, or minimum engine 
power in horizontal flight, or minimum fuel burn 
rate. 

  Power = V Fd(V) = k V3 + q/V 
Using calculus,  
dPower/dV = (1/V)(3kV2-qV-2) = 0  
 when   3Fpd = Fid 
V(min Fd) = (k/q/3)1/4 =0.759 (k/q)1/4  



Fd = Cpd pram A + W2/(πpramL2)   =:  k V2  + q V-2   

•  Carson’s speed minimizes product of travel time  and 
fuel consumed between points A and B 

 V( Fd/V= min)  
time = distance / V,     
fuel consumed ~ energy ~ Fd distance 
 time * fuel  ~ Fd(V)/V = k V + q/V3 

 
Using calculus,  
d (Fd/V)/dV = (1/V2)(kV2-3qV-2) = 0  
 when   Fpd = 3Fid 

V(min Fd) = (3k/q)1/4 = 1.316 (k/q)1/4  



linear combination of V2 and 1/V2 

test data 
solid line = hidden truth underlying  
                  synthetic data 



Solution of assignments #4 – problem 2 
•  Least Squared fit to aeronautical test data 
•  fit-drag-1.py 

•  Pawels-MacBook-Pro[136]:~/py3% python3 fit-drag-1.py

•   assumed A,M,L, 200 90000.0 37.7 
•   Ap, W_L 6.0 23419.09814323607
•   v data [ 75.  81.  86.  88.  96.  99. 100. 104. 105. 112. 117. 120. 
•  125. 134. 146. 150. 151. 160. 163.]
•   generated Fdata [T] [ 8.08596424  7.81498155  7.35682356  

7.32279163  7.06857043  7.14673581 7.06621127  6.91026535  
7.40488755  7.44936492  7.62545887  7.6619365  8.10453331  
8.55727423  9.78611397  9.77122489  9.93360421 10.8494722
11.07041866]

•  fit? 
•   obtained parameters:  335740760.  5.95166    
•   obtained ratios    :  1.0012410   0.991943 
•   best speeds:
•   v_T_glide = v_min_pow =  86.6645386 m/s   311 km/h
•   v_glideslope = v_fuel =  103.06209   ,,   371  ,,
•   v_T_fuel   = v_Carson =  135.63733   ,,   488  ,, 

Why is Carson’s V optimizing time and fuel so different from real airspeeds of airliners? It 
isn’t. The 488 km/h is instrumental speed (speed gauges are calibrated using standard 
sea-level air density ρ = 1.225 kg/m3). But ρ at cruise altitude is 2.7 times lower, and true  
airspeed is 2.71/2 times higher (TAS~800 km/h). Real speeds are similar to Carson’s V. 



Solution of assignments #4 – problem 2 



Solution of assignments #4 

•  problem 3 - RK4 integration of Lorenz chaotic system 

•  problem 4 – estimation of parameter uncertainty in Least 
Squares Method 

 
The only tricky point was to avoid the possible misunderstanding 
of how much to perturb the data. The answer is this:  
 
so much that the particulars of noise change (realization of 
random perturbation differs)  
but the amount of spread around the linear (in this case) trend is 
remains the same.  
 
I’m curious how you did that, we’ll see what approaches you 
found. 



:                  u ODEs. Ordinary diff. eqs.: 
u N-body problems:  
u   From our home page: 

 3-Body problem, R3B (restricted 3B), circular R3B. 
v   UTSC research on supercomputing N-body systems  
v Cosmological simulations: Millenium, Bolshoi 
u PDEs. Partial differential equations:  
u Wave equation in 2 dimensions 

Z_tt = c2  (Z_xx + Z_yy)    PDE, c = speed of the wave 
_tt = second time deriv.,   _xx = second deriv after x, etc. 

u Pond or swimming pool surface 
q pond1.py,   pond3.py,   pond4.py 
q pond4-1obj.py,     
q Young’s double slit experiment: 

 pond4-2slit3.py, pond4-2slit4.py 
u CFL condition 
u research on CFD 
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:                  u ODEs. Ordinary diff. eqs.: 
u N-body problems:  
u   From our home page: 

 3-Body problem, R3B (restricted 3B), circular R3B. 
 
 
 
 

v UTSC research on supercomputing N-body systems 

  
v Cosmological simulations: Millenium, Bolshoi 
 
 
 
 

 
 

see program hill3.pro  in IDL language  
and all of its graphical output on our course page 



  

Massively parallel integration on the 
newest HPC platforms: CPU, GPU and  MIC
 
 
 
(...)  
 
3. Concurrent simulation of 200 or 7000 planetary systems on  
    CPUs or MIC 
 
Conclusions  
 
 
4. Collisionless gigaparticle disks. Interaction with binary system. 
  Hybrid algorithm (4th order symplectic with collisions)  
  Implementation and optimization in Fortran90 on 1..32  MIC (Φ) 
  Migration problem 
  Tests and preliminary results 
  Fast migration in particle disks as type III CR-driven migration 
 
Conclusions  
   
 
 
 
 
 
 
 
 
  

15 Aug 2017, UTSC 



1990s and 2000s was the era of clusters 

MPI for  parallelization 



For many years in 2000s we thought…  

...but were wrong 



many integrated cores  
(Intel’s name for massively parallel CPU-
like processors)   



MIC = many 
integrated 
CPU-like 
cores (~60) 
 

Intel Xeon Phi 
accelerators  
 
Knights Corner:  
~1 TFLOP dp 
~2 TFLOP sp 
 
Knights Landing:  
~3x more TF 
 
 
 
 



In 2014, CERN Researchers considered which of the platforms makes the most sense 
for distributed Worldwide LHC Computing Grid, processing data for LHC experiments 
in 170 computing centers in 40 countries (incl. UofT) 

ARM 

                                 GPU 
                                    sp 
CPU         Φ  
 
                                     
                                 GPU   
                                    dp  

(< 4003 CFD on  
Titan GPU) 









   N  =  10 K ... 1 M  
  
   CPU  (i7-5820K 4GHz)          MIC (KNC)              GPU (gtx 980, Titan)  
 
             
    0.28 TFLOP sp            1.33 TFLOP sp               3.5  TFLOP sp (gtx980) 
      14 G interac/s                   67  G interac/s              190 G interac/s 
 
    0.09 TFLOP dp               0.51 TFLOP dp              0.81  TFLOP dp (Titan) 
      4.5 G interac/s                   25 G interac/s              40 G interac/s 
! 
!    on MIC the calculation is  2.8 times slower than on GPU (sp) 
!                                             1.6 times slower than on GPU (dp) 
!    CPU (6c.) is                      9..13  times slower than  GPU  
! 

   note:   this is a rare fully compute-bound calculation! 

 Large N-body systems by direct summation 
  20 arithmetic operations per one pairwise grav. interaction 
 
      leapfrog (Fortran90)                   leapfrog (CUDA C) 



 n8b-aug14.3.f90     Same double precision program. Compiled with ifort  
   
      

 Concurrent 8-body systems by 4th order symplectic code   

platform CPU 
 

MIC 

compiler flag -xhost  -mmic 

number of N-body 
systems per processor 

12 224 

N  [#threads per sys.] 8  [1] 8  [1] 

exec. time per step 0.871 µs 4.58 µs 

steps per orbit 360 360 

exec. time of 1 orbit 0.313 ms 1.65 ms 

exec. time (1G orbits) 3.63 days 19.1 days 

system clock 4 GHz 1.1 GHz 

throughput 13.8 M sys-step/s 49 M sys-step/s 

# concurrent systems 
(SciPhi cluster UTSC) 

192 10752 



Practical capabilities of processor platforms for dynamical astro-
calculations. Single (co)processors 
CPU ~ E5 and i7 ser. (Intel),  MIC = Knights Corner  (Intel 2013), 
GPU = Nvidia GTX970..1080 (sp) and Titan (dp) run: 
 
1.  Gravit. N-body problem O(~N2). N ~106 real-time  (~1 fps)  
       GPU > MIC ~ CPU  (mostly comput. limited, > TFLOP) 
 
2.  Disks of particles (stars; asteroids, planetesimals, meteoroids and dust).  

~ 109/s,  ~108 in RAM, (~10 fps) 
       GPU ~ MIC > CPU     (bandwidth-limited to 150 GB/s) 
 
3.  Pure CFD = fluids, cells: ~108/s,  ~108 in RAM 
       GPU ~ MIC ~ CPU  (mostly bandwidth limited) , (~1 fps) 
 
GPU – some have decent double precision, most don’t. 
Somewhat difficult to program and optimize, compared to x86 platforms. Very 
fast on direct summation. 
 
Collisionless gigaparticle disks can be simulated with  
4th order symplectic algorithm 
 



Algorithm: 4th Order Symplectic   
Forest and Ruth (1990) 

1.  Push position: x2 = x1 + c1*v 
2.  Calculate force (at updated position) 
3.  Kick velocity: v2 = v1 + d1*a 

4.  Push position: x2 = x1 + c2*v 
5.  Calculate force (at updated position) 
6.  Kick velocity: v2 = v1 + d2*a 

7.  Push position: x2 = x1 + c3*v 
8.  Calculate force (at updated position) 
9.  Kick velocity: v2 = v1 + d3*a 

10. Push position: x2 = x1 + c4*v 



Collision with Binary and Variable dt 

Inside rL 

Inside planet 
radius 

Outside 
Planet radius 

•  Store particle and set to large r in 
main array 

•  Remove from array 
•  Transfer momentum and cm 

position 
•  Increase mass and spin 
 
•  Store particle and set to larger r in 

main array 
•  Perform same scheme but with 

variable dt 
•  Range 1e-8 – dt1(0.004) 



The codes described here are  
massively parallel and require 
very large number of particles to  
run with full efficiency. 



relative error of energy integral  
increases ~2e-8 per 1000 orbits 



We study type III migration in Disks  
•  Very rapid migration in gas disks: 40-50 

orbits timescale for Jupiter-mass planet in a 
solar nebula disk 

   (Papaloizou et al. in Protostars and Planets V, 2005) 
•  Rate does not depend on mass of planet 
•  Criterion compares disk (in CR = corotation 

region) and planet masses: 
– Mp < Mdeficit . Difficult to satisfy by 

planetesimals... 



Previous results: Kirsh et al. 2009 identified the fast migration 
and offered an explanation [without noticing a connection with type III 
migration, e.g. as reviewed by Papaloizou et al. 2006, PP V] 
 
 
 
 
 
 
 
 
 
 
Much slower migration by  
mean-motion resonant  
scattering (w/similarly v.  
massive disks) proposed  
by Murray et al (1998). 
 
 
 
 
 



3Gp Simulation of Jupiter-
mass planet. Disk Mass 
0.01Msun 

No planet-disk interaction for 
5 initial orbits 

The rate of migration 
agrees with analytical 
estimate with corotation 
region depleted by 25% 

a(t) 







Conclusions of Fergus Horrobin’s summer 
research in 2017 

For large-scale particle integrations in non-collisional 
disks, codes can run v. fast on MIC cluster (Xeon Phi)  
•  3+ billion particles (150M per MIC), timestep ~0.2 s  
•  Hybrid parallelization method combining OpenMP 

and MPI seems best for this type of platform 
•  We’ve implemented 4th order symplectic integrator. 
•  Though deeper analysis must be made, we see 

similarities between gas and particle disks in the 
context of rapid migrations 



 
N-body simulations of the Universe  

•  https://www.youtube.com/watch?v=YjUICiYlCYE 
•  Millenium – 10+G particles Gadget code,  
•  kept the main supercomp at MPI Inst of Astronomy in 

Garching, Germany, busy for a month in 2004 
•  (700 MPc)3 

•   https://www.youtube.com/watch?v=32qqEzBG9OI 
 (350Mpc)3, 5e4 galaxies,  12G particles, 8k CPUs 
•  Millenium XXL 



N-body simulations of the Universe  

•  https://www.youtube.com/watch?v=YjUICiYlCYE 
•  Millenium 

•   https://www.youtube.com/watch?v=32qqEzBG9OI 
 (350Mpc)3, 5e4 galaxies,  12G particles, 8k CPUs 
•  Millenium XXL 



N-body simulations of the Universe  
•  https://www.youtube.com/watch?v=YjUICiYlCYE 
•  https://www.youtube.com/watch?v=32qqEzBG9OI 
   (350Mpc)3 = (1 billion ly)3 , 50K galaxies,  12G particles  
•  Simulation name: Bolshoi 
•  Run on Pleiades cluster (supercomputer) at NASA Ames 

Research Center in Mountainview, California. 



N-body simulations of the Universe  
12G particles create 50000 galaxies,   gas: AMR grid 
8k CPUs used for Bolshoi-Planck simulation  

Pleiades has theor. peak performance 7.3 PFLOPS 



v Cosmological simulations: Millenium, Bolshoi are examples 
of:  

 
u PDEs. Partial differential equations:  
u Wave equation in 2 dimensions 

Z_tt = c2  (Z_xx + Z_yy)    PDE, c = speed of the wave 
_tt = second time deriv.,   _xx = second deriv after x, etc. 

u Pond or swimming pool surface 
q pond1.py,   pond3.py,   pond4.py 
q pond4-1obj.py,     
q Young’s double slit experiment: 

 pond4-2slit3.py, pond4-2slit4.py 
u CFL condition 

u  research on astro-CFD at UTSC 
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1. Astrophysical problems for CPU and GPU calc’s: 
 Disk-planet interaction and migration 
 Disks with structure: IRI (irradiation instability in particle and gas 
   disks) 
 Flow of gas around Super-Earth (5 ME)   
 
2. Massively parallel numerics on mini-supercomputers: 
  Comparison of HPC platforms: CPU, GPU, and MIC (Φ) 
  UTSC clusters 
 
 
   
 
 
 
 
 
 
 
 
  



Binary-disk interaction 

Artymowicz and Lubow (1996) 

SPH = smoothed hydrodynamics method: see wiki 



Binary-disk interaction 
method: grid-based CFD (Computational fluid dynamics 



CPU 2-d 
 

2nd order 
ZEUS  
hydro 

 
 

notice mass 
flow through  

gap 



One-sided disk (inner/outer disk only). The rapid inward migration is 
OPPOSITE to the expectation based on shepherding (Lindblad 
resonances). 

Like in the well-known problem of “sinking satellites” (small satellite galaxies  
merging with the target disk galaxies), 
Corotational torques cause rapid inward sinking.  
 



Another timely issue crying out for analytical work is the appearance 
                                                                       of unexpected asymmetries   
                                                                       and blobs:  
        v are they due streamers? 

                                                                        ¤   are they edge modes?  













Code:  PenGUIn. 
 
CUDA C++.   Processes up to ~20 Mcells/s (dp), ~40 Mcell/s (sp)  
 
for comparison, Xeon Phi can run the same size problems at 
 ~30 Mcell/s (sp) 
 
and a modern 6-core CPU does ~28 Mcell/s. 
 
These codes are bandwidth-bound.   GPU > MIC ~ CPU 
 
 
 











x 

z 
y 



RESULTS in 3D 
 
 
 
 
 
New 3D phenomena, absent in 2D flows, including new 
columnar topology   
 
vorticity generation mechanism around a small planet,  
have a potential to resolve the long-standing problems in 
planet formation theory:  
 
migration and cooling/contraction of the growing planet,  
occasional transmutation into a giant gaseous planet. 



DUST/RADIATION PRESSURE-RELATED INSTABILITIES 
including the IRI = IrRadiation Instability 
 

Jeffrey Fung (UC Berkeley)   
used workstations at UofT with 3 GPUs  
for parallel computations  



GAS DISK HYDRODYNAMICAL SIMULATION (PPM method, 2-
D) 
R.h.s. shows a background-removed picture of density of 
growing modes. 
Analytical predictions are in agreement with calculations. 
Models of disks were running faster on 3 GPUs than on UCB 
128-cpu cluster. 

Opaque disks are unstable under illumination by the central object 



tau = 4,   β = 0.2 

0 180 deg 360 deg 

radius 

0.7 

1.0 

1.6 

azimuthal angle 

Particle disks have IRI as well 

1.3 



Lecture 12 – overflow topics                  
 
 

u  Introduction to Fast Fourier transform 
u Fourier series and Fourier integral. Convolution theorem.  
u Why: 
u (f*g)(x) = convolution in real space (or time) is costly O(N2) 
u How:  
u f(x),g(x)à f(k),g(k) àf(k)*g(k)à FFT-1(f*g)  
v Digital FT,  
v Fast Fourier Transform: O(N ln N) 
v Examples 
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