
Lecture 2 
 
    History of modern scientific computing 
 
 
 
      Supercomputing today 
  
      Python3 – basic concepts and grammar 
 

PSCB57. Intro to Scientific Computing. 
(c) Pawel Artymowicz UofT, 2019. Only for use by enrolled UTSC students 

Literature (optional)  
1.  Paul E. Ceruzzi “A history of modern computing”, 2nded.,  MIT Press 2003 
2. http://computerhistory.org   - Computer History Museum online. 

Literature (required)  
Textbook 1, Izaac and Wang, Computational QM 



Von Neumann computer  implements the logic of Turing machine – a model,  
where data and program are stored in the same memory,   

modern computer architecture 
 
 
Memory = Random Access Memory (volatile, 
transistors need small power to represent 0s & 1s) 
 
Storage = Nonvolatile Memory  
   (hard disk, solid state mem.,   earlier:  
    magnetic tape, punched paper) work like I/O 

CPU 

cache             RAM 



 IBM (International Business Machines Co.) grew when it transferred from decks 
of punched cards (very popular among businesses) 

 
                                                                 ... and perforated tape storing programs 
 
   to magnetic media: tape, drums, disks 
   Q: How many times more data is stored 
    on a 2013 hard-disk than on 1956 version? 

 

Mid-1960s and 1970s  



IBM captured 70% of global computer sales, mostly with very expensive mainframes 
(or supercomputers, bought by big firms, government centers and the universities).  
The rest of the market was served by Univac, Computer Data Corp., Sci. Data 
Systems,  and Cray, which tried to emulate IBMs scale, salesforce and success. 
 
DEC = Digital Equipment Corporation appeared as a small company in 1960s, 

 located in old Abbotts Mills near Boston, benefitting from MIT connections. 
 DEC, later called Digital, started a quiet revolution in the market by offering: 

•  much smaller minicomputers, costing much much less than mainframes 
•  For instance, model PDP-8 costed $18k instead of IBM/360 for $2 million.  
•  Similar speed on some tasks, while much less data storage capability etc. 
•  Circuits in 1960s were non-integrated (cf. below) but fast-switching transistor-based, 

which allowed fairly large computational speeds  

Mid-1960s  to  1970s  

 
•  Innovation in comp. architecture: the interrupts in CPU 

operation to serve input/output requests from the  
    peripheral devices (printers, storage, keyboards, monitors) 

•  Different & much less pretentious culture in workplace and in 
sales 

 
•  OEMs (Orig. Equip. Manufacturers) appeared when Digital 

opened up their architecture, encouraged modifications 

 



 

 
•  PDP-8 (left) 
•  very little memory  
•  but fast and cheap 
 
  
•  PDP-11  (right) 
•  128k RAM 
•  2 MB removable hard disk 
•  > 30 kFLOPS arithmetic speed  
•  interactive consoles, time-sharing operating system, as opposed to batch input on 

mainframes 

•  Languages such as ALGOL, Pascal, and other became popular but later 
    faded away. IBM’s PL/I (Programming Lang. I) was a commercial failure.  
•  DEC offered the first UNIX operating systems on PDP-line computers 
•  C appeared in 1973 and later C++, high-level languages that unlike numerical 

computation-oriented Fortran for “number crunching”, were not meant for scientific 
simulations. They were great for writing operating systems (fully C-based Unix in 
1973, later Linux in 1990s, which is a modified Unix), and for interfacing at low 
level with hardware (low-level here means using elementary, simple instructions).  

 1970s and later...  



Apple Computer Inc. was founded in 1976 
by Steve Jobs and Steve Wozniak, with a 
vision to improve on that achievement & go 
much further toward 
•   miniaturization allowed by small 
microprocessors,  and 

•   personalization: personal computing, 
personal publishing and all other things 
personal & social on Apple, Mac, ibook, 
imac, macbook,   itunes,,iphone, ipad, .... 

 
 

Interactive use of Digital’s PDP-11 minicomputers (here shown in year 1977) 
was a harbinger of and a model for personal computers invented right then  
and getting huge popular in 1980s. 



•  programmable calculator and PC revolution based on  
 semiconductor technology in microchips or microprocessors. 

       Such integrated circuits (IC) measure up to several cm &  
 house many solid-state transistors, as well as resistors and capacitors. 

 
•  In 1971-1974, Intel (4004; 8008, 8-bit) and Motorola (8-bit 6800)  
•  Intel 8086 was a 16-bit CPU (central processing unit) from 1978,   à “x86_16”   
•  Motorola 68000 was a 16/32-bit CPU from 1979 
 
•  In 1980s and 1990s computers spread outside academia, big business and military.  

Microcomputers or desktop Personal Computers (PCs) moved into every house and 
school, at the end of 20th century into the backpacks as laptops, and finally into our 
pockets as smartphones, not for scientific computation but rather for a simpler 
task(?) of communication (networking). This interesting history is outside the scope 
of our course, even though for your computing will likely choose a laptop 

  
•  Simplified languages like BASIC, and in late 1970s/early 1980s the scripting 

languages MATLAB, IDL have appeared. They are interpreted, not compiled, which 
has its good and bad sides. 

 
•  Python was created in 1989 and became popular in 1990s and 2000s. 
•  Creator, Guido van Rossum, was named the Benevolent Dictator for Life. Now the 

project is guided by Steering Council. We are going to learn Python3 version (2008).  

late 1970s to 1990s   



1970s—2010s, the integrated circuit revolution 
as a basis of all our current technical civilization: 40+ years of Moore’s law 

This processor looks like a CPU or part of a GPU (Central or Graphics Processing Unit).  
It is not easy to execute one calculation simultaneously on many cores (= sub-CPUs) of a CPU. 
We call such processors multicore, and programs running on all cores multithreaded. 

  

A highly integrated circuit has both 
arithmetic+logic units (ALU), fast 
cache memory, and communication 
circuits, all in a small package of  
Central Processing Unit (CPU). 
 
 
 
 
N ~ 1010  transistors 

3 1 4 

5 6 7 8 

2 



stagnated 

stagnated 

after ~2004: 

hit a wall 

started  
climbing 

still goes up 
maybe slower 



Why? What happened here?! 
 
 Ans:  Clock frequencies stopped 
          growing: Power Barrier. 



Broadly similar to CPUs, 
something worrying happens 
with RAM evolution too! 

https://www.nextbigfuture.com/2019/02/the-end-of-moores-law-in-
detail-and-starting-a-new-golden-age.html    = a DARPA talk 

 (memory) 



slowdown of rapid  
doubling (Moore’s law) 

Top 500 supercomputers in the world 
since ~2008  grow in speed slower than before 



Moore’s law says that the number of elements (logical gates, transistors) 
on an integrated circuit (say,on  1 cm2 od a chip), grows exponentially with time, 
such that it doubles every ~2 years.  
 
This was not a coincidence, but a combination of: 
(i)   repeated shrinkage cycles of circuitry etched onto silicon wafers, & 
(ii)  physics of materials, which after the shrinkage allowed to keep the same amount  
      of electric power to the larger number of logical gates 
 
Let’s prove it using Physics.  
 
A transistor on IC has some capacitance C and some stored charge Q. 
It also has some resistance R on which current’s energy can be dissipated.  
Transistors discharge and re-charge, under voltage V.  
 
The process of charging/discharging is not for free, rather it dissipates energy  
equal to ΔE = CV2. That’s because C=Q/V, and energy drawn from voltage  
source V by charge Q is QV = (CV)V = CV2. Usually all of that energy must be 
supplied but is wasted as heat during discharge through inevitable resistance R.  
 
If the chip works with clock frequency f, then the rate of energy dissipation (power) is 
P ~ N C V2 f  
where N is the number of transistors.  
 
 



Now let’s shrink the circuitry on an IC. Each side of the chip is constant but the 
pattern of circuits is shrunk by a factor √2 = sqrt(2)=1.4128.. on a side, as it was in 
fact done every 2 years or so  for 4 or 5 decades.  
Q: What is happening to quantities C, V, and f of a transistor, and their number N? 
 
N grows by a factor      2 
[since there are 1.41 more transistors along each side of the chip 
 
C grows by a factor               1/sqrt(2)    
[this follows from electrostatics; C ~ area of capacitor/spacing between electrodes] 
 
V was being increased by a factor          1/sqrt(2) 
[i.e. decreased by 1.41..] 
 
f  was increased by a factor    sqrt(2)  
[because  a smaller transistor can switch its state proportionally faster] 
 
We’ve said that power needed to do calculations scales like  P ~ N C V2 f, 
 
so it grows by a factor of:                         2 (1/sqrt(2))  (1/sqrt(2))2  sqrt(2)   == 1 (!) 
 
We have shown why 15+  cycles of shrinkage of transistors & circuits on a microchip 
over several decades did not require much more cooling + much more power supply 
to the chip. (Electric power requirement grew because the IC’s area tended to grow.)  



The exponentially growing number N was utilized to complicate the logical structure of 
CPUs, e.g., by introducing more and more levels of cache memory inside the 
processor. This memory is much fast but much smaller than RAM. It can be used as  
a buffer between CPU and the outside operational memory (RAM). 
 
This allowed to mask the fact that CPU-RAM communication and the speed of the  
RAM (memory) was growing slower than the processing needs of CPU. As a result, 
frequency  f  grew ~2 times, instead of just 1.41 in each new generation of processors.  
 
The progress was phenomenal.  
 
If our cars were increasing in speed at the rate equal to the increases in computing 
power, then we would now drive at cosmic speeds close to the speed of light, or about 
once around the Earth per second. 
 
No other area of human activity saw a million-, let alone a billion-fold quantitative 
improvement in one human generation, but computing did. 
   
Physics allowed us to supply a similar power to a faster, smaller processor.   
 
So why the size reduction and exponential growth of clock speed had to end around 
2004?   



 
 
 
 
 
 
 
Transistors inside the microchips, now counted in billions, became so small  
that, due to microscopic material imperfections, electric power gets dissipated in new, 
unavoidable way, via the leakage current in volatile memory (RAM, CPU).  
 
Transistor should either block or transmit current, but now the blocked state became 
not 100% blocked. Electric energy is slowly going to waste, without carrying out any 
computation. That’s how the doped semiconductors work.  
Leaks occurred before, but were masked by much larger heat dissipation due to 
(useful) toggling from state “0” to state “1”, and from “1” to “0”, during binary data 
processing. 
 
We now live in a technical civilization where:  
(i)  size of circuitry still diminishes (with manufacturing problems, but diminishes) 
(ii)  number of transistors in new generations of processors still grows (slower) 
(iii) f ~ const. ~3-4 GHz (clock speed of 1 core of CPU inches forward, but very slowly) 
      in order to try to keep energy supply and dissipation at a reasonable level!  
 



We call it the power barrier.  
 
It is no longer possible to play the game of “increase clock speed and keep one core”, 
as before.  On the contrary, increasing the number of cores in a processor comes 
cheap (power-wise), and therefore is now practiced by manufacturers.  
 
We are (and will in the near future) be getting processors with more and more cores. 
Each of these core will NOT be much more capable to crunch numbers than the 
previous hardware generation. 
 
Thus the power barrier forces everyone to use more and more cores in parallel, if we 
want to compute a given problem faster.   
 
And this is more difficult in Python than e.g. in C or in Fortran!                                    
                                                               (parallelization will be discussed in course PHYD57) 
 
 
 
 



Parallel programming – is it worth it? Yes, but we need to crawl before we run. 
Courses: PSCB57 = single-threaded programming,  PHYD57 = C/Fortran + 
deeper look at numerical methods + code optimization on modern hardware. 



Processor architecture & instruction set: Out of creative chaos of different CPUs 
before ~2004, Intel’s x86_32/64 processors emerged as big winners. Check your 
laptop! Your CPU and CPUs in supercomputers are both x86_64 microprocessors, 
they understand the same instruction set.   Here is the full story, in 1993-2015:  

Intel  
x86_64 

Sparc 

AMD 
x86_64 

IBM Power 

Alpha 

MIPS 

RISC 

Cray 

2015 2010 1993 2000 



Modern supercomputing  
clusters compute in parallel.  
They consist of many nodes 
(workstations running Linux 
operating system), connected by a 
fast network  in order to work in 
parallel on a single problem (or on 
many problems simultaneously). 
Hierarchical hardware inside as well. 
 
Even though the modern networks 
(Ethernet, Infiniband) transfer from  
1 to 20 GB/s between arbitrary two 
nodes using networking switches (at 
the top of the picture, there is  
2 GB/s Infiniband switch), data can 
flow much faster, at 250-500 GB/s, 
inside the computational cards.  
 
Node connectivity can therefore be 
a bottleneck for some (fortunately 
not all) parallel computer 
applications.   



Picture shows some of the 28 nodes 
of the UTSC supercomputer 
designed and built in 2017 by prof. 
P. Artymowicz + u/g student. 
Computations are done by:  
•  CPUs (6-core, 4GHz overclock), 
•  GPUs (graphics cards), and/or 
•  Intel Xeon Phi cards (57-core 

processors) 
 
Each node contains CPU + 2 Nvidia 
graphics cards capable of combined 
~10 TFLOPs in single precision.  
 
This science cluster can compute 
1012  (trillion) times faster than 
ENIAC in 1946, and  
 
~6 billion times faster than similarly 
     sized PDP-11 (1970), using  
~10 million times larger memory  
     (RAM, disks) than PDP-11/45. 
 
It costs ~10% of PDP-11.  



Title of media report in November 2017: “China overtakes U.S in the Top 500 
Supercomputers List” 
China also had two fastest supercomputers in 2017 (Sunway & Tianhe-2), 
including one based on own 240-core processors and one on Intel Xeon Phi 
processors (60-core).             Up to date statistics available on top500.org  
       0.2% of top 500 systems were Chinese, 54% were American in 1999   
         4%         --- ,, ---                                    55%     --- ,, ---          in 2009   
       44%         --- ,, ---                                    29%     --- ,, ---          in 2019 
 

2019 

U.S. performance 
U.S. # 

China perf. 
China # 
of systems 



Title of article in June 2018:   
“Linux Powers ALL Top 500 Supercomputers in the World. U.S. beats China for #1” 
 
Computer called Summit in the U.S. is now the fastest machine in the world.  
Linux succeeded Unix in its domination of HPC (High Performance Computing); 
MacOS is Linux derivative, no role in HPC. Windows OS was never a viable choice.  



to be continued 

Summit has 4608 nodes, 9216 IBM POWER9 CPUs and 27648 Nvidia Tesla GPUs. 
Most computational power is from those Tesla V100 graphics cards.  
 
The combined performance is measured at ~150 PFLOPS, out of the theoretical number  
of 200 PFLOPS (Summit can perform 150,000,000,000,000,000 arithmetic ops/s).  

Modern top supercomputers: 
rows of 19”-wide racks filling basketball 
fields, 1000s of nodes (workstations), 
consume up to ~23 MW of electric 
power and emit heat at that rate.  
Cost ~$300 million.  
Not environment-friendly (e.g. UofTs  
SciNet is warming/damaging env., 
whose warming it was meant to study.) 
 
However, let’s put things into 
perspective!  That’s about the price  
of   ONE  Boeing 777 airplane, whose 
engines also produce 23 MW of power 
in cruise & much more while climbing. 
There are 1600  B777s, 
and 10000 Airbuses! 



to be continued 

Suppose 1000 scientists want to do high-resolution simulations in 3D, simultaneously.  
Each of them divides simulated object or region of space into, say, 2000x2000x2000 
cells, or 8G cells [(2K)3 = 8G].  Each cell must hold 5-10 floating point numbers of length  
8 Bytes (double precision). For instance, in a fluid simulation those would be density and 
pressure, as well as 3 components of velocity vector in each cell.  Storage of at least 40 
to 80 B/cell is usually needed. 
 
The total volume of simulated data may thus be ~1000* 8G*(40-80 B) ~ 500 TB.   

Modern top supercomputer: 

 150,000,000,000,000,000 arithmetic     
  operations/second.   
Why so fast? Who’d ever need that? 
 
To begin with, no single user is allowed 
to hog the whole supercomputer, there 
are thousands of users at national  
supercomputing centers.  
 
We will do a realistic estimate of how long 
one scientific model runs on Summit.  
[Do not memorize it! It’s informative, but not 
exact to better than on order of magnitude.] 
 



 
                                                      If the total volume of simulated data is ~500 TB,  

        and ~30K graphics cards do simultaneous number 
crunching on Summit, then  
                                           ~500GB/30 ~16 GB  
of this data must be processed by each GPU in each time step. (Today, 16 GB can fit on 
the biggest RAM available on GPUs, avoiding transfer from/to CPU RAM, a good thing!) 
Constantly shuffling data back and forth to RAM at a bandwidth of ~300 GB/s, the GPU 
card takes at least  
                                             ~(16 GB) /(300 GB/s)  = ~0.05 s  
to process its allotted data in a given time step of the simulation (inter-processor and 
inter-node communication takes additional time, sometimes majority of time, but let’s 
assume this does not apply to CFD = Computational Fluid Dynamics.)  
 
 Next, how many time steps are needed?  
 

Modern top supercomputer: 

 150,000,000,000,000,000 
arithmetic ops/s.  Is this not an 
overkill and a waste of money?! 
 
 



A high resolution simulation may need ~1 million time steps to complete. (That’s 
because the computational cells are small and modeled physical signals propagating 
through the grid of cells cannot cross more than 1 cell per time step. In practice, a 
physical disturbance of some sort crossing 50 times a grid of 2000 cells in both 
directions needs a minimum of 500K steps, in agreement with the 1M estimate). 
 
If so, then each of our hypothetical 1000 researchers have to wait a minimum of    
                                        1M * (0.05s) ~ 14 hours  
for their simulations to complete, if everything works at 100% efficiency.   
So the seemingly ‘ridiculously large’ number of arithmetic ops per second (>1017), of 
which Summit is capable, is not so ridiculous after all when shared among scientists. 
•  For certain arithmetic-heavy computations, Summit’s performance of 150 PFLOPS 

divided among ~103 concurrent jobs is ‘only’ 150 TFLOPS/job 
•  Taking into account bandwidth limitations (decisive for most computations!), Summit 

is of course fast but not excessively fast. Neither will be the 1 EFLOP performance. 
    1 EFLOPS = ExaFLOPS = 1018/s.  First such computers will probably emerge in 2021.  

Modern supercomputers: 

Large-scale simulations take a lot of time, so as to use all 
available resources! There is never “too much resolution” or 
“too much precision” in science or engineering.  
Think of simulating a new passenger jet flying with 
extended, complicated, wing flaps. Is 2000x2000x2000 
resolution sufficient? (Assume the length of aircraft is 70  m.) 



Apple A7 processor under electron microscope                A7 working in IPhone 5S 
 
Ten transistors are shown, spread over 1138 nm. Technology known as “28 nm” is used 
in A7 (the width of conductors etched on silicon substrate). But 28 nm is only 70 atomic 
sizes of silicon.  
 
Since the introduction of A7, manufacturing technology transferred to width 14 & 10 nm, 
and 7 nm (18 Si atoms!) has begun. But there are tough technological and economic 
issues, as well as (soon) problems of quantum nature, which will soon get in the way. 
We may have to drop silicon as substrate and adopt exotic materials such as graphene, 
or jump into the quantum world directly by producing quantum computers, operating on 
atomic scale & using superposition of quantum states, and so-called qubits instead of 
bits. Algorithms for them are being developed among others at UTSC. 
For quantum computing, today is a pioneer era, like 1940s for von Neumann computers! 

Perspectives on future computing 



PYTHON ver.3  - plan for the next ~2 lectures 
 
Joshua Izaac & Jingbo Wang, “Computational Quant. Mech.” 
(Undergrad. Lecture Notes in Physics, Springer, 2018)  
 
chapter 1. Numbers and precision 

 1.1-1.3. Fixed point, Floating point representation of real numbers 
chapter 3. Python 

 3.1 Indentation, case, comment 
 3.2 Variables and their precision 
 3.3 Operator precedence, conditional statements 
 3.4 Strings 
 3.5 Data structures  
 3.6 Loops 
 3.7 I/O 
 3.8 Functions 
 3.9 NumPy and arrays 

     3.10 Arguments 
     3.11 Timing the code 
 --  Differences between Python2 & Python3 (cf. link on course page) 



PYTHON as problem solver, or at least a great helper.. 
•  How to solve    a x4 + b x3 + c x2 + d x +e  = 0 ?  
•  How much is   ....i i  ? 

•  How to compute positions of Saturn-class exoplanet K2-261b 
       discovered in 2018, at regular time intervals covering one orbit? 
•  What maximum distance will a broken physical pendulum land at? 
•  How likely that a random walk returns to starting point in 2N  steps? 
•  How to compute the minimum, maximum, mean and the standard   

   deviation of a large data set in one pass? 
•  If a stick is broken at a random point, what’s the mean length of the 

shorter piece  & the mean ratio of lengths of two pieces?  
•  Should I bet that someone draws his/her own ID at random from a hat?  
•  How to compute oscillation modes of a mechanical system? 
•  Given a vertical profile of a bike trip, compute total rise & total descent? 
•  What’s the probability that two random points on a unit interval are at 

   distance less than one-half? 
•  How to fit a polynomial to data? How to fit multi-parameter functions? 
•  How to compute trajectories of chase, and those in Newton’s dynamics?  
•  Why and how to interpolate by splines?  
•  Can one compute and animate waves on the surface of water? 
•  How to simulate realistic airfoil’s lift force by attached vortex method? 
etc. 
 
 
  


