
Lecture 4      
u    Python3 practice in Cosmos & Random Worlds  
     All the scripts discussed in lectures are downloadable from 

 http://planets.utsc.utoronto.ca/~pawel/pyth . Please run & analyze them! 
 

 Simple file I/O (input/output) in Python 
Computing simple statistics: mean and std deviation of data 

o        Computing and Plotting 
•  Kepler problem (convergence illustrated)  
•  Irradiation of exoplanets K2-261b and Gj 3512b,  

 use of simple numerical integration 
•   Iterated exponentiation in complex plane 
•  Exponential fractal 

o        Pseudorandom numbers and histograms 
•  3 kinds of randomness: nature, math, computers 
•  Monte Carlo casino as a randomness generator  
•  Generation of uniform and normal random numbers 
      
 
 

PSCB57. Intro to Scientific Computing. 
(c) Pawel Artymowicz UofT, 2019. Only for enrolled UTSC students 



Simple file I/O  - output 
 

 Output float array in a  2-column format, cf.  simple_IO.py 
   
  

# (...) 
x = np.linspace(0,10,100) 
y = np.sin(x)-(x/10)**3 +3*(x/10)**4 # some math function 
tab = zeros((2,100), dtype=float)  
 
tab[0,:] = x  # will be column 1 in the file, now it's row 1 
tab[1,:] = y  # will be column 2 in the file, now it's row 2 
 
# store data in file with space-separated values (e.g., .dat) 
# transpose to turn rows into columns & store 
# store data in file with space-separated values (.csv) 
 
savetxt("simple_io.dat", tab.T) 
 
savetxt("simple_io.csv", tab.T, delimiter=",") 
 



Simple file I/O  - input 
 

 Input from a  2-column file a float array, cf.    simple_IO.py 
  

# .T = transpose, we use it to turn 2 columns back into 2 rows  
# delimiters in reading function must match those in data 
# .csv  - comma-separated values 
# .dat  - could be space-separated values, or anything really 
 
# read data from file of space-separated values  
xx,yy = loadtxt("simple_io.dat",delimiter=" ").T 
# or like this (space delimiter is a defult) 
xx,yy = loadtxt("simple_io.dat").T 
 
# this will work: 
xx,yy = loadtxt("simple_io.csv",delimiter=",").T 
# but this will not (because the default delimiter is space) 
zz,ww = loadtxt("simple_io.csv").T 
# this will fail as well (wrong delimiter for our .dat file) 
aa,bb = loadtxt("simple_io.dat",delimiter=",").T 



Simple statistics  
Data read and analyzed in  simple_stat.py 
# Three approaches are used in the code, two hand-coded  
# and this method from Numpy (yy is a NumPy array) 
y_ave = yy.mean();  stdev=yy.std();  sigm_m = stdev/N**0.5  
Standard deviations of data and of their mean are different! 
Here,  σ ~ 1.8, but <y> = 100.24 +- 1.8/√100 = 100.24+-0.18. 
 
 



o   Plotting 
  
 Scientific discovery from 2018: extrasolar planet on eccentric orbit 
   kepl-K2-261b-0.py    kepl-K2-261b.py 

 
Core part is Kepler Equation solved by iteration 
 

  
  

 

 M = {an angle from 0 to 2*pi, uniformly changing with time}
Kepler equation
        E - e sin(E) = 2 pi t/P = M
cannot be solved on paper, but can be solved iteratively  

(...)
    E = M                # first guess to start with 
    for k in range(40):  # counter of iterations
        E_previous = E   # save previous E for comparison
        E = M + e*sin(E) # Kepler equation iteration
        if (i%10==0): 

print('i',i,' k',k," E =",E)  # print every 10th 
        if (abs(E-E_previous) < 1e-9):     # sufficient accuracy

break         



Scientific discovery from 2018:    a Saturn-like extrasolar planet  
on a small, eccentric orbit. This program makes its uneven motion easy 
to understand, by covering one full period of motion with  equal time  intervals 
(big dot spacing = large speed near the star).  
See the equations outlined in the program comment section: 
kepl-K2-261b-0.py 
 

   
        
 



 Convergence of Kepler Equation  kepl-K2-261b-0.py 
 
 
 
 
               straight blue = first guess 
               bluegreen  = next iterations 
               red = final iteration, converged 
 

   
        
 



o     kepl-K2-261b.py     Simple numerical integration (summation) 
o  program prints: average irradiation  = 1.0859946...  
o  The changing distance and speed partially cancel each other’s influence 
o  on the irradiation of a planet as a whole. Over the whole period,  
o  planet receives ~8.6% more energy than if it were on a circular orbit.      
 

   
        
 

e = 0.39 



²   kepl-K2-261b.py  output:   e = 0.39, irradiation factor = 1.08599464156 
The summation of area under the irradiation curve in this program is an 
example of the simplest method of integration 
of functions. 
Planet on eccentric orbit receives 8.6% more 
radiation energy than on a circular orbit. 
 
 
Ø  Let us verify these numerical results  
analytically, i.e. without computer  
(without much help from it anyway. We’ll need a calculator inside Python) 
 
I(θ) = I0 (a/r)2  is an inverse r2 scaling of stellar radiation flux; a = semi-diam. 
From angular momentum conservation in orbital mechanics: 
L = vθ r = dθ/dt  r2 = const. specific angular momentum = (1-e2)1/2 2π a2 /P 
⇒           dt = (1-e2)-1/2  r2/a2  dθ/(2π) . 
 
Hence, when we average I(θ) over time, we do an integral over dt that 
converts into a trivial integral over dθ and gives a simple final result: 
           <I> / I0  = P-1  { integral02π  I(θ)/I0  dt }   = ... = (1-e2)-1/2 . 
 
Check: if e = 0.39, then <I>=1.08599464149I0, => surprising accuracy above! 



News flash 
https://www.space.com/gas-giant-alien-planet-red-dwarf.html 

Planet catalog (1000s of planets):   exoplanet.eu/catalog/gj_3512_b 
 
Planet somewhat more massive than Saturn, ~0.45 Jupiter masses 
has been announced 27 Sept. 2019. Eccentricity of orbit = 0.4356. 
 
Circles every 203 days around a very small M5 red dwarf  star GJ 3512 b 
located 10 pc from Earth. The star has diameter 0.14 Sun’s radius, and  
mass only 0.12 solar masses.  
 
News articles claim this planet puts a question mark over planet formation 
theories, because there is lillte material in protoplanetary disks of small stars. 
(Not a very strong argument!) 
 
Our task:  Find it’s mean surface temperature (under certain assumptions  

 as to energy balance), in particular:  find how big a correction one needs 
 to apply because of the large eccentricity of orbit.   



Eccentric orbit of GJ 3512b generates this Radial Velocity 
curve 



The known exoplanets (2019) on mp – M* diagram 



Discovery published on 27 Sept. 2019: a Saturn-class extrasolar planet  
on an intermediated-sized, eccentric orbit.  P = (203.59+-0.14)d. 
Copy, run and study Python in:     kepl-GJ-3512b.py  
 

   
        
 



o     kepl-GJ-3512b.py     Simple numerical integration (summation) 
o  integrated average irradiation  =  1.1109378732817672 
o  theoretical  average irrad.        =  1.1109378731712545,  difference  =  1.1e-10 (!) 
o  planet receives ~11% more energy than if it were on a circular orbit.      
 

   
        
 



•  Complex worlds explored with Python 



             i=√-1      ... i i^i= ?    
•  Complex numbers are part of Python standard language, no 

need for special modules. Raising numbers to power works for 
complex numbers too, both as base and exponent. 
Mathematics:  let x be real number, 

•  ex = Σn={0,1,2,3,4, ...,∞}  xn /n!    (Taylor at x=0; all derivatives of ex = e0 = 1 ) 

•  eix = Σn={0,1,2,3, ...,∞}
   in xn /n!      

   where  in = i{0,1,2,3,4,5,...} = {1, i, -1, -i, 1, i, -1, ...} 
•  cos x :=  Σn={0,2,4,...,∞}    (-1)n/2  xn /n!        ( = trig. cosine Taylor series) 

    sin x :=  Σn={1,3,5,..., ∞}    (-1)(n-1)/2  xn /n!        ( = trig. sine Taylor series) 

•  This proves Euler’s identity: 
   eix = cos(x) + i sin(x)                          e.g.,   mysterious(?) 
  (unit circle in complex plane, if x=real)          eiπ + 1 = 0 

Notice one more curious thing. From Taylor expansion we do not immediately 
see that sin(x) and cos(x) are periodic functions! 



... i i^i = ? •  i = exp(i π/2)     

•  Let’s see how ii   works 
•  ii = [ eiπ/2] i = e i*i π/2 = e -π/2 = 0.2078... 
•  Indeed, Python denotes i by j and does 

>>> i = complex(0,1)   or       >>> i = 1j
>>> i**i
(0.20787957635076193+0j)

>>> i**i**i
(0.9471589980723784+0.32076444997930853j)
[Below we check whether Python does the right thing]
>>> i**(i**i)
(0.9471589980723784+0.32076444997930853j)   RIGHT
>>> (i**i)**i
(6.123233995736766e-17-1j)  ~ -j            WRONG 
 
 



Iterated complex exponentiation of  i  produces lots of 
complex numbers, does not seem to diverge.  But does it 
really converge, diverge, or oscillate eventually? 

>>> z = 1 
>>> for k in range(10): 
...     z = i**z;         print(k,z) 
...  
0 1j 
1 (0.20787957635076193+0j) 
2 (0.9471589980723784+0.32076444997930853j) 
3 (0.05009223610932118+0.6021165270360038j) 
4 (0.387166181086115+0.03052708160548448j) 
5 (0.7822756824339533+0.5446065576579896j) 
6 (0.14256182316366683+0.4004665253370873j) 
7 (0.5197863964078542+0.11838419641581431j) 
8 (0.568588617271897+0.6050784067978037j) 
9 (0.24236524682521116+0.30115059207131784j) 
>>>  



o   Plotting and exploring  
  
 Iterated exponentials 
 The use of scatter plots, color indices 

 
   iii-00.py   (print, how to use j)   iii-0.py  (plot, zoom) 
   
 One can start with arbitrary complex number, not only i 
   iii-2.py     (many plots, different z) 
  

 
 Exponential fractal.          convergence of                         in complex plane 

           
   mandel_g4g.py  (Mandelbrot fractal)  
   expfract-s1.py   (Artymowicz fractal)  
   expfract-p1.py     (different color map and region)   
   expfract-p100.py  (scale=0.128) 
   expfract-p100b.py (variable scale) 
   Challenge: color according to periodicity not divergent iter# 
     
  

        
 

... i i^i = ? 

... z z^z  



Exponential fractal  
•  http://planets.utsc.utoronto.ca/~pawel/iii/fractal.html 



Fragment of Exponential Fractal 





• Random worlds 



Monte Carlo methods  
•  Statistical physics is mostly about randomness, entropy, mean 

values, random walks, and fluctuations.  
•  Frequent use of “random numbers” is not new, it started  

before the electronic computer era, but it became popular in 
computer calculations 70+ years ago, at the time when 
random, virtual histories of particles of radiation (n, p, e, γ) 
were needed to model the interaction of radiation with matter, 
among others, to design (thermo)nuclear bombs. 

•  Casino de Monte Carlo, Monaco 
 

               featured in James Bond 007 movies 
            such as (I think): Golden Eye, Live 
           and Let Die, Casino Royale, and one 
           more I cannot recall.  
              



Monte Carlo, Monaco 



MteCarlo methods  

•  We rely on pseudorandom numbers? 
(truly random numbers are generated in  
nature. In math, decimal digits of π do 
appear to be truly random)  
•  Such numbers are uncorrelated*, but form a unique sequence 

that, if needed, can be repeated.   
•  Without repeatability, re-running MteCarlo programs to find 

bugs would be impossible, previous problems may disappear 
and new ones appear. At least during testing, we need to start 
from the same so-called seed value.  

 
* - what else must be uncorrelated? (recall the story of  
        Enigma). Mistakes were made in some old ‘random’  
        number generator algorithms that led to correlations! 



Random numbers 
 
o   Generation of uniform and normal pseudorandom numbers 

   hist1.py 
   histo3.py    

•   Two random points on 1D interval (problem 4, set #2 of assignments) 
•   Three random points on a circle (what is the chance that they form a 

  triangle that includes the center of the circle?) 
•   Four random points on a sphere (what is the chance that they form  

  a tetrahedron that includes the center of the sphere?) 
 
What is Monte Carlo?  
 
https://www.youtube.com/watch?v=stgYW6M5o4k (Random Walks in Math) 
https://www.youtube.com/watch?v=BfS2H1y6tzQ  (Random Walks, Python) 
•   Random walks on a line, in a forest, and inside the sun 
•    Radioactive isotope decay         
•   Radiation transfer through opaque media 
•   Galton board    https://www.youtube.com/watch?v=EvHiee7gs9Y 
 

  
  

        
 


