
Lecture 5      
u    Python in the Stochastic  
     Universe  
      All the scripts discussed in lectures are  
downloadable from 
http://planets.utsc.utoronto.ca/~pawel/pyth . Please learn Python from them! 

 
 Pseudorandom numbers and histograms 

•  Generation of uniform and normal random numbers 
  What is Monte Carlo?  

•  Pi by MtCarlo, convergence speed and the N-1/2  trouble 
•  Comparison with Riemann (structured) integration of quarter-circle 
•  Radioactive isotope decay 
•  Radiation transfer through opaque media 
•  Galton board 
•  Random walks in 1D 
•  Stock market as random walker 
•  Solution of assignment set #1: pool-table.py, beach.py, series-bare.py 
•  series.py 
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Discussion of solutions 
to Assignment Set #1  

•  Solutions are commented Python codes  
•  in our code depository: 
•  http://planets.utsc.utoronto.ca/~pawel/pyth 
•  study them line-by-line for programming 

style, use of graphics and numpy 

    series.py       beach.py     pool-table.py 
                         X = 26.714m       X = 5.5 m 



Assignment Set #1, prob. 1.     series.py    



• Different random worlds: 
•  natural, mathematical, computational  



Monte Carlo methods  
•  For ex., statistical physics is mostly about randomness, 

entropy, mean values, random walks, and fluctuations.  
•  Frequent use of “random numbers” is not new, it started  

before the electronic computer era, but it became popular in 
computer calculations 70+ years ago, at the time when 
random, virtual histories of particles of radiation (n, p, e, γ) 
were needed to model the interaction of radiation with matter, 
among others, to design (thermo)nuclear bombs. 

•  Casino de Monte Carlo, Monaco  
 

               featured in James Bond 007 movies 
            such as (I think): Golden Eye, Live 
           and Let Die, Casino Royale, and one 
           more I must have seen but cannot 
           recall.  
              



Monte Carlo, Monaco 



MteCarlo methods  
•  We rely on pseudorandom numbers? 
(truly random numbers are generated in  
nature. In math, decimal digits of π also  
appear to be truly random)  
•  Such numbers are uncorrelated*, but form a unique sequence 

that, if needed, can be repeated.        
•  Without repeatability, re-running MtCarlo programs to find 

bugs would be impossible, previous problems may disappear 
and new ones appear. At least during testing, we need to start 
from the same value, called seed.** 

* - What else must be uncorrelated? (recall the story of  
        Enigma). Mistakes were made in some old ‘random’  
        number generator algorithms that led to correlations! 
** -  numpy,random.seed(s)  function fixes the seed value s.  



Random numbers 
 
o   Generation of uniform and normal pseudorandom numbers 

 
o   hist1.py            use:  numpy.random.rand     [uniform distrib] 
o   histo3.py                  numpy.random.randn     [normal distrib.] 
o  there’s also    numpy.random.choice([list]) [# of peaks] 
 
•  Two random points on 1D interval (problem 4, set #2 of assig) 
 
Extensions: 
 
•   Three random points on a circle (what is the chance that they 

form a  triangle that includes the center of the circle?) 
 
•   Four random points on a sphere (what is the chance that they 

form a tetrahedron that includes the center of the sphere?) 
 

  
        
 



What is Monte Carlo?  
 
•   Random walks on a line, in a forest, and inside the sun 

    (i) Explanation of the the origin of the ubiquitous √N 
    (ii) Calculation of  mean, and mean-square distance in 1D   

•    Radioactive isotope decay         
•   Radiation transfer through opaque media 
•   Galton board    

https://www.youtube.com/watch?v=EvHiee7gs9Y 
 
 
 

  
https://www.youtube.com/watch?v=stgYW6M5o4k  
   (Random Walks in Mathematics. Recurrent vs. transient walk) 
https://www.youtube.com/watch?v=BfS2H1y6tzQ   
   (Random Walks programmed in Python) 

  
        
 



The main disadvantage of MtCarlo 

Slow return on investment: 
for every decade of increased  
effort you get only ½ decade (order 
of magnitude) of additional precision.  Error ~ N-1/2 

one particular  
         MtC run 



Pi  by  Monte Carlo method:     
simple_mtc_pi.py       
simple_mtc+int_pi.py     simple_mtc+3int_pi.py  

•  Method: Throw many points uniformly on a unit square, and see 
what fraction of them fall into the ¼ circle   x2 + y2 < 1 

•  Integral (area under curve) is equal ¼ of area  π*12 = π/4, 
•  Therefore, estimated  pi = 4*ratio of points that fall inside 
      the quarter-circle to all points falling on a unit square.  
•  While finding if a point (x,y) drawn randomly is in the quarter-

circle, the often seen expression   r=sqrt(x2+y2) < 1 is a waste of 
time, one can use   x2+y2 < 1  with the same effect.  

•  Compare   if (np.sqrt(x**2+y**2) < 1):   
     with                        if ( x*x + y*y < 1):  
•  Secondly, program will run faster if x is a big array, not a scalar 

(single float); for efficiency use numpy arrays.  
•  Compute the envelope of y = sqrt(1-x2)  for plotting of simulation, 

and and independent numerical integration of y(x)  (non-MtCarlo).  
 



Pi  by  Monte Carlo method:     simple_mtc+int_pi.py  
    



Pi  by  Monte Carlo method:     simple_mtc+int_pi.py  
    









Pi  by  Monte Carlo method:     simple_mtc+int_pi.py  
    



  simple_mtc+int_pi.py      



Radioisotope decay: Uranium à Lead 
Simulation using pseudorandom numbers and modeling individual 
nuclei. 
     
    Uranium 235U (natural radioactive isotope) decays as follows: 
     
    235U  [half-life=703.8 Myr] à 231Th + 4He + 2 n  à... à 207Pb (stable) 
     
    [This is a spontaneous decay, different from the chain reaction  
    induced by neutrons in reactors and nuclear bombs, 
    235U + n à  236U  à 92Kr + 141Ba  +3 n.] 
     
    Let's call the initial number of uranium atoms U0. We will explore 

 different U0's.  
 
    Plot the evolution of the amount of Uranium 235, U(t), for 4.5 Gyr  
    (the age of Earth). Overplot theoretical e-t*const curve. 



Radioisotope decay 
Divide time in intervals of dt = 0.01 Gyr << half-life. 
For every nucleus, with probability P = λ dt  
remove it from a shrinking pool of uranium and add to the growing pool 
of stable lead nuclei.  
 
  Parameter λ is decay prob. per unit time per one nucleus.  
It is related to half-life, which we denote as t1/2. Namely,  
    dU = -U λ dt      ==>      U = U0 exp(-λt),  
while in half-life notation we have  
 
                                          U = U0 (½) t/t12   

Comparing natural logarithms of these two equations, we get:  
             λ = ln(2) / t1/2.  
 
Use P = λ dt = ln(2) dt/t1/2 in every time step U times, and  
watch the number U shrink in time. 



Program Radioactive.py      (...) 
    U = U0;   Pb = 0;   t = 0 

•      while (t < 4.5 and U > 0): 
•          t = t + dt 
•          U_previous = U 
•  # give a chance to decay to all U nuclei: genrate U rnd numbers 
•          ran = np.random.random(U) 
•  # if random numer from 0 to 1 is less than P, set decay to True 
•          decay = ran < P         # array of Boolean True/False values, 
•          N_decays = decay.sum()  # which can be summed (True=1, False=0)  
•          U = U - N_decays 
•          # You can print each simulation, good for debugging! 
•          # Pb = U0 - U              
•          # all U's decay to Pb's, so Pb+U==U0 
•          # print('at time t=',np.around(t,4),' U=',np.around(U,4), 
•          #  ' Pb/U=',np.around(Pb/U,3))  
•  # plot 1 time segment of the decay curve  
•          plt.plot([t-dt,t],[U_previous/U0,U/U0],color=(0,0,1),linewidth=2) 
•       
•  # overplot exp(-lambd*tt) 

     plt.plot(tt,theor,linewidth=1.5,color=(1,0,0)) 
     plt.show() 

•      ans = input(" one more? ") 



Radioactive.py 







Again, a  sqrt(1/N) convergence is seen  
in the width of the curves as we have seen here in 
another context: 



Radiation transfer:    
finding I(x)      dusty-box-1.py      

τ(x) = optical thickness = combined cross-sectional area,  
up to x, of absorbing and scattering particles, per unit side area  
of the beam. In a thin slice, dτ is a probability of photon extinction. 
 
  I0 = flux                                                                                I(x)<I0  
  
 
 
 
                      τ=0                              τ=1                    τ=1.6 
 
dτ := σ  n(x) dx  è  τ(x) = integral0x { σ  n(x) dx}   
 
If 1 particle’s area σ   and the number density of particles in space 
n(x) = const,  then:    τ(x) ~ x.  In general dI = I dτ => I = I0 e-τ(x) 

 
 

x 



I(x) = I0 e -τ(x) 

τ 


