Lecture 5

- Python in the Stochastic Universe
All the scripts discussed in lectures are
 downloadable from http://planets.utsc.utoronto.ca/~pawel/pyth . Please learn Python from them!

Pseudorandom numbers and histograms

- Generation of uniform and normal random numbers

What is Monte Carlo?

- Pi by MtCarlo, convergence speed and the $\mathrm{N}^{-1 / 2}$ trouble
- Comparison with Riemann (structured) integration of quarter-circle
- Radioactive isotope decay
- Radiation transfer through opaque media
- Galton board
- Random walks in 1D
- Stock market as random walker
- Solution of assignment set \#1: pool-table.py, beach.py, series-bare.py
- series.py

Discussion of solutions to Assignment Set \#1

- Solutions are commented Python codes
- in our code depository:
- http://planets.utsc.utoronto.ca/~pawel/pyth
- study them line-by-line for programming style, use of graphics and numpy
series.py

$$
\begin{array}{ll}
\text { beach.py } & \text { pool-table.py } \\
x=26.714 \mathrm{~m} & X=5.5 \mathrm{~m}
\end{array}
$$

Assignment Set \#1, prob. 1.

Leibnitz series for π and its seedup by averaging and Shanks method

Monte Carlo methods

- For ex., statistical physics is mostly about randomness, entropy, mean values, random walks, and fluctuations.
- Frequent use of "random numbers" is not new, it started before the electronic computer era, but it became popular in computer calculations 70+ years ago, at the time when random, virtual histories of particles of radiation (n, p, e, γ) were needed to model the interaction of radiation with matter, among others, to design (thermo)nuclear bombs.
- Casino de Monte Carlo, Monaco

featured in James Bond 007 movies such as (I think): Golden Eye, Live and Let Die, Casino Royale, and one more I must have seen but cannot recall.

Monte Carlo, Monaco

MteCarlo methods

- We rely on pseudorandom numbers? (truly random numbers are generated in nature. In math, decimal digits of π also appear to be truly random)

- Such numbers are uncorrelated*, but form a unique sequence that, if needed, can be repeated.
- Without repeatability, re-running MtCarlo programs to find bugs would be impossible, previous problems may disappear and new ones appear. At least during testing, we need to start from the same value, called seed.**
* - What else must be uncorrelated? (recall the story of Enigma). Mistakes were made in some old 'random' number generator algorithms that led to correlations!
** - numpy,random.seed(s) function fixes the seed value s.

Random numbers

- Generation of uniform and normal pseudorandom numbers
- hist1.py
- histo3.py
- there's also
use: numpy.random.rand [uniform distrib] numpy.random.randn [normal distrib.] numpy.random.choice([list]) [\# of peaks]
- Two random points on 1D interval (problem 4, set \#2 of assig)

Extensions:

- Three random points on a circle (what is the chance that they form a triangle that includes the center of the circle?)
- Four random points on a sphere (what is the chance that they form a tetrahedron that includes the center of the sphere?)

What is Monte Carlo?

- Random walks on a line, in a forest, and inside the sun
(i) Explanation of the the origin of the ubiquitous $\sqrt{ } \mathrm{N}$
(ii) Calculation of mean, and mean-square distance in 1D
- Radioactive isotope decay
- Radiation transfer through opaque media
- Galton board
https://www.youtube.com/watch?v=EvHiee7gs9Y
https://www.youtube.com/watch?v=stgYW6M5o4k
(Random Walks in Mathematics. Recurrent vs. transient walk) https://www.youtube.com/watch?v=BfS2H1y6tzQ
(Random Walks programmed in Python)

The main disadvantage of MtCarlo

Pi by Monte Carlo method:

simple_mtc_pi.py
simple_mtc+int_pi.py

simple_mtc+3int_pi.py

- Method: Throw many points uniformly on a unit square, and see what fraction of them fall into the $1 / 4$ circle $x^{2}+y^{2}<1$
- Integral (area under curve) is equal $1 / 4$ of area $\pi^{*} 1^{2}=\pi / 4$,
- Therefore, estimated $\mathrm{pi}=4^{*}$ ratio of points that fall inside the quarter-circle to all points falling on a unit square.
- While finding if a point (x, y) drawn randomly is in the quartercircle, the often seen expression $r=\operatorname{sqrt}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)<1$ is a waste of time, one can use $x^{2}+y^{2}<1$ with the same effect.
- Compare if (np.sqrt($\left.\mathrm{x}^{* *} 2+\mathrm{y}^{* *} 2\right)<1$): with if $\left(x^{*} x+y^{*} y<1\right)$:
- Secondly, program will run faster if x is a big array, not a scalar (single float); for efficiency use numpy arrays.
- Compute the envelope of $y=\operatorname{sqrt}\left(1-x^{2}\right)$ for plotting of simulation, and and independent numerical integration of $\mathrm{y}(\mathrm{x})$ (non-MtCarlo).

Pi by Monte Carlo method: simple_mtc+int_pi.py

Pi by Monte Carlo method: simple_mtc+int_pi.py

Pi by Monte Carlo method: simple_mtc+int_pi.py

simple_mtc+int_pi.py
Error in π calculation

Radioisotope decay: Uranium \rightarrow Lead

Simulation using pseudorandom numbers and modeling individual nuclei.

Uranium ${ }^{235} \mathrm{U}$ (natural radioactive isotope) decays as follows:
${ }^{235} \mathrm{U}$ [half-life $\left.=703.8 \mathrm{Myr}\right] \rightarrow{ }^{231} \mathrm{Th}+{ }^{4} \mathrm{He}+2 \mathrm{n} \rightarrow \ldots \rightarrow{ }^{207} \mathrm{~Pb}$ (stable)
[This is a spontaneous decay, different from the chain reaction induced by neutrons in reactors and nuclear bombs, ${ }^{235} \mathrm{U}+\mathrm{n} \rightarrow{ }^{236} \mathrm{U} \rightarrow{ }^{92} \mathrm{Kr}+{ }^{141} \mathrm{Ba}+3 \mathrm{n}$.]

Let's call the initial number of uranium atoms U_{0}. We will explore different U_{0} 's.

Plot the evolution of the amount of Uranium 235, U(t), for 4.5 Gyr (the age of Earth). Overplot theoretical $\mathrm{e}^{-t+0 n s t}$ curve.

Radioisotope decay

Divide time in intervals of $\mathrm{dt}=0.01 \mathrm{Gyr} \ll$ half-life.
For every nucleus, with probability $\mathrm{P}=\lambda \mathrm{dt}$
remove it from a shrinking pool of uranium and add to the growing pool of stable lead nuclei.

Parameter λ is decay prob. per unit time per one nucleus.
It is related to half-life, which we denote as $t_{1 / 2}$. Namely,

$$
d U=-U \lambda d t \quad==>\quad U=U_{0} \exp (-\lambda t)
$$

while in half-life notation we have

$$
U=U_{0}(1 / 2)^{t / t 12}
$$

Comparing natural logarithms of these two equations, we get:

$$
\lambda=\ln (2) / t_{1 / 2}
$$

Use $P=\lambda d t=\ln (2) d t / t_{1 / 2}$ in every time step U times, and watch the number U shrink in time.

```
(...)
\(U=U 0 ; \quad \mathrm{Pb}=0 ; \quad \mathrm{t}=0\)
```


Program Radioactive.py

```
- \(\quad\) while ( \(t<4.5\) and \(U>0\) ):
\(t=t+d t\)
U_previous \(=\) U
\# give a chance to decay to all U nuclei: genrate \(U\) rnd numbers
ran \(=\) np.random.random(U)
\# if random numer from 0 to 1 is less than \(P\), set decay to True
decay \(=\) ran \(<P \quad \#\) array of Boolean True/False values,
N_decays = decay.sum() \# which can be summed (True=1, False=0)
\(U=U-N \_\)decays
\# You can print each simulation, good for debugging!
\# \(\mathrm{Pb}=\mathrm{UO}-\mathrm{U}\)
\# all U's decay to Pb 's, so \(\mathrm{Pb}+\mathrm{U}==\mathrm{U} 0\)
\# print('at time \(t=\) ', np.around( \(t, 4), ' \quad U=\) ',np.around( \(U, 4\) ),
\# ' \(\mathrm{Pb} / \mathrm{U}=\) ',np.around( \(\mathrm{Pb} / \mathrm{U}, 3)\) )
\# plot 1 time segment of the decay curve
plt.plot([t-dt,t],[U_previous/U0,U/U0],color=(0,0,1),linewidth=2)
\# overplot exp(-lambd*tt)
plt.plot(tt,theor,linewidth=1.5,color=(1,0,0))
plt.show()
ans = input(" one more? ")
```

Radioactive.py
Radioactive decay of U-235

Radioactive decay of U-235

Again, a sqrt($1 / \mathrm{N})$ convergence is seen in the width of the curves as we have seen here in another context:

Error in π calculation

Radiation transfer:

finding $\mathrm{I}(\mathrm{x}) \quad$ dusty-box-1.py
$\mathrm{T}(\mathrm{x})=$ optical thickness = combined cross-sectional area, up to x, of absorbing and scattering particles, per unit side area of the beam. In a thin slice, $\mathrm{d} \tau$ is a probability of photon extinction.

$d t:=\sigma_{\ominus} n(x) d x \rightarrow T(x)=$ integral $_{0}{ }^{x}\left\{\sigma_{0} n(x) d x\right\}$
If 1 particle's area σ_{\odot} and the number density of particles in space $\mathrm{n}(\mathrm{x})=$ const, then: $\mathrm{T}(\mathrm{x}) \sim \mathrm{x}$. In general $\mathrm{dl}=\mathrm{I} \mathrm{dt}=>\mathrm{I}=\mathrm{I}_{0} \mathrm{e}^{-\mathrm{T}(\mathrm{x})}$

Transmitted flux, theoretical (line) and numerical (points)

