
Lecture 5
u  Python in the Stochastic
 Universe
 All the scripts discussed in lectures are
downloadable from
http://planets.utsc.utoronto.ca/~pawel/pyth . Please learn Python from them!

 Pseudorandom numbers and histograms

•  Generation of uniform and normal random numbers
 What is Monte Carlo?

•  Pi by MtCarlo, convergence speed and the N-1/2 trouble
•  Comparison with Riemann (structured) integration of quarter-circle
•  Radioactive isotope decay
•  Radiation transfer through opaque media
•  Galton board
•  Random walks in 1D
•  Stock market as random walker
•  Solution of assignment set #1: pool-table.py, beach.py, series-bare.py
•  series.py

PSCB57. Intro to Scientific Computing.
(c) Pawel Artymowicz UofT, 2019. Only for enrolled UTSC students

Discussion of solutions
to Assignment Set #1

•  Solutions are commented Python codes
•  in our code depository:
•  http://planets.utsc.utoronto.ca/~pawel/pyth
•  study them line-by-line for programming

style, use of graphics and numpy

 series.py beach.py pool-table.py
 X = 26.714m X = 5.5 m

Assignment Set #1, prob. 1. series.py

• Different random worlds:
•  natural, mathematical, computational

Monte Carlo methods
•  For ex., statistical physics is mostly about randomness,

entropy, mean values, random walks, and fluctuations.
•  Frequent use of “random numbers” is not new, it started

before the electronic computer era, but it became popular in
computer calculations 70+ years ago, at the time when
random, virtual histories of particles of radiation (n, p, e, γ)
were needed to model the interaction of radiation with matter,
among others, to design (thermo)nuclear bombs.

•  Casino de Monte Carlo, Monaco

 featured in James Bond 007 movies
 such as (I think): Golden Eye, Live
 and Let Die, Casino Royale, and one
 more I must have seen but cannot
 recall.

Monte Carlo, Monaco

MteCarlo methods
•  We rely on pseudorandom numbers?
(truly random numbers are generated in
nature. In math, decimal digits of π also
appear to be truly random)
•  Such numbers are uncorrelated*, but form a unique sequence

that, if needed, can be repeated.
•  Without repeatability, re-running MtCarlo programs to find

bugs would be impossible, previous problems may disappear
and new ones appear. At least during testing, we need to start
from the same value, called seed.**

* - What else must be uncorrelated? (recall the story of
 Enigma). Mistakes were made in some old ‘random’
 number generator algorithms that led to correlations!
** - numpy,random.seed(s) function fixes the seed value s.

Random numbers

o  Generation of uniform and normal pseudorandom numbers

o  hist1.py use: numpy.random.rand [uniform distrib]
o  histo3.py numpy.random.randn [normal distrib.]
o  there’s also numpy.random.choice([list]) [# of peaks]

•  Two random points on 1D interval (problem 4, set #2 of assig)

Extensions:

•  Three random points on a circle (what is the chance that they

form a triangle that includes the center of the circle?)

•  Four random points on a sphere (what is the chance that they

form a tetrahedron that includes the center of the sphere?)

What is Monte Carlo?

•  Random walks on a line, in a forest, and inside the sun

 (i) Explanation of the the origin of the ubiquitous √N
 (ii) Calculation of mean, and mean-square distance in 1D

•  Radioactive isotope decay
•  Radiation transfer through opaque media
•  Galton board

https://www.youtube.com/watch?v=EvHiee7gs9Y

https://www.youtube.com/watch?v=stgYW6M5o4k
 (Random Walks in Mathematics. Recurrent vs. transient walk)
https://www.youtube.com/watch?v=BfS2H1y6tzQ
 (Random Walks programmed in Python)

The main disadvantage of MtCarlo

Slow return on investment:
for every decade of increased
effort you get only ½ decade (order
of magnitude) of additional precision. Error ~ N-1/2

one particular
 MtC run

Pi by Monte Carlo method:
simple_mtc_pi.py
simple_mtc+int_pi.py simple_mtc+3int_pi.py

•  Method: Throw many points uniformly on a unit square, and see
what fraction of them fall into the ¼ circle x2 + y2 < 1

•  Integral (area under curve) is equal ¼ of area π*12 = π/4,
•  Therefore, estimated pi = 4*ratio of points that fall inside
 the quarter-circle to all points falling on a unit square.
•  While finding if a point (x,y) drawn randomly is in the quarter-

circle, the often seen expression r=sqrt(x2+y2) < 1 is a waste of
time, one can use x2+y2 < 1 with the same effect.

•  Compare if (np.sqrt(x**2+y**2) < 1):
 with if (x*x + y*y < 1):
•  Secondly, program will run faster if x is a big array, not a scalar

(single float); for efficiency use numpy arrays.
•  Compute the envelope of y = sqrt(1-x2) for plotting of simulation,

and and independent numerical integration of y(x) (non-MtCarlo).

Pi by Monte Carlo method: simple_mtc+int_pi.py

Pi by Monte Carlo method: simple_mtc+int_pi.py

Pi by Monte Carlo method: simple_mtc+int_pi.py

 simple_mtc+int_pi.py

Radioisotope decay: Uranium à Lead
Simulation using pseudorandom numbers and modeling individual
nuclei.

 Uranium 235U (natural radioactive isotope) decays as follows:

 235U [half-life=703.8 Myr] à 231Th + 4He + 2 n à... à 207Pb (stable)

 [This is a spontaneous decay, different from the chain reaction
 induced by neutrons in reactors and nuclear bombs,
 235U + n à 236U à 92Kr + 141Ba +3 n.]

 Let's call the initial number of uranium atoms U0. We will explore

 different U0's.

 Plot the evolution of the amount of Uranium 235, U(t), for 4.5 Gyr
 (the age of Earth). Overplot theoretical e-t*const curve.

Radioisotope decay
Divide time in intervals of dt = 0.01 Gyr << half-life.
For every nucleus, with probability P = λ dt
remove it from a shrinking pool of uranium and add to the growing pool
of stable lead nuclei.

 Parameter λ is decay prob. per unit time per one nucleus.
It is related to half-life, which we denote as t1/2. Namely,
 dU = -U λ dt ==> U = U0 exp(-λt),
while in half-life notation we have

 U = U0 (½) t/t12

Comparing natural logarithms of these two equations, we get:
 λ = ln(2) / t1/2.

Use P = λ dt = ln(2) dt/t1/2 in every time step U times, and
watch the number U shrink in time.

Program Radioactive.py (...)
 U = U0; Pb = 0; t = 0

•  while (t < 4.5 and U > 0):
•  t = t + dt
•  U_previous = U
•  # give a chance to decay to all U nuclei: genrate U rnd numbers
•  ran = np.random.random(U)
•  # if random numer from 0 to 1 is less than P, set decay to True
•  decay = ran < P # array of Boolean True/False values,
•  N_decays = decay.sum() # which can be summed (True=1, False=0)
•  U = U - N_decays
•  # You can print each simulation, good for debugging!
•  # Pb = U0 - U
•  # all U's decay to Pb's, so Pb+U==U0
•  # print('at time t=',np.around(t,4),' U=',np.around(U,4),
•  # ' Pb/U=',np.around(Pb/U,3))
•  # plot 1 time segment of the decay curve
•  plt.plot([t-dt,t],[U_previous/U0,U/U0],color=(0,0,1),linewidth=2)
• 
•  # overplot exp(-lambd*tt)

 plt.plot(tt,theor,linewidth=1.5,color=(1,0,0))
 plt.show()

•  ans = input(" one more? ")

Radioactive.py

Again, a sqrt(1/N) convergence is seen
in the width of the curves as we have seen here in
another context:

Radiation transfer:
finding I(x) dusty-box-1.py

τ(x) = optical thickness = combined cross-sectional area,
up to x, of absorbing and scattering particles, per unit side area
of the beam. In a thin slice, dτ is a probability of photon extinction.

 I0 = flux I(x)<I0

 τ=0 τ=1 τ=1.6

dτ := σ n(x) dx è τ(x) = integral0x { σ n(x) dx}

If 1 particle’s area σ and the number density of particles in space
n(x) = const, then: τ(x) ~ x. In general dI = I dτ => I = I0 e-τ(x)

x

I(x) = I0 e -τ(x)

τ

