
Lecture 6      
u    Python in the Stochastic  
     Universe  
      All the scripts discussed in lectures are  
downloadable from 
http://planets.utsc.utoronto.ca/~pawel/pyth . Please learn Python from them. 

 
 
Solution of  assignments from set #2: 

 pharaoh-2.py            loan.py            scan-grid.py 
 
Monte Carlo (continued)  

•  Radiation transfer through opaque media  
•  Stock market as a random walker 
 
  

PSCB57. Intro to Scientific Computing. 
(c) Pawel Artymowicz UofT, 2019. Only for enrolled UTSC students 



                          Assignments #2  
1.  Egyptian taxes problem    
•  Imperial taxes are independent of local (tax collector’s) fees [but no 

points subtracted if you are in tutorial group 1, and assumed 
otherwise] 

•  It does not matter much how you eliminate  every 4th taxpayer from 
imperial taxation,  {1,5,9,13,...} or {3,7,11,15,...} or N/4 random 
persons   (but the formulation discourages you from using random 
numbers here).  You should always compare different schemes! 

•  pharaoh-2.py 



•  pharaoh-2.py (fragments) 
 

•  N = 12000    #  number of taxpayers 
•  # wages data generation  
•  wages = np.linspace(1200,2400,N) 
•  print("Total wages before tax", int(sum(wages)),'=',int(sum(wages))//1000,'k') 

•  # imperial tax first. Introducing so-called list comprehension 
•  pharaoh_tax_rate = 0.06*(1+wages/1000)      # pharaoh's tax rate’s > 2.2*6% 
•  builders_list = [i for i in range(3,N,4)]   # list comprehension, 
•  pharaoh_tax_rate[builders_list] = 0.        # could be done in a loop as well 
•  treasury_takes = (wages * pharaoh_tax_rate).astype(int) # rounded to int 
•  pharaoh_gets = treasury_takes.sum()         # a total that pharaoh gets 
•  print(" Pharaoh tax ",pharaoh_gets,' =',pharaoh_gets//1000,'k \n') 
•  wages_aft_tax = wages - treasury_takes                # taxman draws from this list 

(...) 

•  # now the tax collector's withholdings, standard rate is 0.015 
•  # 2 out of 13 people have collector's tax cut 
•  tax13 = [0.015]*13    # list multiplication 
•  # arbitrary 2 of 13 get a tax break, numbers 4,10 are arbitrary, try other 
•  tax13[4] = tax13[10] = 0.007  
•  print(' the first 13 of tax collector rates \n', tax13) 
•  # this pattern will be applied to almost all taxpayers 
•  N_remaining  = N%13     # remainder of division into 13 groups 
•  print("N_remaining",N_remaining) 
•  # again, list multiplication (making it longer), not array multiplication! 
•  taxman_rates_lst = (N//13)*tax13 + N_remaining*[0.015]  



                Assignments #2  1.  Egyptian taxes:    
•  Similarly, it does not matter much how you reduce local taxation of a 

fraction = 2/13 of taxpayers, you can generate a pattern of how the first 13 
taxpayers are taxed (fully or with a tax), and then repeat it 12000//13 times 

pharaoh-2.py 



                Assignments #2  1.  Egyptian taxes:    
•  Similarly, it does not matter much how you reduce local taxation of a 

fraction = 2/13 of taxpayers, you can generate a pattern of how the first 13 
taxpayers are taxed (fully or with a tax), and then repeat it 12000//13 times 



                                       Assignments #2  1.  Egyptian taxes:     
Answer: Out of  
     21600 k b.o.g. earnings, taxpayers pay  

 2782 k b.o.g. to Pharaoh’s treasury, and 
   253 k b.o.g. to you (tax collector) 

 

pharaoh-2.py 



                     Assignments #2  
2.  Student Loan problem    
•  Given the specific loan conditions, and specific payment schedule,  
•  predict the p(t) loan reduction history and the repayment date. 
•  One loop suffices, but you can use two to overplot an alternative history.  

p = 36000;  interest = 4.2e-2;    inflation = 2.6e-2 
total_pay1 = 0;   equiv_pay1 = 0 
 
for i   in range(200):     # i is the number of the month 
    pay = 300 
    if (i > 2*12):             # after 2 years apply a 
        pay = 380                                # larger monthly re-payment 
 
#  p = p*(1+interest/12) – pay    # this is the heart of the loan calculator 
    p = (p-pay)*(1+interest/12)     # use this line if you pay before compound date 
 
    total_pay1 += pay      # this is optional, and the following even more so: 
    equiv_pay1 +=  pay/(1+inflation/12)**i         # buying power [convert to init. $$] 
    print (i,'yr,mo',i//12,1+i%12, ' loan =',p) 
    plt.scatter (i,p,color=(0,0,1), s=9, alpha=0.6)    # blue points = main variant, interest=const. 
    if (p <= 0):           # if loan amount drops to (or below) zero 
        break           # then break out of the loop 
    



                              Assignments #2  
2.  Student Loan problem    
•  Answer:      Loan payed after 129 mo. = 10 yr  and 3 months,  if bank rates constant @ 4.2% 
Month: 
•  0  yr,mo 0 1  loan = 35826. 
•  1  yr,mo 0 2  loan = 35651. 
•  2  yr,mo 0 3  loan = 35476. 
•  3  yr,mo 0 4  loan = 35300. 
•  4  yr,mo 0 5  loan = 35123. 
•  (...)  
•  118  yr,mo 9 11  loan = 1483.8 
•  119  yr,mo 9 12  loan = 1109.0 
•  120  yr,mo 10 1  loan = 732.90 
•  121  yr,mo 10 2  loan = 355.46 
•  122  yr,mo 10 3  loan = -23.29 
•  i.e. (122 months = 10 yr + 3 mo) 

 
•  Total payed = $44740  
•  Total payed - loan = $8740     
•  Const.$ effective interest 8.7%, assuming annual inflation rate 2.6% 



                     Assignments #2  
2.  Student Loan – alternative rates case 
•  Answer:      Loan repayed after 129 mo. = 10 yr 10 mo. if bank stepwise raises rates 
•  0 yr,mo 0 1  loan = 35826.0 
•  1 yr,mo 0 2  loan = 35651.3 
•  2 yr,mo 0 3  loan = 35476.1 
•  3 yr,mo 0 4  loan = 35300.3 
•  4 yr,mo 0 5  loan = 35123.8 
•  5 yr,mo 0 6  loan = 34946.8 
•  (...) ~10 long years pass here 
•  124 yr,mo 10 5  loan = 1604.8 
•  125 yr,mo 10 6  loan = 1232.4 
•  126 yr,mo 10 7  loan = 858.3 
•  127 yr,mo 10 8  loan = 482.4 
•  128 yr,mo 10 9  loan = 104.7 
•  129 yr,mo 10 10  loan = -274.8 
•  (129 months = 10 yr + 10 mo) 

•  Total payed = $47400 
•  Total payed - loan = $11400 
•  Const.$ effective interest 13.5%,  assuming annual inflation rate 2.6% 



                             Assignments #2  
3. Scanning the grid                      scan-grid.py 
def f(x,y,D): 
    return 1 +0.1*D*x -2.**2.5*x*y*np.exp(-x-y*y) 
 
# main (driver) program 
N = 1000 
xx = yy = np.linspace(0,3,N) 
X,Y = np.meshgrid(xx,yy)    # for plotting later 
for D in range(10):      # D =  last digit of student number 

 A = np.empty((N,N),dtype=float)    # declare empty grid  
 for ix in range(N):        # fill the array with function values 
 x = xx[ix] 

       A[ix,:] = f(x,yy,D)        # function given vector yy returns a vector   
 arg = A.argmin()             # find index in a flattened 2D array   
 ix,iy = (arg//N, arg%N)       # turn arg back into 2D index 
 print(...) 

 #  plotting and timing 
      (...) 
 
 



                           Assignments #2  
3.  Scanning the grid                      scan-grid.py 
  
D = 0  x,y: 1.0000, 0.7057,  min = 0.10748  t[s] 0.084 
D = 1  x,y: 0.8979, 0.7057,  min = 0.20225  t[s] 0.099 
D = 2  x,y: 0.8138, 0.7057,  min = 0.28778  t[s] 0.097 
D = 3  x,y: 0.7417, 0.7057,  min = 0.36543  t[s] 0.090 
D = 4  x,y: 0.6757, 0.7057,  min = 0.43619  t[s] 0.085 
D = 5  x,y: 0.6186, 0.7057,  min = 0.50083  t[s] 0.084 
D = 6  x,y: 0.5646, 0.7057,  min = 0.55992  t[s] 0.086 
D = 7  x,y: 0.5165, 0.7057,  min = 0.61395  t[s] 0.085 
D = 8  x,y: 0.4715, 0.7057,  min = 0.66332  t[s] 0.087 
D = 9  x,y: 0.4294, 0.7057,  min = 0.70837  t[s] 0.084 
 



Radiation transfer:    
finding I(x)      dusty-box-1.py      

τ(x) = optical thickness = combined cross-sectional area,  
up to x, of absorbing and scattering particles, per unit side area  
of the beam. In a thin slice, dτ is a probability of photon extinction. 
 
  I0 = flux                                                                                I(x)<I0  
  
 
 
 
                      τ=0                              τ=1                    τ=1.6 
 
dτ := σ  n(x) dx  è  τ(x) = integral0x { σ  n(x) dx}   
 
If 1 particle’s area σ   and the number density of particles in space 
n(x) = const,  then:    τ(x) ~ x.  In general dI = I dτ => I = I0 e-τ(x) 

 
 

x 



Radiation transfer: Flux vs. optical thickness 
 
tau = 0.47   



Radiation transfer: Flux vs. optical thickness 
 
tau = 0.84   



Radiation transfer: Flux vs. optical thickness 
 
tau = 1.22   



Radiation transfer: Flux vs. optical thickness 
 
tau = 2.0   



Radiation transfer: Flux vs. optical thickness 
 
tau = 3.0   



I(x) = I0 e -τ(x) 

τ 

      dusty-box-1.py  



Application of radiation transfer equation!

 
 
 
 
 
 
 
 

   
 
 
 
 San Francisco (July 2019, picture taken above Alcatraz) 

 
 

 
 



Golden Gate Bridge 



An application of radiation transfer equation!
•  A cloud has geometric thickness of 100 m 
•  50% of water vapor mass precipitates into 
•  droplets of 10 µm diameter (very fine mist) 
•  100% relative humidity corresponds to 4.85 g/m3 at 0oC. 
   Find:   n, σ, τ, I/I0  

    Solution:  
In 1 m3, there are 4.85 g water vapor, 2.425 g in the form of water 
droplets. At water density 1g/cm3, their volume is 2.425 cm3 or  

  V = 2.425e-6 m3.  
  
One droplet has radius r = 5e-6 m, and occupies  

  V1 = (4/3)πr3  = 5.236e-16 m3.    
 
Python says there are thus  

  n = V/V1 = 4631517045 droplets/m3.  
(Q: How many accurate digits should we actually display?) 
 
 
 



Application of radiation transfer equation!

•  n = 4.63 �109 droplets/m3.  
•  The combined scross-sectional area in a column  100 m long  

 (cross section 1 m2) is 
 τ = σ  n dx  = π(5e-6)2  �  4.63�109 � 100 ≈ 36 

•   Optical thickness is τ>>1, so we don’t expect almost any 
direct light to pass through. Indeed,  
 I/I0 = e-τ ≈ np.exp(-36) ≈ 1.6 �10-16 

•  You can’t see even the weakest outline of the sun  
 or moon through such a cloud! 

     
Cf. San Francisco shoreline below a stratus layer  

 
 

 
 



Application of radiation transfer equation!

 
 
 
 
 
 
 
 
 

•  Picture taken near Meteor Crater, AZ (July 2019)  
•  Smoke from brush fires. Sharp edge of the sun shows that ash 

particles absorb more then scatter radiation. Visibility of the sun 
means that optical thickness did not exceed τ ~ 5 to 10. 

 
 

 
 



Low optical thickness τ  = high transparency 

High optical thickness τ  = low transparency 

Golden Gate. Fuzzy haloes are a sign that water droplets scatter more photons  
than absorb.  



Application of radiation transfer equation!

•  n = V/V1  ~ 1/r3      (s =  size of droplet or dust grain) 
•  σ ~ r2 

•  τ = σ  n dx  ~ 1/r  
   * * *  

•  Q: How come we sometimes see the outline of the sun 
through a cloud? Which parameter is different then? 

•  Hint: Can τ ≈ 3.6? When?  
•  Think of s 
•  If so, then I/I0 = e-τ ≈ exp(-3.6) ≈ 0.026  
è   no problem seeing direct light from the sun & sun’s outline 
      

 
 

 
 



•  Random Walks... and Climate 
Change? 

https://wattsupwiththat.com/2012/06/14/climate-models-outperformed-by-random-
walks/ 

 

• Random walk in 1D 
 
Ø  without restrictions       
    rnd-walk-gamble-0.py 
 
Ø with absorbing boundary(ies)  

 rnd-walk-gambles.py 

 



Random walk in 1D  without restrictions       
  rnd-walk-gamble-0.py         +-√N  and  +-2√N envelopes shown 



Random walk in 1D  + absorbing boundary    
  rnd-walk-gambles.py 



Gamblers ruin in 1D walk with two absorbing boundaries  at n=M & n=0 
 can easily be solved analytically: 
 
Let Pn be the probability of a ruin starting from value n  (no limitation on number of steps) 
Boundary values are: P0 = 1 and PM = 0. (Why?) 
 
From value  n  we can either continue via n-1 with probability q, or via n+1  
with probability 1-q. Therefore the probability of ruin can be expressed as:  

       Pn = q Pn-1 + (1-q) Pn+1 
In case of q=1/2 (unbiased random walk in 1D with step +-1), we have  
       Pn-1 -2 Pn + Pn+1 = 0          i.e.,               Pn-1 – Pn =  Pn – Pn+1 .        

                             
 
 
 
The slopes to the left and right are equal, 
therefore the function P(n) = Pn  is a  
straight line joining the two boundary  
values 0 & 1,  
     Pn = (M-n)/M. 
In our case P100 = 4/5. 
 
See also the case M=+∞ 
rnd_wlk-ret-1.py  
on our coding page. 

start at n 

RUIN 

WIN at M 



Random Walks in Stock Market? 
Full Randomness in Stock Market? The efficient market hypothesis 
says Yes, apart from long=term trends.       
See N.Taleb’s  book  “Fooled by Randomness”.           
Example: IBM stock price history, last two years: 


