
Lecture 6
u  Python in the Stochastic
 Universe
 All the scripts discussed in lectures are
downloadable from
http://planets.utsc.utoronto.ca/~pawel/pyth . Please learn Python from them.

Solution of assignments from set #2:

 pharaoh-2.py loan.py scan-grid.py

Monte Carlo (continued)

•  Radiation transfer through opaque media
•  Stock market as a random walker

PSCB57. Intro to Scientific Computing.
(c) Pawel Artymowicz UofT, 2019. Only for enrolled UTSC students

 Assignments #2
1.  Egyptian taxes problem
•  Imperial taxes are independent of local (tax collector’s) fees [but no

points subtracted if you are in tutorial group 1, and assumed
otherwise]

•  It does not matter much how you eliminate every 4th taxpayer from
imperial taxation, {1,5,9,13,...} or {3,7,11,15,...} or N/4 random
persons (but the formulation discourages you from using random
numbers here). You should always compare different schemes!

•  pharaoh-2.py

•  pharaoh-2.py (fragments)

•  N = 12000 # number of taxpayers
•  # wages data generation
•  wages = np.linspace(1200,2400,N)
•  print("Total wages before tax", int(sum(wages)),'=',int(sum(wages))//1000,'k')

•  # imperial tax first. Introducing so-called list comprehension
•  pharaoh_tax_rate = 0.06*(1+wages/1000) # pharaoh's tax rate’s > 2.2*6%
•  builders_list = [i for i in range(3,N,4)] # list comprehension,
•  pharaoh_tax_rate[builders_list] = 0. # could be done in a loop as well
•  treasury_takes = (wages * pharaoh_tax_rate).astype(int) # rounded to int
•  pharaoh_gets = treasury_takes.sum() # a total that pharaoh gets
•  print(" Pharaoh tax ",pharaoh_gets,' =',pharaoh_gets//1000,'k \n')
•  wages_aft_tax = wages - treasury_takes # taxman draws from this list

(...)

•  # now the tax collector's withholdings, standard rate is 0.015
•  # 2 out of 13 people have collector's tax cut
•  tax13 = [0.015]*13 # list multiplication
•  # arbitrary 2 of 13 get a tax break, numbers 4,10 are arbitrary, try other
•  tax13[4] = tax13[10] = 0.007
•  print(' the first 13 of tax collector rates \n', tax13)
•  # this pattern will be applied to almost all taxpayers
•  N_remaining = N%13 # remainder of division into 13 groups
•  print("N_remaining",N_remaining)
•  # again, list multiplication (making it longer), not array multiplication!
•  taxman_rates_lst = (N//13)*tax13 + N_remaining*[0.015]

 Assignments #2 1.  Egyptian taxes:
•  Similarly, it does not matter much how you reduce local taxation of a

fraction = 2/13 of taxpayers, you can generate a pattern of how the first 13
taxpayers are taxed (fully or with a tax), and then repeat it 12000//13 times

pharaoh-2.py

 Assignments #2 1.  Egyptian taxes:
•  Similarly, it does not matter much how you reduce local taxation of a

fraction = 2/13 of taxpayers, you can generate a pattern of how the first 13
taxpayers are taxed (fully or with a tax), and then repeat it 12000//13 times

 Assignments #2 1.  Egyptian taxes:
Answer: Out of
 21600 k b.o.g. earnings, taxpayers pay

 2782 k b.o.g. to Pharaoh’s treasury, and
 253 k b.o.g. to you (tax collector)

pharaoh-2.py

 Assignments #2
2. Student Loan problem
•  Given the specific loan conditions, and specific payment schedule,
•  predict the p(t) loan reduction history and the repayment date.
•  One loop suffices, but you can use two to overplot an alternative history.

p = 36000; interest = 4.2e-2; inflation = 2.6e-2
total_pay1 = 0; equiv_pay1 = 0

for i in range(200): # i is the number of the month
 pay = 300
 if (i > 2*12): # after 2 years apply a
 pay = 380 # larger monthly re-payment

p = p*(1+interest/12) – pay # this is the heart of the loan calculator
 p = (p-pay)*(1+interest/12) # use this line if you pay before compound date

 total_pay1 += pay # this is optional, and the following even more so:
 equiv_pay1 += pay/(1+inflation/12)**i # buying power [convert to init. $$]
 print (i,'yr,mo',i//12,1+i%12, ' loan =',p)
 plt.scatter (i,p,color=(0,0,1), s=9, alpha=0.6) # blue points = main variant, interest=const.
 if (p <= 0): # if loan amount drops to (or below) zero
 break # then break out of the loop

 Assignments #2
2. Student Loan problem
•  Answer: Loan payed after 129 mo. = 10 yr and 3 months, if bank rates constant @ 4.2%
Month:
•  0 yr,mo 0 1 loan = 35826.
•  1 yr,mo 0 2 loan = 35651.
•  2 yr,mo 0 3 loan = 35476.
•  3 yr,mo 0 4 loan = 35300.
•  4 yr,mo 0 5 loan = 35123.
•  (...)
•  118 yr,mo 9 11 loan = 1483.8
•  119 yr,mo 9 12 loan = 1109.0
•  120 yr,mo 10 1 loan = 732.90
•  121 yr,mo 10 2 loan = 355.46
•  122 yr,mo 10 3 loan = -23.29
•  i.e. (122 months = 10 yr + 3 mo)

•  Total payed = $44740
•  Total payed - loan = $8740
•  Const.$ effective interest 8.7%, assuming annual inflation rate 2.6%

 Assignments #2
2. Student Loan – alternative rates case
•  Answer: Loan repayed after 129 mo. = 10 yr 10 mo. if bank stepwise raises rates
•  0 yr,mo 0 1 loan = 35826.0
•  1 yr,mo 0 2 loan = 35651.3
•  2 yr,mo 0 3 loan = 35476.1
•  3 yr,mo 0 4 loan = 35300.3
•  4 yr,mo 0 5 loan = 35123.8
•  5 yr,mo 0 6 loan = 34946.8
•  (...) ~10 long years pass here
•  124 yr,mo 10 5 loan = 1604.8
•  125 yr,mo 10 6 loan = 1232.4
•  126 yr,mo 10 7 loan = 858.3
•  127 yr,mo 10 8 loan = 482.4
•  128 yr,mo 10 9 loan = 104.7
•  129 yr,mo 10 10 loan = -274.8
•  (129 months = 10 yr + 10 mo)

•  Total payed = $47400
•  Total payed - loan = $11400
•  Const.$ effective interest 13.5%, assuming annual inflation rate 2.6%

 Assignments #2
3. Scanning the grid scan-grid.py
def f(x,y,D):
 return 1 +0.1*D*x -2.**2.5*x*y*np.exp(-x-y*y)

main (driver) program
N = 1000
xx = yy = np.linspace(0,3,N)
X,Y = np.meshgrid(xx,yy) # for plotting later
for D in range(10): # D = last digit of student number

 A = np.empty((N,N),dtype=float) # declare empty grid
 for ix in range(N): # fill the array with function values
 x = xx[ix]

 A[ix,:] = f(x,yy,D) # function given vector yy returns a vector
 arg = A.argmin() # find index in a flattened 2D array
 ix,iy = (arg//N, arg%N) # turn arg back into 2D index
 print(...)

 # plotting and timing
 (...)

 Assignments #2
3. Scanning the grid scan-grid.py

D = 0 x,y: 1.0000, 0.7057, min = 0.10748 t[s] 0.084
D = 1 x,y: 0.8979, 0.7057, min = 0.20225 t[s] 0.099
D = 2 x,y: 0.8138, 0.7057, min = 0.28778 t[s] 0.097
D = 3 x,y: 0.7417, 0.7057, min = 0.36543 t[s] 0.090
D = 4 x,y: 0.6757, 0.7057, min = 0.43619 t[s] 0.085
D = 5 x,y: 0.6186, 0.7057, min = 0.50083 t[s] 0.084
D = 6 x,y: 0.5646, 0.7057, min = 0.55992 t[s] 0.086
D = 7 x,y: 0.5165, 0.7057, min = 0.61395 t[s] 0.085
D = 8 x,y: 0.4715, 0.7057, min = 0.66332 t[s] 0.087
D = 9 x,y: 0.4294, 0.7057, min = 0.70837 t[s] 0.084

Radiation transfer:
finding I(x) dusty-box-1.py

τ(x) = optical thickness = combined cross-sectional area,
up to x, of absorbing and scattering particles, per unit side area
of the beam. In a thin slice, dτ is a probability of photon extinction.

 I0 = flux I(x)<I0

 τ=0 τ=1 τ=1.6

dτ := σ n(x) dx è τ(x) = integral0x { σ n(x) dx}

If 1 particle’s area σ and the number density of particles in space
n(x) = const, then: τ(x) ~ x. In general dI = I dτ => I = I0 e-τ(x)

x

Radiation transfer: Flux vs. optical thickness

tau = 0.47

Radiation transfer: Flux vs. optical thickness

tau = 0.84

Radiation transfer: Flux vs. optical thickness

tau = 1.22

Radiation transfer: Flux vs. optical thickness

tau = 2.0

Radiation transfer: Flux vs. optical thickness

tau = 3.0

I(x) = I0 e -τ(x)

τ

 dusty-box-1.py

Application of radiation transfer equation!

 San Francisco (July 2019, picture taken above Alcatraz)

Golden Gate Bridge

An application of radiation transfer equation!
•  A cloud has geometric thickness of 100 m
•  50% of water vapor mass precipitates into
•  droplets of 10 µm diameter (very fine mist)
•  100% relative humidity corresponds to 4.85 g/m3 at 0oC.
 Find: n, σ, τ, I/I0

 Solution:
In 1 m3, there are 4.85 g water vapor, 2.425 g in the form of water
droplets. At water density 1g/cm3, their volume is 2.425 cm3 or

 V = 2.425e-6 m3.

One droplet has radius r = 5e-6 m, and occupies

 V1 = (4/3)πr3 = 5.236e-16 m3.

Python says there are thus

 n = V/V1 = 4631517045 droplets/m3.
(Q: How many accurate digits should we actually display?)

Application of radiation transfer equation!

•  n = 4.63 �109 droplets/m3.
•  The combined scross-sectional area in a column 100 m long

 (cross section 1 m2) is
 τ = σ n dx = π(5e-6)2 � 4.63�109 � 100 ≈ 36

•  Optical thickness is τ>>1, so we don’t expect almost any
direct light to pass through. Indeed,
 I/I0 = e-τ ≈ np.exp(-36) ≈ 1.6 �10-16

•  You can’t see even the weakest outline of the sun
 or moon through such a cloud!

Cf. San Francisco shoreline below a stratus layer

Application of radiation transfer equation!

•  Picture taken near Meteor Crater, AZ (July 2019)
•  Smoke from brush fires. Sharp edge of the sun shows that ash

particles absorb more then scatter radiation. Visibility of the sun
means that optical thickness did not exceed τ ~ 5 to 10.

Low optical thickness τ = high transparency

High optical thickness τ = low transparency

Golden Gate. Fuzzy haloes are a sign that water droplets scatter more photons
than absorb.

Application of radiation transfer equation!

•  n = V/V1 ~ 1/r3 (s = size of droplet or dust grain)
•  σ ~ r2

•  τ = σ n dx ~ 1/r
 * * *

•  Q: How come we sometimes see the outline of the sun
through a cloud? Which parameter is different then?

•  Hint: Can τ ≈ 3.6? When?
•  Think of s
•  If so, then I/I0 = e-τ ≈ exp(-3.6) ≈ 0.026
è  no problem seeing direct light from the sun & sun’s outline

•  Random Walks... and Climate
Change?

https://wattsupwiththat.com/2012/06/14/climate-models-outperformed-by-random-
walks/

• Random walk in 1D

Ø  without restrictions
 rnd-walk-gamble-0.py

Ø with absorbing boundary(ies)

 rnd-walk-gambles.py

Random walk in 1D without restrictions
 rnd-walk-gamble-0.py +-√N and +-2√N envelopes shown

Random walk in 1D + absorbing boundary
 rnd-walk-gambles.py

Gamblers ruin in 1D walk with two absorbing boundaries at n=M & n=0
 can easily be solved analytically:

Let Pn be the probability of a ruin starting from value n (no limitation on number of steps)
Boundary values are: P0 = 1 and PM = 0. (Why?)

From value n we can either continue via n-1 with probability q, or via n+1
with probability 1-q. Therefore the probability of ruin can be expressed as:

 Pn = q Pn-1 + (1-q) Pn+1
In case of q=1/2 (unbiased random walk in 1D with step +-1), we have
 Pn-1 -2 Pn + Pn+1 = 0 i.e., Pn-1 – Pn = Pn – Pn+1 .

The slopes to the left and right are equal,
therefore the function P(n) = Pn is a
straight line joining the two boundary
values 0 & 1,
 Pn = (M-n)/M.
In our case P100 = 4/5.

See also the case M=+∞
rnd_wlk-ret-1.py
on our coding page.

start at n

RUIN

WIN at M

Random Walks in Stock Market?
Full Randomness in Stock Market? The efficient market hypothesis
says Yes, apart from long=term trends.
See N.Taleb’s book “Fooled by Randomness”.
Example: IBM stock price history, last two years:

