
Lecture 7      
u    Markets, Numerical Calculus, Zeros  
Scripts discussed in this lecture are downloadable from 
http://planets.utsc.utoronto.ca/~pawel/pyth. Please learn Python from them. 
 
•  Solutions to midterm problems 
•  Random walk through the markets 
•   Using real world data: Yahoo Finance historic quotes 
•   Data smoothing: convolution, boxcar kernels. Oxford weather 
•  Numerical Calculus: Differentiation formulae  
v  applications to image processing and diffusion  
•  Zero finding of a real function: efficient methods  

§  Bisection method   
§  Secant method 
§  Newton’s method  - what is ‘quadratic convergence’? 

PSCB57. Intro to Scientific Computing. 
(c) Pawel Artymowicz UofT, 2019. For use by enrolled UTSC students. 



Gamblers ruin in 1D walk with two absorbing boundaries  at n=M & n=0  
can easily be solved analytically: 
 
Let Pn be the probability of a ruin starting from value n. No limit on number of steps 
Boundary values are: P0 = 1 and PM = 0. (Why?) 
 
From value  n  we can either continue via n-1 with probability q, or via n+1  
with probability 1-q. Therefore the probability of ruin can be expressed as:  

       Pn = q Pn-1 + (1-q) Pn+1 
In case of q=1/2 (unbiased random walk in 1D with step +-1), we have  
       Pn-1 -2 Pn + Pn+1 = 0          i.e.,               Pn-1 – Pn =  Pn – Pn+1 .      

                   
            

 
The slopes to the left and right are equal, 
therefore the function P(n) = Pn  is a  
straight line joining the two boundary  
values 0 & 1,  
     Pn = (M-n)/M. 
In our case P100 = 4/5. 
 
See also the case M=+∞ 
rnd_wlk-ret-1.py  
on our coding page. 

start at n 

RUIN 

WIN at M 



Random Walks in Stock Market? 
Full Randomness in Stock Market? The efficient market hypothesis 
says Yes.    See N. Taleb’s book “Fooled by Randomness”.          
Example: IBM stock price history, last two years: 



•  Econometrics of markets: 
 
There is evidence that people (for instance Mutual Fund, retirement 
fund managers are not taking right decisions and perform worse than 
the stock index (70% funds lose money + they charge fees).  
Is this true? You may analyze the data yourself with Python. 
Data are freely downloadable from, e.g., Yahoo Finance site.  
 
The so-called ‘technical analysis’ purports to be able to take good  
decisions by algorithmic trading.  
 
Personal and corporate finance greatly benefit from computing.   
 
1999:      90% of trades in markets by people,   10%    by algorithms 
2019 :      10%            ---,,---        --,,--                 90%        ---,,---- 
 
One good book to read about computerized trading and its dangers is “Flash 
Boys”, by Mikael Levis (there is also a Canadian movie loosely based on one 
chapter, but the book is very different). 
 
 



Stock market: What can we do quantitatively 
with the data freely available from Yahoo 
Finance? 
Date,Open,High,Low,Close,Adj Close,Volume         [.csv format] 
1980-09-18,0.492188,0.493490,0.492188,0.492188,0.312819,14227200 
1980-09-19,0.496094,0.497396,0.496094,0.496094,0.315301,6086400 
1980-09-22,0.490885,0.490885,0.488281,0.488281,0.310336,8313600 
1980-09-23,0.471354,0.471354,0.470052,0.470052,0.298750,7142400 
1980-09-24,0.467448,0.467448,0.464844,0.464844,0.295440,1002240 

(thousands of lines here....) 
2019-09-09,51.060001,52.029999,51.020000,51.590000,51.590000,20749700 
2019-09-10,51.330002,51.840000,50.830002,51.820000,51.820000,18532000 
2019-09-11,51.599998,52.790001,51.380001,52.790001,52.790001,18968900 
2019-09-12,53.000000,53.330002,52.070000,53.009998,53.009998,23308700 
2019-09-13,52.759998,53.000000,52.230000,52.540001,52.540001,18010800 
2019-09-16,51.900002,52.290001,51.700001,52.200001,52.200001,13354600 
2019-09-17,52.049999,52.139999,51.349998,51.950001,51.950001,19641100 
 



Stock market: What can we do quantitatively with the data 
freely available from Yahoo Finance? 
 
1.  We can do simple histogram of daily increments of prices p(t), or 
increases  of  ln(p), i.e., log-ratios of prices, or logarithmic returns 

   X = d ln(p) = ln p(t+dt) – ln p(t) = = ln [p(t+dt)/p(t)], 
in order to find out whether they resemble the symmetric, Gaussian normal 
distributions, which result from combination (addition) of very many small random 
disturbances.  
 
2.   We can take two price (increase) histories and correlate them   

 Definitions: We often write 

 Variance = σ2 = < (X - <X>)2 > 
 Numpy provides methods: X.mean(),  X.std(). 
 The second method does exactly what the above equation  
 says: a mean of squared deviations from the mean. Check it! 

      But .std doesn’t quite work as it should in statistics of data uncertainty 

 Variance = σ2 = N/(N-1) < (X - <X>)2 >  
Iff  N >> 1, then the two definitions are in agreement. For N=1, not really K 
 
 



•  What can we do quantitatively with the price data 
available from Yahoo Finance? 

 
Variance = Var(x) = σx

2 := < (x - <x>)(x - <x>) > 
measures volatility of time series.    
 
Covariance = Cov(x,y) = σxy

2 := < (x - <x>)(y - <y>) >, 
[where <x> := (1/N)  Σn

N  xn  is an arithmetic average; time aver.]     
measures interdependence of two variables (financial instr.) 
 
Coefficient of correlation = rxy := σxy

2 / σxσy    =  Cov/σxσy  
 
rxy = Σn(xn - <x>)(yn - <y>)  / [Σn(xn - <x>)2 Σn(xn - <x>)2]1/2. 
 
  Q:   Can you show that coeff. of correlation is  r  = +-1,  if   y = ax+b ?

    (a,b=const.) 
 



•  Stock market: Price data on Yahoo Finance 
There is a more specialized indicator called Beta, 
defined as: 
      β = Cov(x,y) / Var(y) = σxy

2  /σy
2

  = rxy  σx /σy , 
 

where y is a financial instrument used as a benchmark, 
for instance risk-free government bond or market as a 
whole (market average).  
Beta measures sensitivity of x to y, relative to the market’s 
volatility. 
 
 
Some of these definitions will be useful for an assignment problem in set #3 



•  Financial data processing from Yahoo Finance          simple_fin-3.py 
import numpy as np;  import pandas as pd   #  Pandas module, statistics 
def  dataset(nr): 

 if(nr==1):    name = "AAPL-84-19.csv”  # in our python code dir 
 elif(nr==2):  name = "INTC-84-19.csv”  # ---,,--- 
 elif(nr==3):  name = "IXIC-84-19.csv”  # ---,,--- 

 

 x = pd.read_csv(name)   #  pandas can read CSV data from YF 
 print('dataset: ', name, ’ read ok. ’, type(x)) 

     
 y = x.as_matrix()    # turn Pandas Data Frame into np.array 
 Nd = np.size(y)//7  

    print('Nd =',Nd) 
 po = y[:,1];  pc = y[:,4]    # Open, Close 
 ph = y[:,2];  pl = y[:,3]    # High, Low 

    vol = y[:,6]        # Volume 
 return(Nd, y)      #  explicitly return var’s to main prog. 

 
# main program starts here: 
NA, yA = dataset(1)          # read AAPL data 
(...) 



Financial data processing from Yahoo Finance           
simple_fin-3.py        Notice the global crises of 2000 & 2008 
 
 AAPL 

INTC 
NASDAQ 
index 

3x 

2x 



Apple, Intel pricelines divided by Nasdaq index 
simple_fin-3.py         show performance relative to market 
 
 

AAPL 

INTC 



Data smoothing by boxcar average, 11 days wide.  
 
 

AAPL and <AAPL> 



Data averaging by boxcar convolution 
•  Sunny days in Oxford 

   oxford-IO-0.py          oxford-IO-4.py           
 
•  Data on number of sunny hours/month in Oxford, UK, 1929-2010  
•  cf. H. P. Langtangen ‘A primer on Scientific Progr. with Python’, 3rd ed., p 78 
•   Meteorological archival data from British office  
•   http://tinyurl.com/pwyasaa/misc/Oxford_sun_hours.txt 
•  or in a simpler form of ASCII blank-separated columns  
•  in our code depository  
•  http://planets.utsc.utoronto.ca/~pawel/pyth/oxford_sunny.dat 

 



Sunny days in Oxford     oxford-IO-0.py 
 
 



Sunny days in Oxford     oxford-IO-0.py 
 
 



Sunny days in Oxford        oxford-IO-4.py           
 
 



•  I/O and data analysis - averaging 
oxford-IO-0.py          oxford-IO-4.py   
 
Boxcar average  = convolution (smoothing)  
of data with top-hat or bell-shaped, symmetric kernel 
function 
 
Boxcar averages all data above which it stands at the 
moment. It moves over all data set, producing its 
smoothed version.  
 
 
 
         
 
 



•  oxford-IO-4.py           
 
 



       
 
 



•         
 
 

22 yr periodicity? 



Data smoothing by kernels:   
        

•  Weather in Oxford, England. Simple iterative smoothing. 

•  Convolution 

•  Convolution y = f * g  is an integral operation, 
corresponding to shifted integration of a product of functions. 
Most often integration is over the whole domain on which 
functions are defined, e.g. –∞  to +∞. The integrand is one 
function (f) multiplied by a shifted & reversed copy of another (g).  
The amount of shift is the argument of the resultant function 
 f*g (t) = g*f (t) .  
 
The meaning of convolution is smearing each point of one 
function with the pattern provided by the other function.  



Data smoothing by convolution kernels: 



Data smoothing by convolution kernels: 
             
 
§  An example of convolution is the PDF (probability density function) 

of a sum of two random events: e.g., sum of points on 2 dice: Z = X 
+ Y, or two coin throws ea. resulting in +-1. 

§  For instance, a blurry image through foggy eye glasses, or a 
telescope adding diffraction and internal scattering effects,  is a 
convolution of a sharp image with the fuzzy PSF image (Point 
Spread Function, image of one single point on black background).  

§  Physics knows many systems governed by superposition principle. 
Convolution is how we compute the gravity or electrostatic 
potentials and forces from arbitrary distribution of matter. 

§  Another example is the image of a license plate of a moving car, 
smeared beyond recognition by the too long an exposure of the 
picture. Deconvolution allows restoration of readability. 

§  Yet another is a reverb effect added by the room on the played 
music. In this case, reverb may be similar to one-sided exponential 
function. Reverberation of a sharp peak of sound does not spread it 
into the past, only into the future.   

§  Convolution is an essential ingredient of pattern-recognizing NNs.   
 



Numerical calculus: differentiation                         
see http://planets.utsc.utoronto.ca/~pawel/pyth                err_d1f.py              
•  Theory discussed in texbook#2  
•  Turner et al.,  Springer 2018  
•  Section 3.2, p. 38 

 
 

 



Numerical differentiation  err_d1f.py  
    
Take a function, any function (with enough non-zero derivatives)  

            
•  def  f(x):            return((x-1)**3 -(x-1)**6/6) 

•  def  f1_exact(x):  return(3*(x-1)**2   -(x-1)**5) 
•  def  f2_exact(x):  return(6*(x-1)   -5*(x-1)**4) 
•  def  f3_exact(x):  return(6     -20*(x-1)**3) 
•  def  f4_exact(x):  return(-60*(x-1)**2) 
•  def  f5_exact(x):  return(-120*(x-1)) 
•  def  f6_exact(x):  return(-120) 

 
and differentiate it once numerically (dy/dx)  
with different displacements h (same as dx).  
 
Plot error (w.r.t. exact derivative) as a function of h. 
 



Numerical differentiation  err_d1f.py  
    
Take a function, any function (with enough non-zero derivatives)  

            
•  def  f(x):             
•         return((x-1)**3 -(x-1)**6/6) 
•  # main program 
•  # different differentiation schemes 
•  logh = -np.linspace(8,0,200)   # log h = -8...0 
•  h = 10.**logh  
•  x = 0.5 
•  # numerical differentiation   
•  # p = 2 diff. formula 
•  d1f_2 = (f(x+h)-f(x-h))/(2*h) 
•  # p = 4 diff. formula 
•  d1f_4 = (8*(f(x+h)-f(x-h))+f(x-2*h)-f(x+2*h))/

(12*h) 



Numerical differentiation  err_d1f.py  
# theoretical error bounds: roundoff and truncation errors 
for p in [2,4]:  
    E_round = np.array(  (5*p)**0.5/2* eps * abs(f(x))/h  )  
    logE = np.log10(E_round) 
    c = 0.8-p/8 
    plt.plot(logh,logE,color=(c,c,c),alpha=0.7) 
    if(p==2):      
        E_trunc = abs(f3_exact(x))/6*h**2  
#      |d3f/dx3(x)|/6   h2 

        plt.plot(logh,np.log10(E_trunc),color=(0,.6,.6))  
    elif(p==4): 
        E_trunc=abs(f5_exact(x))/30*h**4  
#      |d5f/dx5(x)|/30  h4 

        plt.plot(logh,np.log10(E_trunc),color=(0,.8,.8)) 
   
# plotting of numerical error 
plt.plot(logh,np.log10(abs(d1f_2-f1_exact(x))), 

  color=(1,0,.9)) # magenta 
plt.plot(logh,np.log10(abs(d1f_4-f1_exact(x))), 

  color=(.95,.75,0)) # gold 



 err_d1f.py  
 

 
 



   
 

 
 

Read textbook 2 carefully, there is an assignment that asks you to  analytically 
repeat the derivation of error term in order p=2,4 second differentiation. 
Second derivative is the first derivative of the first derivative, so one stencil is 
this: 
y’’ ~ [ (yn+1 – yn)/h + (yn+1  –yn)/h ] /h  =  (yn-1  –2 yn + yn+1)/h2   
 
Since we know that symmetric first derivative stencil has error ~h2, applying it 
twice (forming difference of two symmetrically displaced first derivatives) we 
cannot lower the accuracy to ~h: the error will be some combination of two 
truncation errors ~h2, and thus will be of the second order (~h2).  
 
It’s up to you to write Taylor expansions and do the algebra, to derive the full 
error term with correct derivatives and coefficients.  
 
Then, using program err_d1f.py as a template, you will change it to study the 
numerical errors (truncation and roundoff) of two second derivative stencils,  
 
           y’’ ~   (yn-1  –2 yn + yn+1)/h2   
and 
           y’’ ~ (-yn-2 +16 yn-1  –30 yn +16 yn+1  –yn+2)/12h2 
 

[cf. problem set #3] 



   
 

 
 

Application of numerical calculus: 
 
Differentiation formulae provide ways to compute n-dimensional stencils  
for 1st and 2nd derivatives. They include Laplacian operators such as 
 
   (d2/dx2 + d2/dy2 + d2/dz2) f(x,y,z) 
 
 
   (d2/dx2 + d2/dy2) f(x,y) 
 
 
This enables us to find curvature of functions that change in time.  
In fact, time evolution of thing that diffuse, such as thermal energy 
(=temperature T), or concentration of fragrance in a room, or molecules in a 
container, is governed by diffusion equation, which says that: 
 
 
                                               ),      or  
 
    



   
 

 
 

Application of numerical calculus: Diffusion equations 
   df/dt = D (d2/dx2 + d2/dy2 + d2/dz2) f(x,y,z) 
   df/dt = D (d2/dx2 + d2/dy2) f(x,y) 
 
    



   
 

 
 

Application of numerical calculus: Image processing, blurring images 
 
laplacian-4.py in our code repository 
 
Used the basic second derivative stencil to do    
 (d2/dx2 + d2/dy2) F(x,y)  on an image F(x,y).  
 
 

       d2/dx2                                   + d2/dy2 
 
 
 

                                                                                        + 
 
 

+1 -2 +1 

+1 

-2 

+1 



   
 

 
 

 

Application of numerical calculus: Image processing, blurring images 
 
laplacian-4.py 
 
Used the basic second derivative stencil to do    
 (d2/dx2 + d2/dy2) F(x,y)  on an image F(x,y).  
 

  
 
 
 

                =  
 
 
 
 
 
Stencil for Laplacian operator in 2D 
 
  F(x,y,z, t+dt)  = F(x,y,z,t)   + dt Dh-2  [F(x+dx) + F(x-dx) +F(y+dy) + F(y-dy) – 4 F(x,y,z,t)]   
          

+1 -4 +1 

+1 

+1 



   
 

 
 

 

Application of numerical calculus: Image processing, blurring 
images 
 
dF/dt = (d2/dx2 + d2/dy2) F(x,y)  on an image F(x,y).  
Diffusion Equation discretized as  
 
  F(x,y,z, t+dt)  = F(x,y,z,t)   + dt Dh-2  [F(x+dx) + F(x-dx) +F(y+dy) + F(y-dy) – 4 F(x,y,z,t)] 
 
   Let  q:= dt Dh-2  
 
  F(x,y,z, t+dt)  = (1-4q) F(x,y,z,t)   + q [F(x+dx) + F(x-dx) +F(y+dy) + F(y-dy)] 
 
 For stability of calculation, q < 0.25, otherwise negative F(x,y,z,t+dt) can appear, which 
for temprature of concentration of particlaes or images is non-physical. 
 
Maximum reasonable q is however 1/5 not ¼, and results in spreading of 
one single peak (1 pixel) to neighboring 5 pixels, each getting value 1/5:  
         1 – 4 q = 1 – 4/5 = 1/5 = q 
 
Let’s apply such a blurring procedure to astronomical image of grand-design  
spiral galaxy M81.  
                                     laplacian-4.py 

  
          



   
 

 
 

 

M81 galaxy 



   
 

 
 

 



   
 

 
 

 

Unsharp masking technique:  
Subtract blurred image from the original image 
to remove the background, level the background gradients 
and enhance visibility of overexposed features.  







Finding Zeros of Real Functions  
see http://planets.utsc.utoronto.ca/~pawel/pyth 

•  Bisection method             simple_bisec.py 
•  Secant method                simple_secant-2.py 
•  Newton’s method             simple_newton.py 

•  We will try these methods on a polynomial of the form 
   

def fun(x): 
    return((x-0.43)*(x-0.52)*(x-0.56)) 
 
We know in advance the three real roots:  {0.43, 0.52, 0.56} 
Also, in Newton’s method, we can either analytically or numerically 
(which is less elegant/efficient but more general in applications)   
derive the first derivative df/dx of the function: 
 
def dfdx(x):  
    return ( (fun(x +1e-6) - fun(x -1e-6)) /2e-6 ) 
 
 



Zero Finding   see http://planets.utsc.utoronto.ca/~pawel/pyth 
Bisection method                simple_bisec.py 

X 

y(x) 

x0 =  0.4300000000000006  but count= 50  
y= 7.14e-18 1 x 0.5 

2 x 0.25 
3 x 0.375 
4 x 0.4375 
5 x 0.40625 
6 x 0.421875 
7 x 0.4296875 
8 x 0.43359375 
9 x 0.431640625 
10 x 0.4306640625 
11 x 0.43017578125 
12 x 0.429931640625 
13 x 0.4300537109375 
14 x 0.42999267578125 
            (...) 
49 x 0.4300000000000015 
50 x 0.4300000000000006 
  



Zero Finding   see http://planets.utsc.utoronto.ca/~pawel/pyth 
Bisection method                simple_bisec.py 

X 

y(x) 

  
y= 7.14e-18 



•  Secant method                simple_secant.py 

•  xn+1 = xn – f(xn)/S 
       S = (fn – fn-1)/(xn – xn-1) 
       S = slope of secant line 

 
% python3 simple_secant.py 
1 x 0.5098  dx -0.4902   y 4.07e-05 
2 x 0.5097  dx -0.0002   y 4.14e-05 
3 x 0.5193  dx 0.0096    y 2.61e-06 
4 x 0.5192  dx 0.00064  y 2.58e-07                                             x 
5 x 0.5199  dx 7.09e-05  y 2.51e-09 
6 x 0.5199  dx 6.95e-07  y 2.49e-12 
7 x 0.52      dx 6.90e-10  y 2.40e-17 
 x0 =  0.52  count= -8  y= -0.0 
t= 0.080s 

Zero Finding   see http://planets.utsc.utoronto.ca/~pawel/pyth 

y(x) o 

o 

new point 
based on  
previous two 

o 



Zero Finding   see http://planets.utsc.utoronto.ca/~pawel/pyth/
simple_secant.py 

y(x) 

x 

Convergence of secant method is theoretically  
only slightly weaker than of Newton’s method.  
Which means it’s very good.  
 
 
 
 
 
 
 
 
Here, like all the discussed methods, secant method 
finds only one of the zeros (the middle one),  
and remains oblivious to others. 



Zero Finding   see http://planets.utsc.utoronto.ca/~pawel/pyth 
•  Newton’s method                simple_newton.py 

X 

y(x) 

1  x 0.5917073170749524  dx -0.03329 
2  x 0.5723529972501539  dx -0.01935 
3  x 0.5630140026284234  dx -0.00934 
4  x 0.5602557697109967  dx -0.00276 
5  x 0.560002109743837    dx -0.00025 
6  x 0.5600000001454981  dx -0.0 
7  x = 0.56       dx -0.0 
8  x0 =  0.56  count= -8 
t= 0.0857s 

xn+1 = xn – f(xn)/f’(xn) 

o 

o 



Root Finding   see http://planets.utsc.utoronto.ca/~pawel/pyth 
•  Newton’s method                simple_newton.py 

y(x) 

X 

python3 simple_newton.py 
1  x 0.5917073170749524  dx -0.03329 
2  x 0.5723529972501539  dx -0.01935 
3  x 0.5630140026284234  dx -0.00934 
4  x 0.5602557697109967  dx -0.00276 
5  x 0.560002109743837    dx -0.00025 
6  x 0.5600000001454981  dx -0.0 
7  x 0.56  dx -0.0 
  x0 =  0.56  count= -8 
t=0.086 s 



 
 
f = 1/x – c = 0 



 
 

f = x2 – c = 0 



Numerical calculus: integration                         
see http://planets.utsc.utoronto.ca/~pawel/pyth                err_int.py              
•  Theory discussed in texbook#2  
•  Turner et al.,  Springer 2018  
•  Section 3.2, p. 48 

 
 

 



Numerical integration                           
http://planets.utsc.utoronto.ca/~pawel/pyth                err_int.py              
•  Theory discussed in texbook#2  
•  Turner et al.,  Springer 2018  
•  Section 3.2, p. 48 

•  NEXT TIME......  READ AHEAD 

•  STUDY and RUN all the codes discussed in this lecture. 
•  HAVE FUN with Python3.  

 
 

 


