
Lecture 7
u  Markets, Numerical Calculus, Zeros
Scripts discussed in this lecture are downloadable from
http://planets.utsc.utoronto.ca/~pawel/pyth. Please learn Python from them.

•  Solutions to midterm problems
•  Random walk through the markets
•  Using real world data: Yahoo Finance historic quotes
•  Data smoothing: convolution, boxcar kernels. Oxford weather
•  Numerical Calculus: Differentiation formulae
v  applications to image processing and diffusion
•  Zero finding of a real function: efficient methods

§  Bisection method
§  Secant method
§  Newton’s method - what is ‘quadratic convergence’?

PSCB57. Intro to Scientific Computing.
(c) Pawel Artymowicz UofT, 2019. For use by enrolled UTSC students.

Gamblers ruin in 1D walk with two absorbing boundaries at n=M & n=0
can easily be solved analytically:

Let Pn be the probability of a ruin starting from value n. No limit on number of steps
Boundary values are: P0 = 1 and PM = 0. (Why?)

From value n we can either continue via n-1 with probability q, or via n+1
with probability 1-q. Therefore the probability of ruin can be expressed as:

 Pn = q Pn-1 + (1-q) Pn+1
In case of q=1/2 (unbiased random walk in 1D with step +-1), we have
 Pn-1 -2 Pn + Pn+1 = 0 i.e., Pn-1 – Pn = Pn – Pn+1 .

The slopes to the left and right are equal,
therefore the function P(n) = Pn is a
straight line joining the two boundary
values 0 & 1,
 Pn = (M-n)/M.
In our case P100 = 4/5.

See also the case M=+∞
rnd_wlk-ret-1.py
on our coding page.

start at n

RUIN

WIN at M

Random Walks in Stock Market?
Full Randomness in Stock Market? The efficient market hypothesis
says Yes. See N. Taleb’s book “Fooled by Randomness”.
Example: IBM stock price history, last two years:

•  Econometrics of markets:

There is evidence that people (for instance Mutual Fund, retirement
fund managers are not taking right decisions and perform worse than
the stock index (70% funds lose money + they charge fees).
Is this true? You may analyze the data yourself with Python.
Data are freely downloadable from, e.g., Yahoo Finance site.

The so-called ‘technical analysis’ purports to be able to take good
decisions by algorithmic trading.

Personal and corporate finance greatly benefit from computing.

1999: 90% of trades in markets by people, 10% by algorithms
2019 : 10% ---,,--- --,,-- 90% ---,,----

One good book to read about computerized trading and its dangers is “Flash
Boys”, by Mikael Levis (there is also a Canadian movie loosely based on one
chapter, but the book is very different).

Stock market: What can we do quantitatively
with the data freely available from Yahoo
Finance?
Date,Open,High,Low,Close,Adj Close,Volume [.csv format]
1980-09-18,0.492188,0.493490,0.492188,0.492188,0.312819,14227200
1980-09-19,0.496094,0.497396,0.496094,0.496094,0.315301,6086400
1980-09-22,0.490885,0.490885,0.488281,0.488281,0.310336,8313600
1980-09-23,0.471354,0.471354,0.470052,0.470052,0.298750,7142400
1980-09-24,0.467448,0.467448,0.464844,0.464844,0.295440,1002240

(thousands of lines here....)
2019-09-09,51.060001,52.029999,51.020000,51.590000,51.590000,20749700
2019-09-10,51.330002,51.840000,50.830002,51.820000,51.820000,18532000
2019-09-11,51.599998,52.790001,51.380001,52.790001,52.790001,18968900
2019-09-12,53.000000,53.330002,52.070000,53.009998,53.009998,23308700
2019-09-13,52.759998,53.000000,52.230000,52.540001,52.540001,18010800
2019-09-16,51.900002,52.290001,51.700001,52.200001,52.200001,13354600
2019-09-17,52.049999,52.139999,51.349998,51.950001,51.950001,19641100

Stock market: What can we do quantitatively with the data
freely available from Yahoo Finance?

1. We can do simple histogram of daily increments of prices p(t), or
increases of ln(p), i.e., log-ratios of prices, or logarithmic returns

 X = d ln(p) = ln p(t+dt) – ln p(t) = = ln [p(t+dt)/p(t)],
in order to find out whether they resemble the symmetric, Gaussian normal
distributions, which result from combination (addition) of very many small random
disturbances.

2. We can take two price (increase) histories and correlate them

 Definitions: We often write

 Variance = σ2 = < (X - <X>)2 >
 Numpy provides methods: X.mean(), X.std().
 The second method does exactly what the above equation
 says: a mean of squared deviations from the mean. Check it!

 But .std doesn’t quite work as it should in statistics of data uncertainty

 Variance = σ2 = N/(N-1) < (X - <X>)2 >
Iff N >> 1, then the two definitions are in agreement. For N=1, not really K

•  What can we do quantitatively with the price data
available from Yahoo Finance?

Variance = Var(x) = σx

2 := < (x - <x>)(x - <x>) >
measures volatility of time series.

Covariance = Cov(x,y) = σxy

2 := < (x - <x>)(y - <y>) >,
[where <x> := (1/N) Σn

N xn is an arithmetic average; time aver.]
measures interdependence of two variables (financial instr.)

Coefficient of correlation = rxy := σxy

2 / σxσy = Cov/σxσy

rxy = Σn(xn - <x>)(yn - <y>) / [Σn(xn - <x>)2 Σn(xn - <x>)2]1/2.

 Q: Can you show that coeff. of correlation is r = +-1, if y = ax+b ?

 (a,b=const.)

•  Stock market: Price data on Yahoo Finance
There is a more specialized indicator called Beta,
defined as:
 β = Cov(x,y) / Var(y) = σxy

2 /σy
2

 = rxy σx /σy ,

where y is a financial instrument used as a benchmark,
for instance risk-free government bond or market as a
whole (market average).
Beta measures sensitivity of x to y, relative to the market’s
volatility.

Some of these definitions will be useful for an assignment problem in set #3

•  Financial data processing from Yahoo Finance simple_fin-3.py
import numpy as np; import pandas as pd # Pandas module, statistics
def dataset(nr):

 if(nr==1): name = "AAPL-84-19.csv” # in our python code dir
 elif(nr==2): name = "INTC-84-19.csv” # ---,,---
 elif(nr==3): name = "IXIC-84-19.csv” # ---,,---

 x = pd.read_csv(name) # pandas can read CSV data from YF
 print('dataset: ', name, ’ read ok. ’, type(x))

 y = x.as_matrix() # turn Pandas Data Frame into np.array
 Nd = np.size(y)//7

 print('Nd =',Nd)
 po = y[:,1]; pc = y[:,4] # Open, Close
 ph = y[:,2]; pl = y[:,3] # High, Low

 vol = y[:,6] # Volume
 return(Nd, y) # explicitly return var’s to main prog.

main program starts here:
NA, yA = dataset(1) # read AAPL data
(...)

Financial data processing from Yahoo Finance
simple_fin-3.py Notice the global crises of 2000 & 2008

 AAPL

INTC
NASDAQ
index

3x

2x

Apple, Intel pricelines divided by Nasdaq index
simple_fin-3.py show performance relative to market

AAPL

INTC

Data smoothing by boxcar average, 11 days wide.

AAPL and <AAPL>

Data averaging by boxcar convolution
•  Sunny days in Oxford

 oxford-IO-0.py oxford-IO-4.py

•  Data on number of sunny hours/month in Oxford, UK, 1929-2010
•  cf. H. P. Langtangen ‘A primer on Scientific Progr. with Python’, 3rd ed., p 78
•  Meteorological archival data from British office
•  http://tinyurl.com/pwyasaa/misc/Oxford_sun_hours.txt
•  or in a simpler form of ASCII blank-separated columns
•  in our code depository
•  http://planets.utsc.utoronto.ca/~pawel/pyth/oxford_sunny.dat

Sunny days in Oxford oxford-IO-0.py

Sunny days in Oxford oxford-IO-0.py

Sunny days in Oxford oxford-IO-4.py

•  I/O and data analysis - averaging
oxford-IO-0.py oxford-IO-4.py

Boxcar average = convolution (smoothing)
of data with top-hat or bell-shaped, symmetric kernel
function

Boxcar averages all data above which it stands at the
moment. It moves over all data set, producing its
smoothed version.

•  oxford-IO-4.py

• 

22 yr periodicity?

Data smoothing by kernels:

•  Weather in Oxford, England. Simple iterative smoothing.

•  Convolution

•  Convolution y = f * g is an integral operation,
corresponding to shifted integration of a product of functions.
Most often integration is over the whole domain on which
functions are defined, e.g. –∞ to +∞. The integrand is one
function (f) multiplied by a shifted & reversed copy of another (g).
The amount of shift is the argument of the resultant function
 f*g (t) = g*f (t) .

The meaning of convolution is smearing each point of one
function with the pattern provided by the other function.

Data smoothing by convolution kernels:

Data smoothing by convolution kernels:

§  An example of convolution is the PDF (probability density function)

of a sum of two random events: e.g., sum of points on 2 dice: Z = X
+ Y, or two coin throws ea. resulting in +-1.

§  For instance, a blurry image through foggy eye glasses, or a
telescope adding diffraction and internal scattering effects, is a
convolution of a sharp image with the fuzzy PSF image (Point
Spread Function, image of one single point on black background).

§  Physics knows many systems governed by superposition principle.
Convolution is how we compute the gravity or electrostatic
potentials and forces from arbitrary distribution of matter.

§  Another example is the image of a license plate of a moving car,
smeared beyond recognition by the too long an exposure of the
picture. Deconvolution allows restoration of readability.

§  Yet another is a reverb effect added by the room on the played
music. In this case, reverb may be similar to one-sided exponential
function. Reverberation of a sharp peak of sound does not spread it
into the past, only into the future.

§  Convolution is an essential ingredient of pattern-recognizing NNs.

Numerical calculus: differentiation
see http://planets.utsc.utoronto.ca/~pawel/pyth err_d1f.py
•  Theory discussed in texbook#2
•  Turner et al., Springer 2018
•  Section 3.2, p. 38

Numerical differentiation err_d1f.py

Take a function, any function (with enough non-zero derivatives)

•  def f(x): return((x-1)**3 -(x-1)**6/6)

•  def f1_exact(x): return(3*(x-1)**2 -(x-1)**5)
•  def f2_exact(x): return(6*(x-1) -5*(x-1)**4)
•  def f3_exact(x): return(6 -20*(x-1)**3)
•  def f4_exact(x): return(-60*(x-1)**2)
•  def f5_exact(x): return(-120*(x-1))
•  def f6_exact(x): return(-120)

and differentiate it once numerically (dy/dx)
with different displacements h (same as dx).

Plot error (w.r.t. exact derivative) as a function of h.

Numerical differentiation err_d1f.py

Take a function, any function (with enough non-zero derivatives)

•  def f(x):
•  return((x-1)**3 -(x-1)**6/6)
•  # main program
•  # different differentiation schemes
•  logh = -np.linspace(8,0,200) # log h = -8...0
•  h = 10.**logh
•  x = 0.5
•  # numerical differentiation
•  # p = 2 diff. formula
•  d1f_2 = (f(x+h)-f(x-h))/(2*h)
•  # p = 4 diff. formula
•  d1f_4 = (8*(f(x+h)-f(x-h))+f(x-2*h)-f(x+2*h))/

(12*h)

Numerical differentiation err_d1f.py
theoretical error bounds: roundoff and truncation errors
for p in [2,4]:
 E_round = np.array((5*p)**0.5/2* eps * abs(f(x))/h)
 logE = np.log10(E_round)
 c = 0.8-p/8
 plt.plot(logh,logE,color=(c,c,c),alpha=0.7)
 if(p==2):
 E_trunc = abs(f3_exact(x))/6*h**2
|d3f/dx3(x)|/6 h2

 plt.plot(logh,np.log10(E_trunc),color=(0,.6,.6))
 elif(p==4):
 E_trunc=abs(f5_exact(x))/30*h**4
|d5f/dx5(x)|/30 h4

 plt.plot(logh,np.log10(E_trunc),color=(0,.8,.8))

plotting of numerical error
plt.plot(logh,np.log10(abs(d1f_2-f1_exact(x))),

 color=(1,0,.9)) # magenta
plt.plot(logh,np.log10(abs(d1f_4-f1_exact(x))),

 color=(.95,.75,0)) # gold

 err_d1f.py

Read textbook 2 carefully, there is an assignment that asks you to analytically
repeat the derivation of error term in order p=2,4 second differentiation.
Second derivative is the first derivative of the first derivative, so one stencil is
this:
y’’ ~ [(yn+1 – yn)/h + (yn+1 –yn)/h] /h = (yn-1 –2 yn + yn+1)/h2

Since we know that symmetric first derivative stencil has error ~h2, applying it
twice (forming difference of two symmetrically displaced first derivatives) we
cannot lower the accuracy to ~h: the error will be some combination of two
truncation errors ~h2, and thus will be of the second order (~h2).

It’s up to you to write Taylor expansions and do the algebra, to derive the full
error term with correct derivatives and coefficients.

Then, using program err_d1f.py as a template, you will change it to study the
numerical errors (truncation and roundoff) of two second derivative stencils,

 y’’ ~ (yn-1 –2 yn + yn+1)/h2
and
 y’’ ~ (-yn-2 +16 yn-1 –30 yn +16 yn+1 –yn+2)/12h2

[cf. problem set #3]

Application of numerical calculus:

Differentiation formulae provide ways to compute n-dimensional stencils
for 1st and 2nd derivatives. They include Laplacian operators such as

 (d2/dx2 + d2/dy2 + d2/dz2) f(x,y,z)

 (d2/dx2 + d2/dy2) f(x,y)

This enables us to find curvature of functions that change in time.
In fact, time evolution of thing that diffuse, such as thermal energy
(=temperature T), or concentration of fragrance in a room, or molecules in a
container, is governed by diffusion equation, which says that:

), or

Application of numerical calculus: Diffusion equations
 df/dt = D (d2/dx2 + d2/dy2 + d2/dz2) f(x,y,z)
 df/dt = D (d2/dx2 + d2/dy2) f(x,y)

Application of numerical calculus: Image processing, blurring images

laplacian-4.py in our code repository

Used the basic second derivative stencil to do
 (d2/dx2 + d2/dy2) F(x,y) on an image F(x,y).

 d2/dx2 + d2/dy2

 +

+1 -2 +1

+1

-2

+1

Application of numerical calculus: Image processing, blurring images

laplacian-4.py

Used the basic second derivative stencil to do
 (d2/dx2 + d2/dy2) F(x,y) on an image F(x,y).

 =

Stencil for Laplacian operator in 2D

 F(x,y,z, t+dt) = F(x,y,z,t) + dt Dh-2 [F(x+dx) + F(x-dx) +F(y+dy) + F(y-dy) – 4 F(x,y,z,t)]

+1 -4 +1

+1

+1

Application of numerical calculus: Image processing, blurring
images

dF/dt = (d2/dx2 + d2/dy2) F(x,y) on an image F(x,y).
Diffusion Equation discretized as

 F(x,y,z, t+dt) = F(x,y,z,t) + dt Dh-2 [F(x+dx) + F(x-dx) +F(y+dy) + F(y-dy) – 4 F(x,y,z,t)]

 Let q:= dt Dh-2

 F(x,y,z, t+dt) = (1-4q) F(x,y,z,t) + q [F(x+dx) + F(x-dx) +F(y+dy) + F(y-dy)]

 For stability of calculation, q < 0.25, otherwise negative F(x,y,z,t+dt) can appear, which
for temprature of concentration of particlaes or images is non-physical.

Maximum reasonable q is however 1/5 not ¼, and results in spreading of
one single peak (1 pixel) to neighboring 5 pixels, each getting value 1/5:
 1 – 4 q = 1 – 4/5 = 1/5 = q

Let’s apply such a blurring procedure to astronomical image of grand-design
spiral galaxy M81.
 laplacian-4.py

M81 galaxy

Unsharp masking technique:
Subtract blurred image from the original image
to remove the background, level the background gradients
and enhance visibility of overexposed features.

Finding Zeros of Real Functions
see http://planets.utsc.utoronto.ca/~pawel/pyth

•  Bisection method simple_bisec.py
•  Secant method simple_secant-2.py
•  Newton’s method simple_newton.py

•  We will try these methods on a polynomial of the form

def fun(x):
 return((x-0.43)*(x-0.52)*(x-0.56))

We know in advance the three real roots: {0.43, 0.52, 0.56}
Also, in Newton’s method, we can either analytically or numerically
(which is less elegant/efficient but more general in applications)
derive the first derivative df/dx of the function:

def dfdx(x):
 return ((fun(x +1e-6) - fun(x -1e-6)) /2e-6)

Zero Finding see http://planets.utsc.utoronto.ca/~pawel/pyth
Bisection method simple_bisec.py

X

y(x)

x0 = 0.4300000000000006 but count= 50
y= 7.14e-18 1 x 0.5

2 x 0.25
3 x 0.375
4 x 0.4375
5 x 0.40625
6 x 0.421875
7 x 0.4296875
8 x 0.43359375
9 x 0.431640625
10 x 0.4306640625
11 x 0.43017578125
12 x 0.429931640625
13 x 0.4300537109375
14 x 0.42999267578125
 (...)
49 x 0.4300000000000015
50 x 0.4300000000000006

Zero Finding see http://planets.utsc.utoronto.ca/~pawel/pyth
Bisection method simple_bisec.py

X

y(x)

y= 7.14e-18

•  Secant method simple_secant.py

•  xn+1 = xn – f(xn)/S
 S = (fn – fn-1)/(xn – xn-1)
 S = slope of secant line

% python3 simple_secant.py
1 x 0.5098 dx -0.4902 y 4.07e-05
2 x 0.5097 dx -0.0002 y 4.14e-05
3 x 0.5193 dx 0.0096 y 2.61e-06
4 x 0.5192 dx 0.00064 y 2.58e-07 x
5 x 0.5199 dx 7.09e-05 y 2.51e-09
6 x 0.5199 dx 6.95e-07 y 2.49e-12
7 x 0.52 dx 6.90e-10 y 2.40e-17
 x0 = 0.52 count= -8 y= -0.0
t= 0.080s

Zero Finding see http://planets.utsc.utoronto.ca/~pawel/pyth

y(x) o

o

new point
based on
previous two

o

Zero Finding see http://planets.utsc.utoronto.ca/~pawel/pyth/
simple_secant.py

y(x)

x

Convergence of secant method is theoretically
only slightly weaker than of Newton’s method.
Which means it’s very good.

Here, like all the discussed methods, secant method
finds only one of the zeros (the middle one),
and remains oblivious to others.

Zero Finding see http://planets.utsc.utoronto.ca/~pawel/pyth
•  Newton’s method simple_newton.py

X

y(x)

1 x 0.5917073170749524 dx -0.03329
2 x 0.5723529972501539 dx -0.01935
3 x 0.5630140026284234 dx -0.00934
4 x 0.5602557697109967 dx -0.00276
5 x 0.560002109743837 dx -0.00025
6 x 0.5600000001454981 dx -0.0
7 x = 0.56 dx -0.0
8 x0 = 0.56 count= -8
t= 0.0857s

xn+1 = xn – f(xn)/f’(xn)

o

o

Root Finding see http://planets.utsc.utoronto.ca/~pawel/pyth
•  Newton’s method simple_newton.py

y(x)

X

python3 simple_newton.py
1 x 0.5917073170749524 dx -0.03329
2 x 0.5723529972501539 dx -0.01935
3 x 0.5630140026284234 dx -0.00934
4 x 0.5602557697109967 dx -0.00276
5 x 0.560002109743837 dx -0.00025
6 x 0.5600000001454981 dx -0.0
7 x 0.56 dx -0.0
 x0 = 0.56 count= -8
t=0.086 s

f = 1/x – c = 0

f = x2 – c = 0

Numerical calculus: integration
see http://planets.utsc.utoronto.ca/~pawel/pyth err_int.py
•  Theory discussed in texbook#2
•  Turner et al., Springer 2018
•  Section 3.2, p. 48

Numerical integration
http://planets.utsc.utoronto.ca/~pawel/pyth err_int.py
•  Theory discussed in texbook#2
•  Turner et al., Springer 2018
•  Section 3.2, p. 48

•  NEXT TIME...... READ AHEAD

•  STUDY and RUN all the codes discussed in this lecture.
•  HAVE FUN with Python3.

