Lecture 7

- Markets, Numerical Calculus, Zeros

Scripts discussed in this lecture are downloadable from http://planets.utsc.utoronto.ca/~pawel/pyth. Please learn Python from them.

- Solutions to midterm problems
- Random walk through the markets
- Using real world data: Yahoo Finance historic quotes
- Data smoothing: convolution, boxcar kernels. Oxford weather
- Numerical Calculus: Differentiation formulae applications to image processing and diffusion
- Zero finding of a real function: efficient methods
- Bisection method
- Secant method
- Newton's method - what is 'quadratic convergence'?

PSCB57. Intro to Scientific Computing.
(c) Pawel Artymowicz UofT, 2019. For use by enrolled UTSC students.

Gamblers ruin in 1D walk with two absorbing boundaries at $n=M \& n=0$ can easily be solved analytically:

Let P_{n} be the probability of a ruin starting from value n. No limit on number of steps Boundary values are: $P_{0}=1$ and $P_{M}=0$. (Why?)

From value n we can either continue via $n-1$ with probability q, or via $n+1$ with probability $1-\mathrm{q}$. Therefore the probability of ruin can be expressed as:

$$
P_{n}=q P_{n-1}+(1-q) P_{n+1}
$$

In case of $q=1 / 2$ (unbiased random walk in 1D with step +-1), we have

$$
P_{n-1}-2 P_{n}+P_{n+1}=0 \quad \text { i.e., } \quad P_{n-1}-P_{n}=P_{n}-P_{n+1}
$$

WIN at $\mathrm{M} \longrightarrow 500 \quad$ Gamblers capital starting from $N_{0}=100$
The slopes to the left and right are equal, therefore the function $P(n)=P_{n}$ is a straight line joining the two boundary values $0 \& 1$,

$$
P_{n}=(M-n) / M
$$

In our case $\mathrm{P}_{100}=4 / 5$.

See also the case $M=+\infty$ rnd_wlk-ret-1.py on our coding page.

Random Walks in Stock Market?

Full Randomness in Stock Market? The efficient market hypothesis says Yes. See N. Taleb's book "Fooled by Randomness".
Example: IBM stock price history, last two years:

yahoorfinance

onal Business Machines Corporation (IBM) $\hat{\sim}$

- Econometrics of markets:

There is evidence that people (for instance Mutual Fund, retirement fund managers are not taking right decisions and perform worse than the stock index (70\% funds lose money + they charge fees). Is this true? You may analyze the data yourself with Python. Data are freely downloadable from, e.g., Yahoo Finance site.

The so-called 'technical analysis' purports to be able to take good decisions by algorithmic trading.

Personal and corporate finance greatly benefit from computing.

$\begin{array}{llll}\text { 1999: } & \text { 90\% of trades in markets by people, } & \text { 10\% } & \text { by algorithms } \\ \text { 2019: } & 10 \% & ---,,---,---------\end{array}$

One good book to read about computerized trading and its dangers is "Flash Boys", by Mikael Levis (there is also a Canadian movie loosely based on one chapter, but the book is very different).

Stock market: What can we do quantitatively with the data freely available from Yahoo Finance?

Date,Open,High,Low,Close,Adj Close,Volume [.csv format] 1980-09-18,0.492188,0.493490,0.492188,0.492188,0.312819,14227200 1980-09-19,0.496094,0.497396,0.496094,0.496094,0.315301,6086400 1980-09-22,0.490885,0.490885,0.488281,0.488281,0.310336,8313600 1980-09-23,0.471354,0.471354,0.470052,0.470052,0.298750,7142400 1980-09-24,0.467448,0.467448,0.464844,0.464844,0.295440,1002240 (thousands of lines here....)

2019-09-09,51.060001,52.029999,51.020000,51.590000,51.590000,20749700 2019-09-10,51.330002,51.840000,50.830002,51.820000,51.820000,18532000 2019-09-11,51.599998,52.790001,51.380001,52.790001,52.790001,18968900 2019-09-12,53.000000,53.330002,52.070000,53.009998,53.009998,23308700 2019-09-13,52.759998,53.000000,52.230000,52.540001,52.540001,18010800 2019-09-16,51.900002,52.290001,51.700001,52.200001,52.200001,13354600 2019-09-17,52.049999,52.139999,51.349998,51.950001,51.950001,19641100

Stock market: What can we do quantitatively with the data freely available from Yahoo Finance?

1. We can do simple histogram of daily increments of prices $p(t)$, or increases of $\ln (p)$, i.e., log-ratios of prices, or logarithmic returns

$$
X=d \ln (p)=\ln p(t+d t)-\ln p(t)==\ln [p(t+d t) / p(t)],
$$

in order to find out whether they resemble the symmetric, Gaussian normal distributions, which result from combination (addition) of very many small random disturbances.
2. We can take two price (increase) histories and correlate them Definitions: We often write
Variance $=\sigma^{2}=<(X-<X>)^{2}>$
Numpy provides methods: X.mean(), X.std().
The second method does exactly what the above equation says: a mean of squared deviations from the mean. Check it!
But .std doesn't quite work as it should in statistics of data uncertainty
Variance $=\sigma^{2}=N /(N-1)<(X-<X>)^{2}>$
Iff $\mathrm{N} \gg 1$, then the two definitions are in agreement. For $\mathrm{N}=1$, not really $\mathcal{~} \cdot$

- What can we do quantitatively with the price data available from Yahoo Finance?

Variance $=\operatorname{Var}(x)=\sigma_{x}^{2}:=<(x-<x>)(x-<x>)>$ measures volatility of time series.

Covariance $=\operatorname{Cov}(x, y)=\sigma_{x y}^{2}:=\langle(x-\langle x\rangle)(y-\langle y\rangle)\rangle$, [where $\langle x\rangle:=(1 / N) \sum_{n} N x_{n}$ is an arithmetic average; time aver.] measures interdependence of two variables (financial instr.)

Coefficient of correlation $=r_{x y}:=\sigma_{x y}{ }^{2} / \sigma_{x} \sigma_{y}=\operatorname{Cov} / \sigma_{x} \sigma_{y}$
$r_{x y}=\sum_{n}\left(\mathrm{x}_{\mathrm{n}}-\langle\mathrm{x}\rangle\right)\left(\mathrm{y}_{\mathrm{n}}-\langle\mathrm{y}\rangle\right) /\left[\sum_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}-\langle\mathrm{x}\rangle\right)^{2} \sum_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}}-\langle\mathrm{x}\rangle\right)^{2}\right]^{1 / 2}$.
Q: Can you show that coeff. of correlation is $r=+-1$, if $\mathrm{y}=\mathrm{ax}+\mathrm{b}$? (a,b=const.)

- Stock market: Price data on Yahoo Finance

 There is a more specialized indicator called Beta, defined as:$$
\beta=\operatorname{Cov}(\mathrm{x}, \mathrm{y}) / \operatorname{Var}(\mathrm{y})=\sigma_{\mathrm{xy}}{ }^{2} / \sigma_{\mathrm{y}}^{2}=r_{\mathrm{xy}} \sigma_{\mathrm{x}} / \sigma_{\mathrm{y}}
$$

where y is a financial instrument used as a benchmark, for instance risk-free government bond or market as a whole (market average).
Beta measures sensitivity of x to y, relative to the market's volatility.

Some of these definitions will be useful for an assignment problem in set \#3

- Financial data processing from Yahoo Finance import numpy as np; import pandas as pd \# Pandas module, statistics def dataset(nr):

```
    if(nr==1): name = "AAPL-84-19.csv" # in our python code dir
    elif(nr==2): name = "INTC-84-19.csv" # ---,,---
    elif(nr==3): name = "IXIC-84-19.csv" # ---,,---
```

 \(\mathbf{x}=\) pd.read_csv(name) \# pandas can read CSV data from YF
 print('dataset: ', name, ' read ok. ', type(x))
 \(y=x . a s _m a t r i x() \quad\) \# turn Pandas Data Frame into np.array
 Nd = np.size(y)//7
 print('Nd =',Nd)
 po \(=\mathrm{y}[:, 1] ; \mathrm{pc}=\mathrm{y}[: 4] \quad\) \# Open, Close
 \(\mathrm{ph}=\mathrm{y}[:, 2] ; \mathrm{pl}=\mathrm{y}[:, 3] \quad\) \# High, Low
 vol \(=\mathrm{y}[:, 6]\)
 return(Nd, y) \# explicitly return var's to main prog.
 \# main program starts here:
NA, YA $=\operatorname{dataset}(1) \quad$ \# read AAPL data
(...)

Financial data processing from Yahoo Finance simple_fin-3.py Notice the global crises of 2000 \& 2008 IXIC, INTC, AAPL time series

Apple, Intel pricelines divided by Nasdaq index simple_fin-3.py show performance relative to market

INTC, AAPL relative to Nasdaq index

Data smoothing by boxcar average, 11 days wide.

Data averaging by boxcar convolution
 - Sunny days in Oxford oxford-IO-0.py oxford-IO-4.py

- Data on number of sunny hours/month in Oxford, UK, 1929-2010
- cf. H. P. Langtangen ‘A primer on Scientific Progr. with Python’, 3rd ed., p 78
- Meteorological archival data from British office
- http://tinyurl.com/pwyasaa/misc/Oxford sun hours.txt
- or in a simpler form of ASCII blank-separated columns
- in our code depository
- http://planets.utsc.utoronto.ca/~pawel/pyth/oxford sunny.dat

Sunny days in Oxford oxford-IO-0.py

Sunny days in Oxford oxford-IO-0.py

\# clear days normalized to averages

Sunny days in Oxford oxford-IO-4.py

Oxford, yearly data smoothed by top-hat length 3, 0 times

- I/O and data analysis - averaging oxford-IO-0.py oxford-IO-4.py

Boxcar average = convolution (smoothing) of data with top-hat or bell-shaped, symmetric kernel function

Boxcar averages all data above which it stands at the moment. It moves over all data set, producing its smoothed version.

- oxford-IO-4.py

Oxford, yearly data smoothed by top-hat length 3, 6 times

Oxford, yearly data smoothed by top-hat length 3,12 times

Oxford, yearly data smoothed by top-hat length 3, 25 times

Data smoothing by kernels:

- Weather in Oxford, England. Simple iterative smoothing.
- Convolution $(f * g)(t) \stackrel{\text { def }}{=} \int_{-\infty}^{\infty} f(\tau) g(t-\tau) d \tau$
- Convolution $y=f^{*} g$ is an integral operation, corresponding to shifted integration of a product of functions. Most often integration is over the whole domain on which functions are defined, e.g. $-\infty$ to $+\infty$. The integrand is one function (f) multiplied by a shifted \& reversed copy of another (g). The amount of shift is the argument of the resultant function $f^{*} g(t)=g^{*}(t)$.

The meaning of convolution is smearing each point of one function with the pattern provided by the other function.

Data smoothing by convolution kernels:

Data smoothing by convolution kernels:

$$
(f * g)(t) \stackrel{\text { def }}{=} \int_{-\infty}^{\infty} f(\tau) g(t-\tau) d \tau
$$

- An example of convolution is the PDF (probability density function) of a sum of two random events: e.g., sum of points on 2 dice: $Z=X$ +Y , or two coin throws ea. resulting in +-1.
- For instance, a blurry image through foggy eye glasses, or a telescope adding diffraction and internal scattering effects, is a convolution of a sharp image with the fuzzy PSF image (Point Spread Function, image of one single point on black background).
- Physics knows many systems governed by superposition principle. Convolution is how we compute the gravity or electrostatic potentials and forces from arbitrary distribution of matter.
- Another example is the image of a license plate of a moving car, smeared beyond recognition by the too long an exposure of the picture. Deconvolution allows restoration of readability.
- Yet another is a reverb effect added by the room on the played music. In this case, reverb may be similar to one-sided exponential function. Reverberation of a sharp peak of sound does not spread it into the past, only into the future.
- Convolution is an essential ingredient of pattern-recognizing NNs.

Numerical calculus: differentiation

see http://planets.utsc.utoronto.ca/~pawel/pyth

- Theory discussed in texbook\#2
- Turner et al., Springer 2018
- Section 3.2, p. 38
err_d1f.py

Peter R. Turner . Thomas Arildsen Kathleen Kavanagh

Applied Scientific Computing

With Python

3 Numerical Calculus . 35
3.1 Introduction . 35
3.2 Numerical Differentiation . 38
3.3 Numerical Integration . 48
3.4 Composite Formulas. 58
3.5 Practical Numerical Integration. 68
3.6 Conclusions and Connections: Numerical Calculus 78
3.7 Python Functions for Numerical Calculus. 79

4 Linear Equations. 81
4.1 Introduction . 81
4.2 Gauss Elimination. 84

Numerical differentiation err_d1f.py

Take a function, any function (with enough non-zero derivatives)

- def $f(x): \quad$ return(($\left.x-1)^{* *} 3-(x-1)^{* *} 6 / 6\right)$
- def f1_exact(x): return(3*(x-1)**2 -(x-1)**5)
- def f2_exact(x): return(6*(x-1) $-5 *(x-1) * * 4)$
- def f3_exact(x): return(6 $-20 *(x-1) * * 3)$
- def f4_exact(x): return(-60*(x-1)**2)
- def f5_exact(x): return(-120*(x-1))
- def f6_exact(x): return(-120)
and differentiate it once numerically (dy/dx) with different displacements h (same as dx).

Plot error (w.r.t. exact derivative) as a function of h.

Numerical differentiation err_d1f.py

Take a function, any function (with enough non-zero derivatives)

- def $f(x):$

$$
\text { return }((x-1) * * 3-(x-1) * * 6 / 6)
$$

- \# main program
- \# different differentiation schemes
- logh = -np.linspace $(8,0,200) \quad \# \log h=-8 \ldots 0$
- h = 10.**logh
- $x=0.5$
- \# numerical differentiation
- \# p = 2 diff. formula
- $d 1 f _2=(f(x+h)-f(x-h)) /(2 * h)$
- \# p = 4 diff. formula
- $\mathrm{d} 1 \mathrm{f} 4=(8 *(\mathrm{f}(\mathrm{x}+\mathrm{h})-\mathrm{f}(\mathrm{x}-\mathrm{h}))+\mathrm{f}(\mathrm{x}-2 * \mathrm{~h})-\mathrm{f}(\mathrm{x}+2 * \mathrm{~h})) /$ (12 ${ }^{\text {h }}$)

Numerical differentiation err_d1f.py

\# theoretical error bounds: roundoff and truncation errors for p in $[2,4]$:

E_round = np.array ((5*p)**0.5/2* eps * abs (f(x))/h) $\log E=n p . \log 10\left(E _r o u n d\right)$
$c=0.8-p / 8$
plt.plot(logh, logE, color=(c, c, c), alpha=0.7)
if ($\mathrm{p}==2$) :

```
E_trunc \(=\) abs (f3_exact (x)) /6*h**2
                        \(\left|d^{3} f / d x^{3}(x)\right| / 6 \quad h^{2}\)
plt.plot(logh,np.log10(E_trunc), \(\operatorname{color}=(0, .6, .6))\)
```

 elif(\(\mathrm{p}==4\)):
 E_trunc=abs(f5_exact (x))/30*h**4
 \(\left|d^{5} f / d x^{5}(x)\right| / 30 \quad h^{4}\)
 plt.plot(logh, np. \(\left.\log 10\left(E _t r u n c\right), \operatorname{color}=(0, .8, .8)\right)\)
 \# plotting of numerical error
plt.plot(logh, np.log10(abs(d1f_2-f1_exact(x))),
color=(1,0,.9)) \# magenta
plt.plot(logh, np.log10(abs(d1f_4-f1_exact(x))),
color=(.95,.75,0)) \# gold

err_d1f.py

Derivative of $y(x)=(x-1)^{3}+(x-1)^{6} / 6$ at $x=1 / 2$

Read textbook 2 carefully, there is an assignment that asks you to analytically repeat the derivation of error term in order $p=2,4$ second differentiation.
Second derivative is the first derivative of the first derivative, so one stencil is this:
$y^{\prime \prime} \sim\left[\left(y_{n+1}-y_{n}\right) / h+\left(y_{n+1}-y_{n}\right) / h\right] / h=\left(y_{n-1}-2 y_{n}+y_{n+1}\right) / h^{2}$
Since we know that symmetric first derivative stencil has error $\sim h^{2}$, applying it twice (forming difference of two symmetrically displaced first derivatives) we cannot lower the accuracy to $\sim h$: the error will be some combination of two truncation errors $\sim \mathrm{h}^{2}$, and thus will be of the second order $\left(\sim \mathrm{h}^{2}\right)$.

It's up to you to write Taylor expansions and do the algebra, to derive the full error term with correct derivatives and coefficients.

Then, using program err_d1f.py as a template, you will change it to study the numerical errors (truncation and roundoff) of two second derivative stencils,

$$
y^{\prime \prime} \sim\left(y_{n-1}-2 y_{n}+y_{n+1}\right) / h^{2}
$$

and

$$
y^{\prime \prime} \sim\left(-y_{n-2}+16 y_{n-1}-30 y_{n}+16 y_{n+1}-y_{n+2}\right) / 12 h^{2}
$$

[cf. problem set \#3]

Application of numerical calculus:

Differentiation formulae provide ways to compute n-dimensional stencils for $1^{\text {st }}$ and $2^{\text {nd }}$ derivatives. They include Laplacian operators such as

$$
\begin{aligned}
& \left(d^{2} / d x^{2}+d^{2} / d y^{2}+d^{2} / d z^{2}\right) f(x, y, z) \\
& \left(d^{2} / d x^{2}+d^{2} / d y^{2}\right) f(x, y)
\end{aligned}
$$

This enables us to find curvature of functions that change in time. In fact, time evolution of thing that diffuse, such as thermal energy (=temperature T), or concentration of fragrance in a room, or molecules in a container, is governed by diffusion equation, which says that:

$$
\frac{\partial C(x, t)}{\partial t}=D \frac{\partial^{2} C(x, t), \quad \text { or }}{\partial x^{2}}
$$

Application of numerical calculus: Diffusion equations
$d f / d t=D\left(d^{2} / d x^{2}+d^{2} / d y^{2}+d^{2} / d z^{2}\right) f(x, y, z)$ $d f / d t=D\left(d^{2} / d x^{2}+d^{2} / d y^{2}\right) f(x, y)$

$\frac{\partial C}{\partial t}=D \nabla^{2} C$,

Application of numerical calculus: Image processing, blurring images laplacian-4.py in our code repository

Used the basic second derivative stencil to do $\left(d^{2} / d x^{2}+d^{2} / d y^{2}\right) F(x, y)$ on an image $F(x, y)$.

$$
d^{2} / d x^{2}
$$

$+\mathrm{d}^{2} / \mathrm{dy}^{2}$

Application of numerical calculus: Image processing, blurring images Iaplacian-4.py

Used the basic second derivative stencil to do $\left(d^{2} / d x^{2}+d^{2} / d y^{2}\right) F(x, y)$ on an image $F(x, y)$.

Stencil for Laplacian operator in 2D

$$
F(x, y, z, t+d t)=F(x, y, z, t)+d t D h^{-2}[F(x+d x)+F(x-d x)+F(y+d y)+F(y-d y)-4 F(x, y, z, t)]
$$

Application of numerical calculus: Image processing, blurring images

$d F / d t=\left(d^{2} / d x^{2}+d^{2} / d y^{2}\right) F(x, y)$ on an image $F(x, y)$. Diffusion Equation discretized as

$$
\begin{aligned}
& F(x, y, z, t+d t)=F(x, y, z, t)+d t D h^{-2}[F(x+d x)+F(x-d x)+F(y+d y)+F(y-d y)-4 F(x, y, z, t)] \\
& \text { Let } q:=d t D h^{-2} \\
& F(x, y, z, t+d t)=(1-4 q) F(x, y, z, t)+q[F(x+d x)+F(x-d x)+F(y+d y)+F(y-d y)]
\end{aligned}
$$

For stability of calculation, $q<0.25$, otherwise negative $F(x, y, z, t+d t)$ can appear, which for temprature of concentration of particlaes or images is non-physical.

Maximum reasonable q is however $1 / 5$ not $1 / 4$, and results in spreading of one single peak (1 pixel) to neighboring 5 pixels, each getting value $1 / 5$:

$$
1-4 q=1-4 / 5=1 / 5=q
$$

Let's apply such a blurring procedure to astronomical image of grand-design spiral galaxy M81.

M81 galaxy

Unsharp masking technique:

Subtract blurred image from the original image
to remove the background, level the background gradients and enhance visibility of overexposed features.

Finding Zeros of Real Functions

see http://planets.utsc.utoronto.ca/~pawel/pyth

- Bisection method
- Secant method
- Newton's method
simple_bisec.py
simple_secant-2.py
simple_newton.py
- We will try these methods on a polynomial of the form

```
def fun(x):
    return((x-0.43)*(x-0.52)*(x-0.56))
```

We know in advance the three real roots: $\{0.43,0.52,0.56\}$ Also, in Newton's method, we can either analytically or numerically (which is less elegant/efficient but more general in applications) derive the first derivative df/dx of the function:
def $\operatorname{dfdx}(x)$:
return ((fun $(x+1 e-6)$ - fun $(x-1 e-6)) / 2 e-6)$

Bisection method

 simple_bisec.py

Bisection method

simple_bisec.py

Bisection method0.43

- Secant method simple_secant.py
- $x_{n+1}=x_{n}-f\left(x_{n}\right) / S$

$$
S=\left(f_{n}-f_{n-1}\right) /\left(x_{n}-x_{n-1}\right)
$$

$$
S=\text { slope of secant line }
$$

$1 \times 0.5098 \mathrm{dx}-0.4902$ y $4.07 \mathrm{e}-05$ $2 \times 0.5097 \mathrm{dx}-0.0002$ y $4.14 \mathrm{e}-05$ $3 \times 0.5193 \mathrm{dx} 0.0096$ y $2.61 \mathrm{e}-06$ $4 \times 0.5192 \mathrm{dx} 0.00064$ y $2.58 \mathrm{e}-07$ $5 \times 0.5199 \mathrm{dx} 7.09 \mathrm{e}-05$ y $2.51 \mathrm{e}-09$ $6 \times 0.5199 \mathrm{dx} 6.95 \mathrm{e}-07$ y $2.49 \mathrm{e}-12$ $7 \times 0.52 \mathrm{dx} 6.90 \mathrm{e}-10$ y $2.40 \mathrm{e}-17$ $x 0=0.52$ count $=-8 y=-0.0$ $\mathrm{t}=0.080 \mathrm{~s}$

Zero Finding
see http://planets.utsc.utoronto.ca/~pawel/pyth/ simple_secant.py

Zero Finding

- Newton's method simple_newton.py

Root Finding

- Newton's method simple_newton.py

Newton's method, $x=0.56$

$$
f=1 / x-c=0
$$

Convergence of methods for finding 1 / 7

$$
f=x^{2}-c=0
$$

Convergence of iterated sqrt(4)

Numerical calculus: integration
 see http://planets.utsc.utoronto.ca/~pawel/pyth
 err_int.py

- Theory discussed in texbook\#2
- Turner et al., Springer 2018

Peter R. Turner. Thomas Arildsen Kathleen Kavanagh

- Section 3.2, p. 48

Applied Scientific Computing

With Python

3 Numerical Calculus . 35
3.1 Introduction . 35
3.2 Numerical Differentiation . 38
3.3 Numerical Integration . 48
3.4 Composite Formulas. 58
3.5 Practical Numerical Integration. 68
3.6 Conclusions and Connections: Numerical Calculus 78
3.7 Python Functions for Numerical Calculus. 79

4 Linear Equations. 81
4.1 Introduction . 81
4.2 Gauss Elimination. 84

Numerical integration

http://planets.utsc.utoronto.ca/~pawel/pyth

- Theory discussed in texbook\#2
- Turner et al., Springer 2018
- Section 3.2, p. 48
- NEXT TIME...... READ AHEAD
- STUDY and RUN all the codes discussed in this lecture.
- HAVE FUN with Python3.

