
Lecture 8
u  Roots, integration, and linear algebra
As always, study & learn Python from scripts discussed in this lecture, cf.
http://planets.utsc.utoronto.ca/~pawel/pyth.

Formal proof of convergence of secant and Newton’s method
Which method is quicker: secant or Newton-Raphson-Simpson?
•  Numerical Calculus: Rules of integration faster than MtCarlo
•  Interpolating polynomials and integration: page 48 Turner(2018)
v Euler’s method
v Trapezoid rule
v  Simpson’s rule

•  Numerical Linear Algebra
§  NumPy method to solve NxN linear equations
§  Applications: data fitting and denoising

PSCB57. Intro to Scientific Computing.
(c) Pawel Artymowicz UofT, 2019. For use by enrolled UTSC students.

f = x2 – c = 0, c = 4, by Newton’s method *

*) actually, Isaac Newton neither invented nor used this method.

•  Reminder: zero finding by Newton’s method
simple_newton.p

X

y(x)

% python3 simple_newton.py
1 x 0.5917073170749524 dx -0.03329
2 x 0.5723529972501539 dx -0.01935
3 x 0.5630140026284234 dx -0.00934
4 x 0.5602557697109967 dx -0.00276
5 x 0.560002109743837 dx -0.00025
6 x 0.5600000001454981 dx -0.0 fn
7 x = 0.56 dx -0.0
8 x0 = 0.56 count= -8
t= 0.0857s

 xn+2 xn+1 xn

xn+1 = xn – f(xn)/f’(xn)
f(xn)=f’(xn)(xn+1-xn)

o

o

o

o o

•  Formal proof of quadratic convergence of Newton’s
method:

•  xn+1 = xn – fn/f’n
•  Let’s define z as zero of function f: f(z)=0 and Taylor-

expand function f around xn:
•  0 = f(z) = f(xn) +(z-xn) f’(xn) + (z-xn)2 f’’(xn)/2 +...
•  Divide by f’(xn) and rearrange,
•  z -xn +f(xn)/f’(xn) = - (z-xn)2 f’’(xn)/2 +...
•  Using the blue equation on the left, we prove the quadratic relation
between the consecutive error terms:
 |z –xn+1| = | -(z-xn)2 f’’(xn)/2f’(xn) +...| = |f’’(ξ)/2f’(xn)| |z-xn|2,
where ξ is somewhere between xn and z, such that the whole
colored term is asymptotically a constant.
In words: asymptotically the number of accurate digits doubles
in every iteration.
•  Note: it is possible to start too far from the attraction range of the iteration,

making f’ too small or zero, thus preventing the success. But if the method
starts converging, it converges quadratically, i.e. very fast.

Reminder from Lecture 7. We will see below that numerical integration error behaves
somewhat similarly (drops with hp, then rises as h-1 due to roundoff, as h decreases.)
But sometimes there are problems. Integration is more difficult than differentiation!
We can always differentiate functions, but not always integrate.

Numerical calculus: integration
see http://planets.utsc.utoronto.ca/~pawel/pyth integ-p124-*.py
•  Theory discussed in texbook#2
•  Turner et al., Springer 2018
•  Section 3.2, p. 48

Basic idea of how we integrate in small intervals of x

Numerical Calculus II: Integration

Developing coefficients c0, c1, ... of approximation polynomials
in a small interval covered by just several computational points
(samples of data or math function).

Def.: Order of the method is m if it integrates polynomials
or piecewise polynomials up to order m exactly,
and exhibits error proportional to hm+1
where h is the interval’s width, for other functions.

Require that method is of order m, and write m+1 equations
(for n=0,1,2,...,m) binding m+1 coefficients of the method.
Solve for cn.
The integration points may be uniformly spaced in the x-interval
or their positions in the interval may also be unknown (there
must be exactly m+1 unknown x’s and c’s – read all about Gauss integration
formulae on p. 56 of textbook)

 Euler(left value)
1st order

Midpoint method
2nd order

Trapezoid method
2nd order

Simpson’s rule – green
3rd order

Numerical integration of functions
see http://planets.utsc.utoronto.ca/~pawel/pyth

•  Integrate exp(-x) from 0 to 1: integ-p124-exp.py
•  Integrate (1+x2)-1 from 0 to 1: integ-p124-arc.py
•  Integrate the length of a curtain: integ-p124-cur.py
•  Integrate ¼ circle (area): integ-p124-Acirc.py
•  Integrate ¼ circle (length): integ-p124-Lcirc.py

We implement and compare these methods :
q Euler’s method
q Midpoint method
q Trapezoid rule
q Simpson’s rule (so-called 1/3 rule, a 3-point rule)
q Pythagoras rule for line integrals (which you know from

midterm)

N+1 points forming N uniform intervals covering x-interval [a,b].
We have equal integration steps h = (b-a)/N = xn+1 – xn, for all intervals n=0,1,2,...
•  Euler (left) S = (f0 + f1 + f2 + ... fn-1) h
•  Euler (right) S = (f1 + f2 + f3 + ... fn) h
•  Midpoint S = (f1/2 + f3/2 +... + fn-3/2 + fn-1/2) h, f1/2 := f((x0+x1)/2) etc.
•  Trapezoid S = ((1/2)f0 + f1 + f2 + f3 + ...+ fn-1 + (1/2)fn) h
•  Simpson’s 1/3: S = (f0 + 4f1 + 2f2 + 4f3 + 2f4 +... + 4fn-1+ fn) h
•  Pythagoras length summation: Sum of all [(xn+1-xn)2 + (fn+1-fn)2]1/2

•  Notice that integration errors accumulate and will be N times larger than

single-interval error for basic formulae. N = (b-a)/h ~ h-1.
•  If the error on one sub-interval was ~hp, then the error on bigger interval

[a,b], made of N sub-intervals, will be ~N hp ~ hp-1.
•  Therefore, on the large interval [a,b] we lose

Composite integration formulae – combining N
small sub-intervals of width h.

Integrate exp(-x) from 0 to 1: integ-p124-exp.py

a nice, smooth, function with
well-behaved derivatives

integ-p124-exp.py

Algorithms give expected convergence
because the function is smooth

everything works as advertised!

Integrate 1/(1+x2) from 0 to 1: integ-p124-arc.py

another nice, smooth function

better than expected

Again, everything works as advertised or better (Simpson’s rule error~h6 instead of h4)!

Integrate ¼ circle from 0 to 1: integ-p124-Acirc.py

Notice steep descent near the
end; this will cause problems..

Methods don’t work as advertised, because the
function is very difficult to integrate accurately near
x=1, where the function graph becomes vertical &
derivatoved blow up to infinity, and with them error
terms.

Integrate length of ¼ circle x=0...1 integ-p124-arc.py

The sharp peak of dy/dx and other derivatives at x=1 promises trouble in this analytical
approach to line integral giving the length of the circular curve (cf. the vertical axis label).

Algorithms don’t have the expected
convergence, because the function is very
difficult to integrate accurately

Breakdown of normal convergence rules of all the discussed methods except Pythagoras
summation, which is not sensitive to derivatives. Error dominated by a few h intervals near x~1.

Computer Linear Algebra
•  Read Turner et al., chapter 4, p. 81
•  If you do not remember basic linear algebra (vectors, matrix

notation, what is a linear system of equations, matrix
inversion by Gauss elimination, linear systems and their
solutions, what is an eigenvalue and eigenvector), please
ask TA during tutorial, after first reading the link below.

 Carl Friedrich Gauss (1777-1855)

•  https://saylordotorg.github.io/text_intermediate-algebra/
s06-05-matrices-and-gaussian-eliminat.html

Computer Linear Algebra
Examples of some scientific problems leading to linear systems of
equations:
•  Fitting theory to data
•  De-noising measurements if underlying trends understood and can

be modeled mathematically
•  Solving discretized differential equations of science and engineering

(many examples, as most of science since about 200 years ago
uses the language of differential equations)

•  Finding eigenvalues such as energy E in Schroedinger eq. of
quantum mechanics, or rates of growth of spiral density waves in
galaxies

•  Finding modes in mechanical systems, e.g. shapes of the fastest
growing modes in disk galaxies, distribution of stress and dilatation
in vibrating objects.

•  Flight simulators (the so-called panel methods)
o  In addition, matrix operations are ubiquitous in: signal and image

processing, multidimensional visualization and simulation,
o  as well as machine learning (so-called AI = artificial intelligence)

Computer Linear Algebra
•  To begin working with Python, start with this matrix equation

 A x = b [matrix A times vector x equals vector b]

A linear system of N eqs. for N unknowns, A is a square NxN matrix, b
the vector of constants of length N, x is the vector of N unknowns.

 x = np.linalg.solve(A,b) # NumPy solves the system

•  Consider a least-squares, 3-parameter fit. What is it?
•  A method to find parameters of curves that pass closest to experimental

data points (minimize sum of squares of differences)
•  Least Squares method will be presented in detail in Lecture 9.

Meanwhile see how well it works while finding coefficients of a
linear combination of complicated functions, providing the best fit
to a synthetic data set.

•  fit-3par.py - see our Python code repository.

Least squares fit (parabola fit to noisy data): fit-3par.py

•  “Hidden truth” or a theoretical dependence is in the form
•  yth = a[0] f(0,x) + a[1] f(1,x) + a[2] f(2,x)
•  = a[0] x*x + a[1] x + a[2]
•  a = ath = [-1, 2, 0] # assumed values. Q: can they be

 # recovered by the program?
•  x-axis is 100 uniformly spread values from 0 to 3.
•  Noise added to simulate observational errors. Y holds 100 y-values:
•  Y = -x*x+2*x + (np.random.rand(M)+np.random.rand(M)-1)
•  Find set of parameters a	=	a_best_fit giving the best fit by requiring
•  E = np.sum((yth-Y)**2) à minimum
•  Taking N derivatives after all a[n] yields N equations with N

unknown a’s:
•  A a = b [N x N system of linear equations]
•  A[m,n] = np.sum(f(n,x)*f(m,x)) # see L9 for more details
•  b = np.sum(f(n,x)*Y)
•  a = A-1 b # formal solution in terms

 # of the inverse matrix A-1

red = fit
gray = hidden truth (smooth dependence)
blue = data pts = smooth dependence + noise

parameters:
a_assumed = [-1, 2, 0]
a_best_fit = [-0.944 1.826 0.171]

search for best coefficient set {an}: y = a0x2 +a1x +a2

red = fit
gray = hidden smooth dependence
blue = data = smooth dependence + noise

parameters:
 a = [-1, 2, 0, 1]
a_best_fit = [-1.022 2.095 -0.008 1.001]

Finds the best combination of a parabola and sin(5x) that fits the data. Uncovers
correctly all the parameters gray curve that was used to generate the blue points.
This effectively de-noises the data set. Notice that we used the knowledge of what kind
of functions to use, but that is often clear from the scientific context of a problem.

 fit-4par.py.
search for best coefficients {an}: y = a0x2+a1x+a2+a3cos(5x)

red = fit
gray = smooth dependence
blue = data = smooth dependence + noise

parameters:
 a = [-1, 2, 0, 1]
a_best_fit = [-1.022 2.095 -0.008 1.001]

So much noise has been added here (varying in every execution of the code) that it
becomes very hard to see what kind of periodic signal is hidden. Only something
resembling a parabolic trend can be noticed. Let’s now see how the linear algebra of
the Least Squares method is going to recover for us the underlying regular variations.

 fit-4parN.py

 y = a0x2 +a1x +a2 +a3cos(5x) ?

red = fit
gray = hidden smooth dependence
blue = data = smooth dependence + noise

parameters:
 a = [-1, 2, 0, 1]
a_best_fit = [-0.936 1.715 0.260 0.964]

Very nice recovery (denoising) of the “true” variations obscured by strong noise

 fit-4parN.py

search for best coefficient set {an}: y = a0x2 +a1x +a2 +a3cos(5x)

red = fit
gray = smooth dependence
blue = data = smooth dependence + noise

parameters:
 a = [-1, 2, 0, 1]
a_best_fit = [-0.936 1.715 0.260 0.964]

Let’s add even more noise and test the strength of the method!
Can this data possibly be de-noised?

y(x)

 fit-4parN2.py

 y = a0x2 +a1x +a2 +a3cos(5x) ??

red = fit
gray = hidden, assumed dependence
blue = data = assumed dependence + noise

parameters a[0]...a[3]:
a_hidden_truth = [-1, 2, 0, 1]
a_best_fit = [-0.614, 0.712, 0.919, 0.839]

 fit-4parN2.py
A moderate success! Although some parameters
recovered with noticeable errors..

