
Lecture 8      
u    Roots, integration, and linear algebra 
As always, study & learn Python from scripts discussed in this lecture, cf. 
http://planets.utsc.utoronto.ca/~pawel/pyth.  
 
Formal proof of convergence of secant and Newton’s method 
Which method is quicker: secant or Newton-Raphson-Simpson? 
•  Numerical Calculus: Rules of integration faster than MtCarlo 
•  Interpolating polynomials and integration:  page 48 Turner(2018) 
v Euler’s method 
v Trapezoid rule  
v  Simpson’s rule  

•  Numerical Linear Algebra 
§  NumPy method to solve NxN linear equations 
§  Applications: data fitting and denoising 
 
 

PSCB57. Intro to Scientific Computing. 
(c) Pawel Artymowicz UofT, 2019. For use by enrolled UTSC students. 



 
 

f = x2 – c = 0,    c = 4,   by Newton’s method * 

*) actually, Isaac Newton neither invented nor used this method. 



•  Reminder: zero finding by Newton’s method                
simple_newton.p 

X 

y(x) 

% python3  simple_newton.py 
1  x 0.5917073170749524  dx -0.03329 
2  x 0.5723529972501539  dx -0.01935 
3  x 0.5630140026284234  dx -0.00934 
4  x 0.5602557697109967  dx -0.00276 
5  x 0.560002109743837    dx -0.00025 
6  x 0.5600000001454981  dx -0.0                        fn 
7  x = 0.56       dx -0.0 
8  x0 =  0.56  count= -8 
t= 0.0857s 
 
 
                                                         
                                                       xn+2    xn+1      xn 

xn+1 = xn – f(xn)/f’(xn)  
f(xn)=f’(xn)(xn+1-xn)  

o 

o 

o 

o o 



•  Formal proof of quadratic convergence of Newton’s 
method: 

•  xn+1 = xn – fn/f’n                                                     
•  Let’s define z as zero of function f:   f(z)=0 and Taylor-

expand function f around xn:  
•  0 = f(z) = f(xn) +(z-xn) f’(xn) + (z-xn)2 f’’(xn)/2 +... 
•  Divide by f’(xn) and rearrange, 
•  z -xn +f(xn)/f’(xn) = - (z-xn)2 f’’(xn)/2 +... 
•  Using the blue equation on the left, we prove the quadratic relation 
between the consecutive error terms: 
    |z –xn+1| = | -(z-xn)2 f’’(xn)/2f’(xn)  +...| =  |f’’(ξ)/2f’(xn)|   |z-xn|2,  
where ξ is somewhere between xn and z, such that the whole  
colored term is asymptotically a constant.  
In words: asymptotically the number of accurate digits doubles  
in every iteration. 
•  Note: it is possible to start too far from the attraction range of the iteration, 

making f’ too small or zero, thus preventing the success. But if the method 
starts converging, it converges quadratically, i.e. very fast. 



Reminder from Lecture 7. We will see below that numerical integration error behaves  
somewhat similarly (drops with hp, then rises as h-1 due to roundoff, as h decreases.) 
But sometimes there are problems. Integration is more difficult than differentiation! 
We can always differentiate functions, but not always integrate.  



Numerical calculus: integration                         
see http://planets.utsc.utoronto.ca/~pawel/pyth               integ-p124-*.py              
•  Theory discussed in texbook#2  
•  Turner et al.,  Springer 2018  
•  Section 3.2, p. 48 

 
 

 



Basic idea of how we integrate in small intervals of x 



   
 

 
 

Numerical Calculus II: Integration 
 
Developing coefficients c0, c1, ... of approximation polynomials  
in a small interval covered by just several computational points 
(samples of data or math function). 
 
Def.:   Order of the method is  m  if it integrates polynomials 
or piecewise polynomials up to order m exactly,  
and exhibits error proportional to hm+1   
where h is the interval’s width, for other functions. 
 
Require that method is of order m, and write m+1 equations 
(for n=0,1,2,...,m) binding m+1 coefficients of the method.  
Solve for cn. 
The integration points may be uniformly spaced in the x-interval   
or their positions in the interval may also be unknown (there  
must be exactly m+1 unknown x’s and c’s – read all about Gauss integration 
formulae on p. 56 of textbook) 
 
 
 
  
 
 



  Euler(left value) 
1st order  

Midpoint method 
2nd order 

Trapezoid method 
2nd order 

Simpson’s rule – green 
3rd order 



Numerical integration of  functions  
see http://planets.utsc.utoronto.ca/~pawel/pyth 

•  Integrate exp(-x) from 0 to 1:             integ-p124-exp.py 
•  Integrate (1+x2)-1 from 0 to 1:             integ-p124-arc.py 
•  Integrate the length of a curtain:        integ-p124-cur.py 
•  Integrate ¼ circle (area):                  integ-p124-Acirc.py 
•  Integrate ¼ circle (length):             integ-p124-Lcirc.py 
 
We implement and compare these methods : 
q Euler’s method 
q Midpoint method 
q Trapezoid rule 
q Simpson’s rule (so-called 1/3 rule, a 3-point rule) 
q Pythagoras rule for line integrals (which you know from 

midterm) 
 
 
 
 



N+1 points forming N uniform intervals covering x-interval [a,b]. 
We have equal integration steps h = (b-a)/N = xn+1 – xn, for all intervals n=0,1,2,... 
•  Euler (left)   S = (f0 + f1 + f2 + ... fn-1) h      
•  Euler (right)  S = (f1 + f2 + f3 + ... fn) h      
•  Midpoint      S = (f1/2 + f3/2 +... + fn-3/2 + fn-1/2) h,       f1/2 := f((x0+x1)/2) etc. 
•  Trapezoid     S = ((1/2)f0 + f1 + f2 + f3 + ...+ fn-1 + (1/2)fn) h      
•  Simpson’s 1/3:   S = (f0 + 4f1 + 2f2 + 4f3 + 2f4 +... + 4fn-1+ fn) h    
•  Pythagoras length summation:   Sum of all   [(xn+1-xn)2 + (fn+1-fn)2]1/2   

 
•  Notice that integration errors accumulate and will be N times larger than 

single-interval error for basic formulae. N = (b-a)/h ~ h-1. 
•  If the error on one sub-interval was ~hp, then the error on bigger interval 

[a,b], made of N sub-intervals, will be ~N hp ~ hp-1. 
•  Therefore, on the large interval [a,b]  we lose  

Composite integration formulae – combining N 
small sub-intervals of width h.  



Integrate exp(-x) from 0 to 1:      integ-p124-exp.py 
 

a nice, smooth, function with  
well-behaved derivatives 



integ-p124-exp.py   
 

Algorithms give expected convergence 
because the function is  smooth 

everything works as advertised! 



Integrate 1/(1+x2) from 0 to 1:      integ-p124-arc.py 
 

another nice, smooth function 



better than expected    

Again, everything works as advertised or better (Simpson’s rule error~h6 instead of h4)! 



Integrate ¼ circle from 0 to 1:      integ-p124-Acirc.py 
 

Notice steep descent near the 
end; this will cause problems.. 



Methods don’t work as advertised, because the 
function is very difficult to integrate accurately near 
x=1, where the function graph becomes vertical & 
derivatoved blow up to infinity, and with them error 
terms. 



Integrate length of ¼  circle x=0...1   integ-p124-arc.py 
 

The sharp peak of dy/dx and other derivatives at x=1 promises trouble in this analytical  
approach to line integral giving the length of the circular curve (cf. the vertical axis label).  



Algorithms don’t have the expected 
convergence, because the function is very  
difficult to integrate accurately  

Breakdown of normal convergence rules of all the discussed methods except Pythagoras 
summation, which is not sensitive to derivatives. Error dominated by a few h intervals near x~1. 



Computer Linear Algebra  
•  Read Turner et al., chapter 4, p. 81 
•  If you do not remember basic linear algebra (vectors, matrix 

notation, what is a linear system of equations, matrix 
inversion by Gauss elimination, linear systems and their 
solutions, what is an eigenvalue and eigenvector), please 
ask TA during tutorial, after first reading the link below. 

                                       Carl Friedrich Gauss (1777-1855) 

•  https://saylordotorg.github.io/text_intermediate-algebra/
s06-05-matrices-and-gaussian-eliminat.html 



Computer Linear Algebra  
Examples of some scientific problems leading to linear systems of 
equations: 
•  Fitting theory to data 
•  De-noising measurements if underlying trends understood and can 

be modeled mathematically 
•  Solving discretized differential equations of science and engineering 

(many examples, as most of science since about 200 years ago 
uses the language of differential equations) 

•  Finding eigenvalues such as energy E in Schroedinger eq. of 
quantum mechanics, or rates of growth of spiral density waves in 
galaxies 

•  Finding modes in mechanical systems, e.g. shapes of the fastest 
growing modes in disk galaxies, distribution of stress and dilatation 
in vibrating objects. 

•  Flight simulators (the so-called panel methods) 
o  In addition, matrix operations are ubiquitous in: signal and image 

processing, multidimensional visualization and simulation, 
o  as well as machine learning (so-called AI = artificial intelligence)  



Computer Linear Algebra  
•  To begin working with Python, start with this matrix equation 
 
               A x = b                  [matrix A times vector x equals vector b] 
 
A linear system of N eqs. for N unknowns, A is a square NxN matrix, b 
the vector of constants of length N, x is the vector of N unknowns. 
 
              x = np.linalg.solve(A,b)            # NumPy solves the system 

•  Consider a least-squares, 3-parameter fit. What is it? 
•  A method to find parameters of curves that pass closest to experimental 

data points (minimize sum of squares of differences)  
•  Least Squares method will be presented in detail in Lecture 9. 

Meanwhile see how well it works while finding coefficients of a 
linear combination of complicated functions, providing the best fit 
to a synthetic data set. 

•  fit-3par.py    - see our Python code repository.  



Least squares fit (parabola fit to noisy data): fit-3par.py  
 

•  “Hidden truth” or a theoretical dependence is in the form 
•  yth = a[0] f(0,x) + a[1] f(1,x) + a[2] f(2,x) 
•       = a[0]  x*x   + a[1]  x      + a[2] 
•  a = ath = [-1, 2, 0]              # assumed values. Q: can they be  

             #         recovered by the program? 
•  x-axis is 100 uniformly spread values from 0 to 3. 
•  Noise added to simulate observational errors. Y holds 100 y-values: 
•  Y = -x*x+2*x + (np.random.rand(M)+np.random.rand(M)-1) 
•  Find set of parameters a	=	a_best_fit giving the best fit by requiring     
•  E = np.sum((yth-Y)**2) à minimum 
•  Taking N derivatives after all a[n] yields N equations with N 

unknown a’s:   
•      A a = b                                     [N x N system of linear equations] 
•  A[m,n] = np.sum(f(n,x)*f(m,x))                   # see L9 for more details 
•  b = np.sum(f(n,x)*Y)                            
•     a = A-1 b              # formal solution in terms 

                          #  of the inverse matrix A-1 



red = fit  
gray = hidden truth (smooth dependence)  
blue = data pts = smooth dependence + noise 
 
parameters: 
a_assumed =  [  -1,         2,         0   ] 
a_best_fit    =  [-0.944  1.826  0.171] 

search for best coefficient set {an}:    y = a0x2 +a1x +a2  



red = fit  
gray = hidden smooth dependence 
blue = data = smooth dependence + noise 
 
parameters: 
             a = [  -1,       2,        0,        1 ] 
a_best_fit = [-1.022  2.095 -0.008  1.001]  

Finds the best combination of a parabola and sin(5x) that fits the data. Uncovers 
correctly all the parameters gray curve that was used to generate the blue points.  
This effectively de-noises the data set. Notice that we used the knowledge of what kind 
of functions to use, but that is often clear from the scientific context of a problem.   

 fit-4par.py.  
search for best coefficients   {an}:    y = a0x2+a1x+a2+a3cos(5x) 



red = fit  
gray = smooth dependence 
blue = data = smooth dependence + noise 
 
parameters: 
             a = [-1,  2,  0, 1] 
a_best_fit = [-1.022  2.095 -0.008  1.001]  

So much noise has been added here (varying in every execution of the code) that it 
becomes very hard to see what kind of periodic signal is hidden. Only  something 
resembling a parabolic trend can be noticed. Let’s now see how the linear algebra of 
the Least Squares method is going to recover for us the underlying regular variations. 

 fit-4parN.py  

  y = a0x2 +a1x +a2 +a3cos(5x)  ? 



red = fit  
gray = hidden smooth dependence 
blue = data = smooth dependence + noise 
 
parameters: 
             a = [    -1,        2,       0,       1] 
a_best_fit = [-0.936  1.715  0.260  0.964] 

Very nice recovery (denoising) of the “true” variations obscured by strong noise 

 fit-4parN.py  

search for best coefficient set {an}:    y = a0x2 +a1x +a2 +a3cos(5x) 



red = fit  
gray = smooth dependence 
blue = data = smooth dependence + noise 
 
parameters: 
             a = [    -1,        2,       0,       1] 
a_best_fit = [-0.936  1.715  0.260  0.964] 

Let’s add even more noise and test the strength of the method!  
Can this data possibly be de-noised?  

y(x) 

 fit-4parN2.py  

  y = a0x2 +a1x +a2  +a3cos(5x)  ?? 



red = fit  
gray = hidden, assumed dependence 
blue = data = assumed dependence + noise 
 
parameters a[0]...a[3]: 
a_hidden_truth =  [    -1,          2,         0,         1] 
a_best_fit          = [-0.614,  0.712, 0.919,  0.839] 

 fit-4parN2.py  
A moderate success! Although some parameters  
recovered with noticeable errors.. 


