
Lecture 9
u Recap of integration:
 Formal proof of convergence of 2nd order integration methods
u  Linear algebra
v  Sets of linear equations solved by Gauss elimination
v Method of Least Squares
v  Fitting polynomials and other linear combinations of nonlinear

functions to data
v  Fitting as denoising – one example in detail
v  Finding dark matter in galaxies

o  theory
o  observations
o  fitting

As always, study & learn Python from scripts discussed in this lecture, cf.
http://planets.utsc.utoronto.ca/~pawel/pyth.

PSCB57. Intro to Scientific Computing.
(c) Pawel Artymowicz UofT, 2019. For use by enrolled UTSC students.

Euler(left value)

Midpoint method

Trapezoid method

Simpson’s rule - green

Last time we talked about these integration rules

•  Formal proof of 2nd order convergence of trapezoid
integration rule:

•  Consider subinterval x0 to x1, of width h = x1-x0. Denote f{0,1} :=
f(x{0,1}).

•  Taylor expansion gives f(x) anywhere in this interval:
•  f(x) = f0 + (x-x0) f’0 + ½ (x-x0)2 f’’0 + ...
•  In particular, we have for x=x1:
•  f1 = f0 + h f’0 + ½ h2 f’’0 + ...
•  True integral of function f(x) in the subinterval equals, i.e., of

it’s Taylor expansion, is (as you should check by integration!)
•  Itrue = h f0 + ½ h2 f’0 + (h3/6) f’’0 + ...
•  The trapezoid rule reads: I = h (f0 + f1)/2. Substituting f1 from

the blue formula above, we get
•  I = h (2f0 +h f’0 +½ h2 f’’0)/2 = h f0 + ½ h2 f’0 + (h3/4)f’’0 +...
•  Thus I = Itrue -(h3/12)f’’0 +... = = Itrue -(h3/12)f’’(ξ), where ξ is

somewhere in the subinterval.
•  The composite formula, constructed for N=(b-a)/h subintervals, has
thus accuracy of order O(N h3) = O(h2). Error of trapezoid integration
on interval from a to b drops with shrinking h (or growing N) as ~h2
(second order algorithm) n

•  Formal proof of 2nd order convergence of midpoint
integration rule:

•  Consider subinterval x0 to x1, of width h = x1-x0.
•  Denote midpoint ½(x0+x1) as xm, and fm := f(½(x0+x1))=f(xm).
•  Taylor expansion gives f(x) anywhere in this interval:
•  f(x) = fm + (x-xm) f’m + ½ (x-xm)2 f’’m + ...
•  True integral of function f(x) over the subinterval from (x-xm) =
 -h/2 to (x-xm) = +h/2, equals (as you should check by
integrating the blueTaylor expansion)
•  Itrue = h fm +(h3/24)f’’m + ...
•  The midpoint rule reads: I = h fm. The inaccuracy is thus
•  I - Itrue = +(h3/24)f’’m + ... = +(h3/24)f’’m(ξ), where ξ is

somewhere in the subinterval. This is –½ of the trapezoid error.
•  The composite midpoint formula for N=(b-a)/h subintervals, has thus

accuracy of order O(N h3) = O(h2). Error of midpoint integration on
interval from a to b drops as ~h2 (2nd order algorithm) n

•  Formal proof of the 4th order of Simpson’s rule:
•  Let xm be the midpoint of the subinterval of width h.
•  The trapezoid rule reads: Itra = h (f0 + f1)/2 and has error

on subinterval of width h which can be written as
•  Itra - Itrue = -(h3/12)f’’m +O(h5 f’’’m).
•  The midpoint rule reads: Imid = h fm, and has error
•  Imid - Itrue = +(h3/24)f’’m +O(h5 f’’’m).
•  Notice that all even powers of h & odd derivatives are absent from error

terms. They cancel upon integration, because both rules are symmetric
w.r.t. midpoint. All integrals from –h/2 to +h/2 of: x f’m, x3 f’’’m, x5 f(v)

m, ... ,
are zero, because of anti-symmetry of those functions. They contribute
equal amounts of positive and negative contributions to error. That explains
the O(h5) terms.

•  How can we join the two rules to eliminate the O(h3) error
term? By combining twice as much midpoint than trapezoid
rule, i.e., by adding 1/3 of the first to 2/3 of the second.

•  Formal proof of the 4th order of Simpson’s rule:

•  That’s Simpson’s rule:

 ISimp = h(f0 + 4fm +f1)/6, with error

 ISimp – Itrue = O(h5 f’’’m(ξ)), where f’’’m=f’’’m(ξ) ~ const.

•  In [a,b] interval, the composite Simpson’s rule

 I=h (f0+4f1+2f2+4f3+...+fN) / 6

for N=(b-a)/h subintervals, has accuracy of order
O(N h5) = O(h4). It’s a 4th order algorithm. n

Computer Linear Algebra
•  Read Turner et al., chapter 4, p. 81
•  If you do not remember basic linear algebra (vectors, matrix

notation, what is a linear system of equations, matrix
inversion by Gauss elimination, linear systems and their
solutions, what is an eigenvalue and eigenvector), please
ask TA during tutorial, after first looking at the link below.

 Carl Friedrich Gauss (1777-1855)

•  https://saylordotorg.github.io/text_intermediate-algebra/
s06-05-matrices-and-gaussian-eliminat.html

Computer Linear Algebra
Examples of some scientific problems leading to linear systems of
equations:

•  Fitting theory to data
•  De-noising measurements if underlying trends understood and can

be modeled mathematically
•  Solving discretized differential equations of science and engineering

(many examples, as most of science since about 200 years ago
uses the language of differential equations)

•  Finding eigenvalues such as energy E in Schroedinger eq. of
quantum mechanics, or rates of growth of spiral density waves in
galaxies

•  Finding modes in mechanical systems, e.g. shapes of the fastest
growing modes in disk galaxies, distribution of stress and dilatation
in vibrating objects.

•  In addition, matrix operations are ubiquitous in signal and image
processing, as well as machine learning (so-called AI = artificial
intelligence)

Numerical fitting: Least Squares
see http://planets.utsc.utoronto.ca/~pawel/pyth

Theory and methods:
q  Linear systems of equations, Gauss elimination
q  Least Squares Method (of C.F. Gauss, who else)
q  Application: function fitting to data, i.e.
q  Finding linear combinations of nonlinear functions to

minimize chi-squared

(Computer) Linear Algebra

•  To begin working with Python, start with this:
•  A x = b [matrix times vector equals vector]
A linear system of N eqs. for N unknowns, A is a square NxN
matrix, b the vector of constants of length N, x is the vector of N
unknowns.

•  x = np.linalg.solve(A,b) # Numpy solves the system

•  How is a system of linear equations solved?

•  Turner et al Chapter 4 Linear Equations, read pp. 81-93
•  (skip 4.3 LU Factorization)

•  The simplest & practical method is by C.F. Gauss, and it’s called
Gauss elimination.

•  It works by eliminating unknowns one by one

•  It uses matrix (augmented matrix) notation

Gauss elimination

Numerical fitting: Least Squares
see http://planets.utsc.utoronto.ca/~pawel/pyth

Theory and methods:
q  Linear systems of equations, Gauss elimination
q  Least Squares Method (of C.F. Gauss, who else)
q  Application: function fitting to data,
q  Finding linear combinations of nonlinear functions to

minimize chi-squared
•  Fit linear polynomial to noisy data fit-2par.py
•  Fit parabola (quadratic polynomial fit-3par.py
•  Fit a more complicated function fit-4par.py

Least squares method

•  A x = b [matrix times vector equals vector]

•  x = np.linalg.solve(A,b) # Numpy solves the system

•  Consider now the application called least-squares fit to data.
•  What is it?
•  It is a method C.F. Gauss first invented for finding parameters

(called elements) of orbits of asteroids and comets in our solar
system, from z minimum number of observations.

•  It works by finding such coefficients of a linear combination of
complicated functions, which provide the best fit to a data set.

•  fit-3par.py - see our Python code repository.

•  Turner et al Chapter 4.5, p. 115
•  General function fit (blackboard calculation)
•  y(x) = c[0] f0(x) + c[1] f1(x) + ... + c[N-1] fN-1(x)

•  c is a vector of N unknown coefficients we would like to
compute.

•  All f’s are known, arbitrarily complicated and non-linear, even
discontinuous, functions.

•  Require that sum of squares of deviations of y(xi) from data
Y(xi)

•  is minimal (i.e. the least)

•  Notice that this method tries to avoid large deviations, which
cause biggest contributions to the sum.

Least Squares Method

Least squares fit (parabola fit to noisy data): program
fit-3par.py

 •  “Hidden truth” or a theoretical dependence is in the form
•  y_th = a[0] f[0,x] + a[1] f[1,x] + a[2] f[2,x]
•  = a[0] x*x + a[1] x + a[2]
•  a = a_th = [-1, 2, 0] # assumed values. Q: can they be

 # recovered by the program?
•  x-axis is 100 uniformly spread values from 0 to 3.
•  Noise added to simulate observational errors. Y holds 100 y-values:
•  Y = x*(2-x) + (np.random.rand(M)+np.random.rand(M)-1)
•  Find set of parameters a	=	a_best_fit giving the best fit:
•  E = np.sum((y_th-Y)**2) à minimum
•  Taking N derivatives after all a[n] yields N equations with N

unknown a’s:
•  A a = b [N x N system of linear equations]
•  A[m,n] = np.sum(f[n,x]*f[m,x]) # see L9 for more details
•  b = np.sum(f[n,x]*Y)) # see L9 for more details
•  a = A-1 b # solution written in terms

 of inverse matrix A-1

Numerical fitting: Least Squares
see http://planets.utsc.utoronto.ca/~pawel/pyth

Theory and methods:
q  Linear systems of equations, Gauss elimination
q  Least Squares Method (of C.F. Gauss, who else)
q  Application: function fitting to data, denoising data
•  Fit linear polynomial to noisy data fit-2par.py
•  Fit parabola (quadratic polynomial fit-3par.py
•  Fit a more complicated function fit-4par.py

red = fit
gray = hidden truth (smooth dependence)
blue = data pts = smooth dependence + noise

parameters:
 a = [-1, 2, 0]
a_best_fit = [-0.944 1.826 0.171]

red = fit
gray = hidden smooth dependence
blue = data = smooth dependence + noise

parameters:
 a = [-1, 2, 0, 1]
a_best_fit = [-1.022 2.095 -0.008 1.001]

Finds the best combination of a parabola and sin(5x) that fits the data. Uncovers
correctly all the parameters gray curve that was used to generate the blue points.
This effectively de-noises the data set. Notice that we used the knowledge of what kind
of functions to use, but that is often clear from the scientific context of a problem.

 fit-4par.py.

red = fit
gray = smooth dependence
blue = data = smooth dependence + noise

parameters:
 a = [-1, 2, 0, 1]
a_best_fit = [-1.022 2.095 -0.008 1.001]

So much noise has been added here (varying in every execution of the code) that it
becomes very hard to see what kind of periodic signal is hidden. Only something
resembling a parabolic trend can be noticed. Let’s now see how the linear algebra of
the Least Squares method is going to recover for us the underlying regular variations.

 fit-4parN.py

red = fit
gray = hidden smooth dependence
blue = data = smooth dependence + noise

parameters:
 a = [-1, 2, 0, 1]
a_best_fit = [-0.936 1.715 0.260 0.964]

Very nice recovery (denoising) of the “true” variations obscured by strong noise

 fit-4parN.py

red = fit
gray = smooth dependence
blue = data = smooth dependence + noise

parameters:
 a = [-1, 2, 0, 1]
a_best_fit = [-0.936 1.715 0.260 0.964]

Let’s add even more noise and test the strength of the method!
Can this data possibly be de-noised??

y(x)

 fit-4parN2.py

red = fit
gray = hidden smooth dependence
blue = data = smooth dependence + noise

parameters a[0]...a[3]:
a_hidden_truth = [-1, 2, 0, 1]
a_best_fit = [-0.614, 0.712, 0.919, 0.839]

 fit-4parN2.py
A moderate success! Although some parameters
recovered with noticeable errors

Numerical fitting: Least Squares
see http://planets.utsc.utoronto.ca/~pawel/pyth

Theory and methods:
q  Least Squares Method (of C.F. Gauss, who else)
q  Application: function fitting to data, i.e.
q  Finding linear combinations of nonlinear functions to

minimize chi-squared
•  Characterize Dark Matter in galaxies based on rotation

curves fit-glx-4+2b.py

cf. https://en.wikipedia.org/wiki/Galaxy_rotation_curve

Rotation of galaxies and the
measurements of Dark Matter

•  Rotation curve is obtained from Doppler effect
measurement in the light coming from galaxies
approaching and receding parts

Observations of flat galaxy rotation curves

NGC = New General Catalog
1 kpc = 0.308 1020 m = 3261 light years

Decomposition observed rotation curve of a spiral galaxy NGC 6503 into:
(i) gas disk, (ii) stellar disk, (iii) dark halo consisting of undiscovered physical particles

Sofue (2014)
https://ned.ipac.caltech.edu/level5/Sept16/Sofue/frames.html

Two-component model of rotation of NGC 3198

Rotation of galaxies and the
measurements of Dark Matter

•  Rotation curve of our Galaxy (Milky Way) shows similar
flatness as other galaxies.

Four-component to fit synthetic rotation curve:
(i) central SMBH (supermassive black hole)

(ii) stellar bulge, (iii) stellar and gas disk, (iv) dark matter halo

•  Our least-squares function fitting so far computed very quickly
•  They also worked well, in part because of the fact that we were finding

only amplitudes of N additive functions
•  Notice the red parameters below are not of this kind and could not directly

be solved for by linear algebra system.
•  y(x) = (a + b x)10 + c x cos(x) – d exp(-x/(1+g)) + f sin(kx)/(kx) +2 log[x/

(1+h3)]
•  p=[a,b,c,d,f,h] – can all be found from one set of eqs. Ap = b.
•  Q: Why is parameter h not marked in red?
•  Q: why fitting

 y(x) = a exp[-(x-b)2/c2] to M data points
can be done as easily as fitting a parabola to M points, but

 y(x) = a exp[-(x-b)2/c2] + b exp[-x2/g2] cannot?

•  In the galaxy modeling we first encounter those more difficult types of

paramters.
•  Least squares fitting with arbitrary functions and in more dimensions
•  can be done, but requires solution of simultaneous nonlinear equations, for

instance by coupled Newton’s methods.
•  this is the area of optimization theory, which is much wider than just the

least squares method. Here we just use iterations to find rd and rh.

 fit-glx-4+2b.py χ2=Σi (y-Y)2i/σ2
i ; y=model, Y=data, σ=obs. std

scaled χ2

actual minimum
= 1.42

Newton’s method in multiple dimensions
See Turner et al (2018) chapter 5.6, p. 173

Our textbook explains how in higher dimensions instead of derivative
dF/dx of a function F: Rà R

we have a function that can be N-dimensional (think of a gradient in N dimensions,
which is an N-dim vector). F: RNà RN
and derivatives are forming N x N matrix called Jacobian matrix J

Jnm = dFn/dxm

Taylor expansion now reads F(x+h) = F(x) + J h + ...

and the algorithm iterates (vectors) as: xnew = x – J-1 F where old (current) values
are used on the right-hand side.
In minimization problems, we search for a zero of vector function F = grad f, where f
is the scalar function we need to minimize/maximize. Newton’s algorithms thus use
inverse of Jacobian of F, which really is a Hessian (symmetric second derivative
matrix of a scalar function f): : xnew = x – H-1 f, where

 Hnm = d2f/dxndxm = d(df/dxn)/dxm.
The search may be slowed down, if needed, by introduction of a constant in front of
the inverse Hessian, which will prevent overshooting the minimum in one step.

Direct methods for optimization in N dim.
•  Steepest descent, a.k.a. gradient search method
•  Simplex method (a.k.a. downhill simplex, simplicial

or Nelder-Mead search)

Steepest	descent	method	
•  Problematic cases: zigzagging, slow asymptotic

convergence

Nelder-Mead method or simplicial search
a.k.a. polytope method

https://docs.scipy.org/doc/scipy/reference/optimize.minimize-
neldermead.html#optimize-minimize-neldermead

describes the scipy implementation of Simplex (sometimes called downhill
simplex) method of Nelder and Mead.

 Nelder, J A, and R Mead. 1965. A Simplex Method for Function Minimization. The
Computer Journal 7: 308-13.

OTHER METHODS available in SciPy:

https://docs.scipy.org/doc/scipy/reference/generated/
scipy.optimize.minimize.html#scipy.optimize.minimize

describes about 10 different methods for minimization of scalar functions in N-
dimensional space, including:
•  CG methods (conjugate gradient methods) – PHYD57 will analyze this
•  Newton-CG methods
•  etc.

Interpolation
•  Turner et al (2018) – read chapter 6, starting with p. 189

•  Interpolation by polynomials: Lagrange polynomials
o  problem: wiggly polynomials
o  the trouble also explains why extrapolation is difficult

•  Interpolation by piecewise polynomials:
o Splines; much nicer than polynomials in general
o  cubic splines have continuous 0th, 1st and 2nd deriv.
o  they require solving a tri-diagonal linear system for

constants of piecewise cubic functions.
o  this is a cheap calculation, only O(N) arithm. operations
o  f = scipy.interpolate.interp1d(X,Y,’cubic’)
o  offers several different interpolation schemes depending on

string argument, input: X and Y (numpy arrays of length N).
Result is a function that you can call with some other array of x’s
to interpolate & plot:

o  plt.plot(x,f(x)); plt.show()

