
Lecture 9      
u Recap of integration:  
   Formal proof of convergence of 2nd order integration methods 
u  Linear algebra    
v   Sets of linear equations solved by Gauss elimination 
v Method of Least Squares  
v  Fitting polynomials and other linear combinations of nonlinear 

functions to data  
v  Fitting as denoising – one example in detail 
v  Finding dark matter in galaxies 

o  theory 
o  observations 
o  fitting  

 
As always, study & learn Python from scripts discussed in this lecture, cf. 
http://planets.utsc.utoronto.ca/~pawel/pyth.  
 
 

PSCB57. Intro to Scientific Computing. 
(c) Pawel Artymowicz UofT, 2019. For use by enrolled UTSC students. 



  
Euler(left value)  

Midpoint method 

Trapezoid method 

Simpson’s rule - green 

Last time we talked about these integration rules 



•  Formal proof of 2nd order convergence of trapezoid 
integration rule: 

•  Consider subinterval x0 to x1,  of width h = x1-x0. Denote f{0,1} := 
f(x{0,1}).  

•  Taylor expansion gives f(x) anywhere in this interval: 
•  f(x) = f0 + (x-x0) f’0  + ½ (x-x0)2 f’’0 + ... 
•  In particular, we have for x=x1:   
•   f1 = f0 + h f’0  + ½ h2 f’’0 + ...                
•  True integral of function f(x) in the subinterval equals, i.e., of 

it’s Taylor expansion, is (as you should check by integration!) 
•     Itrue =  h f0 + ½ h2 f’0  + (h3/6) f’’0 + ...  
•  The trapezoid rule reads:  I = h (f0 + f1)/2. Substituting f1 from 

the blue formula above, we get  
•    I = h (2f0 +h f’0 +½ h2 f’’0)/2 = h f0 + ½ h2 f’0  + (h3/4)f’’0 +...  
•  Thus   I = Itrue  -(h3/12)f’’0 +...  = = Itrue  -(h3/12)f’’(ξ), where ξ is 

somewhere in the subinterval. 
•  The composite formula, constructed for N=(b-a)/h subintervals, has 
thus accuracy of order O(N h3) = O(h2). Error of trapezoid integration  
on interval from a to b drops with shrinking h (or growing N) as ~h2 
(second order algorithm) n 



•  Formal proof of 2nd order convergence of midpoint 
integration rule: 

•  Consider subinterval x0 to x1,  of width h = x1-x0.  
•  Denote midpoint ½(x0+x1) as xm, and fm := f(½(x0+x1))=f(xm).  
•  Taylor expansion gives f(x) anywhere in this interval: 
•  f(x) = fm + (x-xm) f’m  + ½ (x-xm)2 f’’m + ... 
•  True integral of function f(x) over the subinterval from (x-xm) =  
    -h/2 to (x-xm) = +h/2, equals (as you should check by 
integrating the blueTaylor expansion)  
•     Itrue =  h fm  +(h3/24)f’’m + ...  
•  The midpoint rule reads:  I = h fm. The inaccuracy is thus 
•    I - Itrue = +(h3/24)f’’m + ... = +(h3/24)f’’m(ξ), where ξ is 

somewhere in the subinterval. This is –½ of the trapezoid error.   
•  The composite midpoint formula for N=(b-a)/h subintervals, has thus 

accuracy of order O(N h3) = O(h2). Error of midpoint integration on 
interval from a to b drops as ~h2 (2nd order algorithm) n 



•  Formal proof of the 4th order of Simpson’s rule: 
•  Let xm be the midpoint of the subinterval of width h.  
•  The trapezoid rule reads:  Itra = h (f0 + f1)/2 and has error 

on subinterval of width h which can be written as  
•  Itra - Itrue  =  -(h3/12)f’’m +O(h5 f’’’m). 
•  The midpoint rule reads:  Imid = h fm, and has error  
•   Imid - Itrue = +(h3/24)f’’m +O(h5 f’’’m). 
•  Notice that all even powers of h & odd derivatives are absent from error 

terms. They cancel upon integration, because both rules are symmetric 
w.r.t. midpoint. All integrals from –h/2 to +h/2 of: x f’m,      x3 f’’’m, x5 f(v)

m, ... , 
are zero, because of anti-symmetry of those functions. They contribute 
equal amounts of positive and negative contributions to error. That explains 
the O(h5) terms. 

•  How can we join the two rules to eliminate the O(h3) error 
term? By combining twice as much midpoint than trapezoid 
rule, i.e., by adding 1/3 of the first to 2/3 of the second. 



•  Formal proof of the 4th order of Simpson’s rule: 
 
•  That’s Simpson’s rule:  

  ISimp = h(f0 + 4fm +f1)/6,    with error 

 ISimp – Itrue  = O(h5 f’’’m(ξ)), where f’’’m=f’’’m(ξ) ~ const.   
  

•  In [a,b] interval, the composite Simpson’s rule      
 

  I=h (f0+4f1+2f2+4f3+...+fN) / 6 
 
for N=(b-a)/h subintervals, has accuracy of order  
O(N h5) = O(h4). It’s a 4th order algorithm. n 



Computer Linear Algebra  
•  Read Turner et al., chapter 4, p. 81 
•  If you do not remember basic linear algebra (vectors, matrix 

notation, what is a linear system of equations, matrix 
inversion by Gauss elimination, linear systems and their 
solutions, what is an eigenvalue and eigenvector), please 
ask TA during tutorial, after first looking at the link below. 

                                       Carl Friedrich Gauss (1777-1855) 

•  https://saylordotorg.github.io/text_intermediate-algebra/
s06-05-matrices-and-gaussian-eliminat.html 



Computer Linear Algebra  
Examples of some scientific problems leading to linear systems of 
equations: 
 
•  Fitting theory to data 
•  De-noising measurements if underlying trends understood and can 

be modeled mathematically 
•  Solving discretized differential equations of science and engineering 

(many examples, as most of science since about 200 years ago 
uses the language of differential equations) 

•  Finding eigenvalues such as energy E in Schroedinger eq. of 
quantum mechanics, or rates of growth of spiral density waves in 
galaxies 

•  Finding modes in mechanical systems, e.g. shapes of the fastest 
growing modes in disk galaxies, distribution of stress and dilatation 
in vibrating objects. 

•  In addition, matrix operations are ubiquitous in signal and image 
processing, as well as machine learning (so-called AI = artificial 
intelligence) 



Numerical fitting: Least Squares  
see http://planets.utsc.utoronto.ca/~pawel/pyth 

Theory and methods: 
q  Linear systems of equations, Gauss elimination 
q   Least Squares Method (of C.F. Gauss, who else) 
q   Application: function fitting to data, i.e.  
q   Finding linear combinations of nonlinear functions to 

minimize chi-squared 
 
 



(Computer) Linear Algebra  

•  To begin working with Python, start with this: 
•    A x = b                            [matrix times vector equals vector] 
A linear system of N eqs. for N unknowns, A is a square NxN 
matrix, b the vector of constants of length N, x is the vector of N 
unknowns. 
 
•  x = np.linalg.solve(A,b)            # Numpy solves the system 

•  How is a system of linear equations solved? 



•  Turner et al     Chapter 4 Linear Equations,   read    pp. 81-93  
•  (skip 4.3 LU Factorization)  

•  The simplest & practical method is by C.F. Gauss, and it’s called          
Gauss elimination.  

•  It works by eliminating unknowns one by one 

•  It uses matrix (augmented matrix) notation 
 

         

Gauss elimination   



Numerical fitting: Least Squares  
see http://planets.utsc.utoronto.ca/~pawel/pyth 

Theory and methods: 
q  Linear systems of equations, Gauss elimination 
q   Least Squares Method (of C.F. Gauss, who else) 
q   Application: function fitting to data, 
q   Finding linear combinations of nonlinear functions to 

minimize chi-squared 
•  Fit linear polynomial to noisy data       fit-2par.py 
•  Fit parabola (quadratic polynomial      fit-3par.py 
•  Fit a more complicated function        fit-4par.py 

 

 
 



Least squares method 

•  A x = b                            [matrix times vector equals vector] 

•  x = np.linalg.solve(A,b)            # Numpy solves the system 

•  Consider now the application called least-squares fit to data. 
•  What is it?  
•  It is a method C.F. Gauss first invented for finding parameters 

(called elements) of orbits of asteroids and comets in our solar 
system, from z minimum number of observations.  

•  It works by finding such coefficients of a linear combination of 
complicated functions, which provide the best fit to a data set. 

•  fit-3par.py    - see our Python code repository.  



•  Turner et al     Chapter 4.5, p. 115 
•  General function fit (blackboard calculation) 
•  y(x) = c[0] f0(x) + c[1] f1(x)  + ...  + c[N-1] fN-1(x)  

•  c is a vector of N unknown coefficients we would like to 
compute.  

•  All f’s are known, arbitrarily complicated and non-linear, even 
discontinuous,  functions. 

•  Require that   sum of squares of deviations of y(xi) from data 
Y(xi)   

•  is minimal (i.e. the least) 

•  Notice that this method tries to avoid large deviations, which 
cause biggest contributions to the sum.  

Least Squares Method 



Least squares fit (parabola fit to noisy data): program 
fit-3par.py  

 •  “Hidden truth” or a theoretical dependence is in the form 
•  y_th = a[0] f[0,x] + a[1] f[1,x] + a[2] f[2,x] 
•          = a[0] x*x    + a[1] x       + a[2] 
•  a = a_th = [-1, 2, 0]          # assumed values. Q: can they be  

               # recovered by the program? 
•  x-axis is 100 uniformly spread values from 0 to 3. 
•  Noise added to simulate observational errors. Y holds 100 y-values: 
•  Y = x*(2-x) + (np.random.rand(M)+np.random.rand(M)-1) 
•  Find set of parameters a	=	a_best_fit giving the best fit:     
•  E = np.sum((y_th-Y)**2) à minimum 
•  Taking N derivatives after all a[n] yields N equations with N 

unknown a’s:   
•  A a = b                                          [N x N system of linear equations] 
•  A[m,n] = np.sum(f[n,x]*f[m,x])                   # see L9 for more details 
•  b = np.sum(f[n,x]*Y) )                      # see L9 for more details 
•  a = A-1 b          # solution written in terms 

               of inverse matrix A-1 



Numerical fitting: Least Squares  
see http://planets.utsc.utoronto.ca/~pawel/pyth 

Theory and methods: 
q  Linear systems of equations, Gauss elimination 
q   Least Squares Method (of C.F. Gauss, who else) 
q   Application: function fitting to data, denoising data 
•  Fit linear polynomial to noisy data       fit-2par.py 
•  Fit parabola (quadratic polynomial      fit-3par.py 
•  Fit a more complicated function       fit-4par.py 

 

 
 



red = fit  
gray = hidden truth (smooth dependence)  
blue = data pts = smooth dependence + noise 
 
parameters: 
             a =  [ -1,       2,        0 ] 
a_best_fit = [-0.944  1.826  0.171] 



red = fit  
gray = hidden smooth dependence 
blue = data = smooth dependence + noise 
 
parameters: 
             a = [  -1,       2,        0,        1 ] 
a_best_fit = [-1.022  2.095 -0.008  1.001]  

Finds the best combination of a parabola and sin(5x) that fits the data. Uncovers 
correctly all the parameters gray curve that was used to generate the blue points.  
This effectively de-noises the data set. Notice that we used the knowledge of what kind 
of functions to use, but that is often clear from the scientific context of a problem.   

 fit-4par.py.  



red = fit  
gray = smooth dependence 
blue = data = smooth dependence + noise 
 
parameters: 
             a = [-1,  2,  0, 1] 
a_best_fit = [-1.022  2.095 -0.008  1.001]  

So much noise has been added here (varying in every execution of the code) that it 
becomes very hard to see what kind of periodic signal is hidden. Only  something 
resembling a parabolic trend can be noticed. Let’s now see how the linear algebra of 
the Least Squares method is going to recover for us the underlying regular variations. 

 fit-4parN.py  



red = fit  
gray = hidden smooth dependence 
blue = data = smooth dependence + noise 
 
parameters: 
             a = [    -1,        2,       0,       1] 
a_best_fit = [-0.936  1.715  0.260  0.964] 

Very nice recovery (denoising) of the “true” variations obscured by strong noise 

 fit-4parN.py  



red = fit  
gray = smooth dependence 
blue = data = smooth dependence + noise 
 
parameters: 
             a = [    -1,        2,       0,       1] 
a_best_fit = [-0.936  1.715  0.260  0.964] 

Let’s add even more noise and test the strength of the method!  
Can this data possibly be de-noised??  

y(x) 

 fit-4parN2.py  



red = fit  
gray = hidden smooth dependence 
blue = data = smooth dependence + noise 
 
parameters a[0]...a[3]: 
a_hidden_truth =  [    -1,          2,         0,         1] 
a_best_fit          = [-0.614,  0.712, 0.919,  0.839] 

 fit-4parN2.py  
A moderate success! Although some parameters  
recovered with noticeable errors 



Numerical fitting: Least Squares  
see http://planets.utsc.utoronto.ca/~pawel/pyth 

Theory and methods: 
q  Least Squares Method (of C.F. Gauss, who else) 
q   Application: function fitting to data, i.e.  
q   Finding linear combinations of nonlinear functions to 

minimize chi-squared 
•  Characterize Dark Matter in galaxies based on   rotation 

curves                 fit-glx-4+2b.py 

 
 
 
 



cf. https://en.wikipedia.org/wiki/Galaxy_rotation_curve 



Rotation of  galaxies and the 
measurements of  Dark Matter 

•  Rotation curve is obtained from Doppler effect 
measurement in the light coming from galaxies 
approaching and receding parts 





Observations of flat galaxy rotation curves 

NGC = New General Catalog   
1 kpc = 0.308 1020 m  = 3261 light years 
  



 
 
Decomposition observed rotation curve of a spiral galaxy NGC 6503 into: 
(i) gas disk, (ii) stellar disk, (iii) dark halo consisting of undiscovered physical particles 



 
 
Sofue (2014) 
https://ned.ipac.caltech.edu/level5/Sept16/Sofue/frames.html 
 

Two-component model of rotation of NGC 3198  



Rotation of  galaxies and the 
measurements of  Dark Matter 

•  Rotation curve of our Galaxy (Milky Way) shows similar 
flatness as other galaxies. 



Four-component to fit synthetic rotation curve:   
(i) central SMBH (supermassive black hole)  

(ii) stellar bulge,    (iii) stellar and gas disk,    (iv) dark matter halo     
 



•  Our least-squares function fitting so far computed very quickly 
•  They also worked well, in part because of the fact that we were finding 

only amplitudes of N additive functions 
•  Notice the red parameters below are not of this kind and could not directly 

be solved for by linear algebra system. 
•  y(x) = (a + b x)10 + c x cos(x) – d exp(-x/(1+g)) +  f sin(kx)/(kx) +2 log[x/

(1+h3)] 
•  p=[a,b,c,d,f,h] – can all be found from one set of eqs.    Ap = b.  
•  Q: Why is parameter h not marked in red?  
•  Q: why fitting  

  y(x) =  a exp[-(x-b)2/c2]       to M data points  
can be done as easily as fitting a parabola to M points, but  

  y(x) =  a exp[-(x-b)2/c2] + b exp[-x2/g2]    cannot? 
 
•  In the galaxy modeling we first encounter those more difficult types of 

paramters.  
•  Least squares fitting with arbitrary functions and in more dimensions  
•  can be done, but requires solution of simultaneous nonlinear equations, for 

instance by coupled Newton’s methods.  
•  this is the area of optimization theory, which is much wider than just the 

least squares method. Here we just use iterations to find rd and rh. 



 
 



    fit-glx-4+2b.py   χ2=Σi (y-Y)2i/σ2
i ;  y=model, Y=data, σ=obs. std 

scaled χ2 

 
 
 
 
 
 
 
actual minimum 
= 1.42 



Newton’s method in multiple dimensions  
See Turner et al (2018) chapter 5.6, p. 173 
 
Our textbook explains how in higher dimensions instead of derivative 
dF/dx    of a function F: Rà R  
 
we have a function that can be N-dimensional (think of a gradient in N dimensions, 
which is an N-dim vector).    F: RNà RN  
and derivatives are forming N x N matrix called Jacobian matrix J 
 
Jnm = dFn/dxm 
 
Taylor expansion now reads F(x+h) = F(x) + J h + ... 
 
and the algorithm iterates (vectors) as:      xnew = x – J-1 F  where old (current) values 
are used on the right-hand side. 
In minimization problems, we search for a zero of vector function F = grad f, where f 
is the scalar function we need to minimize/maximize. Newton’s algorithms thus use 
inverse of Jacobian of F, which really is a Hessian (symmetric second derivative 
matrix of a scalar function f):      :      xnew = x – H-1 f,         where  

        Hnm = d2f/dxndxm = d(df/dxn)/dxm.   
The search may be slowed down, if needed, by introduction of a constant in front of 
the inverse Hessian, which will prevent overshooting the minimum in one step. 
 
 
   



Direct methods for optimization in N dim. 
•  Steepest descent, a.k.a. gradient search method 
•  Simplex method (a.k.a. downhill simplex, simplicial 

or Nelder-Mead search) 



Steepest	descent	method	
•  Problematic cases: zigzagging, slow asymptotic 

convergence 



Nelder-Mead method or simplicial search 
a.k.a. polytope method   

https://docs.scipy.org/doc/scipy/reference/optimize.minimize-
neldermead.html#optimize-minimize-neldermead 
 
describes the scipy implementation of Simplex (sometimes called downhill 
simplex) method of Nelder and Mead.   
 
 Nelder, J A, and R Mead. 1965. A Simplex Method for Function Minimization. The 
Computer Journal 7: 308-13. 
_________________________________________________________________ 
OTHER METHODS available in SciPy: 
 
 
 
 
 
 

https://docs.scipy.org/doc/scipy/reference/generated/
scipy.optimize.minimize.html#scipy.optimize.minimize 
 
describes about 10 different methods for minimization of scalar functions in N-
dimensional space, including: 
•  CG methods (conjugate gradient methods) – PHYD57 will analyze this 
•  Newton-CG methods  
•  etc. 



Interpolation 
•  Turner et al (2018) – read chapter 6, starting with p. 189 

•  Interpolation by polynomials: Lagrange polynomials  
o  problem: wiggly polynomials 
o  the trouble also explains why extrapolation is difficult 

•  Interpolation by piecewise polynomials: 
o Splines; much nicer than polynomials in general 
o  cubic splines have continuous 0th, 1st and 2nd deriv.  
o  they require solving a tri-diagonal linear system for 

constants of piecewise cubic functions. 
o  this is a cheap calculation, only O(N) arithm. operations 
o  f = scipy.interpolate.interp1d(X,Y,’cubic’) 
o   offers several different interpolation schemes depending on 

string argument, input: X and Y (numpy arrays of length N). 
Result is a function that you can call with some other array of x’s 
to interpolate & plot: 

o  plt.plot(x,f(x));    plt.show() 


