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PREFACE 

The investigation reported herein was conducted for the Office, 

Chief of Engineers, U. S. Army, by personnel of the Soil Dyna.mies Divi­

sion (SDD), Soils and Pavements Laboratory (S&PL) , U. S. Army Engineer 

Waterways Experiment Station (WES) , as a part of Project 4Al61102AT22, 

Task A2, Work Unit 06, "Effectiveness of Earth Penetrators in Various 

Geologic Environments. " 

Mr. R. S. Bernard conducted the research during the period 

October 1977-January 1978 with the technical guidance of Dr. B. Rohani 

and under the supervision of Dr. J. G. Jackson� Jr. , Chief, SDD, and 

Messrs. J. P. Sale and R. G. Ahlvin, Chief and Assistant·Chief, S&PL, 

respectively. This report was also prepared by Mr. Bernard. 

COL J. L. Cannon, CE, was Director of WES throughout the investi­

gation and during the preparation of the report. Mr. F. R. Brown was 

Technical Director. 
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DEPTH AND MOTION PREDICTION FOR EARTH PENETRATORS 

PART I: INTRODUCTION 

Background 

1. Earth-penetrating weapons (EPW' s) offer a means of reducing 

collateral effects in the selective destruction of localized targets 

(airfields, factories, utilities, etc. ). The effectiveness of these 

weapons, however, is contingent upon (a) accurate delivery, (b) impact 

survival, and (c) proper depth-of-burst (DOB). The first two require­

ments are obvious; the last is important because there is an optimum 

DOB in the trade-off between destructive capability and collateral 

effects. To guarantee detonation at or near the optimum DOB, it is 

necessary to be able to predict the subsurface motion of an EPW. 

2. There are three alternatives for predicting EPW-motion after 

impact: (a) two-dimensional finite-difference codes, (b) equations of 

motion based partly on theory, and (c) empirical formulae. Alternative 

(a) is acceptable in some cases but is too expensive for general appli­

cation. Alternatives (b) and (c) require far less computation and are 

therefore suitable for para.meter studies and multiple predictions. 

3. Among the theoretically based equations of motion, those 

developed from the Cavity Expansion Theory (CET)1-3 have been preferred 

at the U. S. Army Engineer Waterways Experiment Station. Of the purely 

empirical formulae, Young's equati�n4-6 seems now to be the most widely 

accepted for calculating final penetration depth in soil. The main dif­

ference between these two approaches lies in the target description. The 

CET-based analysis calculates penetration resistance in terms of the me­

chanical properties of the target (density, strength, elasticity, and· 

compressibility). Young's equation, on the other hand, employs a single 

empirical para.meter (S) to quantify the target penetrability: 

Z = o. 607 KSN.Jf !n (1 + 4��0 ) , V < 61 m/sec (1) 
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where 

Z = 0.0117 KSN� (V - 30.5) , V � 61 m/sec 

z = final penetration depth, m 

K = mass-scaling factor, dimensionless* 

s = soil penetrability index, dimensionless** 

N = projectile nose-performance coefficient, dimensionlesst 

w = projectile weight, kg 

A = projectile cross-sectional 2 area, cm 

v = projectile impact velocity, m/sec 

1.0 

o.e 
Cll fJ) 
LU 
.J 
z 
0 iii 
z 
LU 
� 0.6 c 
i 
a:: 
0 ... 
u "' 
IL 
(!) 0.4 
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.J "' 
u fJ) .;, Cll "' 
::E 

0.2 

oL-���--L������������������--'-���---' 
0 5 . 1 0 15 20 25 30 

PROJECTILE WEIGHT, kg 

Figure 1. Young's mass-scaling factor for Equations 1 and 2 

(2) 

* The mass-scaling factor is unity for W > 27 kg. Figure 1 shows a 
plot of K versus W for W < 27 kg. 

**  Table 1 lists S-values for several types of soil. 
t Table 2 lists N-values for various nose shapes. 
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20-30 

40-50 

Table l* 

Typical S-Numbers for Natural Earth Materials 

Materials 

Massive medium- to high-strength rock, with few fractures. 
Concrete, 2000 to 5000 psi, reinforced. 

Frozen silt or clay, saturated, very hard. Rock, weathered, 
low strength, fractured. Sea or freshwater ice more than 
10 feet thick. 

Massive gypsite deposits (WSMR**). We�l-cemented coarse sand 
and gravel. Caliche, dry. Frozen moist silt or clay. 

Sea or freshwater ice from 1 to 3 feet thick. Medium dense, 
medium to coarse sand, no cementation, wet or dry. Hard, dry 
dense silt or clay (TTRt dry lake playas). Desert alluvium. 

Very loose fine sand, excluding topsoil. Moist stiff clay or 
silt, medium dense, less than about 50 percent sand. 

Moist topsoil, loose, with some clay or silt. Moist medium 
stiff clay, medium dense, with some sand. 

Loose moist topsoil with humus material, mostly sand and silt. 
Moist to wet clay, soft, low shear strength. 

Very loose dry sandy topsoil (Eglin AFB). Saturated very 
soft clay and silts, with very low shear strengths and high 
plasticity. (Great Salt Lake Desert and bay mud at Skaggs 
Island. ) Wet lateritic clays. 

* Taken from Reference 6. 
** White Sands Missile Range, New Mexico. 

t Tonopah Test Range, Nevada. 
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Table 2* 

Nose Performance Coefficient 

Nose 
Length-to-Diameter 

Nose Sha Ee Ratio (LLD) 

Flat 

Hemisphere 

Cone 

Tangent ogive** 

Tangent ogive 

Tangent ogive 

Inverse ogive 

Cone 

Tangent ogive 

Tangent ogive 

Step cone 

Bi conic 

Inverse ogive 

Cone 

* · Taken from Reference 
** For tangent ogives, 

to the caliber radius 
CRH = L2/D2 + 1/4 • 

6 

0 

0. 5 

1 

1. 4 

2 

2. 4 

2 

2 

3 

3. 5 

3 

3 

3 

3 

6. 
L/D is related 
(CRH) by 

N 

0. 56 

0. 65 

0. 82 

0. 82 

0. 92 

1. 0 

1. 03 

1. 08 

1. 11 

1.19 

1. 28 

1. 31 

1. 32 

1. 33 



4. A recent study by Rohani et al. 7 has shown that, for in­

accessible targets, analysts with different backgrounds are more likely 

to agree upon S-number estimates than upon mechanical-property estimates. 

Equating analyst agreement with reduced uncertainty of prediction, 

Young's equation is apparently better suited for inaccessible targets 

than is the CET analysis. This value judgement does not necessarily 

apply for accessible targets, where S-numbers and mechanical properties 

can be determined by experiment. 

5. Young's equation has been fairly well v�lidated for soil, but 

its applicability is questionable for hard materials, such as concrete 

and rock. In fact, penetration data for concrete8 indicate that the 

final depth is more nearly proportional to W/A than to /W7A. • This 

seems to warrant a composite prediction technique, with distinct 

analyses for soil and rock (or rocklike materials) . 

Purpose 

6. An improved method of earth-penetration analysis is sought, 

particularly for inaccessible targets. A projectile equation of motion 

will be formulated for soil, retaining Young's S-number and approx­

imately reproducing Young's final-depth equation after integration. A 

distinct equation of motion will be developed for rock, using density, 

unconfined compressive strength, and Rock Quality Designation (RQD) 9 

to describe,the target. The two analyses will then be interfaced in 

a composite analysis for targets containing both soil and rock layers. 

Scope 

7. Part II contains the soil penetration analysis, and Part III 

the rock penetration analysis. Equations for layered targets are de­

veloped in Part IV. Part V states the conclusions drawn from the 

investigation. 
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PART II: SOIL PENETRATION ANALYSIS 

8. In soil penetration tests conducted with instrumented projec­

tiles, the deceleration curve-shape most often observed is approximately 
6 that of a "square pulse. " In targets with distinct soil layers, the 

deceleration record is usually a series of two or more square pulses, 

as shown in Figure 2 (taken from Reference 10). * The magnitude of the 

deceleration is velocity dependent;6 an increase in the impact velocity 

usually causes a p�oportionate increase in the deceleration level. 

SOIL PROFILE 

Sand, very loose, moist, tan, 
medium coarse 

Becoming loose to medium• 
dense sand 

Loose sand 

\;rodes to mediumoc:iense sand 

e 
J: 
I-
a.. 
LLJ 
0 

10 

15 

25 

DECELERATION, g's 

NOTE: g =GRAVITATIONAL 

ACCELERATION 

(9.8 m/s ec2), 

Figure 2. Measured deceleration record in moist sand 

* The oscillations in the record are thought to arise from the projec­
tile nonrigidity and from the accelerometer mountings themselves. 
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9. In order to be generally consistent with experimental data, 

the projectile equation of motion must (a) exhibit velocity dependence 

and (b) generate flat deceleration records* in uniform targets. The 

simplest equation of motion that can satisfy both criteria is 

-M dv 
= - Mv dv 

= bv + cz (3) dt dz 

where 

M = proje�tile mass 

v = instantaneous velocity 

t = time 

z = instantaneous depth 

b,c = coefficients dependent on soil type and projectile param­
eters but independent of velocity and depth 

The initial conditions for Equation 3 are v = V and z = 0 ; the final 

conditions are v = 0 and z = Z • 

10. Disregarding any change in load during the nose-embedment 

process, Equation 3 is integrated with respect to z , obtaining the 

following expression: 

2 cZ + 2b /z

v dz 

z=O 

(4) 

it can be shown that if. dv/dt is approximately constant between z = 0 

and z = Z ; then Equation 4 reduces to 

Thus, the expression for the final penetration depth becomes 

* "Flat" in the sense that the deceleration is essentially constant 
after nose embedment. 

.9 

(5) 

(6) 



Since the deceleration curve is nearly flat, the initial deceleration 

(at z = 0) is about equal to the final deceleration (at v = O), i. e. , 

bV = cZ 

Combining Equations 6 and 7 to eliminate V and Z , it follows that 

2 � 4 2 b = - - b + - b + Mc 3 9 

(7) 

(8) 

Upon rearranging and squaring both sides of Equation 8, a simple rela­

tion occurs between b and c 

3 - Mc 7 

Equation 9 reveals that b and c are not independent; b is pro­

portional to the square root of the projectile mass: 

(9) 

b = � t Mc (10) 

Thus, the presumption of a flat deceleration curve reguires that b 

depend on M , while c remains independent of M . *  

11. Sandia Laboratories has conducted at least 47 low-speed 

penetration tests (V < 80 m/sec) in the TTR Main Lake area •11 In 43 

of these tests, 
.the projectiles had nearly the same mass (100 to 

105 kg), with different diameters and nose shapes. The trends in the 

TTR data (and likewise in Young's equation) can be summarized as 

.. follows: 

a. The relation between final depth (Z) and impact velocity 
(V) is nonlinear when V is significantly less than 
60 m/sec. 

* It might be argued that M should appear only on the left-hand side 
of the projectile equation of motion (Equation 3). The presumption of 
a flat deceleration curve at the outset, however, forces M to appear 
on the right-hand side in the velocity coefficient b • No additional 
interpretation can be given to the mass dependence of b without ex­
plaining why the deceleration curve is flat in the first place. 
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b. The final depth is inversely proportional to the projec­
tile diameter (D). 

c. The final depth is a function of the projectile nose 
shape. 

The nonlinear relation between Z and V at low speed suggests that 

the equation of motion needs an additional constant term: 

dv dv 
-M dt = -Mv dz = a + bv + cz (11) 

With this modification the deceleration curve still remains flat, and 

Equation 11 can be solved for the final depth in the same way as 

Equation 3. The solution obtained is 

(12) 

Assuming that Z is inversely proportional to D and directly propor­

tional to N and S , it follows from Equations 10 and 12 that 

aD a = SN 

b = Q__ � l SM SN 7 

(13) 

(14) 

(15) 

where a- and 13- are "universal" constants,_ inde:Q_endent of p_roj_ectile 

parameters and soil properties. 

12. Up to this point, the analysis has dealt only with generali­

ties, establishing the form of the equation of motion (Equation 11) and 

the resulting form of the final-depth equation (Equation 12). The nose­

performance coefficient (N) and the penetrability index (S) have been 

retained for consistency with Young's equation. The numerical values 

of a and S must now be obtained by fitting Equation 12 to actual 

penetration data. The best fit to the TTR data11 (Figure 3) occurs for 
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IMPACT VEL.OCITY, m/uc 

Figure 3. Correlation of TTR penetration data 
with Equation 12 for empirical determination 

of a. and f3 

a = 2. 2 x 106 N/m 

f3 = 2. 8 x 107 N/m3 

(16) 

(17) 

where Young's value of S = 5. 2 has been assumed for the TrR Main 

Lake area. 5 With a. and· f3 given in the units shown, Z can be ob­

tained in metres from Equation 12 (in which the values of M , D , 

and V must be expressed in kilograms, metres, and metres per second, 

respectively). 

13. The soil penetration analysis is now complete. Due to the 

presumption of a flat deceleration curve in the formulation of the 

equation of motion, the effect of the projectile mass (or weight) in 

12 
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Equation 12 is slightly different from the effect in Young's equation. 

Close inspection of Equation 12 reveals that Z « M as MV2 
+ 0 and 

and that Z « IM' as MV2 
+ 00 As the impact energy increases from 

zero, the M-dependence of Z gradually changes from linear to square 

root. In Young's equation, the M-dependence changes from linear 

(at M � 1 kg) to square root (at M � 27 kg) , independent of the 

impact velocity. Figure 4 shows a comparison of Equation 12 with 

Young's equation (for W � 27 kg) and with normalized soil penetration 

data. 

14. Figure 5 shows a comparison of calculated deceleration 

25 
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i I-
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Ill 
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.J 
< z iO: 
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z«'• I 
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I I 
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I I / I I / / /, .... "' •/ 
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Figure 4. Comparison of Equation 12 with 
Young's equation and with normalized soil 

penetration data 
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Figure 5. Comparison of calculated 
deceleration records in hypothetical 
soil target for impact velocity of 

100 m/sec 

curves* for a 500-kg, 25-cm projectile and a 5-kg, 2.5-cm projectile at 

an impact velocity of 100.m/sec. Figure 6 shows a similar comparison 

- --at -300 m,Ls-ec. In both c-as-es, the li-ght-er projectile incurs the higher 

deceleration, but the difference in deceleration between the two pro­

jectiles decreases as V increases. 

* These results were obtained by numerical integration of Equation 11, 
accounting for the change in diameter during nose embedment. The 
projectiles have the same value of W/A . 
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PART III: ROCK PENETRATION ANALYSIS 

15. Reference 12 documents an empirical equation for calculating 

final penetration depth in massive rock d�posits. Expressed in dimen­

sionless form,* the equation is: 

where 

� - rf"(100)0 · 8 
M/A 

- 0. 2V '\}Y RQD 

p = mass density of the rock 

Y = unconfined compressive strength of the intact rock 

(18) 

The RQD, originally proposed by Deere, 9 is an index for the degree of 

fracturing of the rock (in situ) at a given site. Its value (in per­

cent) is determined by a special core-logging procedure: 

All solid pieces of core that are 10 cm long or longer 
are added up, and this length is called the modified 
core recovery. The modified core recovery is divided 
by the total length of core run, and the quotient mul­
tiplied by 100 percent is the value of the RQD. 

16. Equation 18, like Young's equation, gives only the final 

depth of penetration; it does not predict the projectile motion after 

impact. This equation was obtained by curve-fitting data from rock 

penetration tests12 in which p , Y ·' and RQD were all known. The 

data were somewhat scattered, however, and the linearity in V was 

chosen mainly for convenience of calculation. ** A linear equation 

--s-eemed -to -fit -the overall -data -at 1-es.-st -a.-s -accurately -as �ther func-
tions of V • 

* Obviously, the values of p , Z , M , A , Y , and V must be ex­
pressed in compatible units if Equation 18 is to be dimensionless. 

** Most of the scatter is due to uncertainty in the coefficient of 
penetrability from one target to the next. When several data exist 
for a single target, they usually exhibit (a) less scatter and (b) a 
weakly nonlinear·relation between Z and V • However, when data 
from multiple targets are superposed, the apparent nonlinearity in V 
is lost in the scatter. 

16 



17. Existing deceleration records are too few to allow definitive 

statements about the shape of the deceleration curve in rock. Thus, 

the assumption of a flat deceleration record is not justified for rock 

as it was for soil. The formulation of the projectile eq�ation of 

motion must rest on final-depth data alone. 

18. Canfield and Clator8 have conducted a series of penetration 

tests in concrete, which is similar in some way� to intact (unjointed, 

unfractured) rock. The test results, obtained for 7. 6- and 76-mm 

projectiles, s_uggest the following conclusions: 

a. The final depth is directly proportional to the pro-
· j ectile mass and inversely proportional to the square 
of the projectile diameter. 

b. The final depth increases linearly with impact velocity 
for V > 300 m/sec, but the curve has a nonzero in­
tercept, indicating nonlinearity at low velocity. 

A two-term equation of motion is needed to reproduce the trends in the 

concrete penetration data: 

-M dv = -Mv dv = � D2(a' + b'v) 
dt dz 4 

where a' and b' are coefficients independent of v and z but 

dependent on target properties. Neglecting the change in D during 

the nose-embedding process, the solution for the final depth is 

4M [v a' ( b' )] 
Z = -- --, ---· R.n l + -, V 

1TD2 b b, 2 . a 

Presuming that rock and concrete respond in much the same way to 

penetration, Equations 19 and 20 should also be applicable for rock, 

though the values of a' and b' may be different from those for · 

concrete. 
19. Figure 7 shows the concrete penetrat�on data obtained by 

Canfield and Clater for a 76-mm projectile.. Equation 22 fits these 

17 
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Figure 7. Correlation of penetration data for 
5000-psi concrete with Equation 20 for empirical 

determination of a' and b' 

data fairly well when a' and b' are given the following values:* 

concrete: l
a' 

b' 

= l. 6Y 

= 3. 6/PY 

(21) 

(22) 

-In -the - C-arrfi-el--d -and -Clator -tests, the -uneoni'ined compressive strength 
8 2 3 was 3. 45 x 10 dyne/cm , and the density 2. 88 gm/cm • 

20. Equations 19 and 20 are applicable for rock penetration (to 

at least the same degree as Equation 18) when Equations 21 and 22 are 

amended as follows: 

* The values chosen for a' and b' do not produce a very good fit 
to the concrete data as such, but they do produce a good fit to 
superposed concrete and rock data. 
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a' = 

rock: 

b' = 

(R®t 6 
l.6Y 

100 

(R®)°'8 
3• 6 /PY 100 

(23) 

(24 ) 

Figure 8 shows a ( nondimensional ) comparison of Equations 18 and 20 with 

the rock penetration data used in the formulation of Equation 18. 

* 

AVERAGE AVERAGE 
STRENGTH DENSITY 

SYMBOL TARGET � BARS 2m/cm 3 

A WELDED TUFF 100 600 1.95 

a SANDSTONE 82 234 2.08 

• WELDED AGGLOMERATE 60 275 1.92 

• SANDSTONE 37 489 2.12 

• SANDSTONE 32 408 2,14 

• GRANITE 32 462 2.62 

1.6 

1.4 - - EQUATION 18 

1.2 

1.0 

..f..!. 
M/A 

0.8 OD 

0.6 

0.4 

0.2 

4 6 7 8 v(�) o.s (��6) o.e 
Figure 8. Nondimensional comparison of rock 
penetration equations with rock penetration 

data 

21. Figure 9 shows calculated deceleration curves* in concrete 

These curves were obtained by numerical integration of Equation 19, 
allowing for the change in diameter during nose embedment. 
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Figure 9. Calculated deceleration curves for 
5000-psi concrete 

12 

for three different impact velocities. Due to the form of Equation 19 

and the relative magnitudes of a' and b' , the maximum deceleration 

occurs at the point of nose embedment, with the minimum deceleration at 

the final penetration depth. If the coefficient of Y (Equation 21) 

were larger, and the coefficient of /PY (Equation 22) smaller, then 

the calculated deceleration curves would be flatter, and the relation 

between Z and V more nonlinear. 
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PART IV: LAYERED TARGET ANALYSIS 

22. Few natural targets are uniform to any great depth, and it is 

not uncommon for earth penetrators to encounter abrupt changes in pene­

trability. This poses no special problem if the adjacent layers are 

similar materials (both soil or both rock) , but a difficulty arises 

when a layer of rock overlies a layer of soil. A finite thickness of 

rock is more penetrable (per unit depth) than a half-space of the same 

rock, yet there do not exist enough rock-over-soia penetration data to 

·formulate a quantitative model for the weakening of the rock near the 

interface. Aside from this shortcoming, the pen
_
etration analysis for 

layered targets is a logical extension of the work in Parts II and III. 

Equation of Motion for Layered Targets 

23. Upon considering the projectile equation of motion (Equa­

tions 11 and 19), it is convenient to introduce the quantity o , which 

represents the resisting force per unit frontal area. This allows 

Equations 11 and 19 to be rewritten as 

Whenever the projectile nose is in'contact with two adjacent layers 

(Figure 10), Equation 25 is replaced by 

where 
= maximum diameter in contact with layers 1 and 2, 

respectively 

= value of cr in layers 1 and 2, respectively 

Layered Soil Targets 

(25) 

(26) 

24. Equation 26 is applicable for soil and rock layers alike, so 
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LAYER I 

LAYER 2 

Figure 10. Projectile in contact with 
two layers at the same time 

long as the definitions of cr1 and cr2 make Equation 26 consistent with 

Equations 11 and 19. For soil layers in particular, cr1 and cr2 must 

be defined such that Equation 26 reduces to 

(27) . 

where 

a(D1 - D2) 
al 

= 
s1N 

(28) 

-aD2 a2 
= --

s2N 
(29) 

(30) 

(31) 
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cl 
= 

s(oi - o�) 
S2N2 1 

(32) 

SD2 
2 c2 

=--

S2N2 
2 

(33) 

and s1 and s2 are the S-numbers in layers 1 and 2, respectively. 

With the coefficie�ts defined in Equations 28-33, Equation 27 collapses . 
. to Equation 11 whenever s1 = s2 • �In order for Equation 26 to be 

consistent (for soil) with Equation 27, it then follows that 

a
l

. 

= _71'4 �a _l_
+ _b_l_v

_
+

_
c

_l_
z) 

D2 - D2 
1 2 

(34) 

(35) 

where z is the depth of the nose tip, measured from the target surface. 

Figure 11 shows a numerically calculated deceleration curve for a hypo­

thetical three-layer soil target. 

Layered Rock'Targets 

25. In order to make Equation 26 consistent (for rock) with 

Equation 19, the definitions required- :For cr1 and: a
2 are: 
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Figure 11. Calculated deceleration record for a 
hypothetical three-layer soil target 

where the subscripts 1 and 2 designate the evaluation of p , Y , and 

RQD in layers 1 and 2, respectively. Figure 12 shows a numerically 

calculated deceleration record for a hypothetical three-layer rock 

target. 

Composite Targets 

26. Equ&tion 26 is applicable for targets containing both soil 

and rock layers. Equations 34-35 and 36-37 defin� cr in the soil and 

rock layers, respectively.. The total force on the projectile can be 

-·-obtained-by-substituting ±he _appropriate exp_ressions for cr1 and cr2 
into Equation 26. For example, if layer 1 is soil and layer 2 is rock, 

then cr1 and cr2 are given by Equations 34 and 37, respectively. 

Figure 13 shows a numerically calculated deceleration curve for a hypo­

thetical soil/rock/soil target. 
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Figure 12. Calculated deceleration record for a 
hypothetical three-layer rock target 
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Figure 13. Calculated deceleration record for a 
hypothetical soil/rock/soil target 



PART V: CONCLUSIONS 

27. The soil penetration analysis (Part II) is a reexamination of 

the data originally used in the formulation of Young's equation. The 

projectile equation of motion (Equation 11) obtained therefrom (a) offers 

a means of calculating the projectile motion explicitly and (b) appears 

to clarify the effect of the projectile mass upon the final penetration 

depth. The accuracy of prediction is the same as for Young's equation: 

rigid-body deceleration and final depth ±_20 percept, when the S-number 

is known accurately. 

28. The rock penetration analysis (Part III) is based on fewer 

data than the soil penetration analysis. Nevertheless, for high-quality 

rock (RQD > 90) in which the strength is known accurately, the final-' 
, 

depth predictions are usually accurate within ±_20 percent. For the 

same situation, predictions of peak rigid-body deceleration should be 

accurate at least within !_50 percent. In order to improve upon this, 

more projectile deceleration records are needed to get a better under­

standing of (a) the general shape of the deceleration curve and (b) the 

relation between rock properties and rock pene�rability. 

29. The layered target analysis (Part IV) is a logical extension 

of Parts II and III. The equations therein should be about as accurate 

for layered targets as for unlayered targets, with the exception of rock 

layers over soil. In rock layers, the resistance to penetration de­

creases near a rock/soil interface, but the analysis does not account 

for this directly. For calculations involving thick rock layers over 

soil, the reduced penetrability can be approximated indirectly, however, 

by usi_ng a simple rule of thumb: Reduce the rock thickness by two or 

three projectile diameters, and increase the thickness of the under­

lying soil by the same amount. 
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APPENDIX A: NOTATION 

Coefficients in projectile equation of motion for soil 
(Equation 11) 

Coefficients in projectile equation of motion for rock 
(Equation 19) 

Projectional cross-sectional area (nD2/4) 

Ogive caliber radius 

Projectile diameter 

Gravitational acceleration (9. 8 m/sec2) 

Young's mass-scaling factor 

Projectile nose length 

Projectile mass 

Projectile nose-performance coefficient 

Rock Quality Designation 

Young's penetrability index for soil 

Time 

Instantaneous velocity 

Impact velocity, m/sec 

Projectile weight, kg 

Unconfined compressive strength for rock and concrete 

Instantaneous depth 

Z Final penetration depth, m 
a,S Coefficients in projectile equation of motion for soil 

(Equations 11, 13, 14, 15) 

n 3'. 1416 

p Mass density for rock and concrete· 

cr Resisting force per unit frontal area 

Note: Subscripts 1 and 2 denote evaluation of a given quantity in 
layers 1 and 2, respectively (Figure 10). 
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