

PROJECTILE PENETRATION IN SOIL AND ROCK: ANALYSIS FOR NON-NORMAL IMPACT

by
Robert 5. Bemard, Daniel C. Creighton
Structures Laboratory
U. S. Army Engineer Waterways Experiment Station P. O. Box 63:Vicksburg, Miss. 39180
December 1979
Final Report
DDC

Under DNA Subtask Y99QAXSB2II, Work Unit 20
$80 \quad 2 \quad 20 \quad 011$

Best Available Copy

Destroy Wia repert when ne lenger noeded. De not retum If to the eriginctor.

The findings in this report are not to be conatrued as an official
Depertment of the Army position unless so designated by ather eutherized documents.

Best Available Copy

Unclassified
sECUATY CLASSIFICATION OF THIS PAGE (Whan Dote Entonens

[^0]Unclassified

Inclasalfied

20. ABSTRACT (Continued).

PENCO2D computer code. The analysis includes free-surface and wake separationreattachment effects.

The PENCO2D code is used to make comparison calculations for Sandia/DNA reverse balliatic teats and several full-scale tests conducted by Sandia Laboratories. A parameter study shows erfects of soil penetrability, fmpact velocity, initial attack and obliquity anfiles, and projectile geowetry on underground trajectories.

This investigation was sponsored by the Defense Nuclear Agency under Subtask Y99QAXSB211, "Penetration," Work Unit 20, "Penetration Support." This study was conducted by perscnnel of the Structures Laboratory (SL), U. S. Army Engineer Waterways Experiment Station (WES), during October 1978 through May 1979, under the general supervision of Mr. Bryant Mather, acting Chief, SL, and Dr. J. G. Jackson, Jr., Chief, Geomechanics Division (GD), SL. Mr. R. S. Bernard formulated the theory, and Mr. D. C. Creighton developed and implemented the computer analysis, both under the technical guidance and direction of Dr. B. Rohani, GD. Messrs. Bernard and Creighton prepared this report.

COL John L. Cannon, CE, and COL Nelson P. Conover, CE, were Commanders and Directors of WES during the period of research and report preparation. Mr. F. R. Brown was Technical Director.

Best Available Copy

CONTIENTS

Page
PREFACE 1
CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT 6
CHAPTER 1 INTRODUCTION 7
1.1 Background 7
1.2 Purpose and Scope 7
CHAPTER 2 PENETRATTON ANALYSIS FOR MOTION IN TWO DIMENSIONS 0
2.1 Projectile Mction in Two Dimensions 9
2.2 Stress Distribution for Rock and Concrete 11
2.3 Stress Distribution for Soll 12
2.4 Wake Separation and Reattachment 13
2.5 Free-Surface Effect 16
CHAPTER 3 CALCULATIONS AND EXPERIMENTAL DATA 23
3.1 Backerround 23
3.2 Reverse Ballistic Tests in Sandstone 23
3.3 Full-scale Fenetration Tests in Soll 26
Chapter 4 Parameter study for soil fenetnation 46
4.1 Background 46
4.2 Baseline Conditions 46
4.3 Variation of Target Fenetrability and Impact Conditions 47
4.4 Independent Variation of Frojectile Parameters for straight Aftbody 48
4.5 Variation of Aftbody Flare 40
4.6 Variation of Ccupled Frojectile Farameters 40
CHAPTER 5 CONCLUSIONS 50
RFFERENCES (i)
APFENDIX A FENETRATION THEORY FOR ROCK AND CONCBETE 65
A. 1 Empirical Theory for Normal Impact 65
A. 2 Extrapolation to Non-Normal Impact 67
AFPENDIX B FENETRATION THEORY FOR sOIL 73
B. 1 Fmpirical Theory for Nomal Impact 73
B. 2 Extrapolation to Non-Normal Impact 7
AFPENDIX C NOTATION 31
Table Pare
3.1 Soll penetration data for non-normal impact 28
3.2 S-number profile for TTR Antelope Dry Lake site 20
A. 1 Penetration data for rock and concrete 61
A. 2 Projectile and target parameters 10
R. 1 Typical S-numbers for natural earth materials 70
LIST OF FIGURES

Figure

2.1 Projectile motion in two dimensions 19
2.2 Three-dimensional view of projectile 10
2.3 Frojectile surface genmetry and velocity components 20
2.4 Wake separation for purely axial motion 20
2.5 Separation and reattachment on a rotating projectile 21
2.6 Rear axial view of projectile cross section 21
2.7 Prodectile orientation with respect to free surface \therefore
3.1 Scale drawing of RBT penetrator 30
3.2 Comparison of calculated and measured lateral accelera- tions for Sandia/DNA RBT, 3-degree attack anicle 31
3.3 Comparison of calculated and measured axial decelera- tions for Sandia/DNA RBT, 3-degree attack angle 31
3.4 Comparison of calculated and measured strains for Sandia/DNA RBT, 3-degree attack angle 32
3.5 Comparison of calculated and measured lateral accelera- tions for Sandia/DNA RBT, 20-degree cbliquity 32
3.6 Comparison of calculated and measured axial decelera- tions for Sandia/DNA RBT, SO-degree obliquity 33
3.7 Comparison of calculated and measured strains for
Sandia/ N NA RBT, 20-degree obliquity 33
3.8 Calculated lateral force for different values of free- surface parameter, Sandia/DNA RBT, 20-degree obliquity 34
3.9 Calculated pitch moment for different values of free- surface parameter, Sandia/DNA RBT, 20 -degree obliquity 34
3.10 Calculated lateral force for different walues of wake separation anple, Sandia/RNA RBT, 20 -dedree obliquity 35
3.11 Calculated pitch moment for different values of wake separation ankle, samdia/DNA RET, 20 -degree obliquit.y 35
3.12 Calculated lateral force for different values of wake separation antele for sandia/RNA KBT, 3-degree attack angle 36
FigurePage
3.13 Calculated pitch moment for different values of wake separation angle for Sandia/DNA RBT, 3-degree attack angle 36
3.14 Calculated lateral force for different values of obliquity, Sandia/DNA RBT 37
3.15 Calculated lateral force for different values of attack angle, Sandia/DNA RBT 37
3.16 Calculated pitch moment for different values of obliquity, Sandia/DNA RBT 38
3.17 Calculated pitch moment for different values of attack angle, Sandia/DNA RBT 38
3.18 Variation of maximum calculated lateral load with attack angle and obliquity, Sandia/DNA RBT 39
3.19 Variation of maximum calculated pitch moment with attack angle and obliquity, Sandia/DNA RBT 39
3.20 Calculated lateral force for diferent values of target strength, Sandia/DNA RBT, 3-degree attack angle 40
3.21 Calculated pitch moment for different values of target strength, Sandia/DNA RBT, 3-degree attack ankile 40
3.22 Calculated lateral force distribution for different values of target strength, Sandia/DNA RBT, 3-degree attack angle 41
3.23 Effect of wake separation angle $\phi_{\text {min }}$ on calculated trajectories, Sandia Test R800915 min 41
3.24 Effect of wake separation angle $\phi_{\text {min }}$ on calculated trajectories, Sandia Test R800916 min 42
3.25 Effect of free-surface parameter k on calculated trajectories, Sandia Test R454025-23 42
3.26 Effect of wake separation angle $\phi_{\text {a }}$ on calculated tra- jectories, Sandia Test R454025-23 $\stackrel{\text { min }}{ }$. 43
3.27 Effect of wake separation ancle $\phi_{\text {min }}$ on calculated tra- jectories, Sandis Test R454025-22 min. 43
3.28 Comparison of calculated trajectories for Sandia pene- trators, $\phi_{\min }=1$ depree 44
3.29 Comparison of calculated trajectories for Sandia pene- trators, $\phi_{\text {min }}=2$ degrees 44
3.30 Comparison of calculated trajectories for Sandia pene- trators, $\phi_{\text {min }}=4$ degrees 45
3.31 Comparison of calculated trajectories for Sandia pene- trators, $\phi_{\text {min }}=8$ degrees 45
4.1 Calculated trajectory for baseline conditions 51
4.2 Calculated external forces for baseline conditions r
4.3 Calculated pitch moment for baseline conditions 5
4.4 Effect of soil penetrability on calculated tradectories 52
4.5 Effect of impact velocity on calculated tralectories 53
4.6 Effect of attack angle on calculated trajectories 53
4.7 Effect of obllquity on calculated trajectories 54
4.8 Effect of projectile weight on calculated trajectories 54
4.9 Effect of projectile dianeter on calculated trajectories 55
Figure Page
4.10 Effect of projectile nose shape on calculatedtrajectories55
4.11 Effect of projectile mass moment of inertia on cal- culated trajectories 56
4.12 Effect of projectile length (as an independent parameter) on calculated trajectories 56
4.13 Effect of CG location on calculated trajectories 57
4.14 Effect of aftbody flare on calculated trajectories 57
4.15 Scale drawing of projectile with 3-degree aftbody flare 58
4.16 Combined effects of weight, length, CG location, and mass moment of inertia on calculated trajectories 58
A. 1 Nondimensionalized penetration data for rock and concrete 71
B. 1 Comparison of calculated penetration depths with data from TTR Main Lake area 80
Best Available Copy
U. S. customary units of measurement used in this report can be converted to metric (SI) units as follows:

Multiply	By	To Obtain
feet	0.3048	metres
inches	0.0254	metres
feet per second	0.3048	metres per second
pounds (force) per foot	14.5939	newtons per metre
pounds (force) per square inch	6894.757	pascals
pounds (mass)	0.4535924	kilograms
pounds (mass) per cubic foot	16.01846	kilograms per cubic metre
pounds (mass) per inch	17.85797	kilograms per metre
pounds (mass)-square inches	0.0002926	kilograms-square metres

Best Available Copy

PROJECTILE PENETRATION IN SOIL AND ROCK: ANALYSIS FOR NON-NORMAL IMPACT

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

In recent years, due to growth of the experimental data base, development of empirical formulas, and implementation of new theoretical and computational techniques, it has become possible to predict the approximate motion of stable earth penetrators after normal impact in many types of geological targets (Reference 1-L). Results of some nonnormal (yawed/oblique) impact tests have also been predicted successfully, although the data base is small compared to that for normal impact (Rererences 5 through 7).

Previous analyses by the U. S. Army Engineer Waterways Experiment Station (WES) of non-normal impact have used the Cavity Expansion Theory (CET) for rock, and an empirical formulation similar to Young's equation for soil (feferences 5 and 8). These analyses were considered preliminary when they were first developed, and it was hoped that more credible analyses would arise in the future.

1.2 PURPOSE AND SCOPE

The present investigation concerns the development of a generalized analysis for oblique/yawed impact and penetration in soil and rock (or rock-like) targets, based on the modification of previous analyses and the interpretation of recent test data. The objectives are (a) to obtain external lond-time histories surficiently necurate for structural response calculations and (b) to calculate postimpact trajectories well enough to predict the terradynamic performance and stability of a given profectile.

The two-dimensional (2-D) penetration theory, including equation of motion, stress distribution, and free-surface and wake serarationreattachment effects, was developed. The penetration theory was conmuter
coded into PENCO2D to make comparison calculations with experimental data from both reverse ballistic and conventional penetration tests. Using PENCO2D, the effects of initial impact conditions, projectile geometry, and soil penetrability were examined in a brief parameter study.

Best Available Copy

CHAPI'ER 2

PENETRATION ANALYSIS FOR MOMION IN TWO DIMENSIONS

2.1 PROJECTILE MOTION IN TWO DIMFNSIONS

Consider a rigid, deeply buried projectile (no free-surface effects), whose motion lies in the $X Z$-plane, ${ }^{l}$ as shown in Fifure 2.1. The rotation is described by the angular veiocity $\dot{\theta}$, and the translation by $\dot{\mathrm{X}} . \perp \dot{\mathrm{Z}}$, the X - and Z-velocity components of the center of gravity (CG). ${ }^{2,3}$ For analysis, it is convenient to express the $C G$ velocity in terms of its lateral and axial (x - and $z-$) components V_{x} and V_{z}, respectively: ${ }^{4}$

$$
\begin{align*}
& v_{x}=\dot{x} \cos \theta-\dot{z} \sin \theta \tag{2.1}\\
& v_{z}=\dot{x} \sin \theta+\dot{z} \cos \theta \tag{2.2}
\end{align*}
$$

For purely axial motion $\left(v_{x}=0, \dot{\theta}=0\right)$, the stress distribution on the projectile is symmetric, and the net force is in the axial direction, producing no pitch (turning) moment. The introduction of rotation ($\dot{\theta} \neq 0$) or lateral motion $\left(V_{x} \neq 0\right)$ destroys this symmetry, and it is necessary to specify the asymmetric stress distribution in order to calculate the resulting force and moment.

Suppose that the compressive resisting stress σ is always normal to the projectile surface (no tangential stresses). On any surface area element $d A$, the x - and z-components of σ are, respectively,

[^1]\[

$$
\begin{gather*}
\sigma_{x}=0 \cos n \cos \psi \tag{2.3}\\
o_{2}=0 \sin n \tag{2,4}
\end{gather*}
$$
\]

where

```
        * - azimuthal angle (Figure ;.2)
    tan n - alope of projectile surface at a fiven point, with respect
        to nxis of symmetry (Figuren 2.l and 2.3)
```

The lateral and axial force components (Figure 2.2) acting on surface element dA are, reswetively,

$$
\begin{align*}
& d F_{x}=-\sigma_{x} d A \tag{2.5}\\
& d F_{z}=-G_{2} d A \tag{2,6}
\end{align*}
$$

where dA in the differential element of surface area. The interna and axial net force componenta neting on the entire projectile are then

$$
\begin{align*}
& F_{x}=-f v_{x} d A \\
& F_{z}=-\int \sigma_{z} d A \tag{2.8}
\end{align*}
$$

where the intepral is evalunted over the entire prolectile surfnce. The tranalational (cis) equations of motion are

$$
\begin{align*}
& M \ddot{X}=F_{x} \cos \theta+F_{z} \sin \theta \tag{:'v}\\
& M \ddot{i}=-F_{x} \sin \theta+F_{z} \cos \theta
\end{align*}
$$

where M in the profectlle masen and \ddot{x} nut $\ddot{\ddot{ }}$ ate the componenta of acenleration in the $x-$ and $: i-d i$ rections, respretively. the prodectile is nasumed to be ripil, an the rotathoma cymation of motion in

$$
\ddot{0}=\int \therefore d F_{x}-\int x d F_{z}
$$

where I is the tranaverne mana minent of inertia about the ci; $\ddot{\theta}$ in the anmular acopleration, and x and z are the lateral and axial distancea, reapeotively, from the C (Fipure al). The rifht-hanil aile of Equation $: .11$ in the total moment exerted on the projertile ahout Ita CG, and the interrala are evaluated over the entife area of the projectlle aurface.

2.2. NTRERG DISTRIMETION FOR ROCK AND CONCliFTE:

For penetration into concrete ami intact rook (Appendix A), the net force on the prodectile ran he ealculated aprriximately frum the followink normal stresa distribution:

$$
\theta-\left\{\begin{array}{l}
1, r_{1}, \cdot(1, Y+i v \sqrt{1 Y}) \sqrt{\frac{v_{n}}{v}}, v_{n}=0 \\
0, v_{n}=0
\end{array}\right.
$$

where
$Y=$ unconfined compresaive ntrenpth of intait target materint"
$y=$ target mana dencity
 (Finare r.3)
$v_{n}=$ nutwari normal compinent af v (Flfourn \therefore i)
 v_{n} Are

$$
v=\left[v_{x}+\left(v_{x}+\pi i\right) \cdot\right]^{1 / i}
$$

[^2]\[

$$
\begin{equation*}
v_{n}=v_{z} \sin n+\left(v_{x}+z \dot{\theta}\right) \cos n \cos \psi \tag{2.14}
\end{equation*}
$$

\]

It is assumed that a given surface element must have a net motion into the target material to produce a reaisting stress; hence, σ vanishes when $v_{n} \leq 0$ in Fquation 2.12.

2.3 STRESS DISTRIBUTION FOR SOIL

For penetration into soil (Appendix B), the net force on the projectile can be calculated approximately from the following normal stress distribution: ${ }^{6}$

$$
\sigma=\left\{\begin{array}{l}
\frac{0.625 \mu}{S r_{p}} \sqrt{\frac{v_{n}}{v}}+\frac{5.19 \dot{v}}{S} \sqrt{\beta r_{p} \frac{v_{n}}{v}}+\frac{5.9 \gamma Z}{s^{2}} \frac{v_{n}}{v}, v_{n} \geq 0 \tag{2.15}\\
0, v_{n} \leq 0
\end{array}\right.
$$

where
$\mu=1.96 \times 10^{5} \mathrm{lb} / \mathrm{ft}$, constant 7
$\beta=6.25 \times 10^{6} 1 b^{2}-\sec ^{2} / \mathrm{ft}^{7}$, constant
$r=1.56 \times 10^{5} \mathrm{lb} / \mathrm{ft}^{3}$, constant
$S=$ Young's S-number (Appendix B), soil penetrability index
$r_{p}=$ local cylindrical radius at a given point on the projectile surface
$Z=$ vertical depth of a given point on the projectile surfnce, measured from the target surface

The expressions for v and v_{n} are still given by Equations 2.13 and 2.14 , respectively; and the requirement that $v_{n}>0$ for $\sigma>0$ applies In soil as well as in rock or concrete.

The quantities μ, B, nd r are constants, independent of soil

6 Any set of dimensionally compatible units can be used in Equation 2.15, 7 as long ns all quantitien are converted to those units.
7 A table of factors for converting U.S. customnry units of measurement to metric (SI) units is presented on pase 6.
type and projectile characteristics. Thus, the only parameter characterizing the soil is Young's empirical S-number, which can be obtained for a given target from previous penetration data or from correlation with geological descriptions (Table B.1).

2.4 WAKE SEPARATION AND REATTACHMENT

Flash X-ray photographs and two-dimensional (2-D) finite-difference calculations have shown that loss of contact between target and projectile occurs somewhere on the nose, while reattachment may or may not occur on the aftbody. The current analysis is not sophisticated enough to predict the actual onset of separation. Nevertheless, it is necessary to include a simple model for the kinematics of wake separation, especially when $2-D$ projectile motion in soil is investigated.

It is assumed that there is a minimum angle of approach, or wake separation angle, $\phi_{\min }$ required between the target and the projectile contact surface (Figure 2.4) in order for contact io be maintained. For a given surface element, the local angle of approach ϕ is determined by the instantaneous orientation ${ }^{8}$ of the projectile such that

$$
\begin{equation*}
\sin \phi=\frac{V_{n}}{V} \tag{2.16}
\end{equation*}
$$

where V is the $C G$ velocity and V_{n} is its outward component normal to the projectile surface, given by

$$
\begin{equation*}
V_{n}=V_{z} \sin n+V_{x} \cos n \cos \psi \tag{2.17}
\end{equation*}
$$

Thus, separation occurs whenever $\phi \leq \phi_{\text {min }}$, i.e., whenever the local angle of approach is less than the wake separation angle. ${ }^{9}$

Separation is only part of the problem; reattachment may or may

[^3]not occur, depending on the relative motion of the wake and the aftbody downstream of the separation point. It is expected that the wake separation angle $\phi_{\min }$ will generally be small (<10 degrees), in which case the angle of attack a required to maintain contact will also be small. In any case, reattachment will be analyzed based on three assumptions:

1. Constant axial velocity (V_{z})
2. Constant angular velocity ($\dot{\theta}$)
3. Constant angle of attack (a)

Obviously, these three quantities change as the projectile penetrates into the target. Nevertheless, if the quantities do not vary rapidiy, the quasistatic approximation is adequate.

The cavity formed by the wake is a gently curved cylindrical tube of increasing radius (with time), and the projectile rotates inside this tube as it travels forward. The curved axis of the cavity is fixed in the target, and aftbody reattachment occurs wherever the projectile rotates into the cavity wall (Figure 2.5).

Disregarding any stresses that may oppose the radial expansion of the cavity, conservation of mass and incompressibility in the target requires that

$$
\begin{equation*}
r_{c} \dot{r}_{c}=\text { constant } \tag{2.18}
\end{equation*}
$$

where r_{c} is the local cylindrical wake-cavity radius. Evaluating Equation 2.18 at the separation point, it then follows that

$$
\begin{equation*}
r_{c} \dot{r}_{c}=r_{0} v_{z} \tan \phi_{\min } \tag{2.19}
\end{equation*}
$$

where r_{0} is the projectile radius at the separation point. For small values of $\phi_{\min }, r_{o}$ is approximately the radius corresponding to $n=\phi_{\text {min }}$ (Figure 2.4). Furthermore, for straight- and tapered-aftbody projectiles, r_{0} is approximately the radius at the base of the nose. Denoting axial distance aft of the nose tip by ζ, time derivatives can be related to V_{z} and ζ by the transformation

$$
\begin{equation*}
\frac{d}{d t}=v_{z} \frac{d}{d \zeta} \tag{2.20}
\end{equation*}
$$

and Equation 2.19 reduces to

$$
\begin{equation*}
r_{c} \frac{d r_{c}}{d \zeta}=r_{0} \tan \phi_{\min } \tag{2.21}
\end{equation*}
$$

for which the solution is

$$
\begin{equation*}
r_{c}=\sqrt{r_{0}^{2}+2 r_{0}\left(\zeta-\zeta_{0}\right) \tan \phi_{\min }}, \zeta \geq \zeta_{0} \tag{2.22}
\end{equation*}
$$

where ζ_{0} is the value of ζ at the separation point. For $\zeta<\zeta_{0}$, the cavity radius is the same as the projectile radius, since no loss of contact has occurred.

Using Equation 2.20 again, the differential equation for the lateral displacement δ of a point on the projectile axis, relative to the cavity centerline (Figure 2.5), is

$$
\begin{equation*}
\frac{d \delta}{d t}=v_{z} \frac{d \delta}{d \zeta}=\zeta-\zeta_{0} \dot{\theta} \tag{2.23}
\end{equation*}
$$

Treating V_{z} and $\dot{\theta}$ as constants, the solution for δ is

$$
\begin{equation*}
\delta=\frac{1}{2}\left(\zeta-\zeta_{0}\right)^{2} \frac{\dot{\theta}}{V_{z}}+\delta_{0} \tag{2.24}
\end{equation*}
$$

The initial displacement $\delta_{0}=\zeta \sin a$ is the displacement due to the angle of attack α (treated here as a constant), ${ }^{10}$ so Equation 2.24 is replaced by

10
It is assumed that small attack angles do not significantly change the cavity geometry. Thus, if $\dot{\theta}=0$, the cavity centerline wiil be straight; but if in addition $a \neq 0$, the projectile axis will be skewed relative to the cavity, producing displacements $\delta_{0}=$ $\zeta \sin a$ between the projectile axis and the csvity centerline.

$$
\begin{equation*}
\delta=\frac{1}{2}\left(\zeta-\zeta_{0}\right)^{2} \frac{\dot{\theta}}{V_{z}}+\zeta \sin a \tag{2.25}
\end{equation*}
$$

where

$$
\begin{equation*}
a=-\tan ^{-1}\left(\frac{V_{x}}{V_{z}}\right) \tag{2.26}
\end{equation*}
$$

At any point on the projectile surface aft of the separation point, the criterion for no contact is ${ }^{11}$
$\left.\begin{array}{l}\frac{1}{2}\left(\zeta-\zeta_{0}\right)^{2} \frac{\dot{\theta}}{V_{2}}+\zeta \sin a-r_{p} \cos \psi<\sqrt{r_{c}^{2}-r_{p}{ }^{2} \sin ^{2} \psi}, \frac{\pi}{2} \leq \psi \leq \frac{3 \pi}{2} \\ r_{p} \cos -\frac{1}{2}\left(=-\zeta_{0}\right)^{2} \frac{\dot{\theta}}{V_{z}}-\zeta \sin a<\sqrt{r_{c}^{2}-r_{p}{ }^{2} \sin ^{2} \psi},-\frac{\pi}{2} \leq \downarrow \leq \frac{\pi}{2}\end{array}\right\}$

Hence, if $\leq \phi_{\mathrm{min}}$ and Equation 2.27 are satisfied, there is no contact, and $\sigma=0$.

The foregoing analysis is only a rough method of accounting for wake separation and reattachment using a single input parameter, the wake separation angle $\phi_{\text {min }}$. Nevertheless, this analysis does make it possible to assess the relative effects of separation and reattachment on projectile stability, as will be shown in Chapter 3.

2.5 FREE-SURFACE EFFECT

In brittle materials, such as rock and concrete, a crater is always formed during (or just after) impact. Postimpact inspections in rock (Reference 9) indicate that these craters may be as much as 10 projectile diameters across at the target surface. The crater width decreases

[^4]rapidy with depth, however, approaching a value equal to for slightly less than) the projectile diameter after a few calibers of penetration. The same phenomenon occurs in soil, though to a lesser extent than in rock, since soils are more ductile than brittle in behavior.

For normal impact or for near-normal impact with slight yaw, it is not necessary to account for the cratering phenomenon (i.e., freesurface effect) in calculating the loads on the projectile with the current analysis. On the other hand, for oblique impact with no initial yaw, the ree-surface effect is probably one of the dominant mechanisms creating an unbalanced lateral force on the projectile, especially in rock and concrete. Thus, for analyzing non-normal impact in general, the presence of the free surface should be acknowledged, even if only by a crude representation of its effect.

The influence of the free surface is modeled herein with an on-off stress criterion, governed by the location of a given projectile surface element $d A$ with respect to the iree surface (Figure 2.7). Whenever the radial distance from the projectile axis (through $d A$) to the free surface is less than some prescribed value $r_{s},{ }^{12}$ then the stress on dA is set equal to zero. Quantitatively, this condition is expressed by setting $\sigma=0$ whenever

$$
\begin{equation*}
z_{C G}+z \cos \theta<r_{s} \sin \theta \cos \psi \tag{2.28}
\end{equation*}
$$

where $Z_{C G}$ is the vertical distance from the free surface to the CG. Assuming r_{s} to be directly proportional to the local projectile radius r_{p}, Equation 2.28 is replaced by the stipulation that $\sigma=0$ whenever

$$
\begin{equation*}
z_{C G}+2 \cos \theta<k r_{p} \sin \theta \cos \psi \tag{2.29}
\end{equation*}
$$

where the free-surface parameter is

[^5]\[

$$
\begin{equation*}
k=\frac{r_{s}}{r_{p}}=\text { constant } \tag{2.30}
\end{equation*}
$$

\]

This model for the free-surface effect produces a stress distribution that may be partially or completely turned off on the top side $(-\pi / 2<\psi<\pi / 2)$ of the projectile, depending on the geometry, depth, and orientation with respect to the target surface. The deeper the penetration and the more vertical the orientation, the smaller the influence of the free surface on the lateral loads.

Best Available Copy

Figure 2.1 Projectile motion in two dimensions.

Figure 2.2 Three-dimensional view of projectile.

Eest Avallable Copy

Figure 2.3 Projectile surface geometry and velocity components.

Figure 2.4 Wake separation for purely axial motion.

Figure 2.5 Separation and reattachment on a rotating projectile.

NOTE. THIS ORAWING VALIO ONLYFOR : DISPLACEMENT RELATIVE TO WAAE-CAVITY CROSS SECTION AFT UF SEPARATION FOINT

Figure 2.6 hear axial view of prolectile cross section.

Figure 2.7 Projectile orientation with respect to free surface.

CHAPTER 3

CALCULATIONS AND EXPERIMENTAL DATA

3.1 BACKGROUND

Detailed information concerning non-normal impact effects is scarce, mininly becauae ndditional parameters that po beyond those important for normal impact are involved. In the latter case, the important quantities are the velght, size, and geometry of the projectile; the impact velocity; the final depth; and the axial deceleration record. For non-normal tests, however, the additional important parameters are the moment of inertia and CG of the projectile, the lateral comporenta of the impact velocity, the 2- or 3-D trajectory (including projectile orientation), and the lateral components in the deceleration record.

Usually, the only way to obtain all this information is by conducting a reverse ballistic test (RBT). Still, if the projectile parameters are known, much insight can be gained from knowing only the impact conditions and the rinal position, particularly with regard to stability.

In this chapter, comparisons will be made between calculations and teat results for RBT's and conventional penctration testa. The main purpose will be to investigate the gencral credibility of the analysis and the parameters used therein. Althoush the dita are too few to nchieve the degree of verification that can be obtained for normal impact, there are atill enough benchmarks availnble to check for unreasonable predictions. With this done, some credence can be fiven to the parameter study in Chapter 4.

3.2 REVFRGE BALLIGTTC TFGTS in sandetone:

In 1077, Sund haboratorlew comducted rour DNA-sponsored RIM": in sandstone. A complete deseription of the te:st: 1 s given in Reference 10 ,

[^6]and the processed data nre preaented in References 11 and 12. Two of the teats (Nos, 2 and 3) were done at n 3-dearee nttack angle, and one (Mo. 4) at 20 degreea obllquity (no nagle of attack). The impact veloclty was approximately $1500 \mathrm{rt} / \mathrm{s}$ in each ease. Nominal target properties are ${ }^{2}$
\[

$$
\begin{aligned}
\rho & =130 \mathrm{lb} / \mathrm{ft}^{3} \\
Y & =3400 \mathrm{pai} \\
\text { Rock quality } & \text { designation }(\mathrm{KQD})=100
\end{aligned}
$$
\]

A scale draving of the projectile is ahown in Fizure 3.1; the projectile parnmeters are ${ }^{2}$

```
            lensth (L) \(=18.15 \mathrm{in}\)
                    Weight (w) = 9.4.4 16
                    Dinmeter \((\mathrm{D})=1.9 \mathrm{in}\)
Callber radiua hend (CRH) \(=0.00\) (hevelad tip)
                    \(T=\because 1.016-1 n^{\circ}\)
```

For ench ease, the load distributionn on the prolectile, conleulated walna the PBNCOD computer code (wlth cutput modifleatlons), have been used ne input to n dynumic atructural-renponse code (Wilansi) by T. Belytachko. ${ }^{3}$ Predletlons were generated for accelerometer and strainRake outputa, amplen of whioh are compared with tent reanles in Flaures 3.a through 3.7. In the WIAAK: enleulations, the mecelerometers
 from the nose tip. The atrain kake wan on the outahide

[^7]多
bottom $(\psi=\pi), 9.6$ inches from the nose tip.
For the 3-degree attack angle calculation, there is clearly a phase difference between the calculated and measured lateral accelerntions (Figure 3.2), the cause of which is not yet understood. Also, the initial positive peaks in the calculated resulta are somewhat low, but the later negative peaks are in fair agreement with the test dnta. Better agreement exists for the axial decelerations (Fipure 3.3). Fair agreement is obtained for the strain gage output (Figure 3.4), althounh the initial negative strains are somewhat underpredicted.

For the 20 -degree obliquity calculation, the calculated results are in much better agreement with the test data (Figures 3.5 through 3.7), although the phase-difference problem is still apparent in the lateral acceleration (Figure 3.5) data and the strain gape cutput (Fipure 3.7).

In using the $\operatorname{iENCO} 2 \mathrm{D}$ computer code to generate the input for Belytschko's WHAMS calculations, the free-surface parameter was set at $k=3$, and the wake separation anple was set at $\phi_{\text {min }}=0$. These values were chosen after examining the effect of varyine k and $\phi_{m i n}$ in WES predictions for total lateral force and pitch moment (Fizures 3.8 through 3.13). ${ }^{4}$ The vnlue $k=3$ is rensonnble in light of pene-tration-crater measurements in sandstone (Refcrence o), and the $\phi_{\min }=0$ value is reasonable, since the wake separation anole should be amall in hard targets.

In order to examine the effects of attack anple and obllquity on lateral load and pitch moment in the WES theory, n serics of calculations has been made using the 3 - and 20 -depree RBT's as baseline cason. The results are shown in detail in Figures 3.14 throurih 3.17 and aummained in Figures 3.18 and 3.10 . A similar series of salculations wha made, varying the target strongth for the 3-dearce hirt. The results, shown in Fifures 3.20 and 3.21, indicate that the initial peaks in the lateral force (at 0.12 ms) are much more dependent on strmith than are tive later peaks (at 0.7 to 0.8 ms). The reason for the similarity in the

[^8]later peaks can be seen by examination of the lateral force distribution (per unit length) at 0.7 ms (Figure 3.22). The amplitude of the force distribution is a strong function of the strength, but the positive and negative contributions are such that there is little difference in the net lateral force at 0.7 ms .

3.3 PULLESCALE PENETRATION TESTS IN SOIL

Sandia Laboratories has conducted at least four full-scale soil penetrition tests that are suitable as benchmarks for the WES 2-D penetration theory. Two of these tests, Nos. R800915 and R800916 (Reference 13), were conducted in the Pedro dry lake site on Tonopah Test Range (ITR). The other tests, Nob. R454025-22 and R454025-23 (Reference 14), took place in the Antelope dry lake site on TTR. Fertinent information for all four tests is summarized in Table 3.1, and Young's S-number proflle (Reference 14) for the Antelope site is given in Table 3.2.

Using the information given in Tables 3.1 and 3.2 as input, calculations have been made for the penetrator trajectories. The results are compared with the Sandia test data in Figures 3.23 through 3.27.

Calculations for tests R 800015 and R 800016 , presented respectively In fipures 3.23 and 3.24 , show the effects of varying the wake separation angle. Here the experimental results are inconsistent. The tests were identical except for a 20 percent difference in impact velocity, yet there was a 500 percent difference in lateral (horizontal) displacement. ${ }^{5}$ One of the rensons for the discremancy may have been a difference in the amount of wake separation in the two tests. Separation nlone, however, in not enough to account for the difference, since even the calculation for $\phi_{\text {min }}=0$ predicta 3 fcet of lateral displacement for test 8800015 . In these cnlculations the rree-surface parameter was

[^9]set at $k=0$, due to its lack of influence on near-vertical impact problems.

Test R454025-23 is a good example for assessing the effects of the free-surface parameter independent of the wake separation angle effects. Here the initial obliquity is large, and k and $\phi_{m i n}$ both influence the calculated trajectory (Figures 3.25 and 3.26). For this test the best simulation of the observed trajectory is obtained for $k=4$ and $\phi_{\text {min }}=0.6$ Nevertheless, it is clear from the calculations that the wake separation angle has a much stronger influence than the freesurface parameter, even for large obliquity.

Test R454025-22 was conducted with a shorter projectile ($L / D=8$) than the other three tests $(L / D=10)$. In this case, the penetrator impacted at 30 degrees and rotated 90 degrees before coming to rest 13.5 feet below the target surface. With the free-surface parameter set at $k=4$, calculations made for different values of the wake separation angle (Figure 3.27) indicate that a value of $\phi_{\min }=4$ degrees best reproduces the observed final position of the penetrator.

In other (normal impact) tests ${ }^{7}$ in the Antelope site, Sandia has found $L / D=10$ to be significantly more stable than $L / D=8$ (Reference 14). For comparison of the two projectiles in this study, criculations were made for the shorter projectile (from test R454025-22) using the S-number and impact conditions of test R800916, setting $k=0$, and varying $\phi_{m i n}$. The results (Figures 3.28-3.31) indicate that the stability of either projectile is strongly dependent on the value selected for the wake separation angle.

[^10]Tatle 3．1．Soil penerration thete fer non－normel ingect．

$\begin{array}{r} \text { Sosidis } \\ \underline{t e t} \text { So. } \\ \hline \end{array}$	7 Tres					Masex：		inpect condtricris			Tresectecy			Remerir
	$\begin{gathered} \text { delztet } \\ \hline \end{gathered}$	$\begin{aligned} & \text { theoter } \\ & \text { in } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Lengen } \\ \substack{\text { in }} \\ \hline \end{gathered}$	Cti		ot Inertia $2 t-1 n^{2}$	Target	Tajact veloci：y	$\begin{gathered} \text { cenipility } \\ \text { angle } \end{gathered}$	atteck Angle	Thal Lepet	Hinel hape	$\begin{aligned} & \text { Fark } \\ & \text { Lengeth } \end{aligned}$	
werssis	350	6．125	6， 2.5	6.0	32.2	$\xrightarrow{6,63 \times 1 a^{4}}$					$\stackrel{\square}{\square}$	ft	fr	
RStsgle	350		E2．25	6.0 6.0	8	3.63×15 9.63×10^{4}	12H Fearo Ary lake site： $S \equiv 3.8 t$	1400	3.7	3.7	49	2.5	49.1	Stable motioci pro－ Jectile deviated 10 arse direction of attack
Fら¢んごくら－で	\％	ε	ti．2s	6.0 9.25	27.7	9．63：10 ${ }^{4}$	NH Fedro Ery ipice ste $5 \$ 3 . j \varepsilon$	1 Eso	3.7	3.1	58	13	59.4	Sratie motion；pro－ jectile deriated in direction of attack arele
たらちいござ－23	Los	€． 5	Es	9.2 9.25	27.7	4．2t $\times 10^{6}$	I．7 Ante－ Lope iry lake site： see atice 3.2	2333	30	＜0．5	13.5		130	Koteted 80 deg and stopjed 13.5 ft be tou surface at trom 0820 dee
				9.25	2．4，	$1.06 * 10^{\circ}$	3R Acte－ Loge 1rg ivie site； see Table 3.2	1627	75	＜0．5			125.5	Statie motiocic rom tated $\overline{2}$ 1en toward enfface

a chipity acge in fiare of acticn．

Table 3.2. S-number profile for TMR Antelope Dry Lake site.a

Depth, ft		
From	To	S-number
0	27	5
27	35	2.5
35	50	5.5
50	80	7
80	85	3
85	109	8
109	170	11.5
170	∞	13.5
From Reference 14.		

STATION	AXIAL DISTANCE FROM NOSE TIP INCHES	SIGNIFICANCE
8	3.80	NOSE BASE
CG	8.71	CENTER OF GRAVITY
F	8.20	FORWARD ACCELEROMETER
R	17.30	REAR ACCELEROMETER
5	9.60	Strain gage

> NOTE: PLAAE EEGINS AT 0.04 WM AND ENDS AT I3.04 IN TOTAL LENGTH $L=18.1 S$ IN

Figure 3.1 Scale drawing of RBT penetrator.

Figure 3.2 Comparison of calculated and measured lateral accelerations for Sandia/DNA RBT, 3-degree attack angle.

Figure 3.3 Comparison of calculated and measured axial decelerations for Sandia/DNA RBT, 3-degree attack angle.

Figure 3.4 Comparison of calculated and measured strains for Candia/ DNA RBT, 3-degree attack angle.

Figure 3.5 Comparison of calculated and measured lateral accelerations for Sandia/DNA RBT, 20-degree obliquity.

32

Figure 3.6 Comparison of ealculated and measured axial deceleritions for Sandia/INA EBT, 2O-degree obliquity.

Figure 3.7 Comparison of aldoulnted andmensured strains for samdia/TNA RM, 20-derree obliquity.

Figure 3.8 Calculated lateral force for different values of free-surface parameter, Sandia/DNA RBT, 20-degree obliquity.

Figure 3.9 Calculated pitch moment for different values of free-surface parameter, Sandia/DNA RBT, 20degree obliquity.

Figure 3.10 Calculated lateral force for different values of wake separation angle, Sandia/DNA RBT, 20-degree obliquity.

Figure 3.11 Calculated pitch moment for different values of wake separation angle, Sandia/DNA RBT, 20degree obliquity.

Figure 3.12 Calculated lateral force for different values of wake separation angle for Sandia/DNA RBT, 3-degree attack angle.

Figure 3.13 Calculated pitch moment for different values of wake separation angle for Sandia/DNs RBT, 3degree attack angle.

Figure 3.14 Calculated lateral force for different values of obliquity, Sandia/DNA RBT.

Figure 3.15 Calculated lateral force for different values of attack angle, Sandia/ DNA RBT.

Figure 3.16 Calculated pitch moment for different values of obliquity, Sandia/DNA RBT.

Pigure 3.17 Calculated pitch moment for different values of sttack angle, Sandia/DNA RBT.

Figure 3.18 Variation of maximum calculated lateral load with attack angle and obliquity, Sandia/DNA RBT.

Figure 3.19 Variation of maximum calculated pitch moment with attack angle and obliquity, Sandia/DNA RBT.

Figure 3.20 Calculated lateral force for different values of target strength, Sandia/DNA RBT, 3-degree attack angle.

Figure 3.21 Calculated pitch moment for different values of target strength, Sandia/DNA RBT, 3-degree attack angle.

Figure 3.22 Calculated lateral force distribution for different values of target strength, Sandia/DNA RBT, 3degree attack angle.

4tang
-

Figure 3.23 Effect of wake separation angle $\phi_{m i n}$ on calculated trajectories, Sandia Test R800915.

Figure 3.24 Effect of wake separation angle min on calculated trajectories, Sandia Test R800916.

Figure 3.25 Effect of free-3imface parameter k on calculated trajectories, Sandia Test R454025-23.

Figure 3.26 Efiect of vake separation angle ϕ min on calculated trajectories, Sandia Test R454025-2

Figure 3.27 Effect of wake geparation angle $\phi_{\text {min }}$ on calculsted trajectories, Sandia Test R454025-22.

Figure 3.28 Comparison of calculated traJectories for Sandis penetrators, min 1 degree.

Figure 3.29 Comparison of calculated traJectories for Sandia penetrators, $\phi_{\text {min }}=2$ degrees.

Figure 3.30 Comparison of calculated trajectories for Sandia penetrators, min $=4$ decrees.

Figure 3.31 Comparison of calculated trajectories for Sandia penetrators, $\phi_{\text {min }}=8$ degrees.

CHAPTER 4
PARANETER STUDY FOR SOIL PENETRATION

4.1 BACKGROUND

The PENCOZD computer code predicts trajectories that seen reasonable in light of existing non-normal soil penetration data (Chapter 3), although inconsistencies in the test results leave unresolved the question of wake separation and its quantitative effect on stability. Uncertainties notwithstanding, enough benchmarks do exist so that some credence can be given to a study of the effects of varying the projectile parameters, the impact conditions, and the target penetrability.

A baseline projectile, target, and set of impact conditions are specified in this chapter, and calculations are presented in which individual parameters have been varied one at a time. In some cases the variation of a given quantity independent of other quantities way be unrealistic in a practical sense (e.g., changing the projectile length without affecting the moment of inertia). However, the objective in such instances is to show the influence of a particular parameter in the calculation itself. In a practical design-parameter study (Section 4.6), coupled parameters (e.g., weight, length, and mass moment of inertia) have to be varied together.

4.2 BASELINE CONDITIONS

The projectile chosen for this study is similar to the one used in Sandia Test R454025-23 ($L / D=8$) and represents a marginally stable design, according to Sandia's experience. The pertinent projectile quantities are

W	$=300 \mathrm{ib}$
D	$=6 \mathrm{in}$
L	$=48 \mathrm{in}$
$C R H$	$=6.0$
$C G$ location $r_{C G}$	$=26.4$ in from nose tip

$$
\begin{aligned}
I & =4 \times 10^{4} \mathrm{lb}-i n^{2} \\
\text { Aftbody taper angle } \phi_{\mathrm{aft}} & =0
\end{aligned}
$$

The baseline impact conditions are

$$
\begin{aligned}
& v_{0}=1500 \mathrm{ft} / \mathrm{sec} \\
& a_{0}=4 \text { degrees } \\
& \theta_{0}=4 \text { degrees }
\end{aligned}
$$

The baseline target properties are

$$
\begin{aligned}
s & =8 \\
k & =4 \\
\phi_{\min } & =2 \text { degrees }
\end{aligned}
$$

All of the above parameters will be varied except k and $\phi_{\text {min }}$, whose effects have already been demonstrated in Chapter 3. Aside from the individual quantity or quantities being varied, the input will be the same as the baseline conditions. ${ }^{1}$

Figures 4.1, 4.2, and 4.3 show the trajectory, external forces, and pitch moment, respectively, calculated for the baseline conditions. Since the baseline calculation uses a constant wake separation angle $\left(\phi_{\min }=2\right.$ degrees), the penetration path is curved, rather than straight, and there is some residual oscillation in the pitch moment as aftbody contact alternately increases and decreases.

4.3 VARIATION OF TARGET PENETRABILITY AND IMPACT CONDITIONS

Figure 4.4 indicates the degree to which the target S-number inRuences the trajectory. The main effect seems to be an increase in the total path length with increasing S. Although the horizontal displacement increases with S, there seems to be little variation in the

[^11]overall path shape. The same thing can be said for the impact velocity (Figure 4.5).

The initial attack angle has a mild eifect on the trajectory (Figure 4.6), aside from a marked increase in path curvature and horizontal displacement between 0 and 2 degrees. The 0 -degree case goes straight in because there is no angle of attack (or obliquity) to initiate rotation. Large obliquities ($\alpha_{0}=0, \theta_{0} \geq 60$ degrees) can produce ricochet (Figure 4.7), although lesser obliquities seem to have a gentle effect on path curvature.?

4.4 INDEPENDENT VARIATION OF PROJECTILE PARAMETERS FOR STRAIGHT AFTBODY

Figures 4.8, 4.9, and 4.10 show the effects of varying the weight, diameter, and nose shape, respectively. Treated as independent parameters, none of these variables has much effect other than changing the path length. The horizontal displacement increases with path length, but the shape of the trajectory changes only slightly.

It might be argued that the mass moment of inertia alone should have a big influence on the trajectory. This is not the case, however, as can be seen in Figure 4.11. Although the mass moment of inertia has a moderately stabilizing effect, it is overshadowed by aftbody separation, which allows the projectile to rotate with little opposition during most of the event (see Figure 4.3).

Figure 4.12 shows the consequences of treating the projectile length as an independent parameter, keeping the geometric position of the CG constant $\left(\zeta_{C G} / L=0.55\right)$. A reduction in projectile length has a stabilizing effect, due to reductions in the moment arm and the total (lateral) loaded area on either side of the CG. This is the least realistic of all the foregoing trajectory comparisons because a physical change in length changes all other parameters (Section 4.6).

The most important single parameter is the geometric CG location

[^12]$\zeta_{C G} / L$, as is indicated in Figure 4.13. If the CG is far enough forward ($\zeta_{C G} / L=0.45$), the negative moment (after CG entry into the target) outweighs the initial positive moment, and a rotation reversal occurs. If the $C G$ is far enough oft $\left(\zeta_{C G} / L=0.65\right)$, the initial positive moment is so great that the projectile ends up going sideways.

4.5 VARIATION OF AFTBODY FLARE

Figure 4.14 shows trajectories calculated for different values of the aftbody flare angle $\phi_{\text {aft }}$. In each calculation the aftbody merges with the ogive nose section at the point of tangency, where $\eta=\phi_{a f t}$. An illustration for $\phi_{a f t}=3$ degrees is shown in Figure 4.15.

If $\phi_{a f t}=\phi_{m i n}$, there is no loss of contact with the target, and the penetrator goes almost straight in. On the other hand, if $0<\phi_{a f t}<\phi_{\min }$, the trajectory is straighter than the baseline case (straight aftbody, $\phi_{a f t}=0$) but it is still noticeably curved. Flare angles greater than $\phi_{\min }$ reduce the final depth, due to increased base diameter (decreased W/A).

From this comparison, the optimum flare angle appears to be a value less than the wake separation angle, producing a slightly curved trajectory but leaving the depth essentially unaffected. The flare must be installed without shifting the CG toward the tail.

4.6 VARIATION OF COUPLED PROJECTILE PARAMETERS

The projectile parameters that were varied independently in Section 4.4 are coupled to one another in practice. As far as stability is concerned, the most important coupling occurs among weight, length, CG location, and mass moment of inertia. A serious parameter study should consider the simultaneous variation of these quantities.

A simple but fairly realistic way of accounting for the change in $W, \zeta_{C G}$, and I with L is to add or subtract cylindrical aftbody sections of constant linear density ${ }^{3}$ from the baseline projectile, while

3 Constant weight/unit length $=300 \mathrm{lb} / 48 \mathrm{in}=6.25 \mathrm{lb} / \mathrm{in}$.
assuming $I=M L^{2}$. Flgure 4.16 shows trajectories for projectiles whose properties were varied in this way.

According to the calculations, if the projectile is short enougn (L/D < 5), the CG will lie in an unstable position, ultimately producing sideways motion. 4 otherwise, the effect of the changing parameters is little more than an increase in path length with projectile length.

[^13]

Figure 4.1 Calculated trajectory for baceline conditions.

Figure 4. 3 Calculated pitch moment for bnseline conditions.

Figure 4.4 Effect of soil penctrability on calculated trajectoriea.

Figure 4.5 Effect of impact velocity on calculated trajectories.

Figure 4.6 Effect of attack angle on calculated trajectories.

Figure 4.7 Effect of obliquity on calculated trajectories.

Figure 4.8 Effect of projectile weight on calculated trajectories.

Figure 4.9 Effect of projectile diameter on calculated trajectories.

Figure 4.10 Effect of projectile nose shape on calculated
trajectories.

Figure 4. 11 Effect of projectile mass moment of inertia on calculated trajectories.

$$
\begin{aligned}
\text { Figare } 4.12 & \text { Erfect of projectile length } \\
& \text { (as an independent param- } \\
& \text { eter) on calculated } \\
& \text { trajectories. }
\end{aligned}
$$

Figure 4.13 Eifect of CG location on calculated trajectories.

Figure 4.14 Effect of aftbody flare on calculated trajectories.

SCALE
 i
 1 |FT

Figure 4.15 Scale drawing of projectile with 3degree aftbody flare

Figure 4.16 Combined effects of weight, length, CG location, and mass moment of inertia on calculated trajectories.

CHAPTER 5

CONCLUSIONS

An empirical theory has been developed for analyzing impact and penetration in soil and rock. Calculations with this theory reproduce penetration data for normal impact at least as well as other empirical analyses (e.g., Young's equation). The extension fram one- to twodimensional motion was obtsined by extrapolation, with simple models postulated for the free-surface and wake separation effects. The entire non-normal analysis was then incorporated into the PENCO2D computer code. Benchmarks for the theory consist of strain and acceleration data from RBT's in sandstone, and trajectory data from conventional penetration teats into soil.

Projectile acceleration and strain predictions, ${ }^{1}$ generated from WEScalculated external loads, agree fairly well with the RBT data. There is, hovever, a tendency to underpredict the lateral loads for yaved impact somewhat. There is also an unexplained phase difference between the calculated and observed lateral accelerations for both yaved and non-yawed oblique impact, On the other hand, the calculated variations of maximum lateral force and pitch moment with initial obliquity and attack angle are quite reasonable (essentially linear). In any case, the recommended values for the wake separation angle and free-surface parameter, respectively, are $\phi_{\min }=0$ and $k=8$ for rock and rocklike materials. ${ }^{2}$ Comparisons of calculated and observed penetrator trajectories in soil are inconclusive, since the test data are not consistent. Concerning terradynamic stability, however, the most important target parameter is the wake separation angle, ${ }^{3}$ whereas the most important projectile

[^14]parameter is the CG location. ${ }^{4}$ Aftbody flare also has a beneflcial effect, if the CG is not shifted toward the tail and the base diameter is not increased enough to significantly reduce the final depth.

One phenomenon not predicted by the present theory is the marked improvement in projectile stability achieved by going from L/D $=8$ to $L / D=10$, which was observed in tests conducted by Sandia Laboratories (Reference 14). WES calculations indicate a gradual improvement in stability with projectile length (see Figure 4.16). If $L / D=8$ does represent a critical value for projectile stability, this would indicate that some basic mechanism is missing in the theory, either in the wake separation analysis or in the stress equations.

One mechanism conspicuously absent in the present wake separation analysis is the resistance of the target to the (cylindrical) expansion of the wake cavity, which would lead ultimately to the rebound/collapse of the cavity on the aftbody. The probable variation of $\phi_{\text {min }}$ with velocity, depth, nose shape, and target penetrability (S-number) is also neglected. Finally, the stress equations may be underpredicting the effects of lateral motion. Future work should consider these problems and any others that might bear on the stability question.

[^15]
REFERENCES

1. C. W. Young; "The Development of Empirical Equations for Predicting Depth of an Earth-Penetrating Projectile"; Development Report No. SC-DR-67-60, May 1967; Sandia Laboratories, Albuquerque, N. M.
2. C. W. Young; "Depth Prediction for Earth-Penetrating Projectiles"; Journal, Soil Mechanics and Foundations Division, American Society of Civil Engineers, Vol 95, No. SM3, May 1969; pp 803-817.
3. C. W. Young; "Mmpirical Equations for Predicting Penetration Performance in Layered Earth Materials for Complex Penetrator Configurations"; Development Report No. SC-DR-72-0523, Dec 1972; Sandia Laboratories, Albuquerque, N. M.
4. R. S. Bernard; "Depth and Motion Prediction for Earth Penetrators"; Technical Report S-78-4, Jun 1978; U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
5. R. S. Bernard and D. C. Creighton; "Non-Normal Impact and Penetration: Analysis for Hard Targets and Small Angles of Attack"; Technical Report S-78-14, Sep 1978; U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
6. Y. M. Ito and others; "Analysis of 0.284 -Scale RBT for 3° Yawed Impact"; Informal Report, Contract DNA 001-76-C-0383, Oct 1978; California Research and Technology, Inc., Woodland Hills, Calif.
7. D. Henderson and E. J. Giara, Jr.; "Eartr Penetrator Technology Program"; Draft Report DNA 4571, Jan 1978; Avco Systems Division, Wilmington, Mass.
8. R. S. Bernard; "Earth-Penetrator Trajectories in Soil: Preliminary Analysis and Parameter Study"; Letter Report to Defense Nuclear Agency, Oct 1978; U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
9. C. W. Livingston and F. L. Smith; "Bomb Penetration Project"; Apr 1951; Colorado School of Mines and Research Foundation, Inc., Golden, Colo.
10. W. R. Kampfe; "DNA 1/3-Scale Pershing Penetrator Tests"; Letter Report to Defense Nuclear Agency dated Oct 1977; Sandia Laborstories, Albuquerque, N. M.
11. D. C. Creighton; "Correlation of Reverse Ballistic Test Data"; Letter Report to Defense Nuclear Agency, Dec 1977; U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
12. D. C. Creighton; "Correlation of Additional Reverse Ballistic Test Data"; Letter Report to Defense Nuclear Agency, Aug 1978; U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
13. C. W. Young; "Results of December 1977 Davis Gun Tests at ITR"; Memorandum dated 13 Jan 1978; Sandia Laboratories, Albuquerque, N. M.
14. C. W. Young; "Status Report on High Velocity Penetration Program"; Report No. SAND 76-0291, Sep 1976; Sandia Laboratories, Albuquerque, N. M.
15. R. S. Bernard and S. V. Hanagud; "Development of a Projectile Penetration Theory, Report 1"; Technical Report S-75-9, Jun 1975; U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
16. R. S. Bernard; "Development of a Projectile Penetration Theory, Report 2"; Technical Report S-75-9, Feb 1976; U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
17. R. S. Bernard and D. C. Creighton; "Projectile Penetration in Earth Materials: Theory and Computer Analysis"; Technical Report S-76-13, Nov 1976; U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
18. J. A. Canfield and I. G. Clator; "Development of a Scaling Law and Techniques to Investigate Penetration in Concrete"; Technical Report 2057, Aug 1966; U. S. Naval Weapons Laboratory, Dahlgren, Va.
19. W. J. Patterson, Sandia Laboratories, Albuquerque, N. M., Untitled Letter Report to: R. S. Bernard, Soil Dymamics Division, U. S. Army Engineer Waterways Experiment Station, CE, Vickskurg, Miss.; 26 Aug 1976.
20. D. U. Deere; "Technical Description of Rock Cores for Engineering Purposes"; Rock Mechanics and Engineering Geology, 1964, Vol. 1, No. 1, pp 16-22; International Society of Rock Mechanics, SpringerVerlag, N. Y.
21. D. J. Dunn; "Bomb Penetration of Earth-Covered Concrete Targets"; Proceedings of the Seminar on the Attack of Earth, Stone, and Concrete Barriers by HE Projectiles (15-16 May 1974), Part 1, Report BRL-R-1872, Apr 1976; U. S. Ballistic Research Laboratories, Aberdeen Proving Ground, Md.
22. R. S. Bernard; "Empirical Analysis of Projectile Fenetration in Rock"; Miscellaneous Paper S-77-16, Nov 1977; U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
23. W. J. Patterson; "Projectile Penetration of In Situ Prck"; Report No. SLA-73-9831, Nov 1973; Sandia Laboratories, Albuquerque, N. M.
24. S. W. Butters and others; "Field, Laboratory and Modeling Studies on Mount Helen Welded Tuff for Earth Penetrator Test Evaluation"; Report No. TR 75-9, Aug 1976; Terra Tek, Inc., Salt Lake City, Utah.
25. D. K. Butler and others; "Constitutive Property Investigations in Support of Full-Scale Penetration Tests in Dakota Sandstone, San Ysidro, New Mexico"; Technical Report S-77-3, Apr 1977; U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
26. W. J. Patterson; "Physical Properties and Classification of Seven Types of Rock Targets"; Report No. SC-TM-68-621, Sep 1968; Sandia Laboratories, Albuquerque, N. M.
27. C. W. Young and G. M. Ozanne; "Compilation of Low Velocity Penetration Data"; Report No. SC-RR-306A, Jun 1966; Sandia Laboratories, Albuquerque, N. M.

APPENDIX A

PENETRATION THEORY FOR ROCK AND CONCRETE

A. 1 EMPIRICAL THEORY FOR NORMAL IMPACT

Early penetration analyses at WES (References 15 through 17) relied heavily on the Cavity Expansion Theory (CET), whereby the coefficients a and b and the function $f(V)$ in the resisting stress

$$
\begin{equation*}
\sigma=a+b f(V) \tag{A.1}
\end{equation*}
$$

could be obtained explicitly in terms of the density, strength, and elastic moduli of the target. Examination of penetration data from several sources, however, has failed to show a consistent correlation between penetrability and standard engineering properties, especially for soil. Although the most consistently accurate predictions have been obtained for concrete, additional factors such as aggregate size may overshadow elastic effects.

In the long run, a "fundamental" theory like the CET requires empirical modification in order to be of general use as a predictive tool. An empirical approach from the outset seems better, thus keeping the functional relations among the parameters as simple as possible.

For concrete and rock, a stress equation of the form

$$
\begin{equation*}
\sigma=a+b V \tag{A.2}
\end{equation*}
$$

does seem adequate for correlating penetration data obtained with a given projectile/target combination. In general, however, the coefficients a and b will vary with the characteristics of the projectile and the target. Based on penetration tests in concrete (Reference 18) and intact rock (Reference 19), the following empirical formula is proposed for the stress distribution on the projectile ${ }^{\text {l }}$

[^16]$0=1.582(4 Y+3 V \sqrt{0 Y}) \sqrt{0 \ln n}$
(A.3)

Relnting Equation A. 3 to A.2. it in clenr thint $n=6.328$ y $\sqrt{\sin n}$ and that $b=4.746 \sqrt{\infty Y \operatorname{ain} n}$. When Equation $A .3$ is oubatituted into Equationa $\therefore .4$ nad $\therefore .8$, the equation or motion (Equation $\therefore .10,0=0$) for n nully embedied projectlle become:s

$$
\begin{equation*}
\ddot{M Z}=-\frac{n D^{2}}{4 N_{r C}}(1 Y Y+3 V \sqrt{\varphi Y}) \tag{A.4}
\end{equation*}
$$

where D la the maximum dinmeter and $N_{r e}$ in the noze performance coerficient in rock and concrete, given for oxives by

$$
N_{r c}=0.863\left[\frac{h_{1}(\mathrm{CRH})^{2}}{4(\mathrm{CH}-1}\right]^{1 / 4}
$$

and for conea by

$$
\begin{equation*}
N_{r c}=\frac{0.805}{\sqrt{\ln n_{c}}} \tag{1.6}
\end{equation*}
$$

with ne representing the cone hale-nmile nad call representint: the radiun of curvature of the tangent opive in calliors (multifien or n).
 procean, the rland-depth alution ion bumtion $A . h$ in

$$
\begin{equation*}
\theta_{\operatorname{mnx}}=\frac{4 N_{n \cdot M}}{\pi_{n} n^{\prime}}\left[\frac{V_{0}}{3} \sqrt{\frac{\varrho}{Y}}-\frac{1}{3} \ln \left(1+\frac{3}{4} V_{0} \sqrt{\frac{\mathrm{~L}}{Y}}\right)\right] \tag{n,7}
\end{equation*}
$$

where V_{0} i: the impaet velocitiy.
 leatit one mere par:umeter that firluemer: penctrabllity. In orok thi:

in a given site, is obtained using a modified core-logging procedure:
All solid pieces of core that are 4 inches long or longer are added up, and this length is called the modiffed core recovery. The modified core recovery is divided by the total length of core run, and the quotient multiplied by 100 percent is the value of the RQD.

In concrete, the maximum size of coarse aggregate $D_{\text {ag }}$ apparentiy has a mild effect on penetrability (Reference 21), via the ratio $D_{a g} / D$. Letting Y represent the intact unconfined strength for rock and concrete, the effective strengths for penetration can be calculated from

$$
\begin{align*}
& Y_{r}=Y \cdot\left(\frac{R Q D}{100}\right)^{0.2} \tag{A.8}\\
& Y_{c}=Y \cdot\left(\frac{3 D_{a g}}{D}\right)^{0.2} \tag{A.9}
\end{align*}
$$

Thus, to calculate penetration in less-than-intact rock ($\mathrm{RQD}<100$), the quantity Y_{r} should replace Y in Equations A.3, A.4, A.7, and 2.12. Likewise, when the maximum aggregate size is specified for a given concrete, Y_{c} should replace Y in the same equations. ${ }^{2}$

Figure A. 1 shows a comparison of Equation A. 7 with nondimensionalized penetration data for rock and concrete. The concrete data were obtained for a case in which $D / D_{a g}=3$; i.e., $Y_{c}=Y$. Primarily, the figure shows the degree to which Equation A. 7 is able to collapse the data to a single curve. There is some residual scatter, but this correlation represents an improvement over previous attempts. (References

- 4 and 22). ${ }^{3}$ Table A.i presents the data in dimensional form, whereas Table A. 2 gives the target properties and projectile parameters.

A. 2 EXITRAPOLATION TO NON-NORMAL IMPACT

Equation A. 3 was obtained by starting with Equation A. 2 and

[^17]adjusting coefficients until a good data fit was achieved for combined rock and concrete penetration data (Figure A.1) taken from References 18, 19, and 23. ${ }^{4}$ Previous experience with these materials had shown that a and b should be proportional to Y and $\sqrt{\rho \bar{Y}}$, respectively; the $\sqrt{\sin \eta \text {-proportionality (nose-shape effect) was drawn from Young's }}$ observations of soil penetration and was presumed to hold true for harder targets. With the addition of the RQD effect on the apparent strength, the correlation shown in Figure A. 1 was achieved.

The form of Equation $A .3$ is such that it can readily be extrapolated to the case of nonaxial motion. Recognizing that for axial motion

$$
\begin{equation*}
\sin n=\frac{v_{n}}{v} \tag{A.10}
\end{equation*}
$$

where $V_{n}=$ component of V normal to projectile surface, it is reasonable to replace V and V_{n}, respectively, by the local velocity v and its normal component $v_{n} .5$ Thus, for 2 - or 3-dimensional motion, the expression for the compressive normal stress on the projectile surface is

$$
\begin{equation*}
0=1.582(4 Y+3 v \sqrt{p Y}) \sqrt{\frac{v_{n}}{v}} \tag{A.11}
\end{equation*}
$$

where
$v=$ absolute local velocity relative to fixed target
$v_{n}=$ component of. v normal- te projectile surface
In order for a stress to act on a given projectile surface element, there must be contact with the target (Section 2.4) and net motion into the target $\left(v_{n}>0\right)$. Otherwise, it is presumed that $\sigma=0$.

[^18]Table A.1. Penetration data for rock and concrete.

Test Source	Target Material	Impact Velocity fps	Penetration Depth in
Canfield and Clator	Concrete	1005	8.0
Canfield and Clator	Concrete	1025	9.0
Canfield and Clator	Concrete	1250	10.0
Canfield and Clator	Concrete	1485	14.5
Canfield and Clator	Concrete	1775	16.5
Canrield and Clator	Concrete	1975	23.5
Canfield and Clator	Concrete	2020	19.5
Canfield and Clator	Concrete	2325	26.0
Canfield and Clator	Concrete	2350	24.0
Canfield and Clator	Concrete	2430	27.5
Canfield and Clator	Concrete	2535	29.0
Canfield and Clator	Concrete	2655	29.5
Sandia/DNA	Welded Turf	1220	87
Sandia/DNA	Welded Tuff	1350	102
Sandia/DNA	Welded Turf	1560	142
Sandia/DNA	Welded Turf	1640	132
Sandia/DNA	Welded Tuff	1650 ----	132
Sandia/DNA	Sandstone	1455	140
Sandia/DNA	Sandstone	1505	146
Sandia No. 120-77	Welded Agglomerate	1065	156
Sandia No. 120-112	Sandstone	824	122
Sandia No. 120-103	Sardetone	880	$120^{\text {a }}$
Sandia No. 120-106	Granite	860	150

[^19]Table A.2. Projectile and target parameters.

Figure A. 1 Nondimensionalized penetration data for rock and concrete.

APPENDIX B

PENETRATION THEORY FOR SOIL

B. 1 EMPIRICAL THEORY FOR NORMAL IMPACT

To date, Young's equation (References 1-3) has been the most consistently successful formula for calculating penetration depths in soil. Rather than using standard engineering properties to describe the target, Young lumps the penetrability into a single empirical variable, represented by S. In U. S. customary units, ${ }^{1}$ Young's equation is

$$
\mathrm{z}_{\max }=\left\{\begin{array}{l}
0.0031 \mathrm{SN} \sqrt{\sqrt{W / A}\left(V_{0}-100\right), \mathrm{V}_{0} \geq 200 \mathrm{ft} / \mathrm{s}} \\
0.533 \mathrm{~N}_{\mathrm{s}} \sqrt{\mathrm{~W} / \mathrm{A}} \ln \left(1+\frac{2 \mathrm{~V}_{0}^{2}}{100,000}\right), \mathrm{V}_{0}<200 \mathrm{ft} / \mathrm{s}
\end{array}\right.
$$

where

$$
\begin{aligned}
Z_{\max } & =\text { final depth, ft } \\
W & =\text { projectile weight, } 1 \mathrm{~b} \\
A & =\frac{\pi}{4} D^{2}=\text { maximum cross-sectional area, sq in } \\
V_{0} & =\text { impact velocity, ft/s } \\
N_{S} & =\text { nose performance coefficient in soil, dimensionless } \\
S & =\text { soil penetrability index, dimensionless }
\end{aligned}
$$

The S-number can be obtained directly from previous penetration data for a given target, or it can be estimated from data for geologically similar targets (Table B.1). Whatever the case, Young's equation represents a scaling relation between the projectile characteristics (size, weight, geometry), the impact velocity, and the maximum depth of penetration,

Since Young's equation gives only the final depth, it cannot be used to calculate the instantaneous resisting force, only the average resisting force. This is not a drawback for normal impact, since the

[^20]axial resisting force is often a step-pulse (i.e., uniform, except for some oscillation) in a given layer. On the other hand, for non-normal impact, both the axial and lateral forces must be known if the 2 - and 3-D motion is to be calculated. Since Young's equation gives no indicstimon of the lateral forces, a more detailed analysis is needed.

In Reference 4 a projectile equation of motion was developed for normal impact and penetration in soil, based on data originally used by Young. Postulating that the axial force should (a) have the form of a step-pulse and (b) exhibit linear dependence on velocity, it was found that an equation of the form

$$
\begin{equation*}
-M \frac{d V}{d t}=a+b V+c Z \tag{B.1}
\end{equation*}
$$

would satisfy both these criteria, provided that

$$
\begin{equation*}
b \propto \sqrt{\mathrm{Mc}} \tag{B.2}
\end{equation*}
$$

The explicit appearance of the projectile mass in the velocity coefficlient b was puzzling but absolutely necessary to generate a steppulse resisting force. Moreover, it brought the mass dependence of the maximum depth into agreement with Young. Physically, however, the mass should occur only on the left side of Equation B.l, with parameters such as diameter, nose shape, and S-number appearing in the coefficients a, b, and c.

The mass dependence of the coefficient b is now thought to be a size effect in disguise. This is reasonable since many of the larger projectiles used by Young had masses roughly proportional to D^{3}. Consequently, an alternative to Equation B. 2 is

[^21]$$
W=1.3 D^{3} \pm 30 \%
$$
\[

$$
\begin{equation*}
b \propto \sqrt{D^{3} c} \tag{8.3}
\end{equation*}
$$

\]

In either case, the approximate solution for the final depth $z_{\max }$ is

$$
\begin{equation*}
z_{\max }=\frac{1}{c}\left[-\left(a+\frac{2}{3} b v_{0}\right)+\sqrt{\left(a+\frac{2}{3} b v_{o}\right)^{2}+M c V_{0}^{2}}\right] \tag{B.4}
\end{equation*}
$$

and the dependence of a and c upon S and D is the same as in Reference 4:

$$
\begin{align*}
& a \propto \frac{D}{S} \tag{B.5}\\
& c \propto \frac{D^{2}}{S^{2}} \tag{B.6}
\end{align*}
$$

which insures that for low-velocity, shallow penetration,

$$
\begin{equation*}
Z_{\max } \propto \frac{S}{D} \tag{R.7}
\end{equation*}
$$

In accordance with Young's equation. When the nose performance coefficient N_{s} is added, the coefficients a, b, and c can be expressed in terms of three "universal" constants μ, β, γ :

$$
\begin{align*}
& a=\frac{\mu D}{S N_{3}} \tag{B.8}\\
& b=\frac{\sqrt{B D^{5}}}{S N_{S}} \tag{B.9}\\
& c=\frac{\gamma D^{2}}{S^{2} N_{s}^{2}} \tag{B.10}
\end{align*}
$$

With these expressions for a, b, and c, it follows from Equation B. 4 that

$$
\begin{equation*}
Z_{\max }=\frac{8 N_{B}}{D^{n}} \tag{B.11}
\end{equation*}
$$

where

$$
\begin{equation*}
1 \leq n<2.5 \tag{B.12}
\end{equation*}
$$

and Young's nose performance coefficient in soil is approximsted by

$$
\begin{gather*}
N_{s}=0.632\left[\frac{4(\mathrm{CRH})^{2}}{4 \mathrm{CRH}-1}\right]^{1 / 4}, \text { ogives } \tag{B.13}\\
N_{s}=\frac{0.548}{\sqrt{\sin n_{c}}}, \text { cones } \tag{B.14}
\end{gather*}
$$

The values of the constants μ, β, and γ have been obtained. The ratio of β / γ was adjusted until step-pulse deceleration curves were achieved. The values of μ and γ were then determined by fitting Equation B. 4 to shallow penetration data (Reference 27) for projectiles with the same weight and diameter ${ }^{3}$ in the Main Lake area of Tonopah Test Range (TMR). The values for the three constanta ${ }^{4}$ are

$$
\begin{aligned}
& \mu=1.96 \times 10^{5} \mathrm{lb} / \mathrm{ft}^{\prime} \\
& \beta=6.25 \times 10^{6} \mathrm{1b}^{2} \mathrm{~s}^{2} / \mathrm{ft}^{7} \\
& Y=1.56 \times 10^{5} \mathrm{ib} / \mathrm{ft}^{3}
\end{aligned}
$$

Figure B. 1 compares Equation B. 4 with normalized ${ }^{5}$ deep- and

[^22]shallow-penetration data for TTR Main Lake. The same data are given in original form in Reference 2, where Young gives the S-number profile as $S=5.2$ from 0 to 8 feet and $S=2.5$ from 8 to 25 feet. Equation B. 4 agrees best with the shallow data using $S=4.3$ and with the deep data using $S=3$.

Equation B. 4 appears to do about as well as Young's equation in extrapolating and interpolating soil penetration data, but as a formula for depth prediction, it offers no advantage over the latter. On the other hand, the underlying equation of motion (Equation B.1) contains some additional information concerning the explicit relation between the axial resisting force and the velocity, depth, diameter, and geometry of the projectile.

The analysis of nonaxial motion requires that the stress distribution be specified on the projectile. In the present context, any stress distribution is potentially correct if it generates Equation B. 4 with the values of a, b, and c given by Equations B.8-B.10. The simplest distribution that accomplishes this, giving approximately the right dependence of N_{s} on projectile geometry, is a compressive normal stress defined as follows:

$$
\begin{equation*}
\sigma=\frac{0.625 \mu}{S r_{p}} \sqrt{\sin \eta}+\frac{5.19 V}{S} \sqrt{B r_{p} \sin \eta}+\frac{5.9 \gamma Z}{S^{2}} \sin \eta \tag{B.15}
\end{equation*}
$$

where
$r_{p}=$ local cylindrical radius of projectile
$n=$ local angle between projectile surface and axis of symmetry (Figure 2.1)
$Z=$ vertical depth from target surface to point on projectile surface (Figure 2.7)

B. 2 EXTRAPOLATION TO HON-NORMAL IMPACT

Now that the stress distribution is defined by Equation 3.15 , the extrapolation procedure for soil is the same as for rock and concrete (Appendix A). Thus, for 2- or 3-D motion, the function $\sin n$ is replaced by v_{n} / v, and v by v, so that

$$
\begin{equation*}
0=\frac{0.625 \mu}{S r_{p}} \sqrt{\frac{v_{n}}{v}}+\frac{5.19 v}{S} \sqrt{B r_{p} \frac{v_{n}}{v}+\frac{5.9 \gamma Z}{s^{2}} \frac{v_{n}}{v}} \tag{B,16}
\end{equation*}
$$

As in Appendix A, it is assumed that for a stress to act on a given projectile surface element there must be contact with the target (Section 2.4) and net motion into the target $\left(v_{n}>0\right)$, otherwise $\sigma=0$.

Table B.1. Typical S-numbers for natural earth materials. a

S	Materials
1-2	Frozen silt or clay, saturated, very hard. Rock, weathered, low strength, fractured. Sea or freshwater ice more than 10 feet thick.
2-3	Massive gypsite deposits. ${ }^{b}$ Well-cemented coarse sand and gravel. Caliche, dry. Frozen, moist silt or clay.
4-6	Sea or freshwater ice from 1 to 3 feet thick. Medium dense, medium to coarse sand, no cementation, wet or dry. Hard, dry, dense silt or clay. ${ }^{c}$ Desert alluvium.
8-12	Very loose, fine sand, excluding topsoil. Moist, stiff clay or silt, medium dense, less than about 50 percent sand.
10-15	Moist topsoil, loose, with some clay or silt. Moist, medium stiff clay, medium dense, with some sand.
20-30	Loose, moist topsoil with humus material, mostly sand and silt. Moist to wet clay, soft, low shear strensth.
40-50	Very loose, dry, sandy topsoil (Eflin AFB). Saturnted, very soft clay and silts, with very lov shear strenfths and high plasticity.d Wet lateritic clays.

[^23]

Figure B.1 Comparison of calculated penetration depths with data from TTR Man lake area.

APPENDIX C

NOTATION

a, b, c Empirical force coefficients
A Maximum cross-sectional ares of projectile
CRH Tangent-ogive radius of curvature, in calibers ("caliber radius head")
dA Differential element of surface area on projectile
$\mathrm{d} \mathrm{F}_{\mathrm{x}}, \mathrm{d} \mathrm{F}_{2}$ Differential force components in the body-fixed lateral and axial (x - and $z-$) directions, respectively
,
D Maximum projectile diameter
Dag Maximum coarse aggregate size
$f(v) \quad$ Function of velocity
$F_{x}, F_{z} \quad$ Net force components in the body-fixed lateral and axial (x - and $2-$) directions, respectively
g Gravitational acceleration (32.2 $\mathrm{ft} / \mathrm{s}^{2}$)
I Transverse mass moment of inertia about CG
k Free-surface parameter, r_{s} / r_{p}
L Projectile length
M Projectile mass, W / g
n Exponent
$N_{r c}$ Nose performance coefficient in rock and concrete
$N_{3} \quad$ Nose performance coefficient in soil
$r_{c} \quad$ Cylindrical radius of wake cavity
r_{0} Cylindrical radius of projectile at separation point
r_{p} Local cylindrical radius on projectile surface at a given point
r_{s} Maximum perpendicular distance from projectile axis, through dA, to target surface, for which stress relief can occur due to free-surface effect

```
        RQD Rock quality designation
            S Soil penetrability index
            t Time 
            v Absolute local velocity of any point on projectile surface
            * Outward normal component of local velocity
v
            (x- and 2-) directions, respectively
            v Projectile CG velocity
            V Outward normal component of CG velocity
            V
V
    ( }x\mathrm{ - and 2-) directions, respectively
    W Projectile weight
    x Lateral (body-rixed) position in projectile
    x Horizontal position in target
    x,}\ddot{z}\mathrm{ Components of acceleration in the }X\mathrm{ - and z-directions,
            respectively
            Y Unconfined compressive strength of intact rock or concrete
            Yc Concrete strength, corrected for oggregate size
            Yr Rock strength, corrected for RQD
            z Axial (body-fixed) position in projectile, measured forward
            from CG
            Z Vertical position (depth) in target, measured downward
            from target surface
            Z VG Vertical position (depth) of CG, measured downward from
            target surface
                    Z max Maximum (final) depth of penetration of nose tip
```

[^24]| a | Angle of attack |
| :---: | :---: |
| ${ }_{0}$ | Initial angle of attack |
| B | Constant, $6.25 \times 10^{6} 1 b^{2}-8^{2} / \mathrm{ft}^{7}$ |
| γ | Constant, $1.56 \times 10^{5} \mathrm{lb} / \mathrm{ft}^{3}$ |
| δ | Lateral displacement of point on projectile axis, relative to wake cavity |
| δ_{0} | Initial displacement of point on projectile axis |
| ζ | Axial distance aft of the nose tip |
| 50 | Axial distance from nose tip to scparation point |
| ${ }^{5} \mathrm{CG}$ | Axial distance from nose tip to CG |
| η | Local angle between projectile axis and line tangent to projeciile surface |
| n_{c} | Cone half-angle |
| θ | Obliquity angle, measured counterclockwise from target-fixed Z-axis to projectile-fixed z-axis |
| $\dot{\theta}$ | Angular velocity |
| $\ddot{\theta}$ | Angular acceleration |
| θ_{0} | Initial obliquity angle |
| μ | Constant, $1.96 \times 10^{5} \mathrm{lb} / \mathrm{ft}$ |
| ρ | Mass density of rock or concrete |
| 0 | Local compressive normal stress on projectile surface |
| σ_{x}, σ_{2} | Components of local compressive normal stress in body-fixed lateral and axial (x - and $z-$) directions, respectively |
| ¢ | Local angle of approach between projectile surface element and target, based on CG velocity components |
| $\phi_{\text {art }}$ | Artbody flare angle |
| ${ }^{\text {min }}$ | Angle of approach at which separation occurs (wake separation angle) |
| ψ | Azimuthal angle on projectile |

Best Available Copy

DIBERIEUTIOM LIST

```
DEPARIMENX OF DENEASE
```



```
    Atonic Enorgy.
        AIT2: Donald R. Cotter
Director, Defense Advanced Research
    Projects Agency,
        AHYN: COL B. Pare
                NMRO
                Paul C. McMonigal
                CDR J. Beatty
                LTC M. Frantelin
                S. Lubasik
                    FMO
                SNO
                Tric R. Willis
                Technical Library
Pederel maergency Mangeevent Agency
        ATHN: Director
Defense Documentation Center, Cameron Station
12 cy ATMW: TC/Myer B. Kann
Director, Defense Intelligence Agency
    ATTN: DI-TE
            DT-2, We⿴囗⿰丨丨⿱一𫝀口
            DI-7D, Phym. Vac. Div.,
                Edvard O'Parrell
            Technical Library
Defense Mapping Agency
    ATMN: H. Lindsey
Director, Defense Nuclear Agency
    A12%: ST3I (Archiven)
```



```
15 cy
    SPSS
    DDST
Director of Defense Research and Engineering
        AMIN: Assistant Director, Strategic
            Weapons
            Depury Director, Strategic
                    Systems
                    M. J. Minnevan
                    George Barse
                            Craig W. Hartsell
                            R. Thorkildsen
                    Deputy Director, Tactical Warfare
Communder, Fleld Command, Defense Nuclear
    Agency
        ATMN: FCPR
Interservice Nuclear Weapons School
        ATMW: Technical Library
Director, Joint Strategic Target Planning
    Starr,Jes
        ATHN: Science and Technology Info
                        Library
Director, Weapons Systems Evaluation Group
        ATTM: Technical Library
```

DEPARTMENX OF DEPEMSE
Aselatant to the Secretary of Defense， Atonic Enerey． ATIN：Donald R．Cotter

Director，Defenae Advanced Research
AHH：COL B．Pafe N17O
Paul C．McMonig
CDR J．Beetty
LTC M．Frantelin
S．Lubasik
F10
Pric R．WIIII：
Technical Library
Pederal Mergency Management Agency ATHIN：Director

Derenae Docurentation Center，Cameron Station 12 cy ATMW：TC／Myer B．Kann

Director，Defense Intelligence Agency ATIN：DI－TL

DT－2，Weapons 4 Systeas Division Edvard O＇Farrell
Technical Library
Defense Mapping Agency
ATM：H．Lindsey
Director，Defense Nuclear Agency
Triw．SM3I（Aroblven）
$\begin{array}{ll}2 \mathrm{cy} & \text { STHL（Technical Library）} \\ 15 \mathrm{cy} & \text { SPSS }\end{array}$
DDST
Director of Defense Research and Engineering ATHN：Assistant Director，Strategic Weapons

Systens
M．J．Minnevan
Craig W．Hartsell
R．Thorkildsen
Deputy Director，Tactical Warfare
Commander，Field Command，Defense Nuclear cy
ATM：FCPR
Interservice Nuclear Weapons School ATHi：Technical Library

Director，Joint Strategic Target Planning ATMN：Science and Technology Info Library

Director，Weapons Systems Evaluation Group ATM：Technical Library

DEPARTMFNX OF THE ARMY
Director，U．S．Ariv Ballistic Misille Defense Advanced Technology Center ATH：BNDATC－X CRDABR－S

Balliatie Misaile Defense Progran Manager，U．S． Arvy Ballistic Missile Derense Program office ATH：MACS－EML／Dr．John Shea

Heedquarters，Central Aruy Group ATH：CEIE：LKC J．L．Spruill

Orfice，Chief of Engineers
2 cy ATH：DAENA－ABI－L
2 cy DAEAR－NCED
DATRERDL
Orfice，Chief of Research，Development，and Acquisition ATME：DAMA－CSM

Technical Library
Comander，Harry Ditmond Laboratoriea AIHN：A．Holmes

ANODO－NP
APDOO－RBH／J．Gwaltney
Project Manager，Remotely Monitored Battleffeld
Sensor System，U．S．Army Materiel Developaent and Readinesa Command（DARCOM） ATMI：Chuck Higeins

Comanding Officer，Pleatinny Arsenal ATH：Paul harris

P．Angellot1
Technical Library
SMJPA－AD－S／E．Zinpo
Willian Meyer
Ray Goldstein
Ray Moestaer
Marty Margolin
Jerry Pental
SIRPA－AD－D－A－7
SUMPA－AD－D－A
SUMPA－AD＝D－M
Director，U．S．Army Balliatic Research
Laboratories
ATTI：AMXBR－X／J．J．Meszaros
J．H．Keerer
ANXBR－TB／J．T．Frasier
W．J．Taylor
Norris J．Huffington，Jr．
D．Duns
G．Grabarek
B．Reiter
G．Roecker
2 cy Technical Library／Edvard Baicy
J．W．Apgar
R．Paul Ryan，Chier，Closed
Literature，Scientific and Tech－ nical Information Branch

Comander／Director，U．S．Army Cold Regions
Research and Engineering Laboratory ATTM：G．Svinzow

DEPARTMENT OF THE AIR FORCE (Cont Inued)

Headquarters, Air Force Systems Comand ATTH: Technical Library

Project Manager, Gator Mine Program ATTM: E. J. Lindeey

OkJahoma State University, Fleld Office for Weapons Erfectivenes: ATTK: Ed Jackett

Air Force orfice of Scientiric Research ATTM: LTC L. P. Nosteller, Jr.

Commander, Rowe Air Development Center, AFSC ATM: EMTLD, Docimenta Library

Commander, Arracient Development and Test Center ATTM: ADTC/DLODL/Technical Library

Commander, Foreign Technolacy Dirision, AFSC ATTM: TD-BTA Library
ha Usaf/til
ATT: : inata
hQ USAF/RD
ATTM: RDPM, COL J. E. MeCormick
Space and Missile Systema Organization ATTM: DEB

ENERGY BESEARCH a DEVELOPMENT ADMIMISTRATION
U. S. Ehergy Research and Development Administration, Diviaion of Military Application

ATTN: Doc Control for Test orrice
U. S. Whergy Research and Development Administration, Albuquerque Operations orfice ATTM: Doc Control for Technical Library
U. 5. Bhergy Research and Development

Adminiatration, Division of Headquarters
Services, Library Branch G-043
ATTH: Doc Control for Class Tech Lib
U. S. Bhergy Resenrch and Development

Administrntion, Nevadn Operations Orfice ATTM: Doe Control for Technical Library

Loa Alamos Scientific Laboratory ATTM: Doe Control for Reports Library Doc Control for Tom Dowler Doc Control ror C. Cremer Doc Control for (6. Disla

Snndia Laboratories ATTM: Doc Control for T. Gold

Doc Control for Technical library Doc Control for Dr. Walter Herman Doc Control for John Colp Doc Control for John Kelzur, Org. No. 1312
Doc Control for William Patterson Doc Control for Al Chabal Doc Control for 3141 Sandia Rpt Coll Doc Control for Ray Reynolds

ENEACY RESEARCK DEVELOPMENT
APMINISTRATION COntInUEd)
Director, Lavrence Livermore Laboratory
ATTM: Technical Infurmation Division, Technical Library
Larry Woodrurt, L-125
Doc Control for W. Scaniln
Frank Walker
Mark Wilkina
OTHER GOVERMABMT AGENCIES
Electric Pover Research Institute ATTM: Dr. George Sliter
orfice of Nuclear Reactor Requiation, Nucienr Regulatory Comisaion, Division of Technical Review

ATTM: Mr. Laurence Shao, Chief, Struc Engre Br

Bureau or Mines, Tin Cities Research Center ATTM: R.E. Thill

DEPARTMENT OF DEFENSE CONTRACTORS
Aerospace Corporation
ATTW: Technical information Services
R, Strickler
George Yound
Agbabian Assuciates ATTM: Dr, M. S. Agbabian

Applied Theory Incorporated
2 cy ATTM: Dr. John G. Trullo
AVCO, Government Products Group ATTM: David Hendertion

Prank Lasher
Research Library A830, Room 7201 John Atanasorr

Battelle Columbus Laboratories ATTH: Technical Library

Bell Telephone Laborntories, Inc. ATTN: Technical Repori Center

Boeing Company

ATTT: Aerospace Library
Reynold Atias
Callfornia Research and Techmoloky, Inc. ATTN: Dr. K. N. Kreyenhaken Technical Library

Civil/Muclear Systems Corporation ATTM: Robert Cravford

ETidg. Inc.
ATTI: Technical library
General Dynamics Corporation ATTH: Kelth Anderson

General Electric Cimpmany, TPMPO-Center for Advanced Studies ATTM: DASIAC

Systema, Science and Sortvare ATTM: Dr. Donald R. Grine Technical Library

Terra Tek, Ine. University Resenrch Park
Mr. S. J. Jreen
Dr. A. H. Jones
Technical Library
Texas AlM University
Pror. L. J. Thompaon

Whense and space Systems Group ATTN: Tech Info Center/S-1930 ATTM: Dr. Melvin L. Baron

Mr. J. W. Wright
Dr. J. Isenberg
vell Technical Institute, Department of A Enalneetna
orgin Institute or Technoloky, Department Aerospace Engincering
S. V. Hanarud
. N. Rehrleld
ering Societies Library Acquisitions Libraria

Technoloky, inc.
G. 1. Kent
L. Bjork

Reternar

Department of Physical Georraphy, Uppanla University

Institut fur Podenmechanik und Felsmechninik. Universitat Karlaruhe

Tennessee Volley Authority
ATTH: Ronald i, bomer, Chief. Civil Mnpineering Brnneth

In accordance with lettor from DAEN-RDC, DAEN-ASI dated 22 July 1977, Subjoct: Facsinile Catalog Cards for Laboratory Technical Publications, a facsiaile catalog card in Library of Congross MARC format is reproduced below.

Bermard, Robert S
Projectile penetration in soil and rock: analysis for nonnormal impact / by Robert S. Bernard, Daniel C. Creighton. Vicksburg, Miss. : U. S. Waterways Experiment Station ; Springfleld, Va. : avallable from National Techntcal Information Service, 1979.
88 p. : $121 . ; 27 \mathrm{~cm}$. (Technical report - U. S. Army Engineer Watervays Experiment Station ; SL-79-15)

Prepared for Defense Muclear Agency, Washington, D. C., under DNA Subtask YgonAXSB211, Work Unit 20.

References: p. 61-63.

1. Ballistics. 2. Computer analysis. 3. Inpact. 4. Mumerical analysia. 5. Penetration. 6. Projectiles. 7. Rock penetration. 8. Soil penetration. I. Creighton, Daniel C., Joint author. II. United States. Defense Huclear Agency. III. Series: United States. Watervays Experiment Station, Vicksburg, Miss. Technical report : SL-70-15. TA7.W34 no.SL-79-15

Best Available Copy

[^0]: DD , romen
 LF3 EDTHON of I Wov is is onsx ETE

[^1]: $\frac{1}{2}$ The XZ-coordinate system is fixed in the tarpet (Fifure 2.1).
 A dot above any quantity indicates differentiation with respect to time.
 For convenience, symbols and abbreviations used in this report are
 4 listed and defined in the Notation, Appendix C.
 The xz-coordinate system is fixed on the projectile axis, with its origin at the CG (Fipure 2.1). Equations 2.1 and 2.2 represent the projections of the absolute velocity vector along the x - and z-axes.

[^2]: wr the rock or for the maximum nexperate atar in the comerete

 spionder).

[^3]: ${ }^{8}$ The rotational velocity $\dot{\theta}$ is not considered in formulating, the criterion for wake separation. This quantity does, however, play
 9 a strong role in wake reattachment.
 9 For the case of no yaw (no angle of attack), Equation 2.16 reduces to $\sin \phi=\sin \eta$.

[^4]: 11 Figure 2.6 presents a rear axial view of the projectile and cavity cross sections at an arbitrary location aft of the separation point. The figure is valid only for small displacements, i.e. $\delta \ll \varepsilon$.

[^5]: $12 r_{s}$ is the maximum perpendicular distance from projectile axis, through $d A$, to target surface for which stress relief due to the iree surface can occur.

[^6]: 1 The PENCOCD computer code, which solven the penetration problem in two dimensions, using the annlyais presented in Chapter 2 , was used for all calculationa reported herein.

[^7]: The unita ahown were chosen for convenience of exprension. In aralculations they muat be converted to a compatible ayatem (e.a., alisa. feet, aeconits).
 Chieago, [1]., to R. Rermard, (iecomechantea Rivishom, itemeturea imboratory.

[^8]: 4 Variation of k has no discernible effect on the 3 -icaree muT calculation.

[^9]: ${ }^{5}$ The averape vertienl penctration resistance apparently was the same, because the depths enn be enlculated with same s-number.

[^10]: ${ }^{6}$ To simulate the test conditions (Table 3.1), the calculation was 7 started with the nose tip at $Z=8$ inches. $\theta=2$ deprees, $a<0.5$ degrees.

[^11]: 2 The baseline calculation will appear in all comparisons of trajectories except Figure 4.7 , and will be represented by a solid curve (e.g., Figure 4.1).

[^12]: 2 The initial obliquity required for ricochet would be smaller if a larger value has been chosen for $\phi_{m i n}$

[^13]: ${ }^{4}$ See also Figure 4.13.

[^14]: 1 WHAMS code (dynamic structural response) calculations made by T. Belytschko, with PENCO2D calculations as input.

 3 These values gave reasonable external load predictions for the RBT's. At this point, it is impossible to specify the most likely values of the free-surface parameter and the wake separation angle. A reasonable guess for the respective ranges of values, however, is $0 \leq k<9$ and $0 \leq \phi_{\text {min }}<8$ degrees.

[^15]: 4 The latter conclusion was also drawn from the preliminary analysis (Reference 8).

[^16]: ${ }^{1}$ All dimensional quantities must be expressed in compatible units; e.g., slugs, feet, and seconds.

[^17]: ${ }^{2}$ In structural concrete, D_{ag} usually varies from 0.75 to 1.5 inches. 3 The $R Q D$ is always assumed to be 100 for concrete.
 The improvement comes from the addition of a nose-shape effect and the reduction of the $R Q D$ effect initially used in References 4 and 22.

[^18]: 4 Additional material property information is given in References 24-26. For purely axial motion, V and V_{n} are identical with v and v_{n}, respectively. In extrapolating to a local definition of stress for nonaxial motion, the most direct route is to use the local velocity.

[^19]: a In this test the sandstone was covered by 30 inches of soil, so the total depth of penetration is 150 inches. However, the penetration resistance of the soil is negligible compared with that of the rock.

[^20]: 1 Young's equation is not dimensionally homogeneous. All quantities must be specified in the units given.

[^21]: 2 The deep earth penetrators, built and tested by Sandia Laboratories, had L/D ratios of about 10 to maintain stability. For many of these projectiles the weight (in pounds) can be related to the maximum diameter (in inches) by

[^22]: ${ }_{4}^{3} W=224$ pounds, $D=4.4$ inches .
 Equations B.1, B.4, B. $8-\mathrm{B} .10$, B.15, and B. 16 are dimensionally homogeneous. Any set of dimensionally compatible units may be used therein, as long as all quantities are converted to the same system of units.
 Normalized using Equation B.4. Amount of scatter in normalized data indicates degree of validity as scaling relation.

[^23]: Taken from Reference 3.
 c White Sands Missile Range, Nev Mexico.
 d Tonopah Test Range, Nevada, dry lake playas.
 Great Salt Lake Desert and bay mud at Skages Island.

[^24]: A dot over any quantity indicates differentiation with respect to time.

