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Numerical study of the critical impact velocity in shear
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Abstract — The phenomenon of critical impact velocity (CIV) in shear is studied in this paper. Deformation trapping due to thermoplastic
instability caused by the propagation of plastic waves are the main physical reasons for CIV in shear. A simple analytical approach is offered
on how to estimate the value of CIV. A numerical study of impact shearing of a layer with a small geometric imperfection has been performed
by the FE code ABAQUS, and available experimental results verified for VAR 4340 steel, ~ 50 HRC, obtained by direct impact on modified
double shear (MDS) specimen. In particular, the numerical study was focused on the effect of the imposed velocity on the spatial deformation
of the layer. Seventeen velocities were assumed in FE calculations from quasi-static to 160 m/s. Two modes of shear deformation of the layer
were found: in the first mode all plastic deformation concentrates in the middle of the layer, and in the second near the surface where the
shear velocity is imposed. CIV could be defined as a transition between those two modes. It has been shown that impact velocities higher than
CIV lead to a substantial reduction in the total energy of strain localization. Overall good correlation with experimental results and physical
intuition has been satisfactorily achieved. © Elsevier, Paris
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1. Preliminary remarks

Localization of plastic deformation in the form of shear bands is a very common failure mode in many
materials. At high strain rates the conditions of deformation are nearly adiabatic, which means that a large part
of the mechanical work of plastic deformation is converted very rapidly into heat. If the process of deformation is
nonhomogeneous the local heating of the material may be quite substantial and, as a consequence, due to thermal
softening, the plastic flow becomes unstable. Finally, this process of thermal coupling leads to localization of
plastic deformation in the form of adiabatic shear bands (ASB), a very narrow layer of shear deformation. The
direction of ASB is normally aligned with a local direction of maximum shear stress. ASB has been studied
more thoroughly over the last decade and many publications have appeared regarding this; we do not, however
intend to review these publications. An early review was made by Rogers (1974), and a more recent review by
Bai and Dodd (1992). The majority of publications on ASB are based on a quasi-static approach, i.e. the inertia
effects are neglected or inertia is introduced in steady states without elastic—plastic wave propagation.

Recent experiments on construction and low-alloy steels with the relatively new experimental technique of
direct impact on modified double shear specimen (MDS) (Klepaczko, 1994¢) have revealed the existence of the
critical impact velocity in shear (CIV). At impact velocities in the order of 100 m/s, plastic deformation in the
form of ASB is always localized near the impact end of the sheared part of the specimen. The superposition of
the adiabatic shear banding and adiabatic plastic waves in shear is the main cause of such localization.

* Correspondence and reprints
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The phenomenon of CIV in shear was first predicted theoretically (Litonski, 1975; personal communication)
and later included in the fragmentation modeling by by Erlich et al. (1980). Simple analytic formulas for CIV
in shear have been discussed by Klepaczko (19944, 1995). They confirm the experimental results that for some
steels, CIV is around 100 m/s.

A numerical study of one-dimensional shear wave propagation in the half-space of a nonlinear material
was considered by Wu and Freund (1984). The surface of the half-space was subjected to a time-dependent
but uniform on the surface tangential velocity. A simple material model was assumed with strain hardening,
thermal softening and rate sensitivity of the flow stress. It was found from an analysis by simple waves and
by numerical calculations that a well-defined band of intense shear deformation can develop adjacent to the
surface. The representative profiles of particle velocity and strain were found near the surface for different
strain rate sensitivities (linear and logarithmic). It was concluded that the band of intense shear deformation
could be developed without any imperfection.

Numerical studies of adiabatic shear banding by a quasi-static approach are quite numerous and they will not
be discussed here; however, only few numerical studies are focused on adiabatic instability and localization at
a wide range of nominal strain rates with I, defined as the imposed velocity V; divided by the thickness of the
layer h, I“,, = Vi/hs, (Klepaczko, 1993, 1994b; Klepaczko et al., 1988, 1996). Although inertia was included
in these numerical studies, the initial conditions regarding how the shear velocity V; was imposed on a layer
of thickness i, were not specified. In addition, elasticity was neglected in the numerical calculations. It was
found that the nominal strain of instability I',,. defined by the maximum of shear stress 97 /9" = 0, slightly
increased as a function of the nominal strain rate, and at high. strain rates in the order of = 10°s™1, the value of
I’y was the highest (impact velocity V; ~ 1001n/s). The nominal shear strain at the final localization of ASB,
I',,7, increased much faster as a function of the nominal strain rate than f‘,,(-. The ratio of these two quantities
increased up to (I',;;/T",,.) = 5.0 at I, = 10%s71. It is clear that this approach, without a precise definition of
how the velocity was imposed on the layer, does not permit a numerical analysis of CIV in shear.

In order to analyze the effect of more realistic initial conditions defined by velocity which is imposed on
the finite layer, on the process of instability and localization, a more systematic study of CIV in shear for VAR
4340 steel has been performed by the FE method.

2. Simple analytical modeling of CIV in shear

Previous analyses, both analytical and numerical, have indicated that during fast shearing the work of plastic
deformation is dissipated locally as heat, and when the deformation time is short enough the heating process
leads to the instability of plastic flow and localization. This happens because in spite of the constant cross-section
of the deformed geometry (specimen in shear or torsion), the adiabatic heating tends to reduce the flow stress.
This is the fundamental difference between shear and tensile deformation. In the case of a dynamic tensile
test the simple wave solution for the rate-independent plastic waves, the so-called Taylor-Karman—Rakhmatulin
approach, enables us to calculate the Karman CIV in tension using the isothermal approach and the iso-
thermal Considere condition of stability (do/de) = o, where o and € are respectively true stress and true
strain (Karman and Duvez, 1950). Introduction of adiabatic heating in tension provides a more exact approach
(Klepaczko, 1968).

In order to analyze CIV in shear, the condition for stability (dr/dl’) = 0 can again be used. This condition can
be satisfied in shear exclusively when thermal heating leads to thermal softening. If only one adiabatic stress—
strain curve 74 = f4(I') is assumed, under such conditions the tangent modulus becomes zero, (dr/dl) 4 =0,
and in the limit the plastic strain propagates at zero speed. This notion permits a simple analysis of CIV in shear.
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As a first step, the conditions of adiabatic instability in shear will be discussed. Assuming the existence of
the only one isothermal and one adiabatic shear stress—strain relation in the form 7 = f(I') and 74 = f4(I'),
the condition for stability during adiabatic shearing leads to the formula

dr
&),

A number of authors have used the stability criterion (1), for example Recht (1964), to find the instability
strain T when condition (1) is satisfied. A review of different formulas for I for different forms of constitutive
relations has been made by Dormeval (1987).

Here a more general discussion of criterion (1) is provided, following Klepaczko (1994a). Because many
authors use constitutive relations in the multiplication form

= [T D)D) 2)
where T is the absolute temperature, and the strain-rate and temperature history effects are neglected, the

stability criterion will be derived using Eqs (1) and (2). After differentiation of (2) and introduction into (1),
the following relation is obtained

8_T + f)l rI_T + gl £ =0 ' 3)

Condition (3) can be satisfied only in very specific processes of plastic deformation; one of them is adiabatic
deformation at constant strain rate. Thus condition (3) reduces to

or or dr .
i — —_ = = C SU.
<8F> T.r - <8T> ( dr) adiabatic ’ b const (4)

Assuming constitutive relation (2) it follows from the principle of energy conservation that

(g) _ -4 DIAMAD) (D)
dr’ J 4 p(T)Cy(T)

where £(T,T") is a coefficient taking into account the stored energy in the material, p(7") is the mass density
and Cy-(T) is the specific heat at constant volume. In general, both p and C'y- are functions of the absolute
temperature T'. If the explicit forms of the partial differentials derived after (2) along with (5) are introduced
into (4), the condition (4) transforms into

0f‘2 2 . 0f1 V1 -—f .
(;ﬁ:) + 1 (D)fsr(ﬁ) =0 ©)

Since only f>(T'.) depends on the critical strain, the explicit relation for f>(I'.) is

(5)

Of2 /0T 1/2
() = [— ___012/91) } M
(0f1/0T f3(I')(1 - ¢)
The expression [o:|1/ ? has real and imaginary parts. Inversion of f»(T..) makes it possible to find T
L= fy '[o]'/? ®)

The existence of the real f>(I'.) is only possible if the expression [0]1/ % within the square brackets is positive.
Since p, Cy- and (1 — £) must always be positive and the function of strain rate sensitivity, f3(I'), is also
assumed to be positive, the only term which may be negative is (0 f2/01')/(0 f1/0T). The most common case
is the thermal softening which leads to a negative value of (9f;/0T), of course if (Jfy/0T) is at the same
time positive. The role of an increasing rate sensitivity is quite interesting, that is if fg(f) is an increasing
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function of strain rate I". A high rate sensitivity has a negative effect on the onset of adiabatic instability, that
is I'. is reduced when strain rate is increased.

By analogy to CIV in tension, it is possible to construct a model of the plastic wave trapping in shear which
is based on the criterion of adiabatic instability [Eqs (1) and (7)]. According to the rate-independent theory of
elastic—plastic wave propagation, as applied to shear deformation, the wave equation is as follows

o*U U
where U is the displacement along the z-axis and wave propagation is along the y-axis (perpendicular).
The wave speed is defined as
1dr 1/2
(D) = | = —- 10
CZ]( ) (pdr) ( )

Equation (10) reduces to Cy = /u/p for the elastic case.
Along the characteristics Cy, = *(dy/dt) the following relation holds

r.,
d{/a Cop(T)dT == v} =0 (11)

where v is the mass velocity, v = (9U/9t) and T',, is the wave amplitude. It is clear from (1), (4) and (10)
that the wave-speed is zero if condition (1) is satisfied, that is C3,(T'.) = 0, and at the same time the integral
in (11) reaches the maximum value, thus

I,
vp:/ Cop(T)pdl (12)
0

where is T'c defined by Eq. (8). The wave speed in the adiabatic conditions of deformation at I" = const
can be written as

_ L JhBf[1(0f ofi\1-¢] "
w22 7 (50) -0 (5) 5 -
Finally, the critical impact velocity in shear is given by
T. 1/2
_ Nifefs |1 (0f e (Of1Y1-¢&
v [ G ren () af o 9

where the upper limit of integration is given by (8).
Explicit solutions for I'., C5,(T") and v. are possible if the constitutive relation is sufficiently simple.
Numerical evaluation of the set of equations (7), (8) and (14) for simple constitutive relations confirms that the
order of CIV in shear is correct. For example, in the case of construction steel XC18 (AISI 1018) CIV was found
at 98 m/s, a value very close to that of previous experimental findings (Klepaczko, 1993). The analysis which
is given above permits an approximate evaluation of CIV in shear. The initial and boundary conditions cannot
be precisely defined. It is clear that the FE method can provide a more precise analysis of this phenomenon.

3. Constitutive relation for VAR 4340 steel

It is well known that an adequate constitutive relation is the main condition for reliable FE results. A
constitutive relation applied to the problems of plastic instability coupled with temperature must reflect properly
the effect of strain hardening, temperature sensitivity and rate sensitivity at high strain rates on flow stress. The
constitutive relation applied to the problem considered was specially developed to model experimental results
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for VAR 4340 steel (Cowie, 1989; Klepaczko, 1993; Tanimura and Duffy, 1984) as well as some data for
similar steels (Meyer and Staskewitsch, 1988).

After careful analyses of available experimental data for VAR 4340 steel of hardness =~ 50 HRC the following
general form was chosen

7= A(D)[A(D) (D) + f1(0,7)] (15)

where f; are the functions of plastic shear strain I', shear strain rate I" and absolute temperature 7. Relation
(15) is treated as a first approximation to the constitutive modeling. Further analyses of experimental data for
steels have indicated that the strain hardening rate 97/J1" is temperature-dependent (e.g. Klepaczko, 1987a).
The final general form of the constitutive relation used in majority of FE calculations is

7= AT f(T,T) + fo(1,T)] (16)
The explicit forms for Egs (15) and (16) are assumed as follows
u(T) T\ . T  To\™
= — — Ty+T1, 1 - —log— 17
! ) [B(T() o +Tp)" +m0 DT a7

where B, up, v, n, m are respectively the modulus of plasticity, the shear modulus at T = 300 K, the
temperature index, the strain hardening exponent and the logarithmic rate sensitivity; D, Ty, Ty and T'y are
normalization constants. The temperature dependence of the shear modulus is given by

WT) = po(1 = AT* = CT*?), T" =T = Toin, T 2 Tnin (18)
1t should be noted that application of Eq. (17) is intended to be used at temperatures above a certain minimum
temperature Ty,j,, in the present case T, = 300 K.
Relations (15) and (16) are distinguished by different forms of the strain hardening exponent n. In the first
approach, i.e. Eq. (15), n was assumed as a constant throughout the FE analysis, whereas in the second approach
i.e. Eq. (16), n(T') is a linearly decreasing function of temperature

n(T) = n()(l - 7—?——) (19

m

where ng is the strain hardening exponent at 7' = 0 and T, is the melting temperature. This modification was
found essential because the high rate of strain hardening represented by a constant and temperature-independent
n does not agree with experimental data for steels, including VAR 4340. It is interesting to note that in
spite of relatively high level of hardness after the heat treatment (~ 50 HRC) the VAR 4340 of high purity
retained some plasticity in shear. This fact permits the analytical and numerical calculations discussed in the
next part of this study.

The structure of the constitutive relation, Eq. (17), has some elements which are based on the material science
approach. First of all, the stress level is normalized by p(7')/ 1o which takes into account the thermal softening
of the crystalline lattice. The first expression in the brackets of Eq. (17) is simply the internal stress and the
second is the strain rate and temperature-dependent effective stress (e.g. Klepaczko, 1987b).

The well-posedness of the problem has been assured by introduction of the rate-dependent constitutive
relations (Lodygowski, 1995).

The number of constants in Eqs (17)-(19) amounts to 13; they are assembled in table I. To better illustrate
the constitutive relation used in the numerical calculations, Eq. (17) is presented in graphic form in figure 1
in 3-D as the yield stress in shear (plastic strain is zero) as a function of the absolute temperature and the
logarithm of shear strain rate, figure la; in figure 1b a similar surface is presented for I') = 1.0. The effect of
temperature and strain rate on shear stress is more intense at lower temperatures and higher strain rates: this
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is a typical behavior for steels. The solid line in figure I shows the limit of the fy(T, T') term in Eqs (16) and
(17). For higher levels of plastic strain the general shape of the surface remains similar. A more exact analysis
of the constitutive relation (17) is given elsewhere (Klésak and Klepaczko, 1996).

Table I. Material constants for VAR, 4340 steel, =~ 50 HRC.

Constant Value Value Unit
(n = constant) n(7)
B 1493.1 1493.1 MPa
2o 80769.0 80769.0 MPa
v 0.1657 0.39 —
n 0.113 Eq. (19) —
7o — 0.1354 —
m 2.7763 2.7763 —
Ty 300.0 300.0 K
Iy 16 x 107 1.6 x 1073 —
To 100 100 s
A 5.047 x 10 5.047 x 107 K1
4 1.036 x 1077 1.036 x 1077 -2
D 2914.2 2014.2 K
0 622.0 622.0 MPa

Since a large part of the plastic work is converted into heat, the temperature of the deformed material
increases when the deformation time is relatively short. Without thermal conductivity the plastic deformation is
purely adiabatic and the increase in temperature can be found by integration of Eq. (20), a relation analogous
that of Eq. (5).

(20)

), Too(T)Cy-(T)

The stored energy in the lattice represented by £(7,T) is usually a small fraction of the total plastic work
(Bever et al., 1973) and the value of £ does not exceed ~ 0.1. Thus the coefficient of conversion B=1-&T,T)
is assumed constant, 3 = 0.9. Since p(T) is only weakly dependent on temperature, it can be assumed as a
constant. Although the exact expression for the specific heat Cy-(T) is temperature-dependent (e.g. Klepaczko
and Rezaig, 1996), at temperatures > 300 K it may be also taken as a constant.

The balance of energy with heat conduction leads to the following 1-D relation

or or  0*T

Arar = PCogr = 57 2D

where y is the direction of the heat conduction and ) is the heat conductivity (Fourier constant). All material

constants associated with the thermal coupling are given in table II. The description of thermal coupling as

outlined above permits numerical analyses to be made of all temperature-coupled problems as purely adiabatic
as well as with the heat conduction. The total number of constants is 18 (i.e. 13 in table I and 5 in table II).

4. Numerical modeling by the FE method

The main target of the numerical analysis has been to explain differences between experimental results
obtained with the direct impact on the MDS specimen (Klepaczko, 1994c) where CIV in shear was found, and
the results of previous numerical calculations by the finite difference scheme where the initial conditions were
not precisely specified (Klepaczko et al., 1988, 1993).
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Table IL. Material constants related to the thermal coupling VAR 4340 steel.

Constant Value Unit

Jed 0.9 e

A 38.0 W mK~!
C. 460.0 Jkg™' K
Tm 1812.0 K

= |
Mgy

Z

‘%///// |

-

Figure 2. Scheme of the modified double shear specimen loaded by direct impact (Klepaczko, 1994c).

A general idea of the experimental technique based on the direct impact on the MDS specimen is shown
in figure 2. The MDS specimen is loaded by the round projectile ¢ = 10 mm with the impact velocity V;,
1m/s < V; <200m/s. The MDS specimen is supported by the Hopkinson tube where the transmitted elastic
wave is measured. Displacement of the central part of the MDS specimen is measured as a function of time
by an optical displacement transducer. There are two shearing zones in the specimen; the height of each is A,
the length @ and the thickness b. In real experiments hy = 2.0 mm, ¢ = 5.0 mm and b = 6.0 mm. The initial
conditions are such that the imposed velocity on the shearing layers occurs at the surfaces closer to the projectile
diameter. Since displacement of the Hopkinson tube is relatively small, the external shear layers practically do
not move. This scheme of the experiment dictates the geometry of the numerical problem, as shown in figure 3.
The height of the layer is assumed to be the same as in the MDS specimen, with h, = 2.0 mm; the thickness
changes along the y-axis according to the geometrical imperfection

b(y) = by [1 + 61 sm(-; - 2WZ)} (22)

where é,, = 0.005 is the geometric parameter which constitutes an imperfection of 1 %. Finally, the layer in the
x-direction is assumed to be infinite, with a — oo. In general, it was intended to analyze CIV triggered by the
shear banding phenomenon with the same simple geometry already assumed in previous numerical calculations
(Klepaczko and Rezaig, 1996) and similar to MDS geometry. The difference between the numerical analysis
and experiment lies in the fact that the numerics are limited to the infinite layer with the central imperfection,
whereas in the MDS specimen the shear zone is finite.
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Figure 3. The infinite layer in the r-direction with geometry imperfection assumed in FE calculations.

In order to estimate the theoretical value of CIV for VAR 4340 steel at room temperature, an analysis by
simple waves was performed as outlined in the previous section of the paper. The procedure was exactly the
same, only the constitutive relation was changed, i.e. Eq. (17) with the material constants shown in tables I
and I1. Since the approach by simple waves is limited to only one adiabatic 7.4(I") curve, the strain rate assumed
was I = 10* s~ . Integration of Eq. (12) can be divided into two steps

r. .
o = / CydT + / Cip(T)dT (23)
0 r.
and

L. 1/2
w:@n+/ Cyp(M)dl with @:(9 (24)

For high-quality steels including VAR 4340, the first term in Eqs (23) and (24) constitutes an important
contribution to the v. (CIV in shear). For such steels the rate of strain hardening (97/9I') 4 is substantially
reduced and the second term is not so high. If the strain hardening exponent n is assumed as a constant, then the
nominal instability strain is I',,. = 0.1695 and the two terms in Eq. (24) are v.. = 51.1m/s and v, = 63.0m/s,
ClV is v. = 114.1m/s. When n is temperature-dependent the instability strain is I',, = 0.1265 and the two
terms in Eq. (24) contribute to CIV as follows: v, = 51.1m/s and v, = 57.0m/s; thus v. = 108.1 m/s.
These values are of the same order as those found in experiment for VAR 4340 steel, with CIV = 130 m/s,
(Klepaczko, 1993).

Numerical analyses have been performed by the FE codes ABAQUS/Standard and ABAQUS/Explicit
(ABAQUS Manual, 1995). A two-dimensional finite element model was applied. The plane strain behavior was
assumed by using available ‘plane strain® 2-D elements. In all calculations except V; = 2 - 107° m/s, CPE4R
elements were used. For V; = 2 - 107> m/s the element CPE4T was applied. Taking into account the fact that
there were two expected shearing modes three kinds of meshing were used: the first was for shearing in the
mid-layer (figure 4a); the second for transitional shearing (figure 4b), i.e. simultaneously in the middle and in
the top layer; and finally, the mesh for plastic shearing trapped near the upper surface (figure 4c). In general, the
mesh of 60 x 19 elements was used with density respecting the experimentally measured thickness of the shear
band, (Klepaczko, 1994c). Three other mesh densities were also proposed to study mesh dependence (figure 17).
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Figure 4. Three meshes used in FE calculations at increasing impact velocities V.

In order to model the direct impact more closely, the initial conditions in velocity at y = 0 were assumed
in the form of the finite rise time. A schematic representation of the rise time function is shown in figure 5.
The velocity at y = 0 increases from zero to the final level during the short and finite interval of time. The
total rise time £,, is chosen according to the Gaussian cumulative distribution function. The value of ¢,, is
chosen according to the final velocity level, V;. The main reason for using this function is that it possesses
an acceleration and deceleration consistent with a physical intuition. The mathematical form of the rise time
function is given by Eq. (25).

r 1 (X . m)'l
F(l)—/‘ Wexp(--—igz—— dXx (25)
Values of the rise time were assumed as follows: ¢, = 107%s for V; < 1 m/s, t, = 10=%s for

Im/s < V; < 20m/s and ¢, = 107" s for V; > 20 m/s. Values of parameters m and o in Eg. (25)
were m = 0.5 and ¢ = 0.125.

Depending on the imposed velocity at y = 0, the problem was considered either by heat conduction or by an
adiabatic approach. The latter case leads to the modification of Eq. (21) due to disappearance of the last term
(A =0). The ABAQUS code provides both types of analysis; however, certain restrictions are imposed. Thus,
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Figure S. Schematic representation of the rise time function, Eq. (25).

in the analysis with heat conduction (fully coupled temperature-displacement problem) the inertia effects are
neglected; on the other hand, the analysis with the wave effects is assumed to be adiabatic.

Table IIT gives an overview of the performed tasks. The velocity V; was increased from V; = 2- 10> m/s
to 160 m/s in 17 steps. All calculations in this series were performed for the temperature-dependent exponent,
n(T). In the case of the quasi-static loading treated with heat conduction, first-degree thermal conditions were
imposed at the bottom and top surfaces, i.e. a constant temperature of 300 K was assumed.

Table I1I. Performed tasks in FE analysis with calculated nominal instability strain I';,.. and localization strain T',,;.

No. Impact velocity Nominal strain rate Instability strain Localization strain
Vi fm s T, [s7'] o T
Vi 2 x 1078 1072 0 oG
Va 0.2 102 0.346 0.405
V3 2.0 103 0.290 0.576
Vi 20.0 104 0.165 0.580
Vs 40.0 2 % 104 0.180 0.540
Ve 60.0 3 x 104 0.185 (.560
\Z 80.0 4 x 10* 0.210 0.630
Vg 90.0 45 x 10* 0.220 0.640
Vo 100.0 5 x 104 0.220 0.660
Vig 105.0 525 x 10* 0.210 0.470
Vi 110.0 55 x 10% 0.200 0.350
Viz 115.0 5.75 x 10* 0.180 0.270
Vi3 120.0 6 x 104 0.008 0.159
Vig 125.0 6.25 x 10° 0.007 0.120
Vis 130.0 6.5 x 10* 0.006 0.020
Vie 140.0 7 x 10* 0.002 0.008

Vis 160.0 8 % 104 0.002 0.007
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5. Results of FE calculations

The effect of the temperature dependence on the strain-hardening exponent n [Eq. (19)] was first examined.
The results in the form of adiabatic 74(I") curves for V; = 20 m/s are shown in figure 6. If n is temperature-
dependent, the instability point (7,,, I',.) where 7,,, is the maximum shear stress and I',,.. is the nominal shear
strain at 7, is shifted into smaller strains in comparison to the result with n = const : T',. = 0.235 and
[pe = 0.174, respectively. There is a big difference between the values of the final localization strains
Iy The final localization strain was defined in all FE calculations by the minimum tangent modulus
orfor, = -7- 10° MPa. The nominal shear strain I',, is defined by the mean displacement gradient at
y =0, 'y = Az/hy (figure 3), with hy = 2.0 mm. If n depends on temperature, the localization strain
substantially decreases. It indicates the importance of the temperature dependence on the rate of strain hardening
in steels. Figure 3 also defines the positions of the analyzed cross-sections called A and B. The cross-section
A is located at the top (y = 0), where the impact velocity V; is imposed. The cross-section B is located in
the middle of the layer, where the geometrical defect produces the smallest cross-section area. The symbols in
the figures which follow are explained below: i) plastic shear strain I"4 is the current shear strain determined
at the cross-section A; ii) plastic shear strain I'p is the current shear strain determined at the cross-section B;
iii) critical nominal shear strain I’ is the strain corresponding to the condition 974 /0T = 0 (maximum stress)
and can be estimated from the curves 7(I',,); iv) 7.4 is the shear stress at y = 0, determined in experiments
with MDS geometry.

At lower impact velocities, due to geometric imperfection the localization occurs in the middle of the layer,
that is in the cross-section B, whereas at impact velocities > 103 m/s, localization occurs near cross-section A.
This is demonstrated in figure 7 where the displacement fields are shown for two impact velocities, V; = 40 and
Vi =130 m/s. A complete change in the displacement field from the ‘quasi-static’ to a pure ‘dynamic’ mode
should be noted. This transition is caused by CIV in the shear. The difference in the shear strain evolution in
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Figure 6. Reconstituted adiabatic 74(I") curves for two cases of the strain hardening
exponent n and n(T) as defined by Eq. (19); VAR 4340 steel, ~ 50 HRC.
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Figure 7. Two displacement fields for two different impact velocities, (a) V, = 40 m/s; (b) Vi = 130 m/s.

cross-sections A and B as a function of the nominal strain I',, i.e. the Marciniak plots, are shown respectively
for V; = 40 and V; = 115 m/s in figures 8 and 9. Although the nominal strain rate in figure 8 is I', = 2- 10% 571,
the evolution of I' 4 and I'p is typical for a layer with an imperfection deformed quasi-statically.

On the contrary, the Marciniak plot shown in figure 9 for V; = 115 m/s, f‘,, =5.75-10* s7 1 is completely
inversed; the bulk of plastic deformation and localization occurs in the cross-section A, and the evolution
of plastic deformation in the cross-section B is substantially reduced. This indicates that the impact velocity
115m/s is very close to CIV in shear. Comparison of spatial distributions of the local strain rate at four impact
velocities at the assumed end of localization, §7/0T,, = —7 - 10° MPa, is shown in figure 10. At an impact
velocity V; = 130 m/s, practically all plastic deformation is localized at y = 0, indicating the wave trapping
of plastic shearing. A similar tendency is observed with spatial distributions of temperature for the same set of
impact velocities (figure 17). It is clear that the maximum increase in temperature in the middle of the shearing
zone may be quite high (around 1000 K in the cross-section B3 for V; = 100 m/s). At higher impact velocities
above CIV, the local temperatures at the cross-section A may be even higher reaching values close to the
melting point. This was confirmed by SEM for VAR 4340 steel (Klepaczko, 1993). The local strain rates in
the cross-section A are also very high, for example for the impact velocity V; = 130 m/s, [~ 2. 10051
(figure 10). 1t is interesting to note that at high impact velocities but lower than CIV, the maxima of strain
rate and temperature are shifted off-center. This is caused by the plastic wave propagation in the layer interior.
Another observation is a slight increase in critical nominal shear strains I, beginning from = 40 in/s. This
is caused in turn by the competition between two extreme deformation fields shown in figure 7. Such behavior
is also clear from figure I10.
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The most important observation is that the 74(I',,) curves differ substantially at different impact velocities.
This is demonstrated in figures 12 and 13. In the range of lower impact velocities, the 74('y) curves reflect a
real behavior of material; this is true up to V; &~ 40 m/s, I'~2-10*s71. The 74(I'») curve determined at this
velocity shows a characteristic stress peak at very small strains. In addition, the initial slope in the ‘elastic’ range
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becomes much steeper than predicted by the shear modulus. This results from the interaction of plastic waves
and adiabatic instability near the cross-section A. When the impact velocities are still higher, the maximum of
shear stress occurs at very small nominal strains (figure 13).
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The slopes (97/0T") 4 after the stress maxima are negative and decrease very rapidly when the impact velocities
are high enough. This indicates that the CIV is reached. The instability points appear almost instantaneously
with a still shorter process of localization. In figure 14 are shown, normalized by p (the shear modulus), the
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Figure 14. Nominal slopes of 74 (I") curves.

initial slopes of the 74 (T, ) curves as a function of impact velocity V;. At low velocities the slopes are equal to
1, but at higher loading rates they are much steeper. The normalized slopes also depend on the rise time.

The sequence of previous figures clearly demonstrates a substantial evolution in shear stress 74 (I, ) determined
at y = 0 when the impact velocity is increased. Such curves can be determined from the MDS tests.

It is clear that the CIV phenomenon is a process in which the transition is not instantaneous. Consequently,
the analytical solutions for CIV, as presented in the first part of this paper, can provide an approximate value
of CIV in shear. The analytical value of CIV obtained for VAR 4340 steel, that is =~ 110 m/s, is almost of
the same order as that calculated by the FE method. CIV estimated for this steel from the FE simulations is
~ 103 m/s, i.e. the beginning of the CIV transition zone.

Figure 15 shows the effect of mesh density on the global response of the model. It clearly demonstrates the
proper posedness of the problem, but also highlights the secondary mesh dependence in localization zone. The
60 x 19 discretization can be considered as the lower limit, and a more refined meshing would be appropriate.

Finally, the complete series of calculations has been focused on the analysis of the instability point as
determined by 974 /0T = 0 and the localization process up to (97.4/01'y)min. The main parameter in these
calculations was the imposed velocity V;. All values of V; along with the values of the nominal strain rates
and obtained values of I';,. and T',,; are presented in rable I1l. The main conclusion drawn from table III is that
under the isothermal conditions of deformation (V; = 2 - 107°m/s) in the absence of thermal softening, the
instability strain is infinite. When the impact velocity is increased beginning from V; = 0.2 m/s, the instability
strain is finite, i.e. I, = 0.346. Thus an increase in the imposed velocity V; leads to a decrease in the critical
strains. All values of I, and I, in table III are also shown in figure 16 as a function of the impact velocity V;.
The sequence of points indicates a complicated interplay between thermal coupling and wave processes. Three
regions can be recognized; in the first the ratio of the localization strain I',;; to the instability strain T, is almost
constant. The second region from V; = 103 to V; = 130 m/s is characterized by the beginning of thermoplastic
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deformation trapping by plastic waves. The most substantial change in the instability strain I';,. occurs between

velocities V; = 115 and V; = 120 m/s, and the values of T, are respectively I',,. = 0.18 and T, = 0.008.
A similar transition occurs with the localization strain T',,; at slightly higher values of V;, i.e. between 125 and
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130 m/s. Finally, in the third region at impact velocities > 130 m/s the trapping is complete and instantaneous
instability and localization occurs with a very small localization strain, typically I';;; in the order of =~ 0.002.

CIV in shear has far-reaching consequences on fragmentation. Experiments performed with MDS specimens
consisting of VAR 4340 steel (Klepaczko, 1993) clearly indicated a decrease in the fracturing energy when
the impact velocity exceeded ~ 130 m/s. In order to estimate the fracture energy by the FE method as a
function of the impact velocity, the 74(T,,) curves have been integrated up to the localization strain I',;. The
results for all 17 simulations are shown in figure 17. Within the first region the fracture energy increases up to
E =681MJ/ m3 for V; = 100 m /s and next, in the second region, a considerable decrease occurs; for impact
velocity V; = 130 m/s the energy reaches a level of ~ 8 M.J/ m?>. In the third region the fracture energy stays
almost constant on a level from 6 to 8 MJ/m?®. Thus, the energy drop is practically 100-fold. Different scales
should be used to show the energy level for velocities > 130 m/s.

CIV transition
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Figure 17. Fracture energy versus impact velocity V;.

6. Discussion and conclusions

The infinite layer of the height A, = 2.0 mm with a small geometrical imperfection, loaded by impact shear
from one side and assumed to be stationary on the other side was taken into consideration. As an example,
the behavior of VAR 4340 steel at ~ 50 HRC was analyzed. The study of plastic instability by wave trapping
and adiabatic heating has revealed several new features. The most important observation is the transition of the
displacement and deformation fields. At lower impact velocities up to 40 m/s the fields are identical, as under
quasi-static conditions. When the impact velocity exceeds 40 m/s, the deformation fields are distorted by plastic
waves and both mechanisms of deformation compete, i.e., the quasi-static mode and a new mode of deformation
caused by plastic waves. When the impact velocity exceeds 103 m/s, the mode caused by plastic waves starts to
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dominate and the CIV in shear occurs. If the impact velocity exceeds 130 m/s, complete deformation trapping
occurs near the impact end of the layer due to thermoplastic instability caused by plastic waves.

The FE analyses have revealed the phenomenon of CIV in shear and shown that the whole transition
into complete deformation trapping that occurs within certain range of impact velocities, in the present case
103 m/s < V; < 130 m/s. The analytical methods discussed in the first part of this paper may only be used
as a first approximation in finding the CIV in shear.

It has been confirmed that the experimental technique with the MDS specimen loaded by direct impact is a
reliable tool for finding stress—strain relations at high strain rates up to ~ 5 - 10*s~!. This technique may also
serve in the determination of the CIV in shear. In spite of some differences in geometries studied by FE and
those applied in experiments, a very good agreement has been found between experimental and FE values of
the CIV in shear for VAR 4340 steel. More detailed analyses of the shearing zones have shown substantial local
increases in temperature and strain rate. The temperature increase in the ASB core may reach 700 K. The local
strain rate may be also very high. For example, at an impact velocity of V; = 130 m/s where an intense wave
trapping occurs, the local strain rate is in the order of 2 - 106s~1.

Finally, the effect of CIV in shear must be taken into account in fragmentation processes developed by
impact or explosions (e.g. Erlich et al., 1980). When the local velocity of sliding exceeds the CIV in shear for
a particular material, the energy of fragmentation or perforation diminishes rapidly by interaction between the
ASB and the CIV in shear. For the VAR 4340 steel at ~ 50 HRC, the drop in energy expended to reach the
final localization stage before and after CIV is ~ 100-fold.

In conclusion, it has been demonstrated in this study that on the one hand, the CIV in shear is an important
process in ASB, and on the other that the FE technique is sufficiently advanced to find more details on the
mechanisms of fast plastic deformation coupled with temperature and plastic waves. It should be noted, however,
that special care is required in FE techniques where advanced stages of localization with temperature coupling
are expected. In such cases, because of high temperature gradients, the adiabatic scheme can no longer be used.
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