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Abstract

Adiabatic heating, due to conversion of plastic work into thermal energy, substantially changes the boundary value

problems in the theory of plastic wave propagation. Besides a systematic review of the subject, the thermal coupling during

plastic wave propagation leading to adiabatic wave trapping is the main subject of this study. Two cases are analyzed, the

adiabatic wave trapping in tension and also in shear. The case of shear is relatively new. The wave trapping by adiabatic

deformation via thermal softening leads to the so called critical impact velocity (CIV). Theory, experiments and numerical

analyses of the CIV in tension and shear is the main part of this paper.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In the late 1940s of the last century von Kàrman [1–4] and others developed a theory for propagation of
one-dimensional plastic waves in a long bar. It was then demonstrated that if an infinite bar is loaded in
tension by a sufficiently high impact velocity, plastic deformation is concentrated near the impact end of the
bar. The theory was limited to rate independent and isothermal case. However, plastic deformation of
materials is rate and temperature dependent. In this paper a more detailed discussion is offered on theory of
plastic wave propagation with thermal coupling. The adiabatic heating causes usually a material softening
leading to adiabatic wave trapping. Localization of plastic deformation in adiabatic conditions superimposed
on inertia effects (waves) causes that the plastic wave speed reaches zero and the critical impact velocity (CIV)
occurs. It is shown that the CIV can be observed in both tension and shear. The case of shear has been found
and analyzed more recently [5–10].
2. Isothermal propagation of plastic waves (revisited)

Although elastic waves were studied since the beginning of Nineteen Century, for example T.Young in 1807
studied the propagation of elastic strains in a cylindrical bar subjected to tension impact. The theory of plastic
waves was formulated in the mid of Twentieth Century by von Kàrman and Taylor, [1,3,4]. The unloading
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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elastic waves were introduced by Rakhmatulin [11]. The stress waves caused by an impact at the end of a semi-
infinite bar has been analyzed in the case where the impact velocity is high enough to produce plastic
deformation.

Consider a bar extending from x1 ¼ �1 to x ¼ 0 and assume that the end at x ¼ 0 is loaded by impact with
a constant velocity V0. The stress–strain relation for the material is given in the form s(e), where s and e are,
respectively, the stress and strain. The s(e) relation is unique and has a smooth first derivative ds/de in the
form of decreasing function of strain. Such assumption leads to the so-called rate-independent theory of
plastic wave propagation. It means that initially the rate effects are neglected. However, in the up-to-date
approach the existence is accepted of one and only one stress–strain relation which may be also a high-strain
rate relation at strain rate say 103 s�1. In addition, the radial contraction of the material, that is contribution
of the radial velocity to the inertia effects is neglected. Under these assumptions, the equation of motion for an
element of a slender bar can be written in the form

q2U1

qt2
¼ C2ðeÞ

q2U1

qx2
1

and e ¼ ee þ ep (1)

in the elastic range C0 ¼ ðE=rÞ
1=2 and in the plastic range CpðepÞ ¼ ð1 ds=r depÞ

1=2. The waves propagate
in the x1 direction, U1 is the displacement in that direction, t is time, C0 is the longitudinal elastic wave
speed in slender rods, and Cp(ep) is the plastic wave speed as a decreasing function of plastic strain ep. In
the elastic range the wave speed is constant, it depends only on the density r and Young’s modulus E.
Since the boundary conditions are U1 ¼ V0 t for x1 ¼ 0 and U1 ¼ 0 for x1 ¼ �1 the solution of Eq. (1) is in
the form

U1ðx1; tÞ ¼ V 0 tþ
x1

CpðepÞ

� �� �
. (2)

The plastic wave speed has an arbitrary value. The second solution is obtained by putting

ds
r dep

� �1=2

¼ �
x1

t
or CpðepÞ ¼ �

x1

t
. (3)

In the above analysis presented previously in [1,4] a special case is considered in which the plastic strain is a
function of x1/t but not of x1 and t independently.

Since Eq. (1) is a quasi-linear differential equation of the second order, and of the type of the wave equation,
it can be also solved by the method of characteristics [12]. The definition of the characteristic line is (x1 is
replaced by x)

dx

dt
¼ �CðeÞ (4)

in the elastic range dx=dt ¼ �C0 and in the plastic range dx=dt ¼ �CpðepÞ. The partial differential equation
(1) satisfied along the characteristic lines due to consistency conditions is

dv ¼ �CðeÞ de. (5)

Along two sets of characteristics the mass velocities in both elastic and plastic ranges are given by

v ¼ �C0e and vðepÞ ¼ �
Z ep

0

CpðxÞ dx: (6)

The first relation in (6) occurs along the linear characteristics dx=dt ¼ �C0. The mass velocity vðepÞ defined by
the second relation in (6), that is in the plastic range, occurs along non-linear characteristics dx=dt ¼ �CpðepÞ.
In a more general approach, applied nowadays, the stress–strain relation is assumed at constant strain rate,
typical value �103 s�1, and the temperature is assumed as the initial temperature. The generalized wave speed
is given by

CpðepÞ ¼ �
1

r
ds
dep

� �1=2

_e;T
. (7)
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Fig. 1. Schematic changes of the wave speeds as a function of total strain (elastic plus plastic), ee is the strain of elastic limit, epm is the

limiting case when ds=de ¼ 0 and then Cp ¼ 0.
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Schematic variation of the elastic and plastic wave speed as a function of the total strain is shown in Fig. 1.
Thus, the strain rate and temperature are parameters, not variables, in the ‘‘rate independent’’
Kàrman–Taylor–Rakhmatulin theory (KTR). Although the rate-dependent theory of plastic wave
propagation is well developed, it can be shown that KTR approximation is quite good.

3. Early experiments on impact tension and plastic wave propagation

A trivial statement seems to be obvious: impact testing of materials is different than quasi-static testing, or
standard testing. This statement is true for all types of tests, including tension, compression and shear or
torsion. In impact testing two additional effects must be taken into account: wave propagation (elastic and
plastic) and thermal coupling due to adiabatic heating, that is conversion of the plastic work into heat. The
wave propagation causes stress and strain gradients in specimens. This is a source of size effects in impact
testing of materials. A long specimen will behave differently than a short one. The thermal coupling causes
acceleration of all kinds of instabilities in plastic flow, for example adiabatic shear bands (ASB) in shear or
torsion tests. Those two factors impose limits in materials testing at high strain rates, specially when one
attempts to obtain mechanical properties in the ‘‘elementary volume’’ and transmit this information into a
constitutive relation.

One of the earliest report on tension impact test is that of Mann (1936), [13]. Experiments were carried out
at the Watertown Arsenal Laboratory (USA) using a specially built rotational hammer. This apparatus was
capable producing impact velocities up to 1000 ft/s (�300 m/s). The effect of impact velocity on the failure
energy was reported for several materials including SAE 1035 steel. It was found that independently of the
specimen length the maximum of failure energy occurred at specific well defined impact velocity. This was the
first report on the CIV. Development of the KTR theory of wave propagation caused further experimental
work on the effect of impact velocity on permanent strain distribution along specimen and failure. Since all
specimens are of finite length, some reflections of elastic and plastic waves from the fixed end amplifies further
the strain gradients along a specimen. For example, Fig. 2 shows distributions of plastic strain after failure of
40 in (�1016mm) specimen, curve A, for annealed aluminum at impact velocity 80 ft/s (24.4m/s), [2]. Because
of relatively long specimen the effect of wave reflections from the fixed end is well visible. Because the impact
velocity was not so high the CIV does not appear. Two theoretical analyses by the KTR theory are shown in
this figure, the first one with no wave reflection, curve B, and the second with the wave reflections, curve C. A
qualitative agreement for the case C is acceptable showing that the KTR theory can account for the main
features of plastic wave propagation.

Another experimental proof of the CIV in tension was published in [14]. In that case the failure energy was
obtained experimentally for different specimen lengths and impact velocities. The result for SAE 1020 CR steel
is reproduced in Fig. 3. This is the 3D surface of the failure energy versus impact velocity up to 200 ft/s
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Fig. 3. The effect of specimen length and impact velocity in tension on the failure energy for SAE 1020 Cold Rolled (CR) steel [14].
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(61m/s) and specimen length from 1 in to 10 in (25.4�254mm). At impact velocities in the neighborhood of
100 ft/s (30.5m/s) the failure energy reaches maximum for any specimen length. At higher velocities there is a
very definite decrease in the energy. The important fact is that the maximums of the failure energy occur
independently of the specimen length at the same impact velocity 30.5m/s.

The concept of the CIV in tension is discussed for the first time by Duwez and Clark [14] from the both
points of view: theory and experiment. Those authors stated ‘‘There exists a velocity of impact, called the
critical velocity, above which rupture will occur near the impacted end of the bar, and the remainder of the bar
will be essentially free of plastic deformation’’.

Of course, values of CIV in tension for different materials may provide a measure of ductility. Some aspects
of ductility related to CIV in tension were discussed in [15]. The CIV in tension was analyzed and confirmed.
The CIV was noted to vary considerably for high-speed tensile testing, from 125 ft/s (38.1m/s) for Mo (0.5%
Ti) to 435 ft/s (132.7m/s) for 17-7 PH stainless steel.
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A general conclusion can be reached that there is a speed limit in the dynamic tension test in determination
of the material properties, that is stress versus strain, when the quasi-static approach is applied. This limit
depends on intrinsic material properties, specimen dimensions and impact velocity. A simple numerical
calculations of impact tension was demonstrated in [16] how the ‘‘stress–strain’’ curves in tension degenerate
when the impact velocity is increased. A more advanced numerical study of the CIV in tension was reported
in [22].

4. The critical impact velocity in tension—isothermal case

The KTR theory of plastic wave propagation offers possibility to estimate values of the CIV in tension for
different materials. According to the KTR theory the integral in the form of Eq. (6) defining the mass velocity
reaches the maximum at specific strain em. If the wave speed reaches zero at specific total strain em, that is
ds=de ¼ 0 and CðemÞ ¼ 0, then the mass velocity reaches its maximum and higher mass velocities cannot
propagate. In other words this is theoretical definition of the CIV in tension, V 0 ¼ vcr, given by

vðemÞ ¼
Z em

0

CðxÞ dx; _e ¼ const and T ¼ const: (8)

Value of the CIV is simply the integral of C(e) curve shown schematically in Fig. 1. The integral (8) can be split
into two parts, the first one over the elastic range, 0oe oee, and the second over the plastic range, eeoeoepm,
where ee is strain at the yield limit [17]. Thus

vcr ¼

Z ee

0

C0 deþ
Z epm

ee
CpðepÞ dep. (9)

Since the elastic wave speed in slender rods is assumed constant, C0 ¼ const, the first part can be integrated,
then

vcr ¼ C0ee þ
Z epm

ee
CpðepÞ dep (10)

or in another form, when the yield stress is introduced, se ¼ Eee,

vcr ¼
se
ðErÞ1=2

þ

Z epm

ee
CpðepÞ dep. (11)

Of course, question arises how to define the upper limit of integration epm. Many materials show necking
before the saturation stress is reached. When necking occurs at specific plastic strain, than epm can be assumed
as the upper limit of integration in Eqs. (9)–(11). If the Considère’s condition of instability is assumed
ðds=deÞ ¼ s, [18], and plastic behavior is approximated in quasi-static conditions by s ¼ Ben then epm ¼ n.
Such the first order approximation yields relatively good, but lower than expected, values of the CIV in
tension.

In conclusion the CIV is a function of elastic and plastic properties of materials. For materials with a high
yield limit and low rates of strain hardening leading to a small instability strain (necking) the first term in Eqs.
(9)–(11) dominates. Whereas for soft materials with a low yield stress and a high strain hardening the second
term is more important. Those two terms compensate each other, and values of the CIV do not vary
substantially for different engineering materials. Experimentally determined values of the CIV in tension vary
from 15m/s for single crystals up to 230m/s for Hadfield steel. The last value is expected to be quite high due
to martensitic phase transformation (TRIP effect).

5. Theoretical considerations, effect of initial temperature and strain rate

As it is mentioned in the first part of this paper the initial temperature and strain rate, both assumed
constant, can be introduced in theoretical considerations as parameters. The only mathematical condition is
that the stress versus strain relation must be unique. It was shown on the basis of experiments in [19] for
aluminum and copper that plastic waves can propagate relatively small distances and the mean strain rates in
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the wave front vary from �102 s�1 to �5� 102 s�1. Those results are shown in Figs. 4 and 5 as logarithm of
strain rate in the wave front versus strain. In the case of the KTR theory the strain rate can be assumed
constant at the mean level, for example for aluminum 102 s�1 and for copper 5� 102 s�1.

Effects of the initial temperature on CIV are introduced via changes of elastic constants and
changes of the flow stress in the plastic range. The elastic wave speed in slender rods can be generalized
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as follows:

C0ðTÞ ¼
EðTÞ

rðTÞ

� �1=2

; 0oeoee. (12)

The main effect in changes of C0 versus temperature lies in changes of elastic properties, changes of the density
is the second order contribution. The effect of temperature on Young’s modulus is given by [20]

EðTÞ ¼ E0 1�
T

Tm
exp y � 1�

Tm

T

� �� �� �
. (13)

If r(T) E constant then C0(T) is given by

C0ðTÞ ¼ C0ð0Þ 1�
T

Tm
exp y � 1�

Tm

T

� �� �� �1=2

with C0ð0Þ ¼ �
E0

r0

� �1=2

, (14)

where r0 is the density at T ¼ 0 and E0 is the Young’s modulus at T ¼ 0K, Tm is the melting point and y� is
the characteristic homologous temperature.

Since in this stage of the analysis the temperature is assumed as the initial temperature T0 the speed of
plastic waves will change only in direct relation to changes of the stress–strain relation and its first derivative
both as a function of temperature. In order to retain generality the following symbolic constitutive relation is
assumed

sðep; _e;TÞ ¼ f 1ðepÞf 2ð_eÞf 3ðTÞ. (15)

Such structure of constitutive relations is quite common in many studies on dynamic plasticity. The first
derivative and the plastic wave speed are given by

ds
dep
¼ f 2ð_eÞf 3ðTÞ

df 1

dep
and CpðepÞT ;_e ¼ � f 2ð_eÞf 3ðTÞ

1

r
df 1

dep

� �� �1=2
. (16)

Thus, the CIV in tension can be calculated as a function of the initial temperature T0. Such calculations have
been reported in [17] for Cu and Al, the results are reproduced in Fig. 6. As expected, due to the thermal
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softening, the CIV diminishes when the initial temperature is increased. The decrease is almost linear versus
temperature. At room temperature values of the CIV are, respectively for Al and Cu, are 80m/s and 113m/s.
Comparison with experiments indicates that for the polycrystalline aluminum and its alloys in the annealed
state the CIV varies between 60 and 70m/s as compared with value 80 m/s resulting from theoretical
estimation. For polycrystalline copper in the annealed state the experimental values vary between 60 and
80.5m/s as compared with 113 m/s from theoretical analysis. It is presumed that higher theoretical values than
those obtained from experiment are due to lack of taking into account the thermal coupling in the form of
adiabatic heating. This fundamental problem is discussed in the further part of this paper. In conclusion,
theoretical estimation of the CIV with the initial temperature T0 as a parameter can be understood as the first
approximation. In such case the CIV is given by

vcrðT0Þ ¼ C0ð0Þ 1�
T0

Tm
exp y � 1�

Tm

T0

� �� �� �1=2

ee þ
1

rðT0Þ
f 2ð_eÞf 3ðT0Þ

� �1=2 Z epm

ee

df 1

dep

� �1=2

dep. (17)

It is possible to calculate numerically the CIV as a function of the initial temperature T0 when explicit forms
of f1, f2 and f3 are known. In general, the positive rate sensitivity causes that f 2ð_eÞ is an increasing function of
strain rate. It is shown however in Figs. 4 and 5 that is sufficient to assume f2 as a constant multiplication
factor say, for strain rate �5� 102 s�1. Although the explicit solution for the CIV has been derived, Eq. (17),
the problem arises how to determine the upper limit em of the integral. The procedure of em derivation is
outlined later on when the shear mode of deformation is analyzed. The instability condition in the adiabatic
case is applied in that case:
ðds=deÞadiabatic ¼ 0 at constant strain rate.
In order to illustrate quantitative changes of the CIV a simple explicit form of the constitutive relation has

been assumed in the following form:

sðep; _e;TÞ ¼ Ben
pf 2ð_eÞ 1�

T

Tm

� �
, (18)

where Tm is the melting point. The strain hardening in Eq. (18) are assumed in the power form n and the
thermal softening is assumed as linearly decreasing function of the homologous temperature. The effect of
temperature on elastic constants is neglected. In order to integrate Eq. (17) the upper limit of integration is
assumed in the form of Consdère’s condition, that is em ¼ n. After integration the CIV is given by

vcrðn;T0Þ ¼ C0ðT0Þee þ
1

r
f 2ð_eÞ 1�

T0

Tm

� �� �1=2
2
ffiffiffiffiffiffi
nB
p

nþ 1
ðnðnþ1Þ=2 � eðnþ1Þ=2e Þ. (19)

The numerical analysis of Eq. (19) was focused on the effect of strain hardening and the initial temperature on
the CIV. The constants in Eq. (18) are assumed to be for a mild steel, ee ¼ 10�3, r ¼ 7:8 g=cm3, B ¼ 500MPa,
Tm ¼ 1800K, f 2 ¼ 1:0, E0 ¼ 220GPa, C0 ð300Þ ¼ 5:0mm=ms. The range of the absolute temperature
0oT0o500K, and the range of the strain hardening exponent 0ono0.5. The results of the numerical
calculations are shown in the form of vcr (n, T0) in Fig. 7. The first conclusion can be drawn that the strain
hardening rate is very important, the CIV increases almost linearly with n. Of course, for ep ¼ 0 the main
contribution to the CIV close to �5.0m/s is the elastic term in Eq. (19).

The effect of the initial temperature on the CIV is not so large in that case. This is due to the simplified linear
softening of the stress and small changes of the Young’s modulus at relatively low temperatures, they are
simply neglected. As discussed above the results of more exact calculations of the CIV at different initial
temperatures for aluminum and copper is shown in Fig. 6. In that case the effect of temperature is almost
linear. For steels there is a stress plateau within the range of temperatures from �250 to �500K with a very
weak temperature effect and the linear approximation is to some extent justified. At low temperatures the
effect of temperature for steels on the flow stress is substantial due to thermal activation (Peierls stress [20]).
This is why the numerical analyses have only a qualitative character. In order to perform more exact analyses
of the CIV in tension the thermal coupling must be taken into consideration. Thermal softening during plastic
deformation changes the process of plastic wave propagation, the waves are slower and the instability strain
appears earlier.
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6. Wave propagation in adiabatic conditions—complete thermal coupling

In the previous analysis of the CIV in tension the adiabatic heating was neglected. A more complete, and
closer to the reality of fast plastic deformation, is assumption of the adiabatic deformation. In general, plastic
waves are in its nature adiabatic, that means that large part of the energy of plastic deformation carried by the
wave is converted into heat. Thermal softening diminishes the rate of strain hardening and plastic waves slow
down. In addition, adiabatic heating accelerates plastic instabilities, for example adiabatic necking or
adiabatic shear bands. The equation of energy balance with conduction and internal heat sources applicable to
dynamic plasticity is given by

rðTÞQpðTÞ
qT

qt
¼ bsðep; _e;TÞ

qep
qt
� lðTÞ

q2T
qx2

1

, (20)

where r, Qp, b and l are, respectively, the density, the specific heat, Taylor–Quinney coefficient and the
thermal conductivity (Fourier constant). The coefficient b defines the part of the mechanical energy converted
into heat, typical value bE0.9, ep and s are, respectively, the plastic strain and true stress. The direction of the
heat conduction is x1. If the adiabatic process of deformation dominates then there is no time for the heat
conduction and lE0. The problem reduces to the first order ordinary differential equation

dT

dep
¼

b
rðTÞQpðTÞ

sðep; _e;TÞ. (21)

Further simplification is possible assuming rðTÞ ¼ const and QpðTÞ ¼ const. It is known that in the range of
very low temperatures the specific heat Qp is a strong function of temperature, Debye or Einstein model, but at
temperatures higher than the Debye temperature a constant value is acceptable. Integration of Eq. (21) can be
done with the initial conditions: T ¼ T0 for ep ¼ 0, then

DTA �
b

rQp

Z epm

0

s½ep;TðepÞ_e� dep, (22)

where DTA ¼ T � T0 is the adiabatic increment of temperature.
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Since it is stated that the plastic waves are in its nature adiabatic, and remembering that the strain rate in the
wave front may vary from �102 s�1 to �5� 102 s�1, it would be important to evaluate transition from the
isothermal to the adiabatic conditions versus strain rate. The numerical analyses on that subject were reported
in [21]. The mean transition from the isothermal to the adiabatic process of deformation occurs within one
decimal order of strain rate. The mean factors in strain rate transition are the thermal conductivity (Fourier
constant) and specific heat. For example the mean values of strain rate when the transition occurs are: for a
mild steel in shear _etr � 60 s�1, for aluminum _etr � 89 s�1 and for copper _etr � 112 s�1. All values of the
transition strain rate cited here indicate that plastic waves in metals and alloys are indeed adiabatic in its
nature.

Preliminary analysis of plastic wave propagation in adiabatic conditions was reported in [19]. It was shown
that due to heat generated by plastic deformation and thermal softening the speed of plastic waves is reduced
in comparison to the isothermal case. In order to find the ‘‘adiabatic’’ wave speed the ‘‘adiabatic’’ tangent
modulus (ds/de)A must be determined. The wave speed, Eq. (7), is modified to

CpðepÞ ¼ �
1

rðTÞ
ds
dep

� �
A

� �1=2

_e;T

. (23)

If constitutive relation of the multiplicative form, Eq. (15), is applied then the wave speed is given by

CpðepÞA;_e ¼ �
1

rðTÞ
f 2ð_eÞ

d

dep
f 1ðepÞf 3ðTðepÞÞ
� 	� �1=2

_e;T
. (24)

In the simplified notation

CpðepÞA;_e ¼ �
1

rðTÞ
f 2

df 1

dep
f 3A þ f 1

df 3A

dep

� �� �1=2

_e;T
, (25)

where f3A accounts also for the temperature increase as a function of plastic strain during adiabatic heating.
Eq. (25) can be transformed into the following form:

CpðepÞA;_e ¼ �
1

rðTÞ
f 2 f 3A

df 1

dep
1þ

f 1

df 1=dep

df 3A=dep
f 3A

� �� �1=2

_e;T
. (26)

Since the first term in Eq. (26) is always positive, the second term in the case of thermal softening defines the
critical plastic strain when the wave speed becomes zero. This happens because the derivative df3A/dep which
defines the effect of temperature on the flow stress is normally negative. In general, if a thermal softening is
present and df3A/dep is negative then the speed of the adiabatic waves is always lower than in the isothermal
case, thus CpðepÞApCpðepÞT. In Eq. (26) the function f3(T(ep)A) must be determined, where T(ep)A is the
evolution of temperature during adiabatic heating. Then combination of Eqs. (15) and (21) yields

dT

dep

� �
A;_e
¼

b
rðTÞQpðTÞ

f 1ðepÞf 2ð_eÞf 3ðTðepÞAÞ. (27)

This time the integration is more complicated because in f3 the adiabatic evolution of temperature T(ep)A is
embedded, thusZ

dT

f 3ðTÞ
¼

b
rðTÞQpðTÞ

f 2ð_eÞ
Z

f 1ðepÞ dep þ A: (28)

In order to obtain the adiabatic history of temperature T(ep)A, Eq. (28) must be solved with the initial
conditions T ¼ T0 when ep ¼ 0.

Numerical calculations have been performed with the simplified constitutive relation, Eq. (18). The main
target was to demonstrate differences in isothermal and adiabatic speed of plastic waves. Identification of all
three functions f1, f2 and f3 gives the following result:

f 1ðepÞ ¼ Bep;
df 1

dep
¼

nB

e1�n
p

; f 2ð_eÞ ¼ 1; f 3ðTÞ ¼ 1�
T

Tm
. (29)
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After substitution of the set (29) into Eq. (28) and integration one yields the adiabatic evolution of
temperature in the following form:

TðepÞA ¼ Tm 1� 1�
T0

Tm

� �
exp

b

nþ 1
enþ1
p

� �� �
with the constant b ¼

bB

rQp

1

Tm
(30)

and

f 3ðTðepÞAÞ ¼ 1�
T0

Tm

� �
exp �

b

nþ 1
enþ1
p

� �
. (31)

In addition

df 3A

dep
¼ �b 1�

T0

Tm

� �
ep exp �

b

nþ 1
enþ1
p

� �
. (32)

Value of constant b is b ¼ 6:41� 10�2, Qp (300) ¼ 500 J/kgK and b ¼ 0:9. In order to compare C(ep)A with
C(ep)T the velocity of isothermal plastic waves must be determined. By application of Eq. (16) and Eq. (29) one
obtains the expression for the isothermal plastic wave speed

CðepÞA ¼ �
B

r
1�

T0

Tm

� �
n

e1�n
p

" #1=2
. (33)

The result of calculation, in order to illustrate how the isothermal wave speed changes versus plastic strain at
different strain hardening exponent, is shown in Fig. 8. Of course, the speed increases when the strain
hardening is more intense. However, the values at strains larger than �0.2 are very low in comparison to the
elastic wave speed in slender bars, C0 ¼ 5� 103m/s. With the power strain hardening the wave speed reaches
zero at infinite strain. This illustrates that in that case a cutoff condition of integration must be applied in
determination of CIV, for example the Considère condition. In the adiabatic case, due to the thermal
softening, the wave speed diminishes naturally to zero at specific plastic strain. In order to show differences
between isothermal and adiabatic wave speeds Eq. (26) together with relations (29)–(32) have been combined.
The simplified constitutive relation was applied and the result is given by

CðepÞA ¼ �
B

r
en
p 1�

T0

Tm

� �
n

ep
� bep

� �
exp �

b

nþ 1
enþ1
p

� �� �1=2
. (34)
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Due to the third term in Eq. (34) the wave speed reaches zero at the critical plastic strain epc. This condition
can be found assuming that this term is zero, the solution is

epc ¼
n

b


 �1=2
or with constant b epc ¼

nBbf 2ð_eÞ
rQpTm

 !1=2

. (35)

This is interesting result which indicates that the critical plastic strain is a function of physical parameters
like strain hardening and physical constants. The symbolic effect of the strain rate sensitivity is retained
in Eq. (35). A positive rate sensitivity increases the critical strain, in the numerical calculations f 2 ¼ 1.
For the parameters assumed in the calculations the constant b ¼ 6:41� 10�2 and Eq. (35) reduces to epc ¼
3:9498 (n)1/2. The critical strain epc is plotted versus the strain hardening exponent n in Fig. 9. It is clear,
this preliminary result indicates a very steep increase of the critical strain for small values of n. A realistic
value of n for a mild steel is �0.2 and for this value of n the critical plastic strain is �1.75 and there is a
high probability that the neck will occur earlier. Because both parameters, that is the critical strain in the
adiabatic conditions ecr and the strain of necking en ¼ n are the upper limits of integration in determination
of the CIV in tension the CIV calculated with the Considère condition will be lower than that determined
by the critical strain obtained via adiabatic deformation. The straight line in Fig. 9 represents the condition
en ¼ n.

The wave speeds in the adiabatic conditions were calculated according Eq. (34), they are shown in
Figs. 10a,b and c. Fig. 10a is for larger values of n, from 0.05 to 0.3 (n ¼ 0:05; 0.1; 0.15; 0.2; 0.25 and 0.3,
Fig. 10b is limited to smaller n (n ¼ 0:01; 0.02; 0.03; 0.04 and 0.05, finally Fig. 10c shows the wave speeds for
lower range of n (n ¼ 0:0005; 0.001; 0.002 and 0.003). This is practically the range of the ideal plasticity and
accordingly the critical strains are relatively small, less than 0.2. Finally, comparison of the isothermal and
adiabatic wave speeds for n ¼ 0:01 and 0.05 is shown in Fig. 11, the curves denoted T and A are, respectively,
for the isothermal and adiabatic conditions. The differences are substantial for larger deformations. All
calculations and figures indicate that the whole analysis is quantitatively correct. Because variables,
parameters and constants are assumed as approximate, mainly due to the simplified constitutive relation, all
analyses are, of course, preliminary. A more exact analyses will be possible in the future, here is only shown
how to deal with the problem.
0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2

2.5

3
CRITICAL STRAIN OF THE WAVE SPEED

STRAIN HARDENING EXPONENT n

C
R

IT
IC

A
L

 P
L

A
ST

IC
 S

T
R

A
IN

εpc(n)

εpn(n)

To = 300 K

ADIABATIC CRITICAL STRAIN

NECKING STRAIN

Fig. 9. Calculated critical strains for CpA ¼ 0 versus strain hardening exponent n, CpA is the speed of plastic wave at the critical strain ecr
in adiabatic conditions. The Considère condition en ¼ n is shown as the straight line.



ARTICLE IN PRESS

0.5 1 1.5 2
0

100

200

300

400
PLASTIC WAVE SPEEDS IN ADIABATIC COND.

PLASTIC STRAIN εp

W
A

V
E

 S
PE

E
D

 [
 m

/s
 ]

CA(εp, 0.05)

CA(εp, 0.1)

CA(εp, 0.15)

CA(εp, 0.2)

CA(εp, 0.25)

CA(εp, 0.3)

0

T = 300 K

n = 0.3

n = 0.05

(a)

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200
PLASTIC WAVE SPEEDS IN ADIABATIC COND.

PLASTIC STRAIN εp

W
A

V
E

 S
PE

E
D

 [
 m

/s
 ]

CA(εp, 0.01)
CA(εp, 0.02)

CA(εp, 0.03)
CA(εp, 0.04)
CA(εp, 0.05)

To = 300 K

n = 0.05

n = 0.01

(b)

0 0.05 0.1 0.15
0

20

40

60

80

100
PLASTIC WAVE SPEEDS IN  ADIABATIC COND.

PLASTIC STRAIN εp

W
A

V
E

 S
PE

E
D

 [
 m

/s
 ]

CA(εp, 0.0005)

CA(εp, 0.001)

CA(εp, 0.002)

CA(εp, 0.003)

To = 300 K

n = 3.10*E-3

n = 5.10*E-4

(c)

Fig. 10. Plastic wave speeds in adiabatic conditions versus plastic strain, (a)—large strains 0oepo2.0; (b)—medium strains 0oepo1.0; (c)

small strains 0oepo0.2.

J.R. Klepaczko / International Journal of Impact Engineering 32 (2005) 188–209200
7. The critical impact velocity in tension—complete thermal coupling

The same main conclusions as stated above can be drawn on the level of approximation in calculations of
the CIV. The CIV in tension in the adiabatic conditions is obtained by introduction of Eq. (34) into Eq. (10)
with the upper limit of integration ecr ¼ ðn=bÞ1=2. The final solution for the adiabatic CIV is given by

vcrðepÞA ¼ C0ðT0Þee þ
B

r

� �1=2

1�
T0

Tm

� �1=2 Z ecr

ee
en
p

n

ep
� bep

� �
exp �

b

nþ 1
enþ1
p

� �� �1=2
dep. (36)

Relation of the elastic wave speed with temperature C0 (T) is given by Eq. (14). The results of the complete
numerical calculations in the form of the CIV versus the strain hardening exponent n is given for 100
oT0o500K in Fig. 12. The range of calculations is the same as for Fig. 7 where the CIV was calculated at the
same initial temperatures up to 500K applying the en ¼ n as the upper limit of integration. As expected this
condition imposes the lower bound in estimation of CIV in tension. The upper bound is given by the condition
in the form of Eq. (35). Experiments indicate that for the strain hardening exponent n � 0:2 at room
temperature the CIV is much in excess of �100m/s, whereas the condition en ¼ n limits the CIV to �60m/s.
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Therefore, the condition ecr ¼ ðn=bÞ1=2 derived on the basis of full adiabatic coupling seems to be better as the
upper limit of integration in estimation of the CIV in tension. Value of the CIV in Fig. 12 for strain 0.2 is
�190m/s. Since the analysis is rather qualitative, further studies are needed on this subject, including
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experiments. Experimental data are scarce, for example the CIV for 17-7 PH stainless steel and Vascojet 1000
are respectively �135 and �65m/s [15]. With n ¼ 0:25 the CIV in tension has been estimated numerically for a
mild steel in [16]. The analysis revealed the CIV �127m/s. More recent verification of the CIV in tension for a
mild steel by the finite element code (FE code Abaqus), [22], have shown the CIV around 120m/s.

8. The Critical Impact Velocity in shear—fundamentals

Localization of plastic deformation during fast shearing by adiabatic shear band (ASB) is a common failure
mode in many materials. Examples are fragmentation, armor penetration, punching, piercing, high-speed
machining and others. Although the phenomenon of the ASB is known for a long time the CIV in shear has
been noticed more recently. In the past the CIV in shear has not been studied extensively, but in recent years
more attention is given to that problem. Early remarks on possibility of the CIV in shear can be found in [5,6].
If the rate of shearing is sufficiently high the adiabatic process of deformation is superimposed on propagation
of plastic waves in shear and it leads to failure near the area of impact. The main difference of shear in
comparison to tensile loading is that the cross section of the deformed area remains constant. Such type of
deformation is met in torsion of bars and tubes and in shearing of plates and sheets. Thus, the effect of the
geometrical instability like necking does not occur in shearing. The only mechanism leading to instability is
the material softening due to adiabatic heating. In that way the CIV in shear can be only well defined by the
material behavior. Of course, in real cases of more brittle materials there is a probability that failure in shear
may occur earlier.

The theory of CIV in shear is similar to one in tension, but the main factor is the thermal coupling which
must be considered. If the direction of shearing is x1 then direction of the elastic and plastic wave propagation
is x2. Such situation is shown in Fig. 13. A plane block is submitted to shear by velocity V in x1 direction, the
waves propagate in the direction x2. After initial uniform shear deformation the adiabatic shear band occurs
near the surface where the velocity V is imposed. Because elastic and plastic waves propagate in x2 direction
and displacement is in x1 direction, the wave equation is given by

qU1

qt2
¼ C2

2ðGÞ
qU1

qx2
, (37)

where U1 is the displacement in x1 direction. The wave speeds in the elastic and plastic range are given by

C2e ¼ �
mðTÞ
rðTÞ

� �1=2

; C2pðGpÞ ¼ �
1

rðTÞ
dt
dGp

� �� �1=2
, (38)

where m(T) is the temperature-dependent shear modulus, t is the shear stress, G and Gp are respectively the
shear gradients, G ¼ dx1=dx2, total and plastic, C2e is the elastic wave speed in shear and C2p (Gp) is the plastic
wave speed. It may be mentioned that C2oC0. The ratio C0=C2e ¼ ð2ð1þ vÞÞ1=2, where n is the Poisson’s ratio,
for n ¼ 1=3 C0=C2 ¼ ð8=3Þ

1=2 and C0=C2e ¼ 1:633. The same occurs for the plastic waves, the shear waves are
slower. The strain amplitude of a plastic wave is constant long the nonlinear characteristics

dx2

dt
� C2pðGpÞ ¼ 0 the mass velocity remains constant d

Z Gm

0

C2pðGpÞ dGp � v

� �
¼ 0. (39)
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Fig. 13. Schematic representation of a block in shearing mode, V—imposed velocity, C2 -propagation direction of elastic and plastic

waves; the right side shows the critical conditions with the wave trapping by ASB.
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The mass velocity in shear is given by

v ¼ �

Z Gm

0

C2pðGpÞ dGp for T ¼ const and _e ¼ const, (40)

where Ge is the elastic shear strain at the yield limit and Gm is the total instability strain in the adiabatic

conditions of deformation. In this case the upper limit of integration Gm is well defined as the shear strain
where the adiabatic instability occurs. The instability point is defined by ðdt=GÞA ¼ 0 that occurs at Gm. It
must be remembered that all derivations are valid for constant strain rate, characteristic for the process of
plastic wave propagation, that is 5� 102 s�1 o _Go103 s�1. The earliest analyses of the CIV in shear were
published in [7,8]. Again, if by analogy to Eq. (15) the following constitutive relation is assumed in the case of
shear:

tðGp; _G;TÞ ¼ f 1ðGpÞf 2ð
_GÞf 3ðTÞ (41)

and the adiabatic instability condition is applied ðdt=GÞA ¼ 0, then the critical shear strain Gpm can be found.
After differentiation of Eq. (41) and introduction into the instability condition the following relation is
obtained

qt
qGp

� �
T ; _G
þ

qt
qT

� �
G; _G

dT

dGp
þ

qt
q _G

� �
T ;G

d _G
dGp
¼ 0. (42)

Condition (42) can be satisfied only in very specific processes of plastic deformation, one of them is adiabatic
deformation at constant strain rate. Thus condition (42) reduces to

qt
qGp

� �
T ; _G
þ

qt
qT

� �
G; _G

dt
dGp

� �
A

¼ 0. (43)

Assuming constitutive relation (41) the adiabatic increase of temperature can be found after Eqs. (20) and (21).
The result by analogy to Eq. (21) is given by

dT

dGp
¼

b
rðTÞQpðTÞ

tðG; _G;TÞ. (44)

If the explicit forms of the partial differentials derived after the constitutive relation, Eq. (41) in present case,
can be found then condition (43) transforms into

qf 1

qGp

� �
þ f 2

1ðGpmÞf 2ð
_GÞ

qf 3

qT

� �
b

rðTÞQpðTÞ
¼ 0. (45)

Since f1(Gpm) depends only on the critical shear strain the non-explicit solution for f1(Gpm) is given by

f 1ðGpmÞ ¼ �
rðTÞQpðTÞ

bf 2ð
_GÞ
ðdf 1=dGpÞ

ðdf 3=dTÞA

� �1=2
, (46)

where (df3/dT)A is the adiabatic history of temperature. The expression [�]1/2 in Eq. (46) has real and
imaginary components. Inversion of Eq. (40) enables finding of the upper limit of integration Gpm in Eq. (48).
A more detailed discussion of Eq. (46) can be found in [7,8].

Finally, in general case the speed of plastic waves in shear and in adiabatic conditions is given by

C2pðGp;TÞA;_e ¼ �
1

rðTÞ
f 2ð

_GÞf 3AðTÞ
df 1ðGpÞ

dGp
1þ

f 1ðGpÞ

df 1ðGpÞ=dGp

df 3AðTÞ=dGp

f 3AðTÞ

� �� �1=2

_e
. (47)

Integration of Eq. (43) within the limits from Ge to Gm yields the CIV in shear, under assumption _G ¼ const.

vcrðGm;T0Þ ¼ C2eðT0ÞGe þ

Z Gpm

Ge
C2pðGp;TÞA; _G dGp. (48)

Because of analogy in derivation of the CIV in shear, in comparison to the CIV in tension, numerical
qualitative analyses were not performed for the case of shear. This can be done by conversion of the
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constitutive relation (18) from tension to shear by application of the Huber–Mises yield condition, s ¼ 31=2 t,
e ¼ G=31=2 and _e ¼ _G=31=2, then

tðGp; _G;TÞ ¼
BGn

p

3ðnþ1Þ=2
f 2

_G

31=2

� �
1�

T

Tm

� �
. (49)

It can be shown that the CIV in shear is of the same order as for tension, however is lower in comparison to
tension. Since the CIV in shear is another material constant important in fragmentation processes, further
studies in the future on that subject would be valuable.
9. The Critical Impact Velocity in shear—experimental verification

Experiments performed at LPMM with the direct impact modified double shear (MDS) technique [9],
confirmed existence of the CIV in shear for many metals and alloys. The experimental technique is shown
schematically in Fig. 14. Here only brief description of the MDS is given. The MDS specimen with two 2.0mm
shear zone is shown on the right hand side of Fig. 14. The deformed layer initially assures the uniform
deformation in shear over its gage length 2.0mm.The MDS specimen can be loaded at different nominal strain
rates with a fast servo-hydraulic universal machine or by direct impact as is shown in Fig. 14. In the case of the
direct impact the MDS specimen 6 is supported by the Hopkinson tube. The impact velocities of different-
length strikers of diameter 10.0mm can be varied from 1.0 to 200m/s. Such impact velocities assure the
nominal strain rates in shear from 5� 102 to 105 s�1. The impact velocity is measured by a set of three light
sources 1, three photodiodes 3 and two time counters 2. The transmitted wave is measured by two SR gages 7
cemented on the surface of the Hopkinson tube. The displacement of the central part of the MDS specimen is
1  LIGHT SOURCE
2  PHOTODIODES (3)
3  FIBER OPTIC LEADS (6)
4  TIME COUNTERS (2)
5  TEELON RINGS (2)
6  SPECIMEN TARGET
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Fig. 14. Scheme of experimental arrangement for direct impact on the modified double shear (MDS) specimen shown on the right side;

explanation in the text and in [9].
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Fig. 15. Experimental results of slow and fast shearing for a hot rolled armor steel by the MDS technique: a—maximum shear strain at
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measured by the non-contact optical transducer 8 and by the black and white target 6. In addition, since the
front of the striker is black the displacement of the contact striker-specimen can be also measured. The theory
of the test is given in [9].

After analysis of the recorded signals and elimination of time, the force–displacement curve can be obtained
and later on t(G) and dG/dt calculated. It was immediately found during preliminary tests that above shear
strain rate �4� 104 s�1 plastic shear waves obscure a correct determination of the material characteristics.
When the impact velocity was increased the CIV in shear appeared. One of many results is given in Fig. 15 for
hot-rolled armor steel. For this steel the CIV is estimated as � 60 to 80m/s. This relatively low CIV may be
attributed to plastic pre-deformation during rolling. It may be noted that the CIV is a decreasing function of
pre-deformation [7]. On the other hand comparison of Fig. 15a and b indicates that in spite of decreasing of
the shear strain (and the energy to failure) the maximum of stress increases. Near the CIV the apparent t(G)
curve is reduced to an intense peak. For harder steels with a proper thermal treatment the CIV can be quite
high. For example, the CIV has also been experimentally determined for VAR 4340 steel (�52 HRC) as
�140m/s [10]. Although experimental data are limited to several materials the CIV in shear has been
confirmed.

10. Numerical analyses the Critical Impact Velocity in shear

Numerical analyses by FE with complete elastic and plastic wave propagation and thermal coupling also
have confirmed existence of CIV in shear for VAR 4340 steel and Ti–6Al–4V alloy, [23,24].

In this paper a review and synthesis of those results are discussed. In both cases numerical studies have been
performed of impact shearing of an infinite layer with the height 2.0mm and a small geometric imperfection
(�1.0% of the cross section in the center) by FE code Abaqus. The constitutive relation was in an advanced
form with strain hardening, strain rate sensitivity and thermal softening. The mesh applied in those
calculations and the displacement fields for velocities 40m/s (2� 104 s�1) and 130m/s (6.5� 104 s�1) are shown
in Fig. 16. At lower strain rate plastic deformation is concentrated in the middle of the shear zone, whereas at
high velocity the CIV in shear is reached and in spite of the geometrical imperfection a strong plastic field is
concentrated near the external cross section where the velocity is imposed. This transition is much better
illustrated in Fig. 17 where the Marciniak plots in the form GA (GB) are shown, respectively, for velocities 40
and 115m/s in Figs. 17a and b. The section A is in the middle of the sheared layer and section B in the upper
extremity where velocity is applied. A complete inversion of the deformation history of the cross sections A
and B is found when the imposed velocity was increased from 40 to 115m/s. The standard Marciniak plot,
typical for all plastic instabilities, is obtained for 40m/s, but for 115m/s section B deforms more rapidly
indicating the first stage of the CIV process via formation of ASB and superposition of plastic waves, Fig. 13.
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Fig. 17. Marciniak plots GA (GB), the position of points A and B is shown in Fig. 16; a—imposed velocity V ¼ 40m=s, normal evolution

of strains in zones A and B; b—imposed velocity V ¼ 130m=s, inversed evolution of strains in sections A and B, the CIV in shear is

reached [23].

(a) (b)

ADIABATIC
SHEAR

BANDING

Fig. 16. Deformed FE mesh submitted to shear for imposed velocities at the top of the layer; a—low velocity case, V ¼ 40m=s, shear band
occurs in the middle where a small imperfection is assumed; b—high velocity loading, V ¼ 130m=s, in spite of the imperfection in the

middle ASB is triggered at the top, the CIV in shear is reached [23].
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During the numerical study reported in [23] variations of the nominal shear strains at the instability point,
ðdt=dGÞ ¼ 0, along with shear strain of the final localization (assumed in the code) were evaluated numerically
as a function of the impact velocity. The result is shown in Fig. 18. Complete confirmation of the CIV is
obtained not only by this figure but also by Figs. 16 and 17. Theoretical evaluation of the CIV for VAR 4340
steel indicates an almost equal contributions of the elastic and plastic terms in Eq. (44), vce ¼ 51:1 and
vcp ¼ 57:0m=s, thus vc ¼ 108:1m=s. The last important finding is shown in Fig. 19 where the total energy up
to shear failure, independently where it may occur in the sheared layer, is shown as a function of the impact
velocity. This figure explains important fact in dynamic fragmentation, namely when the shearing velocity of
the material exceeds locally the CIV fragmentation can occur instantaneously.

Similar numerical results were obtained in [24] for titanium alloy Ti–6Al–4V. The nominal shear strains of
instability Gnc and final localization Gnl determined numerically by FE code are shown in Fig. 20 versus impact
velocity. The CIV estimation leads to �132m/s. The energy dissipated to the shear strain of localization is
shown in Fig. 21. As expected, a substantial drop of the energy occurs near the CIV. Within the first region the
energy to ‘‘failure’’ increases up to W ¼ 624MJ=m3 at vcr ¼ 130m=s and next, in the transition region, a
considerable decrease occurs. For impact velocity V ¼ 180m=s the energy reaches level �110MJ/m3. For



ARTICLE IN PRESS

1.0

0.8

0.6

0.4

0.2

0.0
0 20 40 60 80 100 120 140 160

Γnc

Γnl

CIV transition

Impact velocity Vi (m/s)

N
om

in
al

 s
tr

ai
ns

 Γ
nc

 a
nd

 Γ
nl

Fig. 18. Nominal shear strains of instability Gnc and advanced localization Gnl found numerically for VAR 4340 (52 HRC) steel at

different velocities V, the CIV has been confirmed numerically [23].
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Fig. 19. Evolution of energy calculated numerically for VAR 4340 steel (52 HRC) by FE at localization strain for different velocities, the

CIV in shear is confirmed. A substantial drop of the ‘‘failure energy’’ is observed within the CIV transition [23].
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higher impact velocities the energy level practically rests constant. The energy drop is about six times when the
impact velocity changes from 130 to 180m/s. Such behavior has far reaching consequences in fragmentation.
Theoretical evaluation of the CIV shows that the contribution of the elastic term vce ¼ 106:4m=s is much
higher than the contribution due to plasticity vcp ¼ 14:0m=s. Thus theoretical value of the CIV is 121m/s as
compared with the FE analysis vcr ¼ 132m=s. Experiments and numerical analyses indicate that there is a
transition of instability and localization strains, as well as the energy, when the impact velocity is increased.
More exactly, the CIV can be defined as the process involving thermo–visco–plastic behavior of materials.
11. Conclusions

Existence of the Critical Impact Velocities in tension and shear has been confirmed by theoretical,
experimental and numerical means. It was shown that physical parameters, including thermodynamic
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constants, as well as material behavior in elastic and plastic ranges are involved in estimation of the CIV.
Values of the CIV, both in tension and shear, can be understood as material constants.

The CIV in tension imposes very strict limits on impact tensile testing of materials. This limitation is
observed because well before occurrence of the CIV at much lower velocities the strain gradients along
specimen obscure the assumption of the uniformity of the strain along specimen. The CIV in tension is the
upper limit of tension impact testing. For example assuming vcr ¼ 100m=s the nominal strain rate for 40mm
long specimen is 2.5� 103 s�1. Typical solution is specimen miniaturization which involves another problems
not discussed here, for example the end effects in the form of stress concentrators. In general the specimen
geometry for dynamic tension test must be optimized.

Theoretical analysis of the CIV in tension has been improved by introduction of complete thermal coupling
in the form of adiabatic heating which slows down plastic waves leading to the natural limit Cp ¼ 0, where Cp

is the velocity of plastic waves. There is still unresolved question as to application of Considère condition as
the upper limit of integration in Eq. (11). Further experiments should resolve this question.
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Because the CIV in shear is a new material constant it can characterize resistance to dynamic fragmentation
of metals and alloys, which posses some plasticity, via appearance of adiabatic shear bands (ASB). Of course,
for harder materials the situation is more complex. The phenomenon of CIV in shear is relatively new. A
complete analysis of the CIV in shear with thermal coupling has been performed, that is the adiabatic process
of deformation superimposed on trapping of plastic shear waves was considered. It was found that a unique
superposition of plastic shear waves and adiabatic softening triggers this phenomenon. Review of existing
experimental results on CIV in shear, and so far reported numerical estimations, have provided a sound basis
of this phenomenon. Theoretical estimations are in general in agreement with experiment and FE calculations.

It is expected that the CIV in shear is lower than that in tension. In order to establish a bank of data, for
both the CIV in tension and shear, further quantitative analyses would be of great assets in order to create a
bank of data. Comparison of data for different metals and alloys could provide better understanding which
construction materials are more resistant to plastic failure under impact and fragmentation.
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[12] Levi-Civita T. Charactéristiques des systèmes différentiels et propagation des ondes. Paris: Felix Alcan; 1932.

[13] Mann HC. High-velocity tension-impact tests. Proc ASTM 1936;36:85.

[14] Clark DS, Wood DS. The influence of specimen dimension and shape on the results in tension impact testing. Proc ASTM

1950;50:577.

[15] Wood WW. Experimental mechanics at velocity extremes—very high strain rates. Experimental Mechanics 1967;7(10):441.

[16] Hu X, Daehn GS. Effect of velocity on flow localization in tension. Acta mater 1996;44:1021.

[17] Klepaczko JR. Generalized conditions for stability in tension test. Int J Mech Sci 1968;10:297.
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