
Lecture L03-04 - ASTC25

GRAVITATION

Back then

…and now



Today: 
• Experiments with funnels like those that Robert Hooke did 

and discussed with Newton

• Centrifugal force formula (by C. Huygens)  and the 
• Proof that gravity falls with second power of distance

using an apple and the Moon

• Arguments showing that gravity is the dominant force in the 
solar system, so we can neglect solar wind and small gas drag, 
and radiation pressure of solar radiation, when talking about 
planets, moons, asteroids and comets

• Newton’s geometric proof of Kepler’s 2nd law

• The famous proof (in modern form) that  1st and  3rd Kepler’s laws
follow from the universal gravity force.
The full solution of Kepler’s 2-Body problem.



As Newton and Hooke  
exchanged seemingly polite 
letters and quarreled about 
trajectories, there was intense 
personal dislike between them..

Incidentally, it shows that even in 
1680s Newton did not have a full 
understanding of orbits and 
gravity. Hooke was often more 
right: 

This suggests that Newton did not 
discover Universal Gravity in 
1665-1666 as he claimed, but that 
he worked it out in response to 
original hypotheses of his 
contemporaries.



Knowing Lagrangian mechanics, today we can derive 
equations for a small ball rolling without sliding inside 
a straight cone, inclined by angle α to horizon. 
Python simulation with some friction added, top view:

α 

Consecutive local 
maxima of radius are 
known as apocenters. 
Here, they precess,
i.e. move backwards
with respect to the 
counterclockwise
direction of motion
(by about 120 degrees) 



α = 60° is typical for most commercially sold funnels:
sizeable prograde precession is predicted (and somewhat smaller in 
magnitude, also observed in experiment that you can easily do
& record with the slow-motion function on your smartphone.)



This angle (α = 55.33°) in theory cancels the precession on a straight 
cone: z(r) = r, f = -dz/dr = tan α = const. force law, with small friction. 
Neither Hooke nor Newton knew what angle α to chose to illustrate quasi-
elliptic orbits. Better yet, they should have used a curved cone with the shape 
of gravity’s potential, z(r) = -1/r, to eliminate precession and achieve better 
elliptical shape od orbit. It would have a slope dz/dr = 1/r2, and simulate the -
1/r2 force of gravity correctly. 

Assuring no-slip condition
is difficult in low-friction 
cones, though.

Without friction, the 
curve looks similar to 
an ellipse, but is really
an oval (asymmetric 
egg-like) curve,
differently centered 
than planetary orbits.
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How Newton attempted 
a few times to confirm 
the
F= -1/r2

law of gravity

using Huygens’  formula
a = -v2/r 
for centripetal 
acceleration during 
uniform motion on a 
circle or radius r, with 
linear speed v = const. 

Δθà 0 



Initially, Newton 
used inaccurate data 
for radius of the 
Earth RE,
got distance ratio 
>60  & was not 
happy with the level 
of agreement of
(REM/RE)2 and 
aapple/amoon

We improve the 
calculation below. 



Guinness record (1953) of 
acceleration survived by someone 
strapped to a rocket chair:  
62g  for  Δt=0.04s



F ~ 1/r2 law in times of Newton, verified for circular 
orbits by comparing the Moon & apple

• Let’s now do the computation of Newton once again, this time 
with improved quality of data and treatment of center of 
gravity in Earth-Moon system

• We know the gravity’s acceleration that applies to apples:      
g = 9.81 m/s2

• We can assume that the Moon is in a circular orbit, and that it 
is subject to the same acceleration of Earth’s gravity as 
apple, which somehow (perhaps as 1/d2) falls with 
distance d from the center of the Earth. 

• I’m going to do here the computation, using modern 
astronomical data (Newton knew the distance to the Moon 
and mainly (surprisingly) the size of Earth much less 
precisely, so only achieved so-so an accuracy of ~10%)



1/r2 law: The apple and the Moon. A more accurate calculation. 
First, let’s find the centripetal acceleration in a circular orbit

C.M. of
and  M      

One way to compute Moon’s acceleration



1/r2 law: apple and the Moon
• I’m 

one way to compute Moon’s acceleration

Another way to compute Moon’s acceleration
Let’s find α,   is α = 2 ?

Yes. We got α = 2  !



From the   ±v2/r   formula for centrifugal/centripetal acceleration
we derive the most important relationship between speed
and distance in dynamics of motion around a mass M
(assuming circular, r = const., v = const.  trajectory)

-v2/r  =    -GM/r2

centripetal accel.    =   gravitational accel.,        or 
-mv2/r  =  -GMm/r2 (force balance for

particle with small mass  m)
Therefore,         v2

K = GM/r 
(Keplerian or circular speed vK; 
In motion around the Earth it used to be called 1st cosmic speed.)

The generalized formula below applies to all spherically symmetric 
systems, after a modification following from two theorems by 
Newton about the zero force inside, vs. 1/r2 force outside a thin 
uniform shell of matter.
Circular speed: 
vc

2 = GM(r)/r ,  where M(r) is mass inside an arbitrary radius r. 









Newton’s geometric proof of Kepler’s 2nd lawEXAMPLE OF GEOMETRIC PROOFS  IN  NEWTON’S   “Principia” 



Newton’s geometric proof of Kepler’s 2nd law, if 
the force always points toward the center of attraction (centripetal force)

và v + Δv & 
the moon moves 
to M1 not M0



Isaac Newton’s geometric proof of Kepler’s 2nd law, if 
the force points toward the center of attraction was beautifully simple

from: Philosophiae Naturalis Principia Mathematica (1687)

In today’s mechanics we prefer to 
talk about  angular momentum 
L = r× v = const.,    which is a 
vector of length = 2 * areal speed

Proof: the cross product of two 
vectors, r = SA and (v Δt) = AB, 
equals twice the area “swept” in time 
Δt, or area SAB.

proof is based on the compound 
motion idea of Hooke, and 
elementary Euclidean geometry

Dividing this area by Δt gives areal speed, 
numerically equal to the length of L/2, q.e.d.

x

















One vector is so special that it had to be discovered and
re-discovered a couple of times: 
Laplace vector = Laplace-Runge-Lenz vector, which was
discovered before Laplace(!)

Pierre-Simon, Marquis de Laplace
(1749-1827)
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Exercises:
(i) Derive the shape of the orbit in case e = 1 explicitly, in Cartesian coordinates 

(ii) Verify the proof of   E = !"#$% .



2

Notice: we often designate
spec. ang. momentum as
L  instead of l

e



(Make sure you 
know how to derive 
Keplerian speed !)

centrif. force
grav.force



b2 = a2(1-e2)
e = eccentricity



GENERAL PROOF OF 3rd KEPLER’s LAW again, nicely typewritten:
In non-circular case, the 3rd Kepler’s law follows from the 2nd Kepler’s 
law: areal speed  dA/dt = const., dA = area swept in time dt.
Area of the ellipse equals A= πab, but at the same time 
A = ∮ (dA/dt) dt = (dA/dt) ∮ dt = (dA/dt) P. Here
P = orbital period
a = semi-major axis = half of the bigger axis
b = semi-minor axis = half of the smaller axis of ellipse.

dA/dt =  (½ r2dθ)/dt = ½ r vθ= ½ L = const. L = l =|r x v|
Of the two components of velocity:  vθ= r dθ/dt,   and  vr = dr/dt,
only the first sweeps the area dA ~ dt,  the second  dA2 ~ (dt)2.
In the limit of dt 0, only dA results in a finite area.

P = πab / (½ L) 
But      L = [GM a(1-e2)]1/2  from the previous derivations, and 

b = a(1-e2)1/2 from the equation of ellipse, therefore 
P = 2π (a3/GM)1/2 (3rd Kepler’s law).

Symbols Ω or n denote the average angular speed, or ‘mean motion’
Ω = n = 2π/P = (GM/a3)1/2

b
a

(b/a)2 = 1– e2 

dA
r



The full set of orbital elements (constants describing a Keplerian orbit)
includes the two omegas and the inclination angle I, describing orbit’s 
orientation (shown below), two parameters describing its size and shape:
semi-major axis a and eccentricity e, and finally the time of perihelion 
passage t0 

Alternatively, the orbit could be described by 3 initial components of 
position vector, and 3 velocity components (there are 6 variables 
describing the position and velocity).



ADDITIONAL LITERATURE 

You can find interesting information about the history 
of celestial in many places on internet. 

A great place to look is Lissauer textbook “Fundamentals 
of Planetary Science”, chapter 2 on Orbital Mechanics.

If want a different formulation, see the annotated chapter 2 from the Ostlie+Carroll
textbook linked to our home page at

https://planets.utsc.utoronto.ca/~pawel/ASTC25 

https://planets.utsc.utoronto.ca/~pawel/ASTC25

