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Three Chaotic Systems 

F 
4 *The very first of all, CHAOS came into being." Hesiod, Theogeny 116. 6 

a$, 

1.1 Prelude 

Chaos is the term used to describe the apparently complex behavior of what we 
to be simple, well-behaved systems. Chaotic behavior, when looked at 

.casually, looks erratic and almost random-almost like the behavior of a system 
strongly influenced by outside, random "noise" or the complicated behavior of a 
system yith many, many degrees of freedom, each "doing its own thing." 

The type of behavior, however, that in the last 20 years has come to be called 
=haotic arises in very simple systems (those with only a few active degrees of 
freedom), which are almost free of noise. In fact, these systems are essentially 
d e b n i s t i c ;  that is, precise knowledge of the conditions of the system at one time 
allow us, at least in principle, to predict exactly the future behavior of that system. 
The problem of understanding chaos is to reconcile these apparently conflicting 
notions: randomness and determinism. 

The key element in this understanding is the notion of nonlinearity. We can 
&velop an intuitive idea of nonlinearity by characterizing the behavior of a system 

f stimulus and response: If we give the system a "kick" and observe a 
ponse to that kick, then we can ask what happens if we kick the system 

response is twice as large, then the system's behavior is said to 
(at least for the range of kick sizes we have used). If the response is not 
large (it might be larger or smaller), then we say the system's behavior is 
. In an acoustic system such as a record, tape, or compact disc player, 

manifests itself as a distortion in the sound being reproduced. In the 
, we will develop a more formal definition of nonlinearity. The study 

Inear behavior is called nonlinear dynamics. 
have scientists, engineers, and mathematicians become intrigued by 

he answer to that question has two parts: (1) The study of chaos has 
new conceptual and theoretical tools enabling us to categorize and 

x behavior that had confounded previous theories; (2) chaotic 
be universal-it shows up in mechanical oscillators, electrical . nonlinear optical systems, chemical reactions, nerve cells, heated 

y other systems. Even more importantly, this chaotic behavior 
qualitative and quantitative universal features. These universal 

independent of the details of the particular system. This universality 
what we learn about chaotic behavior by studying, for example, simple 
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electrical circuits or simple mathematical models, can be applied immediately to 
understand the chaotic behavior of lasers and beating heart cells. 

In this chapter, we will introduce some of the basic issues in the study of 
chaos by describing three quite different systems: a semiconductor diode circuit, a 
mathematical model of biological population growth, and a model of a convecting 
fluid. Our approach will be to describe how the behavior of these systems changes 
as some parameter that controls that behavior is changed. We will see that the 
behavior of these three systems is quite complex, but the complexities are similar, 
both qualitatively, and perhaps more surprisingly, quantitatively as well. In fact, 
this last sentence is a brief statement of the two themes that inform this book: (1) 
the theory of nonlinear dynamics allows us to describe and classify the complex 
behavior of these kinds of systems, and (2) the theory of chaos allows us to see an 
order and universality that underlies these complexities. 

We would like to warn the reader that the results to be presented in this 
chapter represent only a narrow range of the vastly rich spectrum of behaviors 
exhibited by nonlinear systems. The theory of chaos and nonlinear dynamics 
teaches us to appreciate the richness of the world around us, even if we confine our 
attention to very simple systems. The reader is urged to postpone making too many 
generalizations about the uniqueness or pervasiveness of what we describe in these 
first three examples. Rather, the reader should play the role of the naturalist 
carefully observing and thinking about the flora and fauna of a new land. 

1.2 Linear and Nonlinear Systems 

Before we begin our journey into this new land, however, we should pause for a 
brief overview of the landscape of the strange territories we shall be visiting. 

The word chaos is a piece of jargon used to describe a particularly complex 
type of behavior. Chaos per se is really only one type of behavior exhibited by 
nonlinear systems. The field of study is more properly (and more generally) called 
nonlinear dynamics, the study of the dynamical behavior (that is, the behavior in 
time) of a nonlinear system. But what is a nonlinear system? Here we will use the 
following rough definition, which we shall sharpen and clarify later: 

Let us illustrate this definition with two examples from elementary 
mechanics: one a linear system, the other nonlinear. In classical mechanics the 
behavior of a system consisting of a point particle with mass m and subject to a 
force F, acting in the x direction and constrained to move in only the x direction is 
given by the following form of Newton's Second Law of Motion: 

5 

d2x 
F, (x, t) = ma = m - dt2 (1.2-1) 

gar from introductory physics is the case of a point mass subject to the force 
an ideal spring, for which the force is given by 

F,(x) = -kr (1.2-2) 

is the displacement of the spring from its equilibrium position (where F, = 
k is the so-called spring constant, a measure of the stiffness of the spring. 

ining Eqs. (1.2-1) and (1.2-2), we find the time evolution equation for the 
tion of the particle: 

d2x  k - = --X 

dt2 m 

s equation is linear in x and in the second derivative of x (the acceleration). 
; 'we have described a linear system. If the mass is displaced from the 

ibrium position and released, it will oscillate about the equilibrium position 
idally with an angular frequency 

w=& ( 1.2-4) 

For our second example, we give the force F, a more complicated x 
ndence. For example, if F = bx2, then the time evolution equation is 

d2x b 
= - X 2  (1.2-5) 
dt2 m 

any numbers. Remark: g(x,t) and h(x,t) are linearly independent functions 
only if) ag(x,t) + ph(x,t) = 0 is true for all x and t implies that a = 0 and P = 

can also express the notion of nonlinearity in terms of the response of a 

e argument in the previous paragraph to show that 
by Eq. (1.2-3) is linear if the stimulus is independen 



6 Chapter 1 

The Importance of Being Nonlinear 
Nonlinear dynamics is concerned with the study of systems whose time evolution 
equations are nonlinear. What is the fuss over nonlinearity? The basic idea is the 
following: If a parameter that describes a linear system, such as the spring constant 
k in Eq. (1.2-3), is changed, then the frequency and amplitude of the resulting 
oscillations will change, but the qualitative nature of the behavior (simple harmonic 
oscillation in this example) remains the same. In fact, by appropriately rescaling 
our length and time axes, we can make the behavior for any value of k look just like 
that for some other value of k. As we shall see, for nonlinear systems, a small 
change in a parameter can lead to sudden and dramatic changes in both the 
qualitative and quantitative behavior of the system. For one value, the behavior 
might be periodic, for another value only slightly different from the first, the 
behavior might be completely aperiodic. (The question of why nonlinearity is 
crucial and how it leads to these sudden changes will be addressed in the later 
chapters of this book.) We should point out that almost all real systems are 
nonlinear at least to some extent. Hence, the type of behavior we study in this book 
is really much more common than the idealized linear behavior that has formed the 
core of instruction in physics for the last 300 years. To quote the famous 
mathematician Stanislaus Ulam, "Calling the subject nonlinear dynamics is like 
calling zoology 'nonelephant studies' " [Gleick, 19871. Perhaps we should name 
this field of study "general dynamics" because the study of only linear systems 
restricts us to a rather narrow path through the vast territory of dynamics. 

Nonlinearity and Chaos 

Some sudden and dramatic changes in nonlinear systems may give rise to the 
complex behavior called chaos. The noun chaos and the adjective chaotic are used 
to describe the time behavior of a system when that behavior is aperiodic (it never 
exactly repeats) and is apparently random or "noisy." The key word here is 
apparently. Underlying this apparent chaotic randomness is an order determined, 
in some sense, by the equations describing the system. In fact, most of the systems 
that we shall be studying are completely deterministic. In general we need these 
three ingredients to determine the behavior of a system: 

1. the time-evolution equations; 
2. the values of the parameters describing the system; 
3. the initial conditions. 

A system is said to be deterministic if knowledge of the time-evolution equations, 
the parameters that describe the system, and the initial conditions [for example, the 
position x and the velocity &dt at t = 0 for Eqs. (1.2-3) and (1.2-5)], in principle 
completely determine the subsequent behavior of the system. The obvious problem 
is how to reconcile this underlying determinism with the overt (apparent) 
randomness. 

Three Chaotic Systems 7 

perhaps we can highlight this problem by playing the role of traditional (that 
is, "pp'echaos") scientists. If we see a system with complex, randomlike behavior, 
we might try to explain that behavior by either an argument based on the notion of - 

or an argument based on "complexity." According to the noise argument, 
the complex behavior might be due to the influence of uncontrolled outside effects 
such as electrical pickup, mechanical vibrations, or temperature fluctuations. 
Because these outside influences are changing in uncontrolled (and perhaps, 
random) ways. the system's behavior appears random. According to the 

complexity argument, we recognize that most real systems in biology, chemistry, 
physics, and engineering are made of billions and billions of atoms and molecules. 
Since we cannot control (or even know) precisely the behavior of all these atoms 
and molecules (perhaps, the best we can do is to control their average behavior), it 
is not surprising that this lack of control leads to fluctuations and randomness in the 
overall behavior of the system. To be somewhat more technical, we could say that 
these complex systems have many degrees of freedom, and it is the activity of these 
many degrees of freedom that leads to the apparently random behavior. (In Chapter 
3, we will define more precisely what is meant by a degree of freedom. For now, 
you may think of it as a variable needed to describe the behavior of the system.) Of 
course, in many cases, both noise and complexity might be contributing factors. 

The crucial importance of chaos is that it provides an alternative explanation 
for this apparent randomness--one that depends on neither noise nor complexity. 
Chaotic behavior shows up in systems that are essentially free from noise and are 
also relatively simple--only a few degrees of freedom are active. Of course, if we 
believe that chaos does play a role in any given experiment, we need to establish 
that noise is not a major factor, and we ought to know the number of active degrees 
Of freedom. Chaos theory provides us with the tools to cany out this analysis. 

Thus far, we have emphasized the study of the time behavior of a system. 
Another important branch of nonlinear dynamics extends this study to those 
systems that have a significant spatial extent. Some of these systems, such as 
Qlrbulent fluids, are of great practical importance. Most of them show the 
surprising ability to form intricate, and often beautiful spatial patterns almost 
Wnme~us ly .  After discussing time behavior in the first part of the book, we will 

UP the question of spatial patterns and their relation to chaos. 

The Important Questions 

n this brief overview, we can now list some of the questions that the chaotician 
to answer: 

What kinds of nonlinear systems exhibit chaos? (All chaotic systems are 
nonlinear, but not all nonlinear systems are chaotic.) 
HOW does the behavior of a nonlinear system change if the parameters 
describing the system change? 
HOW do we decide if a system is truly chaotic and how do we describe chaos 
Quantitatively? 
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4. What are the universal features found in many nonlinear systems? Are these 
features truly universal or are there different kinds of chaos? 

5.  How do we understand this universality? 
6. What does the study of chaos accomplish scientifically and technically? 
7. What are the philosophical and methodological implications of chaos? 

As we proceed through this book, we will refine and restate these questions 
and their answers in several different ways. 

1 3  A Nonlinear Electrical System 

Our first example of a chaotic system is a simple electrical circuit. We have chosen 
this circuit as our first example to emphasize two important points. First, chaotic 
behavior does occur in real systems; it is not an artifact limited to theoretical or 
numerical models. Second, chaotic behavior occurs in very simple systems, 
systems found in the everyday world around us. All of the components in this 
diode circuit are like those found in almost every radio, TV set, and VCR player. 
The circuit is a sinusoidally-driven series circuit consisting of a signal generator, an 
inductor, and a semiconductor diode. The circuit diagram is shown in Fig. 1 .l. 

How the Circuit Works 

We will provide a brief, qualitative discussion of how the circuit operates. Although 
this discussion is not a necessary prerequisite for our first introduction to chaotic 
behavior, most readers should be more comfortable knowing something of the 
physics of the circuit behavior. Readers not interested in the circuit details may 
skip, without penalty, to the next section, How the Circuit Behaves. 

We will begin with the diode. A diode is an electrical device whose essential 
property for our discussion is its ability to allow electrical current to flow easily in 
one direction and to impede greatly the flow of current in the other direction. The 
direction of easy current flow is indicated by the direction in which the large 
triangle in the diode's circuit symbol points (see Fig. 1.2). A simple analog can be 
used to understand the basic physics of the diode: a water pipe with a ''flap valve" 
in it. The flap valve can swing up to the right to allow water to flow easily in one 
direction, the so-called forward-bias direction. When the water attempts to flow in 
the opposite direction, the flap valve closes against a stop in the pipe and halts 
water flow in the other direction, the so-called reverse-bias direction. (The valves 
in the human heart operate in an analogous way to regulate blood flow among the 
chambers of the heart.) 

Three properties of this analog will be important to be able to understand 
chaos in the diode circuit. First, the flap valve needs a certain amount of time to 
close after being raised in the easy flow direction. Thus, before the valve can close, 
there will be a small surge of current in the reverse-bias direction. The time period 
for this closing of the valve (or diode) is called the reverse-recovery time. For the 

" .. . 
A* . --. ---- .:-- :- a C ,.., ,; ,...,-,- mnd~ AE wP 

Inductor 

Fig. 1.1. The diode-inductor circuit. The 
signal generator and variable dc voltage 
source drive an electrical current i(t) 
through the inductor and diode, 
connected in series. Vd (t) is the (time- 
dependent) electrical potential difference 
across the diode. 

shall s, interesting effects occur when the current in the circuit varies with a time 
scale on the order of the reverse-recovery time. Second, the closing time depends 
to some extent on the strength of the current that had been flowing in the forward 
direction. If only a small current had been flowing, then the valve can close quickly 
because it was not tilted up too far to the right. If the current had been larger, the 
valve would take longer to get to the closed position and a larger surge of current 
can flow temporarily in the reverse-bias direction. 

A third property of the analog is the energy stored in the flap valve when it is 
pushed up by the flow of the water. This potential energy is returned to the water 

, flow when the valve closes. This potential energy corresponds to the electrical 
energy stored in the diode's electrical capacitance. This electrical capacitance is a 
measure of how much electrical energy is stored (temporarily) in the configuration 
of electrical charge layers within the diode. For the diodes used here, the diode's 
capacitance value is about 100 picofarads, a value typical of small capacitors used 
in radio and TV circuitry. 

Now let us turn to the inductor. The inductor is an electrical device, usually 
in the form of a coil of wire, that has the property of producing an electrical 
Potential difference across it proportional to the rate of change of the electrical 
current. The proportionality constant is called the inductance for the inductor. 
Thus we say that the inductor acts to' oppose changes in the current flow in the 

(The water flow analog is a turbine or paddle wheel whose mechanical 
nal inertia opposes changes in water flow.) The inductor plays two related 

In the circuit. First, it provides an extra "degree of freedom" needed to make 
ssible in this circuit. Without the inductor the behavior of the current and 
differences in the circuit are so tightly linked together that chaos cannot 

ond, in combination with the diode's electrical capacitance, it picks out a 
frequency for oscillations of the circuit's current and voltage values. When 
od of these oscillations (equal to the reciprocal of the oscillation frequency) 
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HOW the Circuit Behaves: The Route to Chaos 

TO introduce the phenomenology of this driven nonlinear system and to present 
some of the jargon and terminology used to describe nonlinear systems and their 
chaotic behavior, we will describe the behavior of the circuit as one of the 

Chapter 1 

Large Current Small Current 

""\ - Water Pipe . f . oarmeters of the system is varied. In this case we change the amplitude of the 
- ;Lriving voltage. We will call this variable the controlpamrneter. In particular, we 

will observe the time dependence of the potential difference across the diode Vd (t) 
and the current i(t) flowing through the diode as we change the amplitude V, of the 
sinusoidal signal generator voltage. 

When V, is approximately 0.5 volts (about equal to the maximum potential 
difference across the diode when it is conducting in the forward-bias direction), the 
diode acts like an ordinary diode. Vd exhibits the usual "half-wave rectified 

shown in the oscilloscope trace in Fig. 1.3. The term half-wave is used 
because the waveform looks somewhat like half of the sine wave being produced 
by the signal generator. Note that for aesthetic purposes the oscilloscope has been 
set so that the trace deflection is upward when the diode is reverse-biased. So far, 
the diode has behaved just as we might expect from elementary electronics: the 
diode signal has a periodicity that is the same as the periodicity of the signal 
generator. 

When V,, reaches a value somewhere between 1 and 2 volts (depending on the 
detailed circuit conditions), we get our first surprise. At a well-defined value 
(denoted by V,), the regular array of reverse-bias "pulses" splits into an alternating 
series. 

The lower trace in Fig. 1.3 shows that the sequence of peaks in Vd is periodic 
with a period twice that of the driving voltage. We call this behavior "period-2" 
behavior. (Using this same terminology, the waveform in the upper trace in Fig. 
1.3 would be called period-1.) This change from period-1 behavior to period-2 
behavior is called aperiod-doubling bifurcation. 

Forward Bias Reverse Bias 

Fig. 1.2. The water pipe and valve analogy for the diode. The flap valve is free to pivot 
about its top connection. The flap closes against a stop in the pipe when water tries to flow 
from right to left (top right). When the diode is forward-biased (left-hand side), current flows 
easily. For an ideal diode there is no steady current flow in the reverse-bias direction (right 
side of the diagram). 

is about the same as the reverse-recovery time, the current and voltage are changing 
rapidly enough that the nonlinear effects associated with the switching from 
forward-bias to reverse-bias become important and chaos becomes possible. For 
the circuit used here the inductance values are typically 50 millihenry. This is 
similar to inductance values found in many household electronic devices. 

The signal generator provides a time-varying electrical voltage to drive the 
current in the circuit. For this circuit, we have used a generator that produces a 
voltage varying sinusoidally in time: 

change in the behavior of the system as some parameter is varied. The 
bifurcation then refers to the splitting of the behavior of the system into 

v(t) = V, sin 2nft (1.3'-1) 

V,, is called the amplitude of the generator's voltage; f is the frequency of the 
signal, that is, the number of oscillations per second. For the circuit described here, 
f is typically in the range 20-70 kHz (20,000-70,000 cycles per second). The period 
of these oscillations is thus between 50 pec  and 14 pet, a few times the reverse- 
recovery time of the diodes. 

It h& also been convenient, .for the computer-control of the experiments, to 
add a steady, so-called dc bias voltage, Vdr, to the signal generator voltage. This 
bias voltage shifts the center voltage about which the signal generator's voltage 
oscillates. 

What causes this period-doubling? A rough physical explanation is the 
As the amplitude of the signal generator's voltage increases, the amount 

flowing in the forward-bias direction increases. When the amplitude is 
e diode has time to stop the current flow completely in the reverse-bias 

on. In the water flow analog, if the flap valve closes completely, the pressure 
ss the valve (corresponding to the diode's electrical potential difference) 

everse-bias direction will be largest, and no current will flow in the reverse- 
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0 100 200 300 400 500 

time (p sec) 

Fig. 13. Diode voltage as a function of time. Top trace: period-1. The voltage signal has the 
same period as the signal generator voltage. Bottom trace: period-2. The diode voltage 
signal's repetition period is now twice that of the signal generator. The signal generator 
frequency is about 40 kHz The voltage scale is 0.2 volt per vertical division. 

When the diode's voltage goes to the forward-bias polarity, in response to the 
signal generator's polarity change, the current can begin to flow immediately in that 
direction and the flow builds up to a large value, pushing the flap valve to a high 
position. When the polarity changes to produce reverse-bias, the flap valve, if it has 
been raised high enough, does not have time to close completely in the time 
between polarity reversals, and there is some flow in the reverse-bias direction 
during most of the reverse-bias time. Consequently, the pressure drop (electrical 
potential difference) in the reverse-bias direction is lower than it would have been if 
the valve had completely closed. When the polarity returns to the forward-bias 
direction, the reverse-bias direction flow must first stop before the forward-bias 
flow can begin. Hence the forward-bias current achieved is smaller and the flap 
valve does not open as far.. This time, when the diode's potential switches to 
reverse-bias, the flap valve has time to close completely and the cycle can begin 
again. By way of contrast, for small amplitudes, the flap valve closes each time; so, 
each surge of forward-bias current is the same. 

As V, increases above V, ,  one of the peaks in the sequence gets larger and the 
other smaller. When Vo reaches a voltage value V2, the sequence changes again. 
Figure 1.4 shows that another period-doubling bifulcation has occurred. Now the 
signals consist of four distinct peak sizes with a repetition period four times that of 
the driving voltage. We call this a "period-4 sequence." 

200 300 

time (p sec) 

Fig. 1.4. Diode voltage as a function of time. Top trace: period-4. Bottom trace: period-8. 
Note that two of the period-4 "peaks " are too small to be seen on the scale of this figure. 
'h period-8 behavior is discernible by paying attention to the smallest peaks. 

" 
In Fig. 1.4 some of the diode voltage "peaks'' are difficult to see given the 

resolution of the diagram. The underlying problem is that the diode's voltage stays 
near 0.5 volts whenever the diode is forward-biased. Hence its "dynamic range" in 
the forward-bias direction is quite limited. However, the current has a wider 
dynamic range, and Fig. 1.5 shows that the same periodicity occurs for both the 
diode voltage and the diode current. 

As we continue to increase V,, we see further period-doubling bifurcations 
lead to period-8 (shown in the lower trace of Fig. 1.4), period-16 and so on at 

of Vo. We will eventually reach a voltage value, which we 
which the sequence of peaks seems completely erratic. This is 

! In Fig. 1.6, we have recorded two long sequences of Vd traces. The 
seems to be completely aperiodic. 

How do we know that we are seeing chaos and not just some "noisy" effect in 
circuit? Several means of distinguishing chaos from noise have been developed 
used successfully both in theoretical calculations and experimental studies. 

to be the easiest to use experimentally is called divergence of 
. For the diode circuit, a trajectory is the time'dependence of 

say, the voltage across the diode. This divergence effect can 
ed easily with the diode circuit: With the circuit conditions set for chaotic 

oscilloscope trigger-level so that the oscilloscope begins its 
f the largest Vd peak. We then adjust the time-base control of 
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Fig. 1.5. Top trace: diode voltage as a function of time showing period4 behavior. Bottom 
trace: a signal proportional to the circuit current for the same conditions. Here the four 
distinct peak sizes are more obvious. For the bottom trace, each vertical division corresponds 

Fig. 1.6. Diode voltage as a function of time. Chaotic sequences in which the amplitudes of 
the "pks'' are not periodic. 

to a c-nt of about 0.1 rnA. 

the oscilloscope so that 10-15 peaks are displayed. In Fig. 1.6, you should note that 
the beginning (left-hand side) of each trace is nearly the same, but after a few 
cycles, the peaks differ by nearly the full range of peak heights. 

What is happening is that the oscilloscope trigger circuitry starts the trace 
whenever the applied signal falls within a small range of values set by the trigger 
controls. Whenever the "trajectory" of voltage values Vd (t) falls within the trigger 
window, the trace begins. Since the system is deterministic, if we picked out 
exactly the same value for each trigger, each trace would look exactly the same. 
However the trigger control picks out a small range of voltage values so we are 
looking at slightly different trajectories that pass close to each other. The signature 
of chaos is the divergence of nearby trajectories as evidenced here by the 
divergence of peak heights on the oscilloscope screen. Divergence of nearby 
trajectories distinguishes true chaos from "simple" noise, for which the trajectories 
would be smeared more or less the same for all times. 

As Vo is increased further into the chaotic region, we find various periodie 
windows immersed in the chaos. For Vo between 2 and 3 volts (the exact value 
depends on the diode and the circuit conditions), there is a region of stable period-5 
behavior. There is a region of stable period-3 behavior between 3 and 4 volts, as 
shown in Fig. 1.7. As V, is increased still further, we see a period-doubling 
sequence of period-6, period-12, and so on, which culminates in another region of 
-hnr\a 

There is clearly a tremendous amount of information contained in this complex 
behavior. Several different means of summarizing that information have been 

of these is the so-called bifurcation diagram. To 
generate this kind of diagram, we record the value of, say, the peak heights of Vd (t) 

trol parameter being varied. In practice, a computer 
ntervals separated by the period of the signal 

mpled values is labeled I , ,  12, and so on. The 
as a function of the value of the control parameter. 

of these bifurcation diagrams are shown in Figs. 1.8 and 1.9, where we have 
ed sampled values of i(t) as a function of the dc bias voltage applied to the 
(the control parameter) with Vo and the frequency f fixed. The values of 50 

stored in the computer and then plotted as a function of Vdc. 
been used as the control parameter, the bifurcation diagrams would be 

where there is just a single value of 
are 2 values, and so on. (Because of 

omputer graphics used to plot these data, some of the 
der period-doublings are obscured.) When the behavior of the system is 
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time (p sec) 

Fig. 1.7. Bottom trace: the signal generator voltage as a function of time. Top trace: the 
diode voltage for period3 behavior. 

chaotic, the sampled values seem to be smeared over the complete range of 
observed values. 

Within the chaotic regions, several periodic windows can be seen. The 

period3 window is usually the largest. Note that the period3 window begins very 
abruptly. In moving from right to left in the bifurcation diagram, there is a very 
sudden transition from this periodic period-3 behavior to chaotic behavior. The 
lesson: not all transitions from periodic behavior to chaos involve period-doubling. 

Let us pause a moment to summarize what we have seen. The key features of 
nonlinear behavior are the following: 

1. Sudden changes in the qualitative behavior of the system as parameters are 
slowly changed. For example, period-1 changes suddenly to period-2. 

2. Well-defined and reproducible changes from regular, periodic behavior to 
aperiodic, chaotic behavior. The time dependence of the behavior of the 
system may have little to do with the time dependence of the "forces" applied 
to the system. 

3. Chaos can be distinguished from "noisy" behavior by looking at the 
divergence of nearby trajectories. 

We will examine some of the quantitative features of this behavior in Chapter 2. 

+1.4 V,, (volts) -0.5 
1.8. Bifurcation diagram for the diode circuit. The sampled values of the circuit current 

are plotted as a function of the dc bias voltage, the control parameter. Period-;! is seen at the 
far left. The broad, fuzzy bands are regions of chaotic behavior. Period3 bifurcating to 
period-6 and eventually to more chaos is seen near the middle of the diagram. At the far 

' 
right, the behavior returns to period-1. 

1.4 A Mathematical Model of Biological Population Growth 

For our second example of a chaotic system, we turn to a very simple mathematical 
model often used to describe the growth of biological populations. The 
mathematics of this model is important historically in the development of chaos 
theory. In the mid-1970's the biologist R.M. May wrote an influential (and highly 
readable) review article (MAY76), which described some of the bewildering 
complex behavior exhibited by this and other simple models. Shortly thereafter, 
Mitchell Feigenbaum (FEI78) discovered some of the universal quantitative 
features in numerical ca!culations based on this model. These universal features 
have become the hallmark of the contemporary study of chaos. Because of its - - 
mathematical simplicity, this model continues to be a useful test bed for new ideas .a in chaos. 

The model can be built up in the following way. Let us consider a species, 
Such as mayflies (no pun intended), whose individuals are born and die in the same 
m n .  We want to know how the number of mayflies 1 year hence, let us call that 

N, ,  is related to the original number of mayflies No. In the simplest 
we might guess that 
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I +1.4 Vdc (volts) 
-0.5 

i Fig. 1.9. Another bifurcation diagram for a smaller signal generator amplitude. 

I where A is some number that depends on the conditions of the environment (food 
supply, water, general weather conditions, etc.). If A > 1, then the number of I 
mayflies will increase. If A < 1, the number will decrease. If A remains the same 

1 for subsequent generations, the population would continue to increase, in the first 

I case, leading to a Malthusian population explosion. In the second case, the 

population would decrease toward extinction. 
We know, however, that if the population grows too much, there will not be 

enough food to support the larger population or perhaps that predators will have an 
easier time catching the flies. Hence, the population's growth will be limited. We 

1 can incorporate this limiting feature by adding another term to the model that by 
itself would be unimportant for small values of N, but becomes more important as 
N increases. One possible way of doing this is by introducing a term proportional I 
to N2, which then leads to 

I 

If B << A, then the second term in Eq. (1.4-2) will not be important until N gets 
sufficiently large. The minus sign means that the second term tends to decrease the 
population. We then use Eq. (1.4-2) repeatedly to find how N changes in 
subsequent years: 

Chaotic Systems 

For our analysis it 
that according to Eq. (1 

N, = 

N3 = 

will be useful 
.4-2), there is 

: AN, - B N ~  

AN, - BN; 

to modify Eq. (1.4-2) slightly. First, we note 
a maximum possible population number. In 

( odu to have Nn+l > 0. Nn cannot exceed 
i* **r 

N" = A I B  

~ h u s ,  we introduce a new variable 

x,, = N,, IN" 

which gives the population as a fraction of the maximum possible population for 
our model. (To be meaningful in our model, x must lie in the range between 0 and 
1 .) Using this definition of x in Eq. (1.4-2) yields 

where x, is the population (as a fraction of Nma") in the nth year. (We have put a 
double box around the previous equation because it has played such an important 
role in the development of the theory of chaos.) 

Exercise 1.4-1. Use the definition of x to verify that Eq. (1.4-5) follows 
from Eq. (1.4-2). 

The function f, is called the "iteration function" because we find the 
population fraction x in subsequent years by iterating (repeating) the mathematical 

icated in Eq. (1.4-5). The function& (x) is plotted in Fig. 1.10 for 
values of the parameter A. 
w we want to find what this model tells us about the long term (after many 

ns) value of the population fraction x and how that long-term value depends 
. Our linearly trained intuition would seem to tell us that we expect x to settle 

nite value since the environment, represented by the parameter A, 
ns constant. Further, we might expect that this value will change gradually if 

hange A gradually. The actual calculation runs as follows: Start with some 
of xo, compute x,, then x2, and so on: 

xl = fA(~0). x, = fA(x,)* xj = fA(~2)9..' 

a sequence of iterations. The function f,(x) is sometimes called an 
map function, since it maps one value of x, say .q,, in the range 0 5 x 5 1 

lue of x, which we call X I ,  in the same range if A is in the range 
For historical reasons, the function defined in Eq. (1.4-5) is called the 
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Fig. 1.10. The functi0n.h (X) 
plotted as a function of x for 
various values of the 
patameter A. The diagonal 
line is a plot of y = X. 

The sequence of x values generated by this iteration procedure will be called 
the trajectory or orbs in analogy to the sequence of position values for a planet or 
satellite taken at successive time intervals. Obviously, the first few points of a 
trajectory depend on the starting value of x. What may not be so obvious is that the 
eventual behavior of the trajectory is the same for almost all starting points between 
0 and 1 for a given value of A. 

However, some starting points are different from the others. For example, if 
we choose a = 0, we see immediately that&(%) = 0, and the trajectory stays at x = 
0 for all subsequent iterations. An x value, call it x*, which gives 

is called, for obvious reasons, a m e d  point of the iterated map. The subscript A 
indicates that x* depends on the value of A. For the logistic map, Eq. (1.4-5). there 
are, in general, two fixed points 

x; = O  (1.4-7) 

For A < 1, x; = 0 is the only fixed point in the range of x that is of interest for our 
biological model. For A > 1, both fixed points fall in the range of interest between 
0 and 1. 

@ 1.11. A graphic representation of the iteration of Eq. (1.4-5) starting from xo = 0.7 with 
A = 0.6. 

The Zmporfance of Fired Points 

A simple geometric construction allows us to see why fixed points are important. 
b Fig. 1.10, we have plotted y =f,(x) for several values of A. We have also plotted 

nal line y = x. Wherever the diagonal line crosses the curve forf,(x), the 
tion has a fixed point since there x =f,(x). From Fig. 1.10 it is easy to see 

r A < 1, the only fixed point between 0 and 1 is x = 0, but for A > 1, there are 
fixed points in the range of interest between 0 and I. 
Using Fig. 1.11, we can see how a trajectory that starts from some value of x 
nt from 0 approaches 0 if A < 1. The procedure is: From the starting value 

e x axis, draw a line vertically to the& curve. This intersection value 
the value of x,. Then draw a line from the intersection point parallel to 

x axis to the diagonal y = x line. Directly below this intersection point is xl on 
. From the intersection point on the diagonal line, draw a second vertical 

e f ,  curve. The intersection point with the& curve determines xz. As we 
nue this up-(or down)-and-over process, we are graphically canying out the 

. 
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iteration procedure indicated in Eq. (1.4-5). Fig. 1.11 shows an iteration sequence 
starting from x = 0.7 with A = 0.6. 

Since all trajectories (for starting values between 0 and 1 and for A < 1) 
approach the final value x = 0, the point x = 0 is called the attmctor for those orbits. 
The interval 0 I x I 1 is called the basin of aMaction for that attractor since any 
trajectory starting in that range approaches x = 0 as the number of iterations 
increases. In terms of our biological model, we conclude that if A < 1, the 
population dies out ( x -+ 0 ) as n, the number of seasons, increases. 

Exercise 1.4-2. Cany out several such constructions for several starting 
values of x in the range between 0 and 1. Show that all these trajectories 
seem to approach x = 0 if A < 1. What happens if % = 0 or l? 

shall see for more complicated systems, the system may have more than 
one attractor for a given parameter value. The basin of &action for a 
particular attractor consists of that set of initial points {%} each of which 

More Complex Behavior 
What happens when the parameter A is greater than l? In Fig. 1.12, we have 
plotted h(x) with A = 1.5 along with the diagonal line y = x. If we follow our 
geometrical trajectory construction method, we see that a trajectory starting at x = 
0.10, for example, now heads for the fixed point xi = 1 - 1 / A = 113 (for A = 1.5). 
In fact, any trajectory starting in the range 0 c x < 1 approaches this same attractor. 

At this point we may seem to have understood what our model tells us: Given 
any initial number x,, lying between 0 and 1, the population fraction eventually 
approaches the attracting fixed point xA* = 1 - 1IA if A > 1. For A > 1, x* = 0 has 
become a "repelling fixed point" since trajectories that start near x = 0 move away 
from that value. 

Exercise 1.4-3. (a) What happens for % = 0 and x,, = I? (b) Calculate 
numerically the trajectory sequences starting from x = 0.25 and x = 0.75 
for A = 1.5. (c) How many iterations does it take for the trajectories to get 
within 0.001 of the final value x = 0.3333? (d) Explain, both graphically 
and numerically, why the two trajectories are the same after the first 
iteration. 

There are surprises however in this simple model. The first surprise comes 
when A is just a bit greater than 3. Table 1.1 lists the trajectory values for the orbit 
starting at x,, = 0.25 with A = 3.1. We see that the trajectory does not settle down to 
a single attracting value. In this case the trajectory values oscillate back and forth 
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1 .o 

0.8 

0.4 
Fig. 1.12. Graphic representation of 
the iteration scheme with A = 1.5 

0.2 and % = 0.10. Note that the 
trajectory moves away 6orn the 
fixed point at x = 0 and is attracted 

0.0 to the fixed point at x = 113. 
0.0 0.2 0 . 4 x 0 . 6  0.8 1.0 

between two values x = 0.558 . . . and x = 0.7 64... In biological terms, the 
population fraction is high one year, low the next, then high again, then low again, 
and so on. Since the population fraction returns to the same value every 2 years, we 
call this, in analogy with the diode circuit example, period-2 behavior. We say that 
at A = 3, a period-doubling bifurcation occurs: For A < 3, the attractor consists of a 
single point x = 1 - 1IA. For A just greater than 3, the attractor consists of two 
points, whose values vary as A varies. (In Chapter 5, we will take up the 
mathematical theory of these maps in more detail. There we will see how to 
compute the A values for which these bifurcations occur.) Figure 1.13 shows the 
graphic construction of a trajectory that leads to this two-point attractor. 

Table 1.1. 
Trajectory values* for A = 3.1 and % = 0.250. 

1 0.58 1 12 0.764 
2 0.755 13 0.559 
3 0.574 14 0.764 
4 0.758 15 0.559 
5 0.569 16 0.764 
6 0.760 17 0.559 
7 0.565 18 0.764 
8 0.762 19 0.558 
9 0.562 20 0.764 
10 0.763 21 0.558 . 

*The x values have been rounded off to three significant figures. 
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1 Exercise 1.4-4. Verify both numerically and graphically that the basin of 
attraction of this two-point attractor is the set of initial a in the range 
between 0 and 1. Are there any exceptional points between 0 and 1 that 
do not give rise to trajectories leading to the two-point attractor? 

Based on our observations of the diode circuit, we can immediately anticipate 
what will happen. At A = 3.44948 another period-doubling bifurcation occurs. For 
A just greater than 3.44948.. ., the attractor consists of 4 points. For example, the 
attractor values for A = 3.45 are, in the order they occur in a trajectory, 0.852, 
0.433, 0.847, 0.447, where we have again rounded off the numbers to three 
significant figures. We want to point out one important feature of these values. 
The values occur in the following order: the largest, the smallest, next to largest, 
next to smallest, then back to the largest, and so on. 

If you refer to Fig. 1.5 for the diode circuit's period4 behavior, you see that 
exactly the same order is followed. Not only is the sequence of period-doublings 
the same for both systems, but the structure within that sequence is the same. For 
the logistic map, further increases in A lead to period-8, period-16, and so on, 
occumng at ever smaller and smaller increments of A. For A just greater than 
3.5699 . . ., the trajectory values never seem to repeat. The behavior is chaotic. 

We can summarize the behavior of our model by plotting a bifurcation 
diagram; that is, for a given value of A, we compute the trajectory from some 
starting point and then plot, as a function of the parameter A, the attracting points 
for that trajectory. In practice, the trajectory is "close enough" to the final attractor 
after 20-50 iterations: (Of course, what "close enough" means numerically 
depends on the precision of the calculations.) Figure 1.14 was computed by 
picking a value of A, picking a starting point in the range between 0 and 1, iterating 
the map function 100 times to allow the trajectory to approach the attractor values 
and then plotting the next 100 values of x. 

0.4 

Fig. 1.13. Graphic representation of 
the iteration scheme leading to 

0.2 period-2 behavior. A = 3.1, % = 0.1. 
n e  two attractor points lie at the top 
left and bottom right of the dark 

0.0 rectangular area. 
0.0 0.2 0.4 0.6 0.8 1.0 
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Fig. 1.14. The bifiuwtion diagram for the logistic map bction. For A  < 1, x = 0 is the 
attractur, fur 1 < A  < 3, the attractor is the fixed point X = 1 - 1IA. At A = 3, period-2 begins. 
Periods higher than about 8 are obscured by the limited resolution of this plot. Chaos occurs 
in the bands where the dots seem to be smeared at random. Periodic windows for certain 
values of A within the chaotic bands can be seen as light vertical stripes. 

The reader should immediately recognize the qualitative similarity between 
this bifurcation diagram and the ones in Figs. 1.8 and 1.9 for the diode circuit. Both 
show period-doublings leading to chaos and broad chaotic areas interrupted with 
periodic windows. However, there are differences. For example, the bifurcation 
diagram for the diode circuit "recollapses" back to period-1 behavior for large 
values of the parameter V& The bifurcation diagram for the logistic map stops 
abruptly at A = 4. We will explore the reasons for these differences in Chapter 5. 

I Question: What happens to the logistic map trajectories for A > 4? I 
Is the "chaotic" behavior seen for the logistic map true chaos or is it some 

numerical artifact due to the iteration procedure? We can test for chaos by looking 
at two trajectories that start close to each other and checking for divergence of 
nearby trajectories. For example, Table 1.2 lists the orbits for three trajectories, 
each with A = 3.99. One trajectory starts from x = 0.400; a second from x = 0.401, 
and the third from x = 0.4005. We see that after only 10 iterations the first two 
trajectories are already 0.6 apart, a size about equal to the average value of the xs. 
Hence we conclude that the logistic map for A = 3.99 displays divergence of nearby 
trajectoiies. Suppose we "work twice as hard" and reduce the initial difference 
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from 0.001 to 0.0005. Does it take twice as long for the trajectories to get the same 
"distance" apart? Table 1.2 shows that the answer to that last question is no. In 
fact we avoid "disaster" for only one more iteration. 

Although this simple model of population dynamics is not a good description 
of what happens to real biological populations, which of course are much more 
complicated, the crucial point is that this very simple mathematical system-a 
system which involves no derivatives, integrals or fancy functions--exhibits 
extremely complex behavior as the parameter A is varied. Even for a fixed value of 
A the population fraction x can have wild variations from year to year. For the 
population biologists, this means that variations in the population need not (though 
they may) be caused by variations in the environment. In some sense, the 
variations are inherent in the population dynamics directly. The lessons learned 
from the logistic map model should then affect what kinds of explanations the 
population biologist considers to understand the variations in biological 
populations. Even more crucial for the theory of chaos are the universal features of 
this behavior, such as the period-doubling leading to chaos. This behavior is the 
same for both the diode circuit and the logistic map model (and, as we shall see, for 
many other nonlinear systems as well). 

Table 1.2. 
Trajectories for the Logistic Map with A = 3.99. 

I1 xn xn xn 

0 0.4000 0.4010 0.4005 
1 0.9576 0.9584 0.9580 
2 0.1620 0.159 1 0.1605 
3 0.54 17 0.5338 0.5377 
4 0.9906 0.9929 0.99 18 
5 0.0373 0.0280 0.0324 
6 0.1432 0.1085 0.1250 
7 0.4894 0.3860 0.4365 
8 0.997 1 0.9456 0.98 14 
9 0.01 17 0.2052 0.0727 
10 0.0462 0.6507 0.269 1 
11 0.1758 0.9069 0.7847 
12 0.5781 0.3368 0.6740 
13 0.973 1 0.8912 0.8767 
14 0.1043 0.3870 0.43 14 
15 0.3727 0.9465 0.9787 

The values in the table have been rounded to four significant figures. 
The calculations were done with an accuracy of eight significant figures. 
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1.5 A M d e l  of Convecting Fluids: The Lorenz Model 

Our third example of a nonlinear system is a highly simplified model of a 
convecting fluid. The model was i n d u c e d  in 1963 by the MIT meteorologist 
Edward Lorenz, who was interested in modeling convection in the atmosphere. 
What Lorenz demonstrated was that even a very simple set of equations may have 
solutions whose behavior is essentially unpredictable. Unfortunately for the 

. develo~ment of the science of chaos, Lorenz published his results in the respectable -- . 
f but not widely read Journal of the Atmospheric Sciences, where they languished 

essentially unnoticed by mathematicians and scientists in other fields until the 
1970s. Now that chaos is more widely appreciated, a minor industry studying the 
Lorenz model equations has developed (see, for example, [Sparrow, 19821). 

A detailed derivation of the Lorenz model equations is given in Appendix C. 
Here we will say just enough to give you a feeling for what the equations tell us. In 
simple physical terms, the Lorenz model treats the fluid system (say, the 
atmosphere) as a fluid layer that is heated at the bottom (due to the sun's heating 
the earth's surface, for example) and cooled at the top. The situation is illustrated 
in Fig. 1.15. The bottom of the fluid is maintained at a temperature T, (the "warm" 
temperature), which is higher than the temperature T, (the "cold" temperature) at 
the top. We will assume that the temperature difference T, - T, is held fixed. (This 
type of system was studied experimentally by BCnard in 1900. Lord Rayleigh 
provided a theoretical understanding of some of the basic features in 1916. Hence, 
this configuration is now called a Rayleigh-Btnard cell.) 

If the temperature difference 6T = T, -q  is not too large, the fluid will 
remain stationary. Heat is transferred from bottom to top by means of thermal 
conduction. The tendency of the warm (less dense) fluid to rise is counterbalanced 
by the loss of heat from the warm fluid "packet" to the surrounding medium. The 
damping due to fluid viscosity prevents the packet from rising more rapidly than 
the time required for it to come to the same temperature as its neighbors. Under 
these conditions the temperature drops linearly with vertical position from T, at the 
bottom of the layer to T, at the top, as illustrated by the graph in Fig. 1.15. 
However, if the temperature difference increases sufficiently, the buoyant forces 
eventually become strong enough to overcome viscosity and steady circulating 

fluid I. I I 

T.., 
I h vertical position 

w 

Fig. 1.15. Left: a schematic hagram of a Rayleigk-BCnard cell. , The cell extends 
indefinitely to the right and left and also in and out of the page. Right: the tewrature as a 
function of height in the cell in the wcalled conductive (nonconvective) state. 
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currents develop. In this situation heat is transferred from the bottom to the top by 
the process of convection, the actual mass motion of the fluid. In simple terms, 
when the warm packet of fluid reaches the top of the layer, it loses heat to the cool 
region and then sinks to the bottom, where its temperature goes up again. The net 
result is a circulation pattern that is stable in time. The circulation pattern is shown 
schematically in Fig. 1.16. 

With a further increase in the temperature difference &? the circulating 
currents and the resulting temperature differences within the fluid start to vary in 
time. This is an example of another typical nonlinear feature: Although the fluid 
environment is perfectly stable in time (recall that we assume that the temperatures 
at the top and bottom are maintained at fixed values), the system "spontaneously" 
develops time-dependent behavior. This never occurs for a linear system. If a 
linear system is subject to steady "forces," its response (after initial transients die 
away) will be steady in time. (Strictly speaking, this last statement is true only if 
the system has dissipation or "friction." Otherwise the transients never die away.) 
If the forces themselves vary in time in a certain way, then the linear system 
response will eventually settle into the same time variation. 

leigh-Btnard cell are a simple example of spatial-symmetry 

The Lorenz Equations 
The Lorenz model is based on a (gross) simplification of the fundamental Navier- 
Stokes equations for fluids. As shown in Appendix C, the fluid motion and 
resulting temperature differences can be expressed in terms of three variables, 
conventionally called X(t), Y(t), and Z(t). We should quickly point out that these 
are not spatial variables. A full description of these variables is given in Appendix 
C. For now, the following will suffice: X is related to the time-dependence of the 
so-called fluid stream function. In particular, taking the derivatives of the stream 
function with respect to the spatial variables gives the components of the fluid flow 
velocity. In the Lorenz model the spatial dependence of the stream function is 
chosen "by hand to match the simple pattern of convective rolls. Hence, the 

I w 

Fig. 1.16. Cross-section view of the circulating convection "rolls" in a Raylei&BBnard cell. 

Lorenz model cannot be expected to apply to fluids that develop more complex 
spatial patterns. 

The variables Y and Z are related to the time dependence of the temperature 
deviations away from the linear temperature drop from bottom to top, which 
obtains for the nonconvective steady-state situation. In particular, Y is proportional 
to the temperature difference between the rising and falling parts of the fluid at a 

I given height, while Z is proportional to the deviation from temperature linearity as a 
function of vertical position. 

Using these variables, we may write the Lorenz model equations as three 
coupled differential equations: 

Here x indicates, as usual, the derivative with respect to time 

p, r, and b are adjustable parameters: p is the so-called Prandtl number, which is 
defined to be the ratio of the kinetic viscosity of the fluid to its thermal diffusion 
coefficient. In rough terms, the Prandtl number compares the rate of energy loss 
from a small 'packet" of fluid due to viscosity (friction) to the rate of energy loss 
from the packet due to thermal conduction. r is proportional to the Rayhigh 
number, which is a dimensionless measure of the temperature difference between 
the bottom and top of the fluid layer. As the temperature difference increases, the 
Rayleigh number increases. The final parameter b is related to the ratio of the 
vertical height h of the fluid layer to the horizontal size of the convection rolls. It 
turns out that for b = 813, the convection begins for the smallest value of the 
Rayleigh number, that is, for the smallest value of the temperature difference FT. 
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Fig. 1.17. In (a), (b), and (c), X, Y, and Z are plotted as functions of time for the Lmenz 
model with r = 0.5, p = 10, and b = 813. In (d), the trajectory is shown as a projection onto 
the ZX plane of state space. In all cases the trajectory started at the initial point X = 0, Y = 1, 
z= 0. 
This is the value usually chosen for the study of the Lorenz model. p is then chosen 
for the particular fluid under study. Lorenz (LOR63) used the value p = 10 (which 
corresponds roughly to cold water), a value that had been used in a previous study 
of Rayleigh-BCnard convection by Saltzman (SAL62). We let r, the Rayleigh 
number, be the adjustable control parameter. 

The Lorenz model, although based on what appears to be a very simple set of 
differential equations, exhibits very complex behavior. The equations look so 
simple that one is led to guess that it would be easy to write down their solutions, 
that is, to give X,  Y ,  and Z as functions of time. In fact, as we shall discuss later, it 
is now believed that it is in principle impossible to give the solutions in analytic 
form, that is, to write down a formula that would give X ,  Y ,  and Z for any instant of 
time. Thus, we must solve the equations numerically, which, in practice, means 
that a computer does the numerical integration for us. Here, we will describe just a 
few results of such an integration. The analytic underpinnings for these results will 
be discussed later. 
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Behavior of Solutions to the Lorenz Equations 
For small values of the parameter r, that is, for small temperature differences 61; 
the model predicts that the stationary, nonconvecting state is the stable condition. 
In terms of the variables X ,  Y ,  and Z, this state is described by the values X  = 0, Y  = 
0, and Z = 0. For values of r just greater than 1, steady convection sets in. There 
are two possible convective states: one corresponding to clockwise rotation, the 
other to counterclockwise for a given convective roll. As we shall see, some initial 
conditions lead to one state, other conditions to the other state. Lord Rayleigh f &owed that if p > b + 1, then this steady convection is unstable for large enough r 

gives way to more complex behavior. As r increases, the behavior has regions 
of chaotic behavior intermixed with regions of periodicity and regions of 
66intermitten~y," which cycle back and forth, apparently randomly, between chaotic 
and periodic behavior. 

To illustrate some of this behavior, let us start our examination of the Lorenz 
model by looking at the behavior of the system for values of r less than 1. 
Rayleigh's analysis predicts that the system should settle into the steady, 
nonconvective state indicated by X  = 0, Y  = 0, Z = 0. Figure 1.17 shows the results 
of a liumerical integration of the Lorenz equations starting from the initial state X  = 
0, Y  = 1, Z = 0; that is, we have started the system with a small amount of 
circulation and slight temperature deviations. As time goes on, however, the 
system relaxes to the steady nonconvective state at X  = 0, Y  = 0, Z = 0. 

It will be useful to look at this behavior in two complementary graphic 
presentations. One graph plots the variables X ,  Y ,  and Z as functions of time, as in 
Fig. 1.17(a-c). The other graphs display the evolution of the system by following 
the motion of a point in XYZ space. Since the variables X ,  Y ,  and Z specify the state 
of the system for the Lorenz model, we call this space the state space for the 
system. For the Lorenz model, the state space is three-dimensional. We will 
usually follow the system with a two-dimensional projection, say on the X Y  or ZX 
planes of this state space. As time goes on, the point in state space will follow a 
path, which we shall call a trajectory. Figure 1.17(d) shows a ZX plane projection of 
the trajectory in state space. From Fig. 1.17, we see that the trajectory "relaxes" to 
the condition X  = 0, Y  = 0, and Z = 0 corresponding to the nonconvecting state 
illustrated in Fig. 1.15. 

Exercise 1.5-1. Use the X ,  Y and Z versus time graphs to determine how 
the trajectory point circulates around the loop in the state space projection 
of Fig. 1.17. 

Exercise 1.5-2. Show that the Lorenz model equations have a total of 
three fixed points, one at X  = 0, Y = 0, and Z = 0; the other two at X  = Y  = 
f ,/r-l) with Z = r - 1. (Obviously, the latter two fixed points are of 
interest only for r > 1 .) 
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Fig. 1.18. State space projections onto 
the E plane for trajectories in the Lorenz 
model with r = 2. One attraua 
carrespchds to clockwise rotation, the 
other to counterclockwise rotation of the 
fluid at a particular spatial location. 

Note that at the point X = 0, Y = 0, Z = 0, all of the time derivatives in the 
Lorenz equations are 0. We call such a point a&ed point of the state space. We 
shall see that these fixed points play a crucial role in the dynamics of nonlinear 
systems. 

differential equations are also called equilibrium points, or critical points, 

For r values less than 1, all trajectories, no matter what their initial conditions, 
eventually end up approaching the fixed point at the origin of our XYZ state space. 
To use the language introduced for the logistic map, we can say that for r < 1, all of 
the XYZ space is the basin of attraction for the attractor at the origin. 

For r > 1, we have three fixed points. The one at the origin turns out to be a 
repelling fixed point in the sense that trajectories starting near it tend to move away 
from it. The other two fixed points are attracting fixed points if r is not too large. 
Some initial conditions give rise to trajectories that approach one of the fixed 
points; other initial conditions give rise to trajectories that approach the other fixed 
point. (In Chapter 4, we will see more quantitatively what is different about these 
fixed points.) For r just greater than 1, the other two fixed points become the 
attractors in the state space. Thus, we say that r = 1 is a bifurcation point for the 
Lorenz model. Figure 1.18 illustrates the behavior of two trajectories starting from 
different initial points. 

Let us describe this behavior in more physical terms. If r increases to a value 
just greater than 1 (recall that this means that we have increased the temperature 
difference between the bottom and top of the fluid layer), the fixed point at the 
origin becomes a repelling fixed point. This tells us that the so-called conductive 
state (the state with no fluid convection) has become unstable. The slightest 
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r = 25.0 

Fig. 1.19. Solutions to the Lorenz equations for r = 25. The initial point was X = 0, Y = -5, Z 
= 15. In the state space diagram in the lower right panel, the two off-origin fixed points at Z 
= 24, X = 8 and Y = 8 are indicated by asterisks. 

I deviation from the conditions X = 0, Y = 0, Z = 0 sends the state space trajectory 
1 away from the origin. For r just greater than 1, the trajectories are attracted to one 

or the other of the other two fixed points at X = Y = + d m '  . Those two fixed I- points correspond to steady (time-independent) convection, one with clockwise 
! rotation, the other counterclockwise. Some initial conditions give rise to 

trajectories that head toward one fixed point; other initial conditions lead to the 
other fixed point. The left-hand side of Fig. 1.18 shows the YZ plane state space 
projection for a trajectory starting from X = 0, Y = -1,Z= 0. The right-hand side of 
Fig. 1.18 shows a trajectory starting from a different set of initial values: X = 0, Y = 
+1, Z = 0. Note, in particular, that the system settles into a state with nonzero 
values of Y and Z, that is, the fluid is circulating. 

An interesting question to ask for any dynarnical system is the following: 
What region of initial conditions in XYZ space leads to trajectories that go to each 
of the fixed points? In other words, what are the basins of attraction for the 
attracting fixed points? How do these regions change as the parameters describing 
the system change? We shall see later that these regions can be quite complicated 
geometrically. In fact, in order to describe them, we need to use the relatively new 
geometrical concept of fi-uctuls. All of this, however, will be taken up in due 
course. Let us continue to increase the temperature difference for our fluid layer. 
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Fig. 1.20. Solutions of the Lorenz equations with r = 160. After an initial transient that lasts 
until about t = 3, the solutions are periodic (but not sinusoidal). The jaggedness of the 
transient trajectory in the XYZ state space plot (lower right) is a graphing artifact. The 
calculations were actually carried out with much smaller time steps. 

Nothing dramatic happens until r reaches about 13.93 where we find that 
repelling regions develop around the off-origin fixed points. There are still small 
basins of attraction surrounding the two off-origin fixed points, which give rise to 
trajectories attracted to those two points. Trajectories starting outside these small 
regions, however, are repelled from the vicinity of the fixed points. If we examine 
the graphs of X(t), Y(t), and a t )  shown in Fig. 1.19, then we see that the new 
conditions correspond to time dependent variations in the fluid flow and the 
corresponding temperature differences. The corresponding state space diagram is 
shown in the lower right of Fig. 1.19. 

This observation should be the cause of some reflection. Here, we have a 
system for which the externally controlled "forcing" (that is, the imposed 
temperature difference) is independent of time. Yet the system has developed 
spontaneously a nontrivial time dependence. As we mentioned before, a nonlinear 
system can break the time-translation symmetry of its fundamental equations and 
external environment. (The period-2, period-4, and so on, variations of populations 
in the logistic map model are also examples of the spontaneous breaking of time- 
translation symmetry.) 

The time behavior in this region of r values is quite complex. So let us move 
on to examine another region near r = 160. Figure 1.20 shows the time dependence 
of X, Y, and Z for r = 160. The behavior is not simple harmonic (that is, it is not 

Fig. 1.21. Z(t) for the Lorenz equations with r = 150. After an initial transient, the behavior 
is periodic with a period twice that seen in fig. 1.20. Notice the alternating heights of the 
largest peaks in this figure. 

sinusoidal), but it is periodic. We can understand the physical nature of the 
system's behavior by looking at the graphs of X and Y as functions of time. We see 
that X oscillates symmetrically around the value X = 0. This tells us that the fluid is 
convecting first in the clockwise direction, then counterclockwise, continually 
reversing as time goes on. The temperature difference between up flow and down 
flow, represented by the variable Y, also oscillates symmetrically around 0. Note 
that the Z variable, on the other hand, oscillates around a nonzero value 
(approximately 160 for the case displayed in Fig. 1.20). 

Exercise 1.5-3. Show explicitly that the Lorenz equations are unchanged 
under time translation, that is, if t is replaced by t + z then the equations 
are the same. Thus, we say that the Lorenz equations have time 
translation symmetry. 

When the Rayleigh number is decreased to about r = 150, we find that the 
periodic behavior of Z suddenly changes. Figure 1.21 indicates that we now have 
period-2 behavior. (Please note a complication: The fundamental period is also 
slightly changed from Fig. 1.20. The Lorenz model does not have any external 
periodic forcing, as did the diode circuit, to determine the fundamental period.) 
The period-2 behavior is most easily recognized by looking at the largest upward 
"peaks" or downward "troughs" in Fig. 1.21. We see that a period-doubling 
bifurcation has occurred. 

At r = 146 , we find that a t )  bifurcates again, now with a period four times 
the original. [Similar, but less dramatic changes occur in Y(t) and X(t).] As r 
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Fig. 1.22. Two trajectories in the Lorenz model showing divergence of nearby trajectories for 
r = 143. The trajectory in the upper panel starts with the initial conditions X = 20, Y = 0, Z = 
163. In the lower panel the nearby trajectory starts with X = 20, Y = 0, Z = 166. After only a 
few oscillations the trajectories are completely different. 

decreases below about 144, the behavior of all the variables becomes completely 
aperiodic. We have seen yet another period-doubling route to chaos. (We have not 
generated a complete bifurcation diagram for this range of r values because of the 
amount of computation time involved.) 

Some comments are in order: In the case of the Lorenz model, the period- 
doubling progresses as the parameter r is decreased. In both of our previous 
examples, the doublings occurred as a parameter was increased. This distinction is 
really an unimportant one as we shall see in Chapter 2. In addition, we should 
again emphasize that the Lorenz model shows a vast range of complex behavior. 
We have described only a very limited part of that behavior, carefully selected, of 
course, to match the kind of behavior exhibited by our other two examples. 

Divergence of Tmjectories in the Lorenz Model 
We now want to address the crucial question in deciding whether or not the Lorenz 
model equations exhibit chaotic behavior for some range of r values: Do nearby 
trajectories diverge for that range of r values? Figure 1.22 shows two trajectories 
for r = 143 with slightly different initial conditions. We see that after only a few 
oscillations the trajectories are completely different. Although this result does not 
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p v e  the existence of the divergence of nearby trajectories on the average, it does 
suggest that the Lorenz model displays chaotic behavior for r = 143. 

1.6 Dete-m, Unpredictability, and Divergence of Trajectories 

What is the importance of the divergence of nearby trajectories? We have claimed 
. that this property is a signature of the kind of behavior we want to call chaotic and 
that this property allows us to distinguish between aperiodic behavior due to chaos 
and that due to external noise. The theoretical details will be taken up in later 
chapters. Here we want to discuss this behavior qualitatively. 

The importance of divergence of nearby trajectories is the following: If a 
system, like the Lorenz model, displays divergence of nearby trajectories for some 
range of its parameter values, then the behavior of that system becomes essentially 
un~redictable. The system is still deterministic in the sense that if we knew the 
initial conditions of a trajectory exactly, then we could predict the future behavior 
of that trajectory by integrating the time-evolution equations for the system. If we 
make the smallest change in those initial conditions, however, the trajectory quickly 
follows a completely different path. Since there is always some imprecision in 
specifying initial conditions in any real experiment or real numerical calculation, 
we see that the actual future behavior is in fact unpredictable for a chaotic system. 
To make this point more forcefully, we like to say that the future of a chaotic 
system is indeterminable even though the system is deterministic. 

This unpredictability is related to the fact that we cannot write down a closed- 
form solution for the nonlinear equations used to describe the system. A closed- 
form solution is a "formula" X(t) = X, tanh n (a t2), for example, or a series 
solution, perhaps with an infinite number of terms, X(t) = a,(t) + a2(t) + a3(t). . .. If 
such a closed-form solution could be found, then we could predict the future 
behavior of the system simply by evaluating the formula for some value of t 
corresponding to a future time. For a slightly different set of initial conditions, we 
would just evaluate the formula for those new initial conditions. Since the formula 
is presumably continuous in its dependence on parameters and initial conditions, 
small changes in those parameters and initial conditions would lead to small 
changes in X(t). So, the large changes in X(t) that occur for a chaotic system when 
we make small changes in the initial conditions cannot be represented by a closed- 
form solution. For a chaotic system, we must integrate the equations step-by-step 
to find the future behavior. (In essence we have to let the "experiment" run to find 
Out what will happen.) The divergence of nearby trajectories means that any small 
error in specifying the initial conditions will be "magnified" as we integrate the 
equations. Thus, a small change in initial conditions leads to grossly different long- 
term behavior of the system, and we cannot in practice predict that long-term 
behavior in detail. 

The unpredictability problem in nonlinear systems can be even worse than we 
imagine. For example, we might think that even though we cannot predict the 
detailed behavior of a trajectory, at least we know that the trajectory will end up 
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within a particular attracting region in state space and will remain within that 
region. Unfortunately, many nonlinear systems have multiple attractors for a given 
set of parameter values. Trajectories starting at different state space points will end 
up on different attractors. Each attractor has its own basin of attraction. In some 

Let us imagine an Intelligence who would know at a given 
instant of time all forces acting in nature and the position of all 
things of which the world consists; let us assume, further, that 
this Intelligence would be capable of subjecting all these data to 
mathematical analysis. Then it could derive a result that would 
embrace in one and the same formula the motion of the largest 
bodies in the universe and of the lightest atoms. Nothing would 
be uncertain for this Intelligence. The past and the future would 
be present to its eyes. 

1 

' We thank Prof. Lorenz for some useful private correspondence on the historical origin of 
this metaphor. 

I cases these basins have relatively simple geometric structures, and we can easily 
determine which initial conditions will lead to motion on the different attractors. In 

I other cases, the basins can be so intertwined (forming so-called riddled basins) that 
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From Laplace's point of view, the initial state of an isolated system is the 
66cause" from which the subsequent behavior of the system flows. Physical laws, 
expressed as differential equations, for example, provide the connecting link 
between the cause and its effects. The (assumed) existence of physical laws 
provides a deterministic link, according to this view, between the past and the 
future. There is no room for chance or free will2. There is even some historical 

. evidence that Isaac Newton himself, the creator of Newtonian mechanics, drew 
back from the deterministic picture that seemed to emerge from his discoveries. 
Newton wanted to leave room for the active participation of God in the evolution of 

1 even the smallest change in initial conditions can lead to a trajectory that ends up 
on a different attractor. In that case we lose even the modest ability to predict 

I 
which attractor the trajectory will end up on (S0093a) (LAW94)(LAI99). 

The effect of the divergence of nearby trajectories on the behavior of 
nonlinear systems has been expressed in an elegant metaphor known as the 
baerjiy effect. This metaphor first appeared in the title of a talk given by E. N. 
Lorenz' at the December 1972 meeting of the American Association for the 
Advancement of Science in Washington, D.C.: "Predictability: Does the Flap of a 
Butterfly's Wings in Brazil set off a Tornado in Texas." Earlier, Lorenz had used a 
seagull for this metaphor, but the name took an interesting Nabokovian twist with I this paper's title. Lorenz's point was that if the atmosphere displays chaotic 
behavior with divergence of nearby trajectories or sensitive dependence on initial il conditions, then even a small effect, such as the flapping of a butterfly's (or other 
avian creature's) wings would render our long-term predictions of the atmosphere 
(that is, the weather) completely useless. 

I 
The conflict between determinism and its (purported) opposite, free will, has 

I been a long-standing problem in philosophy. Newtonian mechanics appears to 
present us with a picture of a deterministic, clockwork universe in which all of the 
future is determined from the force laws, and the "initial conditions" of the objects 

I 
I 

that make up that world. From this point of view, all of our actions are completely 
determined, and there is no free will. This determinism was dramatized by the 
great French mathematician Pierre Simon Laplace (1749-1827), who in the 
introduction to his book Theory of Probability [Laplace, 18121 wrote: 

As we have seen, however, nonlinear systems, and chaotic systems in 
particular, make the implementation of Laplace's calculating Intelligence 
impossible. Even the smallest imprecision in the specification of the initial 
conditions presented to that Intelligence would make the predictions for the future 
behavior of a chaotic system (of which the universe has an abundance) impossible. 
Thus, even God must allow these chaotic systems to evolve to see what will happen 
in the future. There is no short cut to prediction for chaotic systems. 

We should also point out that the twentieth-century development of quantum 
mechanics, with its inherent probabilities and uncertainty relations, has undermined 
Laplace's scheme from an entirely different direction. The relationship between 
chaos and quantum mechanics is discussed in Chapter 12. 

I 1.7 Summary and Conclusions 

In this chapter we have examined the behavior of three simple systems that exhibit 
chaotic behavior: a real experimental system, a simple algebraic iterative model, 
and a (relatively) simple set of differential equations. We hope that you are 
impressed with the complexity of the behavior of these simple systems. Although 
the systems are all quite different, there are important similarities in their behavior 
as the parameters describing the systems change. These nonlinear systems show 
sudden and dramatic changes (bifurcations) in their behavior even for small 
changes in their parameters. Under certain conditions their behavior becomes 
aperiodic with the appearance of randomness. This chaotic behavior can be 
distinguished from noisy behavior by looking at the divergence of nearby 
trajectories. More importantly, we see that we do not need either external noise or 
complexity to produce complex, randomlike behavior. We have seen that the 
perioddoubling route to chaos occurs in at least three very different kinds of 
systems (but other routes to chaos are possible). This observation suggests that 
there may be various universal features of the approach to chaos and perhaps for 
chaos itself. In the next chapter we shall examine some of the universal 
quantitative features of chaos. 

I 2 For a discussion of the philosophical problems of causality and determinism, see Phillip 
, Frank, Philosophy of Science (Prentice-Hall, Englewood Cliffs, NJ, 1957). 
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1.8 Further Reading 

Popularizations 

James Gleick, Chaos, Making a New Science (Viking, New York, 1987). 
Now almost a "cult" book. Rather journalistic and hyperbolic in its writing, but it 
does try to give a scientifically honest picture of what chaos is all about. Includes 
good biographical sketches of many of the major players in the development of. 
chaos. 

John Briggs and F. David Peat, Turbulent Mirror (Harper & Row, New York, 
1989). Aimed at the lay audience, this book tosses in a lot of (generally 
unexplained) technical jargon. Sometimes overly cute. For example, the chapter 
numbers run backward from the middle of the book to the end. 

Ian Stewart, Does God Play Dice? The Mathematics of Chaos (Blackwell, 
New York, 1989). For the scientifically literate reader. Emphasizes the 
mathematical approach to chaos, but does pay some attention to experiments. 

Peter Smith, Explaining Chaos (Cambridge University Press, Cambridge, 
1998). An excellent philosophical look at chaos theory and fractals. A close 
examination of what chaos is about and what it can legitimately claim to explain. 

Collections of Reprints 

Hao Bai-Lin, Chaos (World Scientific, Singapore, Vol I. 1984, Vol 11, 1989). 
A wide-ranging collection of reprints of important papers both theoretical and 
experimental. It includes a brief (and very dense) introduction to chaos by the 
editor. 

Pedrag Cvitanovic, Universality in Chaos, 2nd ed. (Adam Hilger, Bristol, 
1989). The editor has also included his views on the universality issues in chaos. 

E. Ott, T. Sauer, and J. A. Yorke, Coping with Chaos (Wiley, New York, 
1994). A collection of reprints dealing with the analysis of experimental data for 
chaotic systems. 

Robert C. Hilborn and Nicholas B. Tufillaro, Chaos and Nonlinear Dynamics 
(American Association of Physics Teachers, College Park, MD, 1999). Contains 
an extensive bibliography and 22 reprinted articles, selected particularly for 
undergraduate students and for faculty new to the field. 

Introductory Books for Scientists and Engineers 

The following are listed more or less in order of increasing demands on your 
mathematical sophistication. 

Lany S. Liebovitch, Fractals and Chaos Simpl$ed for the Life Sciences 
(Oxford University Press, New York, 1998). A brief introduction with lots of 
references to applications in biology and medicine. 
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David Peak and Michael Frame, Chaos Under Control: fie Art and Science 
Complexity (W. H. Freeman, New York, 1994). A delightful book intended for a 

course for first-year college students. 
Daniel Kaplan and Leon Glass, Understanding Nonlinear Dynamics, 

(springer-Verlag, New York, Berlin, Heidelberg, 1995). Biological and medical 

Garnett P. Williams, Chaos Theory Tamed (National Academy Press, 
Washington, DC. 1997). A nice introduction that assumes little background. 
Detailed sections on Fourier analysis, time series analysis, and so on. 

Gregory Baker and Jerry Gollub, Chaotic Dynamics, An Introduction, 2nd ed. 
(Cambridge University Press, New York, 1996). A rather brief (255 pp.) 
Loduction to chaos. Emphasizes the driven, damped pendulum and the use of the 
personal computer. The authors claim that this book is aimed at physics and math 
majors at the second and third year undergraduate level. This book covers only a 
few topics and does not give a comprehensive introduction to nonlinear dynamics. 
However, it is quite clearly written and does give some feeling for the key concepts. 

Francis C. Moon, Chaotic and Fractal Dynamics, An Introduction for Applied 
Scientists and Engineers (Wiley, New York, 1992). Requires some background in 
applied science terminology. Tells how the ideas of chaos help understand 
important engineering phenomena. The formal development is rather brief, but the 
book provides a good overview. Includes a section on chaos gadgets: devices you 
can build to demonstrate chaotic dynamics. 

P. BergC, Y. Pomeau, and C. Vidal, Order within Chaos (Wiley, New York, 
1986). A somewhat dated introduction (the French original was published in 1984) 
assuming roughly a first-level graduate student background in physics. Particularly 
good discussion of quasi-periodicity and intermittency. 

J. M. T. Thompson and H. B. Stewart, Nonlinear Dynamics and Chaos 
(Wiley, New York, 1986). Two books in one! Apparently each author wrote half 
of the book, so there is some repetition and an abrupt change in style half-way 
through. Not very careful about defining terms before they are used freely in the 
text. Covers a wide range of "classical "nonlinear dynamics problems; but there is 
not much on modern methods such as time-series analysis, generalized dimensions, 
and so on. 

Steven H. Strogatz, Nonlinear Dynamics and Chaos: With Applications in 
Physics, Biology, Chemistry and Engineering (Addison-Wesley, Reading, MA, 
1994). An excellent book for an introductory applied-mathematics course at the 
advanced undergraduate level. 

H. G. Schuster, Deterministic Chaos, An Introduction, 3rd revised ed. (Wiley, 
New York, 1995). A rather compact (319 pp.) introduction at roughly the graduate- 
level in physics. The arguments are very dense. Schuster does give a wide-ranging 
overview, and he does try to provide at least outline proofs of many important 
results. 

E. Atlee Jackson, Perspectives of Nonlinear Dynamics, Vol. 1 and Vol. 2 
(Cambridge University Press, New York, 1989, 1991). A very thoughtful and 
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engaging book. A careful look at mathematical assumptions. Gradually builds up 
complexity of results, but rather heavy emphasis on analytical methods 
(perturbation methods, averaging methods, etc.). A good follow-up after reading 
this book. 

N. Tufillaro, T. Abbott, and J. Reilly, An Experimental Approach to 
Nonlinear Dynamics and Chaos (Addison-Wesley, Reading, MA, 1992). This 
book, at the upper-undergraduate and graduate physics level, treats nonlinear 
dynamics by focusing on several experimental systems and using several computer- 
based models. The book has particularly good discussions of the analysis of 
experimental data. 

E. Ott, Chaos in Dynamical Systems (Cambridge University Press, 
Cambridge, 1993). An insightful introduction to chaos at the beginning graduate 
level. 

T. Kapitaniak and S. R. Bishop, The Illustrated Dictionary of Nonlinear 
Dynamics and Chaos (Wiley, Chicester and New York, 1999). This book contains 
an extensive set of definitions of the terms used in nonlinear dynamics, complete 
with illustrations in many cases. Advanced undergraduate, beginning graduate 
level. 

For the Mathematically Inclined Reader 

R. L. Devaney, Chaos, Fractals, and Dynamics, Computer Experiments in 
Mathematics (Addison-Wesley, Reading, MA, 1990). An introduction (without 
proofs) to some of the fascinating mathematics of iterated maps, Julia sets, and so 
on. Accessible to the good secondary school student and most college 
undergraduates. 

R. L. Devaney, A First Course in Chaotic Dynamical Systems (Addison- 
Wesley, Reading, MA, 1992). A comprehensive introduction accessible to readers 
with at least a year of calculus. 

Brian Davies, Exploring Chaos: Theory and Experiment (Perseus Books, 
Reading, MA, 1999). An introduction to dynamical systems examining the 
mathematics of iterated map functions and some simple ordinary differential 
equation models. Includes exercises using the software Chaos for Java. (See the 
software listings at the end of Chapter 2.) 

R. L. Devaney, An Introduction to Chaotic Dynamical Systems (Benjamin- 
Cummings, Menlo Park, CA, 1986). Here are the proofs for the fascinating 
mathematics of iterated maps. This is definitely a mathematics book, but, with a 
modest amount of work and attention to detail, quite accessible to the 
nonmathematician. 

KatMeen Al l i gd ,  Timothy Sauer and James A. Yorke, Chaos, An 
introduction to Dynamic Systems (Springer-Verlag, New York. 1997). Contains 
lots Of eomPuw experiments for undergraduates who have completed calculus and 
differential equations. 
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D. Gulick, Encounters with Chaos (McGraw-Hill, New York, 1992). This 
k provides a very readable introduction to the mathematics of one- and two- 
ensional iterated map functions with many nice proofs,. examples, and 

Briefly covers fractals and systems of differential equations. 
R. H. Abraham and C. D. Shaw, Dynamics: The Geometry of Behavior 

(~ddison-Wesley, Reading, MA, 1992). F. D. Abraham, R. H. Abraham, and C. 
1>. Shaw, Dynamical Systems: A Visual Introduction (Science Frontier Express, 
1996). The picture books of chaos! Outstanding diagrams of heteroclinic and 
homoclinic tangles, and the like. These books are most useful after you have had 
some general introduction to chaos. The texts dodge careful definitions (the 
authors' philosophy is to give a visual introduction to dynamical systems). 

J. Hale and H. Kqak, Dynamics and Bifurcations (Springer-Verlag, New 
York, 1991). This book provides a well-thought-out introduction to the 
mathematics of dynamical systems and bifurcations with many examples. Easily 
scessible to the advanced undergraduate. 

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, 
and Bifurcations of Vector Fields, 3rd ed. (Springer-Verlag, New York, 1990). A 

' 

classic in the field, but you need to know your diffeomorphisms From your 
homeomorphisms. If you are serious about the study of chaos, you will eventually 
come to this book. 

I other B O O ~ S ,  ~ o ~ e c t i o n s  of ~ s s a y s ,  etc. 

A. V. Holden (ed.), Chaos (Princeton University Press, Princeton, NJ, 1986). 
A collection of 15 essays by active researchers in the field. Many useful ideas and 
perspectives, but you should be familiar with basic issues before tackling this book. 

L. Glass and M. C. Mackey, From Clocks to Chaos, The Rhythms of fife 
(Princeton University Press, Princeton, NJ, 1988). A well-written book showing 
how the ideas of nonlinear dynamics and chaos can be applied to the analysis of 
rhythrmc effects in physiology. Most of the physiological discussions are 
accessible to the nonspecialist. Reflecting the general mathematical level in the 
biological sciences, this book is quite a bit less sophisticated mathematically 
compared to most books on chaos. 

Harvey Gould and Jan Tobochnik, An Introduction to Computer Simulation 
Methods, Applications to Physical Systems, Part I (Addison-Wesley, Reading, 
Mass., 1987). A marvelous book on computer methods; very readable and 
pedagogical. Chapter 7 leads the reader through a numerical study of the logistic 
map and its surprisingly complex behavior. 

D. Ruelle, Chaotic Evolution and Strange Attractors (Cambridge University 
press, New York, 1989). Ruelle is one of the masters of nonlinear dynamics. In 
this short book (96 pp.) he presents what is really an extended essay (with 
mathematics) on what he considers to be the important issues in the statistical 
analysis (via time series) of chaotic systems. 
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Some Introductory Journal Articles 

R. May, "Simple Mathematical Models with Very Complicated Dynamics," 
Nature 261, 459467 (1976). A stimulating intrbduction to iterated maps ante 
Feigenbaum. 

J. P. Crutchfield, J. D. Farmer, N. H. Packard, and R. S. Shaw, "Chaos," 
Scientific American 255 (6), 46-57 (December, 1986). A good overview of the 
field of chaos and its implications for science. Emphasizes the ideas of state space 
and attractors. 

R. V. Jensen, "Classical Chaos," American Scientist 75, 168-81 (1987). A 
well-written, detailed treatment of the major issues in the current study of chaos but 
with an emphasis on mathematics and theory. 

D. R. Hofstadter, "Metarnagical Themas," Scientijic American 245, (5) 2 2 4 3  
(1981). A popular level discussion of the mathematics of iterated maps. 

N. B. Abraham, J. P. Gollub, and H. L. Swinney, 'Testing Nonlinear 
Dynamics," Physica D 11,252-64 (1984). Summary of a 1983 conference; gives 
a good idea of the range of experimental and theoretical activity in chaos. 
Unfortunately, already somewhat dated. 

R. Van Buskirk and C. Jeffries, "Observation of Chaotic Dynamics of 
Coupled Nonlinear Oscillators," Phys. Rev. A 31, 3332-57 (1985). A detailed 
description of how one can study chaos using simple semiconductor diodes. Lots 
of pictures and diagrams. 

J.-P. Eckmann, "Roads to Turbulence in Dissipative Dynamical Systems," 
Rev. Mod. Phys. 53,643-54 (1981). An early essay, but still a useful survey. 

E. Ott, "Strange Attractors and Chaotic Motions of Dynamical Systems," Rev. 
Mod. Phys. 53, 655-72 (1981). This survey appears in the same issue as the 
Eckmann article cited earlier. Again, somewhat dated, but useful. 

M. F. Doherty and J. M Ottino, "Chaos in Deterministic Systems: Strange 
Attractors, Turbulence, and Applications in Chemical Engineering," Chemical 
Engineering Science 43, 139-83 (1988). A wide-ranging and thoughtful survey of 
chaos in both dissipative and conservative systems, with an eye on engineering 
applications, this article is written at roughly the beginning graduate student level. 

Max Dresden, "Chaos: A New Scientific P a r a d i g m r  Science by Public 
Relations," The Physics Teacher 30, 10-14 and 74-80 (1992). [Reprinted in 
Hilborn and Tufillaro, 19991. An engaging introduction to the fundamental issues 
of chaos. 

The issue of predictability in Newtonian mechanics is discussed in J. 
Lighthill, 'The Recently Recognized Failure of Predictability in Newtonian 
Dynamics," Proc. Roy. Soc. Lond. A 407,35-50 (1986). 

P. Holmes, '%incare, Celestial Mechanics, Dynamical-Systems Theory and 
'Chaos'," Physics Reports 193, 137-63 (1990). This wide-ranging essay provides 
insight into the historical development of nonliacar dynamics at a moderately 
sophisticated mathematical level. 
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D. Ruelle, "Where can one hope to profitably apply the ideas of chaos," 

las B. Tufillaro, "Resource Letter: ND-1: 
Dynamics," Am J. Phys. 82 (9), 822-834 (1997). An extensive 

E. N. Lorenz, "Deterministic Nonperiodic Flow," J. Atmos. Sci. 20, 13041 
(1963). (Reprinted in [Cvitanovic, 19841). 

B. Saltzman, "Finite Amplitude Free Convection as an Initial Value Problem- 
I," J. Atmos. Sci. 19,32941 (1962). 

C. T. Sparrow, The Lorenz Equations: Bifurcations, Chaos, and Strange 
Anractors (Springer-Verlag, New York, Heidelberg, Berlin, 1982). 

k Prediction and Basins of Attraction 

J. C. Sommerer and E. Ott, "A physical system with qualitatively uncertain 
dynamics," Nature 365,136-140 (1993) 

Y.-C. Lai and R. L. Winslow, "Riddled Parameter Space in Spatiotemporal 
Chaotic Dynamical Systems," Phys. Rev. Lett. 72,1640-43 (1994). 

Y.-C. Lai and C. Grebogi, "Riddling of Chaotic Sets in Periodic Windows," 
Phys. Rev. Lett. 83,2926-29 (1999). 

I Novels and plays 

Chaos and nonlinear dynamics play major roles in the following: 
Michael Crichton, Jurassic Park (Ballentine Books, New York, 1990). 
Kate Wilhelm, Death Qualijied, A Mystery of Chaos (Fawcett Crest, New 

York, 1991). 
Tom Stoppard, Arcadia (Faber and Faber, London and Boston, 1993). 

World Wide Web Sites 

All of the major centers of nonlinear science research have extensive Web 
sites. A few bookmarks to get you started include: 

Chaos at the University of Maryland (http://www-chaos.umd.edu). In 

Particular see their "Chaos Database," which has a nice search engine for an 
extensive bibliographic data base. 

The Institute of Nonlinear Science at the University of California at San 
Diego (http://inls.ucsd.edu). 

The Center for Nonlinear Dynamics at University of Texas at Austin 
(http://~haos.~h.utexas.edu). 

The Center for Nonlinear Science at Los Alamos National Lab 
(http://cn~s.~an~.~ov). In particular, see the CNLS Nonlinear Science e-print archive 
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(http://cnls.lanl.gov/pbb.announce.html), and the Nonlinear Dynamics Archive 
(http://cnls.lanI.gov/nbt~intro.html). 

G. Chen, "Control and synchronization of chaotic systems (a bibliography)" is 
available by anonymous ftp from (uhoop.egr.uh.edu/pub~TeX/chaos.tex). 

"Nonlinear Dynamics Bibliography" maintained by the University of Mainz 
(http:/ww.uni-mainz.de/FB/Physik/Chaodchaosbib.ht). 

The Applied Chaos Laboratory at the Georgia Institute of Technology 
(http://ww.physics.gatech.edu/chaos/). 

2 

The Universality of Chaos 

Chaos is come again. Shakespeare, Othello, 111, iii 

In the preface and in the previous chapter, we mentioned that nonlinear systems 
display many universal quantitative features, both in their approach to chaos and in 
their chaotic behavior itself. In Chapter 1, we pointed out some of the qualitative 
features common to many nonlinear systems. In this chapter, we will give a brief 
introduction to some of the quantitative universal features. In a sense, the 
remainder of the book is devoted to developing an understanding of those 
quantitative features. 

It is difficult to overstate the importance of these universal features. If each 
nonlinear system did "its own thing," in its own way, then the study of dynamical 
systems would have languished as a branch of applied science, important certainly 
in applications, but providing no new general principles. After all, it is those general 
principles that lead to advances in the fundamentals of science. What has surprised 
almost everyone is the vast number of common features discovered in the behavior 
of nonlinear systems. These features include the sequences of bifurcations 
connecting regular, periodic behavior to chaotic behavior. In this chapter, we will 
explore some of the completely unexpected quantitative aspects of these 
bifurcations. These features seem to be largely independent of the physical, 
chemical or biological details of the system under investigation. This universality 
has made nonlinear dynamics a truly interdisciplinary field of study. 

The approach in this chapter will again be descriptive rather than deductive in 
order to provide an overview without the burden of detailed mathematical proofs. 
The mathematical details providing support (if not proof) for these universal 
features will be taken up in later chapters. 

2.2 The Feigenbaum Numbers 

In Chapter 1 we saw that three quite different systems followed the period-doubling 
mute to chaos, at least for some range of their control parameters. Of course, as we 
have also seen, there are other ways for the system to change from periodic to 
chaotic behavior besides the period-doubling route. It was in the study of period- 
doubling in the logistic map, however, that theoretical physicist Mitchell 
Feigenbaum discovered (FE178) the first of these universal quantitative features, 
and the theory of these universal quantitative features is more highly developed for 
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1 
Fig. 2.1. A portion of the bifurcation 
diagram for the logistic map function, Eq. 
(2.2-1) showing the period-doublings 
leading to chaos indicated by the funy 
bands at the right of the diagram 

F I ~ .  2.L Part of the bifurcation diagram 
for the sine map, Eq. (2.2-2). 

the period-doubling behavior than for some of the other routes to chaos, which we 
shall discuss in later chapters. 

Feigenbaum's first clue that there might be some universality underlying 
chaos came from the observation that several different functions, when used as 
iterated maps, lead to the same convergence in the bifurcation diagram as simple, 
periodic behavior changed to chaotic behavior through a sequence of period- 
doublings. To illustrate what Feigenbaum discovered, we have plotted in Fig. 2.1 a 
portion of the bifurcation diagram for the logistic map, 

Figure 2.2 uses a map based on the trigonometric sine function 
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both cases we see the (now) obvious period-doubling route to chaos. 
enbaum was the first to realize that the "rate of convergence" of the two 

es was the same for both maps. 
r anyone trained in mathematical physics, the instinctive reaction, when 

the kind of convergence seen in Fig. 2.1 and Fig. 2.2, is to look for a 
convergence ratio. If the convergence is geometric, then the of 
of parameter values at which successive period-doublings occur should 

e same for all the splittings. 
The calculation runs as follows: Let A, be the parameter value where period- 

1 gives birth to period-2 (see Fig. 2.3). A2 is the value where period-2 changes to 
priod-4, and so on. In general we denote A, as the parameter value at which 
priod-2, is "born." We then examine the ratio 

6, = 4, - 4-1 (2.2-3) 
An+I - A, 

Feigenbaum found that indeed the ratio was approximately the same for all values 
of n and that, more importantly and surprisingly, for large values of n the ratio 
approached a number that was the same for both map functions! This value of 6 
has now been named the "Feigenbaum 6 (delta)": 

The number 4.669.. . is destined, we believe, to take its place along side the 
fine structure constant (11137) (which tells us the ratio of the strength of 
electromagnetic forces to that of nuclear forces) in the (sparsely populated) 
Pantheon of universal numbers in physics. 

Research Problem: Relate the Feigenbaum 6 value, 4.669.. ., to some 
other fundamental numbers, for example, z, e (2.718.. .), the golden mean 
ratio (45 - 1)12, and so on (no known solution). 

Of course, seeing two (nearly) identical ratios is no proof of the universality 
of these numbers. Later Feigenbaum was able to establish that any iterated map 
function that has a parabolic shape near its maximum value (and which satisfies 
some other conditions to be discussed in chapter 5) will have the same 
Convergence ratio as the order of the bifurcation, labeled by n, approaches infinity. 

The theory that Feigenbaum developed to explain the universality of 6 
actually used a slightly different definition of the parameter values in calculating 
the ratios. Rather than refemng to the parameter value at which a bifurcation 
occurs, the parameter values chosen are those for which the abscissa of the 
maximum of the map function x,, is part of the "orbit" for a particular periodicity. 
(For the logistic map of Eq. (2.2-l), x,, = 0.5.) These orbits are called supercycles 
for reasons we shall discuss in Chapter 5. A', is then the value of A for which x,, 
is part of the period 2" orbit. It seems reasonable geometrically that both 
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Table 2.2. The latter statement might seem to be a cause for despair. After all, one of the 
Voltage values for bifurcations in the diode circuit. ual =riteria for the validity of a scientific theory is its ability to predict phenomena 

n Vn Vn must keep in mind, however, that period-doubling experiments 
(30 kHz) (85 kHz) theory operate at opposite ends of the period-doubling 

1 -3.470(8) -0.946(1) ce. Given that fact, contrary to our proposed feeling of despair, we ought to 
2 -2.505(8) -0.438(1) sense of exhilaration that the numbers agree as well as they do. Table 2.3 
3 -2.234(7) -0.330(1) lists mme representative experimentally determined values for 6 for a variety of 

physical systems. In all cases the measured values are within 20% or so of the 
With these words of caution in mind, let us compare the experimentally 

determined ratios (for low-order bifurcations) with the Feigenbaum 6 value. Table 
2.2 lists the values of the dc bias voltages at which successive bifurcations occur Some Preliminary Reflections on Explaining Universality 
for the diode circuit. (For this experiment it was easier to use the dc bias voltage, 

We should reflect on this "agreement" between theory and experiment for a 
rather than the signal voltage amplitude, as the control parameter. Like many other moment. It is not at all obvious what a semiconductor diode, a convecting fluid, or nonlinear systems, the diode circuit has a wide range of behavior. To generate the 

a modulated laser have in common with the logistic map. We should feel a sense 
data in Table 2.2, we purposely chose circuit conditions that led to a bifurcation 

of awe and wonder that there is some quantitative link between these experimental 
diagram closely resembling that for the logistic map.) results and a simple mathematical iterated map. 

Using the values listed in Table 2.2, we find that 6= 3.57(10) for the 30 & In a traditional physics setting, if we see some common quantitative and 
data and 6 = 4.7(1) for the 85 kHz data. The figures in parentheses give the qualitative features in the behavior of different systems (such as the well-known 
uncertainty in the previous significant figure. For example, 4.66(2) means 4.66 + 

free-fall acceleration near the surface of the Earth, if we are able to ignore air 
resistance), we look for some common underlying physical cause. It should be 

Two comments are in order: 
clear, however, that this kind of explanation is not appropriate here. To explain this 
new kind of universality, we need to adopt a different level of explanation. This we 

1. It is important (and, in fact, crucial) to take into account experimental shall do in the following chapters where we will begin to see that this universality 
uncertainties in calculating these ratios. We see that for the higher- can be explained as a result of common geometries in an abstract state space 
order bifurcations, the experimental uncertainties become as large as description of the dynamics of these systems. 
the parameter differences, and the resulting relative uncertainty in 6 
becomes quite large. 2.4 Using S to Make Predictions 

2. The experimentally determined values for 6, are close to but often do 
not agree with the Feigenbaum value of 4.669 even within the range The numerical agreement between the values of 6 found in experiments and the 
of experimental uncertainties. value found by Feigenbaum from a mathematical model points to an underlying 

unity, which we shall explore in Chapter 5. At a more practical level, the existence 
of a universal number such as 6 allows us to make quantitative predictions about 

Table 2.3. the behavior of a nonlinear system, even if we cannot solve the equations 
Feigenbaum 6 Values Determined by Experiment describing the system. More importantly, this is true even if we do not know what 

Experiment Ref. Max n + 1 Value of 6, Difference the fundamental equations for the system are, as is often the case. For example, if 
observed From 4.669 we observe that a particular system undergoes a period-doubling bifurcation from 

Fluid convection GMP8 1 4 4.3(8) period-1 to period-2 at a parameter value A,,  and from period-2 to period4 at a 
Diode circuit TPJ82 5 4.3(1) value A2, then we can use 6 to predict that the system will make a transition from 

Optical bistability HKG82 3 4.3(3) ~eriod-4 to period-8 at an A3 value given by 
Acoustic waves STF82 3 4.8(6) 

in helium 4=- 4-4+4  (2.4-1) 
Josephson-junction YEK82 3 4.4(3) 6 

analog 



Exercise 2.4-1. (a) Verify the calculation leading from Eq. (2.4-3) to Eq. 
(2.4-4). (b) Prove that 

S 2  
( 4 - 4 ) s "  = ( 4 - 4 ) =  

Note that the right-hand-side is independent of n. N.B. This result will be 
used several times in later chapters. 

- - - - - -- - - 
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As we shall see later, however, observing the first two period-doublings produces 
no guarantee that a third will occur, but if it does occur, Eq. (2.4-1) gives us a 
reasonable prediction of the parameter value near which we should look to see the 
transition. 

We can also use 6 to predict the parameter value to which the period-doubling 
sequence converges and at which point chaos begins. To see how this works, we 
first write an expression for A4 in terms of A3 and A2, in analogy with Eq. (2.4-1). 
(We are, of course, assuming that the same 6 value describes each ratio. This is not 
exact, in general, but it does allow us to make a reasonable prediction.) 

2 5  Feigenbaum Size Scaling 
A4 =- A3 - + A3 6 (2.4-2) 

part of his numerical investigation of simple mapping functions such as the 
We now use Eq. (2.4-1) in Eq. (2.4-2) to obtain logistic map, Feigenbaum recognized that each successive period-doubling 

bifurcation is just a smaller replica, with more branches, of course, of the 

A 4 = ( 4 - A l )  -+--;- + 4  ( B )  bifurcation just before it. This observation suggested that there might be a 
(2.4-3) 

universal size-scaling in the period-doubling sequence. Figure 2.3 illustrates the 
definition of the "size" ratio, now designated as the Feigenbaum a (alpha) value: 

If we continue to use this procedure to calculate As, A6, and so on, we just get more 
terms involving powers of (114 in the sum. We recognize this sum as a geometric 
series. We can sum the series to obtain the result 

4 = ( 4  -+)+a, (2.4-4) where dm is the "size" of the bifurcation pattern of period 2" just before it gives birth 6 -1 
to period-2"". The ratio involves the ds for the corresponding parts of the 

After we have observed the first two period-doublings in a system, we can bifurcation pattern. For example, the size of the largest of the period4 segments is 
make a prediction of the parameter value at which chaos should appear. However, compared to the size of the largest period-8 segment. Feigenbaum also argued that 
we do not expect this prediction to be exact, first, since it is based on the size d2 of the larger of the period4 "pitchforks" ought to be a times the size of 
experimentally determined numbers A2 and A,, and more importantly because we the smaller of the period4 pitchforks dl  as shown in Fig. 2.3. 
have assumed that all the bifurcation ratios are described by the same value of 6. 
Nevertheless, this prediction does usually get us reasonably close to the region in 
which chaos begins. 

We can use the results of this extrapolation to predict the parameter values for 
the onset of chaos for the logistic map and for the diode circuit. Using the results 
given in Table 2.1, we find that for the logistic map, the onset of chaos is predicted 
to occur at A = 3.572 if we use the bifurcation values of A and at A = 3.563 if we 
use the supercycle values of A. The actual value is A = 3.5699. ... For the diode Applying this ratio to the description of experimental data carries the same 
circuit, using the voltage values in Table 2.2 in Eq. (2.4-4) predicts chaos at - caveats we mentioned for the convergence ratio S: The theory leading to the 
2.24(1) volts while the experiment shows chaos beginning at -2.26(1) volts for the number 2.5029.. . applies only in the limit of high-order bifurcations, while 
30 kHz data. The predicted value is -0.299(9) volts and the observed value is - experiments are constrained to look at relatively low-order bifurcations. However, 
0.286(8) volts for the 85 kHz data. We see that the agreement is not exact, but in those few cases in which a has been determined experimentally, we find 
nevertheless, considering that we have done no detailed calculations of the reasonable but not exact agreement between the measured values and the prediction 
dynamics of these systems, we have surprisingly good agreement. of Eq. (2.5-1). We should be elated to have any prediction at all. We see a priori 

little r-n for the size scaling in the logistic map to be related to the size scaling in 

Feigenbaum actually used a slightly different definition of d,, in his 
determination of a As in the definition of 6, the ds refer to distances in 
the bifurcation diagram when the point x,, is part of the trajectory. We 
shall make use of this choice of distance in Chapter 5 and Appendix F. 
We intuitively expect that the two definitions give the same numerical 
values for high-order bifurcations. 
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Exercise 2.5-1. Use a ruler to measure the appropriate lengths in Fig. 2.3 
to determine the Feigenbaum a value. Estimate your measurement 
uncertainties. 

Exercise 2.5-2. Use numerically generated values from the logistic map 
to estimate a Estimate numerical uncertainties due to the finite precision 
of your computer's arithmetic. 

Something to think about: It is rather curious that the Feigenbaum 6 is just 
about the "right" size. This means that if 6 were an order of magnitude larger (say, 
about 40 or 50), then period-doublings would occur so quickly as a function of 
parameter values that it would be very difficult to see them experimentally. For 
example, if 6 were about equal to 50, the difference A3 - A2 would be about 2 per 
cent (1150) of the difference A2 - A,  and a modest amount of experimental care 
would be needed to observe it. [As a rough rule of thumb, it is easy to cany out 
measurements with 10 per cent experimental uncertainty; 1 per cent is not too 
difficult; 0.1 per cent requires considerable care and effort.] But the next difference 
A4 - A3 would be only 0.0004 of the difference A2 - A ,  and observing would be 
very difficult. 

On the other hand, if 6 were too small, then the period-doubling sequence 
would be so spread out as a function of the parameter that it would be difficult to 
change the parameter in question over the range required to see the full period- 
doubling sequence. (Note that 6 must be greater than 1 in order to have the 
sequence converge at all. Therefore, "too small" means too close to 1.) This latter 
result would seem to be less constraining than the first because, you might think, 
we could then concentrate our attention on the higher-order bifurcations more 
easily. However, given the wide parameter range over which the sequence would 
occur, we might never see those higher-order bifurcations at all, or we might not 
recognize them as part of a sequence. 

Exercise 2.5-3. Cany through the same kind of argument to show that the 
Feigenbaum a is also about the "right size." 

Question: Is there a connection between the values for 6 and d? The 
answer is given in Chapter 5 and Appendix F. 

2.6 Self-similarity 

The two Feigenbaum numbers tell us something very important about the period- 
doubling quence:  Different pieces of our bifurcation diagram just smaller 
replica of other pisfa. To be specific, we can note that the lower section of Fig. 
2.3 betwen A1 and A, looks just like the region between A,  and A2 if we expand 
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e parameter axis between A, and A2 by the factor 6 and also expand the vertical 
is for the same region by the factor a (The upper portion requires a 

nification of 2.) [Again, we should remind ourselves that .this replication is 
t only in the limit of high-order bifurcations. However, it is nearly exact for 

ow-order bifurcations as well.] 
A geometric structure that has this replicating behavior under the appropriate 

Pifications is said to be self-similar: each subpart when appropriately 
Pified looks just like a larger part. As we shall see in Chapter 5, this self- 

similarity plays a key role in the theory of the universality of 6 and a. In later 
chapters, we will see this notion of self-similarity in many other aspects of 
nonlinear dynamics as well. Such self-similar objects are called fractals because 
their geometric dimension (suitably defined) is often a fraction, not an integer. 

Why is self-similarity so important? The basic idea is the following: If a 
geometric structure exhibits self-similarity, then it has no inherent size scale. That 
is, if we look at some subsection of this structure, at some level of magnification, it 
looks like any other subsection at some other level of magnification. There is no 
way for us to tell by looking at one subsection what length scale we are seeing. 
This remarkable feature means, as we shall see many times in this book, that many 
features of the geometric structure must be independent of the details of the model 
that gave rise to it. 

A dramatic illustration of this self-similarity is shown in Figs. 2.4 and 2.5. 
B Figure 2.4 shows an expanded portion of the bifurcation diagram for the logistic 

w 

map in the region containing a period5 window. Figure 2.5 is an expanded version 
I of the boxed area of Fig. 2.4. This shows a period-doubling sequence converging 

to chaos, and inside that chaotic area is yet another period-5 window. At a slightly 
larger value of A is a period-3 window, which period-doubles to yet more chaos. 
Many of the features seen in the full bifurcation diagram are apparently reproduced 
again on a much smaller scale. As we shall see in Chapter 5, this self-replication 
allows us to make very powerful, quantitative statements about the behavior of the 
system that gives rise to such a bifurcation diagram. We find that these quantitative 
statements take the form of scaling laws, much like the famous scaling laws for 
thermodynamic properties of a system near a phase transition. 

2.7 Other Universal Features 

The Feigenbaum numbers do not, by any means, exhaust the range of universality 
that has been discovered in nonlinear systems. In later chapters, we will discuss 
other predictions of universality concerning the power spectra of chaotic systems, 
the influence of noise on these systems, and various measures of the "amount of 
chaos." It is safe to predict that as our study of nonlinear systems develops, still 
more universal features will be found. 

The cautious reader should ask: Do these quantitative features hold for all 
nonlinear systems? The answer is No. There seem to be, however, classes of 
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Fig. 24 An expanded view of the bifurcation diagram for the logistic map near the period-5 
window. An expanded view of the region inside the box is shown in Fig. 2.5. 

' 1 nonlinear systems for which the Feigenbaum numbers (and various generalizations 
of them) do provide good quantitative descriptions. A complete methodology for 

I deciding in advance which "universality class" is appropriate for which nonlinear 
system (either theoretical models or real experimental systems) is lacking so far. 
Nevertheless it is useful to know that apparently there are only a small number of 
such classes. (At least, we have so far recognized only a small number of these 
classes.) For example, nonlinear systems whose dynamics reduce to what we shall 
call "one-dimensional dynamics," a notion that will be made more precise in 
Chapter 5, often show the period-doubling route to chaos, and the Feigenbaum 
numbers apply to those systems. 

I 

1 2.8 Models and the Universality of Chaos 

Now that we have had at least a brief overview of the landscape of chaos, we would 
like to raise some fundamental questions about chaos and what it holds for 
scientific methodology. In short, we want to raise the question (and several issues 
surrounding it): What do we get out of chaos? 

A crucial issue in understanding the significance of chaos in scientific 
methodology is the problem of the use of models in science. You may have noticed 
this terminology in Chapter 1, where we discussed a model of biological population 
growth and a model (the Lorenz model) for a convecting fluid. What does model 
mean here? First, we point out that most "real-life" systems are far too complicated 
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Fig. 25. An expanded view of the region inside the box in Fig. 2.4. The self-similarity of the 
bifurcation diagram is indicated by the existence of yet another period-5 window, indicated 
by the arrow, inside the chaotic band. 

to be described directly by fundamental laws, which for the sake of discussion here, 
we will take to be the microscopic laws of physics, such as Schriidinger's equation 
in quantum mechanics, Maxwell's equations in electromagnetic theory, and so on. 
For example, the diode and the convecting fluid system described in Chapter 1 each 
have trillions of atoms and there is no practical way of applying the fundamental 
microscopic laws to these systems. Instead, we extract what we believe are the 
most important features of the phenomena being studied (the current and voltages 
in the diode circuit; temperature and fluid velocity in the fluid experiment, for 
example), and then we build theoretical models (mathematical descriptions) of the 
behavior of those selected features. In the process, we hope that the features we 
have neglected in our model are not significant for the phenomena under 
consideration. For example, we did not specify the color of the fluid in the Lorenz 
model. We assumed that the nature of the fluid could be specified in terms of its 
density, thermal conductivity, and its viscosity and that the color is not important. 
If the model yields predictions (usually quantitative predictions) that are in 
agreement with the observed phenomena, then we generally feel that we are 
Justified in claiming that our model is, in some sense, a correct description of the 
phenomena. Presumably, other models, which pay attention to other features or 
which describe the behavior of the selected features in a different way, would not 
yield the same predictions. Hence, we use the criterion of successful (quantitative) 
Prediction as a means of selecting the correct model from a set of possible models. 
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Moreover, the model provides a connection between the initial conditions of the 
system (the "cause" or ''causes") and the later behavior (the "effects") and thus 
provides an "explanation" of why the system behaves the way it does. 

This general procedure seems to work well in physics and often in chemistry, 
where the systems are reasonably simple and reproducible. However, in biology 
there is considerable doubt whether the simple modeling procedure can work as 
desired because the inherent diversity among the individuals of a particular species 
and the differences among species makes the application of this whole program 
problematic. (These difficulties, however, do not seem to have hindered biologists 
and social scientists from embracing mathematical modeling whole-heartedly.) We 
will therefore restrict the discussion to cases in physics where modeling is usually 
accepted as a valid scientific procedure. 

I Even within the simple cases of physics, however, the universality of chaos 
presents us with a dilemma: Several (apparently) distinct models might all predict 
the same period-doubling route to chaos, for example. (In the case histories taken 
up in later chapters, we shall see several instances of this dilemma.) Each of these 
models yields the same sequence of period-doublings, and, moreover, each yields 
the same values for Feigenbaum's 6 and a. So, if we restrict our observation to 11 just the bifurcations that lead to chaos, then we see that we cannot use the 
observation of chaos or even the quantitative values of 6 and a to help us decide 

j which model is correct. Of course, if we observe period-doublings and the model 
does not predict perioddoubling, then we can discard that model. In general, 
however, there will be several models with distinctly different physical descriptions 

I for a given system, all of which predict the same transition to chaos. 
There are two ways to proceed. First, one could look at finer details of the 

models' predictions to choose the correct one. For example, for the diode circuit of 
Chapter 1 we could ask for the best agreement with exact voltage values for the 
bifurcations or the exact shape of the i(t) curves. If we do that, however, the model 
becomes so specific to the case at hand that it is not useful for other diodes in 
different circuits; therefore, this criterion is too strict'. 

Another possibility is to look for those features that are common to all the 
"successful" models of the diode and to point to those common features as 

1 providing an explanation of the diode's behavior. If we do this, what we find is 
disturbing to many scientists. We find that the common features are not physical ~ features of the systems we are studying. Let us illustrate this by an example where 

I there & a common physical feature. Simple harmonic (sinusoidal) oscillation is 
observed in many physical systems. When we try to understand the ubiquity of 
these oscillations, we find that the common ''cause" is the fact that most forces, for 
small disturbances from "equilibrium," are reasonably described by the same kind 
of force law: The force is proportional to the displacement (in general terms) from 

I This tension between detailed prediction and general explanation has been explored, for 

I 
example, in Nancy Cartwright's How the Laws of Physics Lie (Oxford University Press, 
Oxford and New York, 1983). 
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uilibrium and directed in such a way as to pull the system back toward 
uilibrium. Such a force law always gives r i s e  to simple harmonic oscillation. In 
s case we have a physical explanation, in terms of the behavior of forces, for the 

e of simple harmonic motion. When we consider the case of chaos, 
seem to be a common physical explanation. What we do find in 
behavior of the models in an abstract state space, the details of 

which we shall introduce in Chapters 3 and 4. The explanation of the diode's 
behavior, at least in terms of understanding its transition to chaos, therefore lies in 
understanding what goes on in this state space as control parameters are varied. 

Given this situation, we are often asked the questions "What do we learn from 
chaos?'and "Why bother with chaos?'Lying behind these questions is the 
prejudice that we study the behavior of systems only to learn more about the 
fundamental, microscopic structure of that system. As we have argued earlier, 
chaos and the transitions to chaos do not seem to help us in that endeavor. Then 
why study chaos? To answer this question, we have to cast off the blinders that 
most twentieth-century physicists have worn. The blinders have kept our attention 
focused on learning more about the microscopic world that underlies the 
phenomena we observe. We cannot deny that this has been an immensely 
successful enterprise both in terms of what we have learned about the fundamental 
structure of matter and in the application of those fundamental ideas to the practical 
needs of society. In this drive toward the microscopic, however, many scientists 
have lost sight of the complexity of phenomena outside the tightly controlled 
domains of laboratory experiments. In some sense we expect that this complexity 
follows from the fundamental microscopic laws and is, in some way, embodied in 
those laws. However, the fundamental laws do not seem to give us the means to 
talk about and understand this complexity. If we are to understand and explain the 
universality of chaos, for example, we need to go beyond the specific predictions 
made by the fundamental laws for specific systems. We must approach this 
complexity at a different "level of explanation." Instead of seeing chaotic behavior 
as yet another tool to help us probe the microscopic world, we should think of this 
complexity as an essential part of the world around us, and science should attempt 
to understand it. Nonlinear dynamics and the theory of chaos are our first (perhaps 
rather feeble) attempts to come to grips with this dynamical complexity. 

2.9 Computers and Chaos 

While we are in a reflective mood, we want to raise the question of why chaos was 
not "discovered" much sooner. As we shall see in this book, almost all of the 
theory of chaos and nonlinear dynamics can be understood with only a moderate 
background in mathematics. Most of the phenomena of chaos occur in physical 
systems whose basic mechanisms could be understood in terms of physics that is a 
least a century old. Why, then, did the study of chaos suddenly explode in the 
1970s and 1980s? 
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Even a cursory reading of the history of chaos, the definitive version of which 
is yet to be written, shows that Poincark knew about, at least in a rough way, most 
of the crucial ideas of nonlinear dynamics and chaos. What Poincark and the rest of 
the scientific world lacked until recently is a way of coming to grips with these 
ideas and exploring their consequences. The high-speed digital computer and, 
particularly, computer-driven graphics are the key tools that have made much of the 
progress in chaos and nonlinear dynamics possible. As we argued in Chapter 1, we 
need computers to generate the numerical solutions to nonlinear equations. 
Without some way of understanding that numerical output, however, little progress 
can be made. Computer graphics provides a way of visualizing the behavior of 
these nonlinear systems and allowing us to build intuition about the solutions and 
how they change as parameters of the system change. Of course, we also need 
some theoretical concepts to provide some organization for what we see and to 
guide us through the maze of complex behavior of nonlinear systems. It is safe to 
say, however, that if Poincare had had a Macintosh or IBM personal computer, then 
the field of nonlinear dynamics would be much further along in its development 
than it is today. 

Another important issue arises in numerical computations: If we take into 
account the combined influence of round-off errors in numerical computations and 
the property of divergence of nearby trajectories for chaotic behavior, how can we 
trust numerical computations of trajectories to give us reliable results? (As an 
aside, we should note that the same problem arises in experimental measurements 
in which "noise" plays the role of round-off errors.) If the system's behavior is 
chaotic, then even small numerical errors are amplified exponentially in time. 
Perhaps all of our results for chaotic systems are artifacts of the numerical 
computation procedure. Even if they are not artifacts, perhaps the numerical values 
of the properties depend critically on the computational procedures. If that is true, 
how general are our results? 

Although it is difficult to answer these questions once and for all, it is 
comforting to know that while it is true that the details of a particular trajectory do 
depend on the round-off errors in the numerical computation, the trajectory actually 
calculated does follow very closely some trajectory of the system. That is, the 
trajectory you calculate might not be the one you thought you were going to 
calculate, but it is very close to one of the other possible trajectories of the system. 
In more technical terms, we say that the computed trajectory shadows some 
possible trajectory of the system. (A proof of this shadowing property for chaotic 
systems is given in GHY90 and SGY97.) As we will see in later chapters, we are 
most often interested in properties that are averaged over a trajectory; in many cases 
those average values are independent of the particular trajectory we follow. So, as 
long as we follow some possible trajectory for the system, we can have confidence 
that our results are a good characterization of the system's behavior. We note that 
they are special cases involving coupled chaotic systems (discussed in Chapter 11) 
for which the shadowing theorem may fail (LAG99). 
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There are cases, however, in which even shadowing becomes problematic. 
issue is discussed in DGS94. Furthermore, in more complex systems (systems 
many degrees of freedom), there may be situations in which deterministic 

eling with computers can fail to give meaningful results (LAG99). The lesson 
at some degree of skepticism is always appropriate when using computers to 
el nonlinear systems. 

2.10 Further Reading 
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M. J. Feigenbaum, "Universal Behavior in Nonlinear Systems," Los Alamos 
Science 1 , 6 2 7  (1980). Reprinted in [Cvitanovic, 19841. The fust sections of this 
paper give a quite readable introduction to some of the universal features of one- 
dimensional iterated map functions. 

R. M. May, "Simple Mathematical Models with Very Complicated 
Dynamics," Nature 261,459-67 (1976). Reprinted in [Cvitanovic, 19841 and in 

- IHao, 19841. A very influential and quite interesting look at the behavior of *m iterated map functions, written before the "discovery" of Feigenbaum universality. 
G. B Lubkin, "F'eriod-Doubling Route to Chaos Shows Universality," 

Physics Today 34, 17-19 (1981). An account of some of the history leading up to 
Feigenbaum's discovery and its early impact on physics. 
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Reproducible Sequence of Period-Doubling Bifurcations," Phys. Rev. Lett. 47, 
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Physical Trajectories in Chaotic Dynamics: Containment and Refinement," Phys. 
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2.11 Computer Exercises 

As we discussed briefly in Section 2.9, the computer and computer graphics have 
played a crucial role in the development of the theory of chaos and nonlinear 
dynamics. If you want to use these ideas in your own work or even if you just want 
to come to grips with the basic concepts, you need to use a computer to allow you 
to explore changes in dynamics, to calculate Feigenbaum numbers, and, as we shall 
see later, to evaluate quantities that allow us to make quantitative and predictive 
statements about chaotic behavior. 

For better or worse, most of us do not want to spend much time doing detailed 
computer programming. Fortunately, there are now available several software 
packages that permit us to cany out fairly sophisticated calculations in nonlinear 
dynamics with no programming required. 

To encourage you to use a computer to help in developing your intuition for 
nonlinear systems, we have included three types of computer exercises. The first 
uses some very simple computer programs for the logistic map function, the listings 
for which are included in Appendix E. These programs are sufficiently simple that 
they can be readily adapted to run on almost any personal computer with little 
programming effort. The listings for these programs are good illustrations of the 
iteration algorithms common to many studies in nonlinear dynamics. The second 
category of exercises uses commercially available software packages. We have 
chosen to give exercises based primarily on two packages described shortly because 
they are readily available at relatively low cost. We also describe several other 
software packages you may find useful. The third category of exercises is for the 
experienced computer programmer. Those exercises require you to write your own 
programs. Useful information and suggestions for writing your own software are 
given in [Devaney, 19901 and in [Baker and Gollub, 19961 and in [Gould and 
Tobochnik, 19961. 

We have listed some software packages for nonlinear dynamics (the prices 
listed are the ones current at this time of writing and, of course, may change). All 
of the programs require that your computer have some sort of graphics display (for 
example, VGA or SVGA). You should contact each publisher for detailed 
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1. Chaos Demonstrations 3, J. C. Sprott and G. Rowlands (Physics Academic 
oftware, Box 8202, North Carolina State University, Raleigh, NC 27695-8202), 

. For IBM and compatible personal computers. A set of programs covering a 
ety of iterated maps, systems described by differential equations, Julia sets, 
ndlebrot set, and fractals. Can be run in a purely demonstration mode. You can 

adjust some parameters. Has several 3-d animations. "3-d glasses" included. 
sics Academic Software information is available at the web site 

ttp://www.aip.org/pas/catalog.html. 
2. Chaotic Dynamics Workbench, R. W .  Rollins (Physics Academic 

Software, Box 8202, North Carolina State University, Raleigh, NC 27695-8202, 
1990), $90. For IBM and compatible personal computers. Focuses on systems 
described by a few ordinary differential equations. Can generate state space 
diagrams, Poincark sections, calculate Lyapunov exponents. Parameters and initial 
conditions can be changed at will, even while the program is integrating the 
equations so you can see the effects of transients. You have a great deal of 
flexibility in choosing methods of integration, integration step sizes, and what is to 
be plotted on the graphs. The program can also store a sequence of Poincark 
sections; so you can make a "movie" illustrating the system's behavior on the 
attractor in state space. 

3. Chaotic Mapper, J. B. Harold. (Physics Academic Software, Box 8202, 
North Carolina State University, Raleigh, NC 27695-8202, 1993), $60. For IBM 
and compatible personal computers. Covers one- and two-dimensional iterated 
maps, systems described by differential equations, Julia sets, and the chaos game 
map. Calculates state space trajectories, PoincarC sections, and Lyapunov 
exponents. You can also enter your own map equations or sets of differential 
equations. 

4. Phaser, H. Koqak. This is a set of programs accompanying the author's 
book Dzfferential and Difference Equations through Computer Experiments, 2nd 
ed. (Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1989). Diskettes 
available separately for $39. For IBM and compatible personal computers. Covers 
a wide range of iterated maps (difference equations) and differential equations 
systems. A more complex program with very flexible graphics. [Hale and Kocak, 
19911 makes use of exercises in Phaser. 

5. Helena Nusse and James A. Yorke, Dynamics: Numerical Explorations, 
2" ed. (Springer, New York, 1998). The accompanying program allows you to 
produce bifurcation diagrams, basins of attraction, and so on for a variety of iterated 
map and differential equation systems. Highly recommended. 

6. Strange Attractors, Creating Patterns in Chaos, Julien C. Sprott (M&T 
Books, New York, 1993). A book with accompanying software that allows you to 
Produce a wide variety of computer graphics of strange attractors. 

I 7. Chaos, a Program Collection for the PC, H. J. Korsch and H.-J. Jodl 

i (Springer-verlag, New York, Berlin, Heidelberg, Tokyo, 1994). Includes diskettes 
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8. Chaos for Java, Brian Davies. Free software available over the internet 
from Australian National University (http:/sunsite.anu.edu.au/education~chaos). 
Produces nice bifurcation diagrams (with an excellent zoom feature), graphical 
iteration procedures, and orbits for ordinary differential equation models. Used as 
exercises in [Davies, 19991. 

1 Powerful computer-aided mathematics packages such as MAPLE and 11 MATI-IEMATICA can be quite useful for studying nonlinear systems. See, for 

I I 
example 

I R. H. Enns and G. C. McGuire, Nonlinear Physics with Maple for Scientists 
and Engineers (Birkhauser, Boston, 1997) and Nonlinear Physics with Maple for 

1 Scientists and Engineers: A Laboratory Manual (Birkhauser, Boston, 1997). 

I In referring to various commercial software packages, we will assume that the 
reader has used the introductory material that comes with each package to become 
familiar with how the package operates. Although we refer to Chaos 
Demonstrations and Chaotic Dynamics Workbench explicitly because we have 
found them useful and relatively easy to use, other software packages could be used 
as well. 

Exerckes 
CE2-1. Graphic Iteration Method. Use Chaos Demonstrations' Logistic Map 

x(n+l) vs. x(n) section [access via the V (View) key] or the program Graphit in 
Appendix E to carry out the graphical iteration method for the logistic map. The set 
of programs Chaos for Java are also useful here. (a) Start with parameter value A = 
2.9. (A is the same as L in Chaos Demonstrations.) Show that all initial values of x 
between 0 and 1 lead to sequences ending up on the fixed point x = 1 - 1lA. (b) 
Show that for A = 3.0, the convergence to the fixed point is very slow. (c) Show 
that you get period-2 behavior for A = 3.2. (d) Find period4 and, perhaps, period- 
8 bifurcation values. (e) Try other parameter values to observe chaotic 
trajectories. 

CE2-2. Bifurcation Diagrams. Use Chaos Demonstrations' Logistic Map 
bifurcation diagram section or the program Bifur in Appendix E or Chaos for Java 
to generate a bifurcation diagram for the logistic map with the parameter A ranging 
from 2.9 to 4.0. (a) Identify period-doubling bifurcations, chaotic regions, and 
periodic windows. (b) Restrict the range of the parameter A to get a magnified 
view of various parts of the bifurcation diagram. (In Bifur, you can also restrict the 
range of x values to get magnification in the vertical direction.) 

CE2-3. Divergence of Nearby Trajectories. One of Chaos Demonstrations' 
Views (V) for the Logistic Map plots the difference in trajectory values for two 
slightly different initial conditions. Use this program to show that the differences 
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d to 0 when the trajectories are periodic but diverge when the trajectories are 
c (parameter A > 3.5699 . . . ). 

CE2-4. The Lorenz Model. Use Chaos Demonstrations' Lorenz Attractor 
to explore the Lorenz model. The program plots the X-Y state space 

projection of the trajectories for particular values of the parameters p, r, and b of 
~ q .  (1.5-1). (These are labeled a ,  d, and b, respectively, in Chaos Demonstrations.) 
(a) Show that for a = 10, b = 813, and d = 20 the trajectories end up on one or the 
other of the off-axis fixed points. (b) Verify that the locations of the off-axis fixed 
points are in agreement with the coordinate values given in Exercise 1.5-2. (c) 
Explore the behavior of the trajectories as a function of the parameter d. (d) 
Observe the behavior of the trajectories near the origin of the X-Y plane. Explain 

' their behavior in terms of the (unstable) fixed point at X = Y = Z = 0. (e) Explore 
other combinations of parameter values. Try to find some periodic orbits. 

CE2-5. The Lorenz Model and period-doubling. (a) Use Chaotic Dynamics 
Workbench to study the Lorenz model trajectories both as functions of time and in 
state space. The X-Z projection for r > 24 leads to the famous "butterfly attractor." 
(b) For r < 24 observe the chaotic transients that occur before the trajectories settle 
onto one of the off-origin fixed points. (c) Find the period-doubling sequence that 
occurs, as described in Chapter 1, near r = 160. 

CE2-6. A Cautionary Tale. Use Chaotic Dynamics Workbench to vary the 
integration step size in integrating the equations for the Lorenz model. Show that 
if the step size becomes too large the periodic or chaotic character of the trajectories 
for a particular set of parameter values can apparently change. The moral here is 
that in numerical integration it is important to verify, by using smaller step sizes 
(and, consequently, more computer time) that your results are not an artifact of the 
particular integration step size you have chosen. 

CE2-7. Feigenbaum Numbers. Write a computer program for the logistic 
map that allows you to find the supercycle parameter values, that is, those 
Parameter values for which the attracting trajectory of a particular iterate of the 
map function contains the value x = 0.5. Find these values for period-2, period-4, 
period-8, and period-16. Use your program to calculate the Feigenbaum 6 and a 
values. Hints: Have the program search for the A values for which 
f '"'(0.5) = 0.5 . Use the known value of 6 to estimate where the As occur for 
higher values of n once you have found them for lower values. Question: Given 
the arithmetic precision of the computer language you are using, to what value of n 
are you limited unless you are very clever in your programming? 
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Dynamics in State Space: One and 'ho Dimensions 

Before the beginning of great brilliance, there must be Chaos. I Ching, 

3.1 Introduction 

In this chapter we will begin to build up the theoretical framework needed to 
describe more formally the kinds of complex behavior that we learned about in 
Chapters 1 and 2. We will develop the formalism slowly and in slmple steps to see 
the essential features. We will try to avoid unnecessary mathematical jargon as 
much as possible until we have built a firm conceptual understanding of the 

The key theoretical tool in this description is a state space or phase space 
description of the behavior of the system. This type of description goes back to the 
French mathematician Henri Poincark in the 1800s and has been widely used in 
statistical mechanics since the time of the American physicist J. Willard Gibbs 
(about 1900) even for systems that are linear and not chaotic [Gibbs, 19021. Of 
course, we are most interested in the application of state space ideas to nonlinear 
systems; the behavior of linear systems emerges as a special case. 

The notion of@ed points (also called equilibrium points or stationary points 
or critical points or singular points) in state space plays a key role in understanding 
the dynamics of nonlinear systems. Much of this chapter will be spent cataloging 
fixed points. In addition, we will meet limit cycles, which describe periodic 
behavior that can occur only in state spaces with two or more dimensions. For both 
fixed points and limit cycles the notions of stability and instability are crucial to 
understand how trajectories behave in the neighborhood of the fixed point or limit 
cycle. We will describe how to determine the nature of that stability or instability 
mathematically. Finally, we will introduce bifurcation theory to describe how fixed 
points and limit cycles change their stability and how fixed points and limit cycles 
are born and die as the control parameters of the system are changed. 

This is a rather long chapter, but it builds a substantial foundation for all of 
our subsequent work. Throughout this chapter, we shall emphasize how the 
dimensionality of the state space limits the kind of behavior that can occur for 
deterministic systems. Armed with these theoretical tools, we will be ready for the 
study of chaotic behavior in Chapter 4. 

Appendices G, I, and J treat three extended examples: the Duffing oscillator, 
the van der Pol oscillator, and a model of laser relaxation oscillations. These 
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examples provide nice illustrations of the basic ideas of this chapter but may be 
skipped on a first reading. 

3.2 State Space 

In Chapter 1, we introduced rather casually the notion of a state space description of 
the behavior of a dynamical system. Now we want to develop this notion more 
carefully and in more detail. Let us start with a very simple example: the motion 
of a point mass on an ideal (Hooke's Law) spring, oscillating along the x axis. For 
this system, Newton's Second Law ( @ = m i  ) tells us that 

where (as in Chapter 1) k is the spring constant, and m is the particle's mass. The 
motion of this system is determined for all time by specifying its position 
coordinate x at some time and its velocity 

at some time. Traditionally, we choose t = 0 for that time, and x(t = 0) and 
akldt(t = 0) = xo are the "initial conditions" for the system. The motion, in fact, is 
given by the equation 

xo x(t) = xo cosot +-sin ~t (3.2-3) 
o 

where o = & is the (angular) frequency of the oscillations. By differentiating 
Eq. (3.2-3) with respect to time, we find the equation for the velocity 

i(t)  = -ox, sin o t  + x,, cosot (3.2-4) 

Exercise 3.2-1. Differentiate Eq. (3.2-4) with respect to time to find the 
acceleration and show that it is consistent with Eq. (3.2-1). 

Since knowledge of x(t) and x(t) completely specifies the behavior of this 
system, we say that the system has "two degrees of freedom." (See the comment 
on terminology on the next page.) At any instant of time we can completely 
specify the state of the system by indicating a point in an x versus x plot. This plot 
is then what we call the state space for this system. In this case the state space is 
two-dimensional as shown in Fig. 3.1. 

Note that the dimensionality of the state space is generally not the same as the 
spatial dimensionality of the system. The state space dimensionality is determined 
by the number of variables needed to specify the dynamical state of the system. 
Our oscillator moves (by construction) in just one spatial dimension, but the state 
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. 
Fig. 3.1. Phase portrrut for the mass on a 
s p g .  The ellipses are state space 
trajectories for the system The larger the 
ellipse, the larger the total mechanical 
energy associated with the trajectory. 

space is two-dimensional. Later we shall see examples of systems that "live" in 
three spatial dimensions, but whose state spaces have an infinite number of 
dimensions. 

Two notes on terminology: 
1. In the literature on dynamical systems and chaos, the terms phase 

space and state space are often used interchangeably. The term 
phase space was borrowed from Josiah Willard Gibbs in his treatment 
of statistical mechanics. The use of this notion in dynamical systems 
and chaos is somewhat more general than that used by Poincark and 
Gibbs; so, we prefer (and will use) the term state space. 

2. There is also some ambiguity about the use of the term degree of 
freedom. In the classical mechanics of point particles a degree of 
freedom refers to a & of variables, such as the position coordinate 
along the x axis and the corresponding component of the linear 
momentum p,. In this usage, our simple mass on a spring has one 
degree of freedom. (We shall use this definition in Chapter 8.) In 
dynamical systems theory, the number of degrees of freedom is 
usually defined as the number of independent variables needed to 
specify the dynamical state of the system (or alternately, but 
equivalently, as the number of independent initial conditions that can 
be specified for the system). We will use the latter definition of 
degree of freedom (except in Chapter 8). In the first sense of 
"degrees of freedom," the corresponding phase space must always 
have an even number (2, 4, 6, ...) of dimensions. However, in the 
theory of dynamical systems and chaos, it will often be useful to have 
state spaces with an odd number of dimensions. The Lorenz model 
of Chapter 1 is one such example. 

As time evolves, the initial state point in state space follows a trajectory, 
which, in the case of the mass on a spring, is just an ellipse. (The ellipse can be 
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transformed into a circle by plotting x,, lo on the ordinate of the state space plot, 
but that is simply a geometric refinement.) The trajectory closes on itself because 
the motion is periodic. Such a closed periodic trajectory is called a cycle. Another 
initial point (not on that ellipse) will be part of a different trajectory. A collection 
of several such trajectories originating from different initial points constitutes a 
phase portrait for the system. Figure 3.1 shows a phase portrait for the mass on a 
spring system. 

Exercise 3.2-2. Plot several state space trajectories using Eqs. (3.2-3) and 
(3.2-4). Show that x = 0 when x achieves one of its extreme values. Put 
arrows on the trajectories to show the sense in which a state space point 
traverses the ellipse. Show that each ellipse can be labeled with the value 
of the mechanical energy (kinetic plus potential) +mv2 +4kx2 for that 
trajectory. 

A state space and a rule for following the evolution of trajectories starting at 
various initial conditions constitute what is called a dynamical system. The 
mathematical theory of such systems is called dynamical systems theory. This 
theory has a long and venerable history quite independent of the more recent theory 
of chaos and was particularly well developed by Russian mathematicians (see, for 
example, [Arnold, 19831). Because of the extensive groundwork done by 
mathematicians studying dynamical systems, scientists and mathematicians 
investigating chaos have been able to make relatively rapid progress in recent years. 

33 System Described by First-Order Differential Equations 

Our theoretical treatment will at first be limited to a special (but rather broad) class 
of systems for which the equations giving the time-dependence of the state space 
variables can be expressed as a set of coupled first-order differential equations. To 
be specific, let us consider a system that has three degrees of freedom (in the 
second sense described in Section 3.2). Hence, we need three state variables, say, 
u, v, and w, to describe the state of the system. We will assume that the dynamics 
of the system can be expressed as a set of three first-order differential equations. 
That is, the equations involve only the first derivatives of u, v, and w with respect to 
time: 

The functions f, g, and h depend on the variables u, v, and w (but not their time 
derivatives) and also on one or more control parameters, not denoted explicitly. In 

1 general u, v, and w occur in all three off, g, and h, and we say we have a set of 
"coupled differential equations." Time itself does not appear in the functionsf, g, 
and h. In such a case the system is said to be autonomous. The Lorenz model 
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equations of Chapter 1 are of this form. The time behavior of the system can be 
eacked by following the motion of a point whose coordinafc. are u(t), v(t), w(t) in a 
-dimensional uvw state space. 

You might note, however, that the mass-on-a-spring model discussed earlier 
was not of this form. In particular, Eq. (3.2-1) has a second-order time derivative, 
rather than just a first-order time derivative. However, we can transform Eg. (3.2- 
1) into the standard form by introducing a new variable, say, v such that 

. d2x v=-  (3.3-2) 
dt2 

Using Eq. (3.3-2) and Eq. (3.2-I), we can write the time evolution equations for the 

k 
2) = --x m (3.3-3) 

x = v  (3.3-4) 

Exercise 33-1. Use new variables, analogous to the one introduced in 
Eu. (3.3-2), to convert the following differential equations into the . . 1 standard firm given by Eq. (3.3- 1). I 

d2x (a) -=-kx+yx 
dt2 
d3x 

(b) - = b~ 
dt3 

d2x --kx+bsinat (c) - dt2 -- 

Hint for (c): See the following paragraph. 1 

I We can broaden considerably the class of systems to which Eq. (3.3-1) 
applies by the following "trick." Suppose that after applying the usual reduction 
procedure, the functions on the right-hand side of Eq. (3.3-1) still involve the time 

I variable. (In that case, we say the system is nonautonomous.) This case most 
often arises when the system is subject to an externally applied time-dependent 
"force." For a two-degree-of-fidom system, the standard equations will be of the 
form 

I 

I 
u = f (u.v,t) (3.3-5) 
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We can change these equations to a set of autonomous equations by introducing a 
new variable w whose time derivative is given by 

The dynamical equations for the system then become 

We have essentially enlarged the number of dimensions of the state space by 1 to 
include time as one of the state space variables. The advantage of this trick is that it 
allows us to treat nonautonomous systems (those with an imposed time 
dependence) on the same footing as autonomous systems. The price we pay is the 
difficulty of treating one more dimension in state space. 

Why do we use this standard form (first-order differential equations) for the 
dynamical equations? The basic reason is that this form allows a ready 
identification of the fixed points of the system, and (as mentioned earlier) the fixed 
points play a crucial role in the dynamics of these systems. Recall that the fixed 
points are defined as the points in state space for which all of the time derivatives of 
the state variables are 0. Thus, with our standard form equations the fixed points 
are determined by requiring that 

Thus, we find the fixed points by solving the three (for our three-dimensional 
example) coupled algebraic equations. 

Question: What happens for a nonautonomous system? If we have used 
our ''trick" to write the dynamical equations as suggested above, it should 
be clear that we can never have a fixed point because the derivative for the 
time variable is never zero. (The time variable never stops changing!) 
Thus, we will need special techniques to handle such systems. See 
Section 3.16. 

An important question: Can the dynamical equations for all systems be 
reduced to the form of Eq. (3.3-l)? The answer is yes if (and this is an important t j )  

we are willing to deal with an infinite number of degrees of freedom. For example, 
systems that are described by partial differential equations (that is, equations with 
partial derivatives rather than ordinary derivatives) or systems described by 
integral-differential equations (with both integrals and derivatives occurring in 
essential ways) or by systems with time-delay equations (where the state of the 
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system at time t is determined not only by what is happening at that time but also 
by what happened earlier), all can be reduced to a set of first-order ordinary 
differential equations, but with an infinite number of equations coupled together. 
The state space then has an infinitely large number of dimensions, clearly a 
situation difficult to think about as well as to draw. In later chapters we shall look 
at some examples of this sort of system. Fortunately, in at least some cases, 
experience indicates that only a few of the infinitely many degrees of freedom are 
"active," and we can model the system with a finite number of equations. (This is in 
fact how the Lorenz model equations are derived.) For now, we will restrict 
ourselves to a finite number of coupled equations. 

3.4 The No-Intersection Theorem 

Before beginning the analysis of the types of trajectories and fixed points that can 
occur in state space, we state a fundamental and important theorem: 

By distinct trajectories, we mean that one of the trajectories does not begin on one 
of the points of the other trajectory. The parenthetical comment about a finite 
period of time is meant to exclude those cases for which distinct trajectories 
approach the same point as t + . (In the excluded case, we say the trajectories 
approach the point asymptotically.) 

The basic physical content of this theorem is a statement of determinism. We 
have already mentioned that the state of a dynamical system is specified by its 
location in state space. Furthermore, if the system is described by equations of the 
form of Eq. (3.3-1). then the time derivatives of the state variables are also 
determined by the location in state space. Hence, how the system evolves into the 
future is determined solely by where it is now in state space. Hence, we cannot 
have two trajectories intersect in state space. If two trajectories did cross at some 
point, then the two trajectories would have the same values of their state variables 
and the same values of their time derivatives, yet they would evolve in different 
ways. This is impossible if their time evolution is described by equations like Eq. 
(3.3-1). As we shall see, the No-Intersection Theorem highly constrains the 
behavior of trajectories in state space. 

The No-Intersection Theorem can also be based mathematically on 
uniqueness theorems for the solutions of differential equations. For example, if the 
functionsf, g, and h on the right-hand-side of Eq. (3.3-1) are continuous functions 
of their arguments, then only one solution of the equations can pass through a given 
point in state space. [The more specific mathematical requirement is that these 
functions be continuous and at least once differentiable. This is the so-called 
Lipschitz condition (see, for example, [Hassani, 19911, pp. 57&71). 
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Fig. 3.2. A sketch of attractors A1 and A2 and basii  of atbaction in state space. Trajectories 
starting inside the dotted basii eventually end up in the amzlctor region inside the dotted 
region. Trajectories starting in the other basii head for the other attractor. For starting points 
outside these two basii, the trajectories may go toward a third attractor (not shown). The 
line bounding a basin of attraction forms a separairix. 

We shall see two apparent violations of this theorem. The lirst occurs for 
those asymptotic "intersections" mentioned earlier. The second occurs when we 
project the trajectory onto a two-dimensional plane for the sake of illustration. For 
example, Fig. 1.19 shows a YZ plane projection of a trajectory for the Lorenz 
model. The trajectory seems to cross itself several times. However, this crossing 
occurs only in the two-dimensional projection. In the 111 three-dimensional state 
space the trajectories do not cross. 

3.5 Dissipative Systems and Attractors 

In our current discussion of state space and its trajectories, we will limit our 
discussion to the case of dissipative systems. (Systems for which dissipation is 
unimportant will be discussed in Chapter 8.) As mentioned in Chapter 1, a 
dissipative system displays the nice feature that the long-term behavior of the 
system is largely independent of how we ''start up" the system. We will elaborate 
this point in Section 3.9. (Recall, however, that there may be more than one 
possible "final state" for the system.) Thus, for dissipative systems, we generally 
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ignore the transient behavior associated with the start up of the system and focus 
our attention on the system's long-term behavior. 

As the dissipative system evolves in time, the trajectory in state space will 
head for some final state space point, curve, area, and so on. We call this final 
point or curve (or whatever geometric object it is) the uttmctor for the system since 
a number of distinct trajectories will approach (be attracted to) this set of points in 
state svace. For dissipative systems, the properties of these attractors determine the 
dynamical properties of the system's long-term behavior. However, we will also be 
interested in how the trajectories approach the attractor. 

The set of initial conditions giving rise to trajectories that approach a given 
attractor is called the basin of uttmction for that attractor. If more than one 
attractor exists for a system with a given set of parameter values, there will be some 
initial conditions that lie on the border between the two (or more) basins of 
attraction. See Fig. 3.2. These special initial conditions form what is called a 
sepamtrix since they separate different basins of attraction. 

The geometric properties of basins of attraction can often be complicated. In 
some cases the boundaries are highly irregular, forming what are called fractal 
basin boundaries (GM083, MG085). In other cases, the basins of attraction can 
be highly intertwined, forming what are called riddled basins of attraction 
(S0093a): any point in one basin is close to another point in another basin of 
attraction. As we mentioned in Chapter 1, the existence of such complicated 
structures means that our ability to predict even which attractor a system will 
evolve to is severely compromised. 

In the next sections we will describe the kinds of trajectories and attractors 
that can occur in state spaces of different dimensions. The dimensionality of the 
state space is important because the dimensionality and the No-Intersection 
Theorem together highly constrain the types of trajectories that can occur. In fact, 
we shall see that we need at least three state space dimensions in order to have a 
chaotic trajectory. We will, however, begin the cataloging with one and two 
dimensions to develop the necessary mathematical and conceptual background. 

3.6 One-Dimensional State Space 

A one-dimensional system, in the sense of dimension we are using here, has only 
one state variable, which we shall call X. This is, as we shall see, a rather 
uninteresting system in terms of its dynamical possibilities; however, it will be 
useful for developing our ideas about trajectories and state space. For this one 
dimensional state space, the dynamical equation is 

The state space is just a line: the X axis. 
First let us consider the fixed points for such a system, that is the values of X 

for which x = 0. Why are the fixed points important? If a trajectory happens to get 
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to a fixed point, then the trajectory stays there. Thus, the fixed points divide the X 
axis up into a number of "noninteracting" regions. We say the regions are 
noninteracting because a trajectory that starts from some initial X value in a region 
located between two fixed points can never leave that region. 

Exercise 3.6-1. Provide the details of the proof of the last statement in the 
previous paragraph. 

Now we want to investigate what happens to trajectories that are near a fixed 
point. For a one-dimensional state space, there are three types of fixed points: 

1. Nodes (sinks): fixed points that attract nearby trajectories. 
2. RepeUors (sources): fixed points that repel nearby trajectories. 
3. Saddle points: fixed points that attract trajectories on one side but 

repel them on the other. (The origin of the term saddle point will 
become obvious when we get to the twodimensional case.) 

A node is said to be a stublejlxedpoint in the sense that trajectories that start near 
it are drawn toward it much like a ball rolling to a point of stable equilibrium under 
the action of gravity. A repellor is an example of an unstable jked point in 
analogy with a ball rolling off the top of a hill. The top of the hill is an equilibrium 
point, but the situation is unstable: The slightest nudge to the side will cause the 
ball to roll away from the top of the hill. A saddle point attracts trajectories in one 
direction while repelling them in the other direction. 

How do we determine what kind of fixed point we have? The argument goes 
as follows: Let X, be the location of the fixed point in question. By definition, we 
have 

Now consider a trajectory that has arrived at a point just to the right of X,. Let us 
call that point X = X, + x (see Fig. 3.3). We shall assume that x is small and 
positive. IfAX, + x) is positive (for x positive), then x is positive and hence the 
trajectory point will move away from X, (toward more positive X values). On the 
other hand, ifAX, + x) is negative (for x positive), then x is negative and the 
trajectory moves to the left toward the fixed point X,. Conversely, if we start to the 
left of X, along the X axis, then we need AXo - x) positive to move toward X, and 
AXo - X) negative to move away from X,. These two cases are illustrated in Fig. 
3.3. When trajectories on both sides of X, move away from X,, the fixed point is a 
repellor. When trajectories on both sides of X, move toward X,, the fixed point is a 
node. 

Both of these cases can be summarized by noting that the derivative ofAX) 
with respect to X evaluated at X, is negative for a node and positive for a repellor. 
The value of this derivative at the fixed point is called the charactekk value or 
eigenvalue (from the German eigen = characteristic) of that fixed point. We call 
the characteristic value d . 

Dynamics in State Space 

! 
node 

I / 

I I repellor 

Fig. 3.b. On the le&, f (X) in the neighborhood of a node iocated at X, On the right, f (X) in 
the neighlbomood of a repellor located at X,. 

We summarize these results in Table 3.1. The crucial and important lesson here is 
that we can determine the character of the fixed point and consequently the 
behavior of the trajectories near that fixed point by evaluating the derivative of the 
functionf(X) at that fixed point. 

What happens when the characteristic value is equal to O? The fixed point 
might be a node or a repellor or a saddle point. To find out which is the case we 
need to look at the second derivative off with respect to X as well as the first 
derivative. For a saddle point, the second derivative has the same sign on both 
sides of Xo (see Fig. 3.4). Thus, we see that for a saddle point the trajectory is 
attracted toward the fixed point on one side, but repelled from the saddle point on 
the other. 

For the node and repellor with characteristic value equal to 0, the second 
derivative changes sign as X passes through X, (it is positive on the left and 
negative on the right for the node and negative on the left and positive on the right 
for the repellor). These kinds of "flat" nodes and repellors attract and repel 
trajectories more slowly than the nodes and repellors with nonzero characteristic 
values. For the type I saddle point, trajectories are attracted from the left but 
repelled on the right. The attraction and repulsion are reversed for the type I1 
saddle points. 

We will not discuss these types of "flat" fixed points further because, in a 
sense, they are relatively rare. They are rare because they require both the function 
f ix) and its first derivative to be 0. If we have only one control parameter to adjust, , 

then it is "unlikely" that we can satisfy both conditions simultaneously for some 
range of parameter values. In more formal terms, we talk about the structural 

Table 3.1 
Characteristic Values 

h<O fixed point is a node 
h > 0 fixed point is a repellor 
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Fig. 3.5. In onedimensional state spaces, a saddle point, the point Xo in (b), is structurally 
unstable. A small change in the functionfo, for example pushing it up or down along the 
vertical axis, either removes the fixed point (a), or changes it into a node and a repellor (c). 

some finite range of parameter values. We can never set the experimental 
conditions absolutely precisely, and "noise" always smears out parameter values. 
However, as we shall see, structurally unstable conditions are still important: In 
many cases they mark the border between two different types of behavior for the 
system. We will return to this issue at the end of this chapter in the discussion of 
bifurcations. 

3.7 Taylor Series Linearization Near Fixed Points 

Fig. 3.4. Four Gsible types of fixed points in onedimension with chakteristic value A= 0. 
These fixed points are structurally unstable. 

s t a b w  of the fixed point. If the fixed point keeps the same character when the 
shape or position of the function changes slightly (for example, as a control 
parameter is adjusted), then we say that the fixed point is structurally stable. If the 
fixed point changes character or disappears completely under such changes, then 
we say it is structurally unstable. For example, the nodes and repellors shown in 
Fig. 3.3 are structurally stable because shifting the function AX) up and down 
slightly or changing its shape slightly does not alter the character of the fixed point. 
However, the fixed points shown in Fig. 3.4 are structurally unstable. For example, 
a small change in the function, say, shifting it up or down by a small amount, will 
cause a saddle point to either disappear completely or change into a node-repellor 
pair (see Fig. 3.5). 

To examine in detail what constitutes a small change in the functionfix) and 
how to decide whether a particular structure is stable or unstable would lead us 
rather far afield (see [Guckenheimer and Holmes, 19901). Most of the work in 
nonlinear dynamics focuses on structurally stable state space portraits because in 
any real experiment the only properties that we can observe are those that exist for 

The formal discussion of the nature of fixed points can be summarized very 
compactly using the mathematical notion of a Taylor series expansion of the 
functionflx) for X values in the neighborhood of the fixed point X,: 

where all the derivatives are evaluated at X = X,. At a fixed point for a dynamical 
system, the first term on the right-hand side of Eq. (3.7-1) is 0, by the definition of 
fixed point. The Taylor series expansion tells us that the functionflx) near Xo is 
determined by the values of the derivatives off evaluated at X, and the difference 
between X and X,. This information together with the dynamical equation (3.6-1) is 
sufficient to predict the behavior of the system near the fixed point. 
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In particular, we introduce a new variable x = X - X,, which measures the 
distance of the trajectory away from the fixed point. If we neglect all derivatives of 
order higher than the first, then x satisfies the equation 

the solution to which is 

where 

that is, A is the characteristic value of the fixed point. We see that the trajectory 
approaches the fixed point (a node) exponentially if A. c 0 and is repelled from the 
fixed point (a repellor) exponentially if A > 0. A is also called the Lyapunov 
exponent for the region around the fixed point. We should emphasize that these 
results hold only in the immediate neighborhood of the fixed point where the 
Taylor series expansion Eq. (3.7-I), keeping only the first derivative term, is a good 
description of the functionffX). 

3.8 Trajectories in a One-Dimensional State Space 

What kinds of trajectories can we have in a one-dimensional state space? First, we 
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should note that our analysis thus far simply tells us what happens in the 
neighborhood of fixed points or what we might call the local behavior of the 
svstem. As we have seen. this local behavior is determined by the nature of the 

f ( X )  

-. 
derivatives of the time evolution function evaluated at the fixed -point. To obtain a 
larger-scale picture of the trajectories (a so-called global picture or a globalphase 

Fig. 3.6. In a onedimensional state 
space, two nodes (here labeled & and XI) 
must have a repellor R located between 

we need to consider the relationship between the positions of different 
kinds of fixed points.For the one-dimensional case, the possible relationships 
among fixed points are highly constrained by the property of the continuity of the 
function$ More explicitly, if we assume that f must vary smoothly as a function of 
X, with no sudden jumps or steps (the physics behind this statement is the 
assumption that the "velocityy' x must vary smoothly), then the two neighboring 
fixed points cannot be nodes, nor could both be repellors. Nor could one be a type I 
and the other a type I1 saddle point. Under the assumption of a continuous function 
f, we can have only certain patterns of fixed points. We can "prove" this last result 
simply by graphingffX) and trying to connect various types of fixed points with a 
smooth (continuous) curve. 

As an example, consider Fig. 3.6 in which we have nodes at Xo and XI. In 
order forAX) to go through both nodes and to be continuous in the interval between 
the two nodes, it must pass through a repellor, here at R. 

Exercise 3.8-1. Prove the following statements for a one-dimensional 
state space. (a) Two repellors must have a node between them. (b) A type 
I saddle point and a type I1 saddle point must have either a repellor or a 
node between them. Distinguish those two cases. (c) A type I saddle 
point can have another type I saddle point as a neighbor. (d) A type I1 
saddle point can have another type I1 saddle point as a neighbor. 

We can establish one further restriction: If the trajectories for our system are 
to be bounded (that is, trajectories stay within some finite region of state space for 
all time), then the "outermost" fixed points along the X axis must be either nodes or 
a type 1 saddle point on the left or a type I1 saddle point on the right. If the system 
has a saddle point, then there must be a node further along the X axis on the 
repelling side of the saddle point if the trajectories are to remain bounded. 

The lesson of this section is that given the pattern of fixed points for a 
particular system, we can piece together a global phase portrait, a picture of how 
trajectories must travel through the state space. For a one-dimensional system this 
is quite easy if we are given the pattern of fixed points. We draw trajectory arrows 
that point toward nodes and the attracting side of saddle points. We draw 
trajectory arrows that point away from repellors and away from the repelling side of 
saddle points. From this picture we can then give a qualitative description of how 
trajectories move in the state space. 

Exercise 3.8-2. Is it possible to have trajectories that represent oscillatory 
(repetitive) motion for a system with a one-dimensional state space? 
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Exercise 3.8-3. The logistic differential equation. The following 
differential equation has a "force" term that is identical to the logistic  ma^ - I function introduced in Chapter 1 - I 

x =AX(l-X) 

(a) Find the fixed points for this differential equation. 
I (b) Determine the characteristic value and t$ of each of the fixed points. ( 

Exercise 3.8-4. (a) Show that the solution of the differential equation 
given in Ex. 3.8-3 is 

X(t) = A 0 

X,, - X,, - 1 e-A' 
where Xo is the initial (t = 0) value o 1 X. (b) ' Sketch the solution X(t) as a 
function of time for several values of Xo and relate the behavior of the 
solutions to the nature of the fixed points. (c) Why are the solutions to the 
logistic differential equation relatively simple while the behavior of the 
trajectories for the logistic map equation in Chapter 1 are very 

3.9 Dissipation Revisited 

Earlier in this chapter, we mentioned that we would be interested primarily in 
dissipative systems. How do we know if a particular system, here represented by a 
particular function AX), is dissipative or not? If we are modeling a real physical 
system, the dissipation is due to friction (in the generalized sense), viscosity, and so 
on, and usually we can decide on physical grounds whether or not dissipation is 
important. However, it would be useful to have a mathematical tool that we could 
use to recognize a dissipative system directly from its dynamical equations. Given 
this tool we could check to see if a mathematical model we have developed (or 
which someone has given to us) includes dissipation or not. 

To assess dissipation, we will use an important conceptual tool: a "cluster" of 
initial conditions. In the one-dimensional case, the cluster of initial conditions is 
some (relatively) small segment of the X axis. (We exclude segments that contain 
fixed points for what will become obvious reasons.) Let us suppose that this line 
segment runs from XA to XB (with XB > XA). See Fig. 3.7. The length of the 
segment is XB - XA. We want to examine what happens to the length of this line 
segment as time evolves and the trajectory points in that segment move through the 
state space. The time rate of change of the length of this segment is given by 
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Thus, ifAXB) <AXA), the length of the segment will shrink as time goes on. If the 
line segment is sufficiently short, we can use the Taylor series expansion 

to relateAXB) t0AXA). If we let L = XB - XA, and keep only the first derivative term 
in Eq. (3.9-2), then we can write Eq. (3.9-1) in the form 

From Eq. (3.9-3), we see that the length of the segment of initial conditions will 
decrease ifflXB) <AXA) or, equivalently, if djdX is negative. This condition will be 
satisfied if the trajectories are approaching a node, since the derivative off is 
negative at a node and, by continuity, in the neighborhood of a node. (We are 
excluding the structurally unstable fixed points from our consideration.) 

The previous analysis concentrated on the behavior near a single fixed point. 
More generally, we can ask for the "average" behavior over the history of some 
trajectory. It may turn out that a cluster of initial conditions first expands, as it 
leaves the region around a repellor, and then later contracts as it approaches a node. 
On the average, the cluster of trajectory points must experience contraction for a 
bounded dissipative system. 

The readers with substantial mathematical experience will recognize the last 
equation as a pedestrian version of the "divergence theorem." In Section 3.13 we 
shall develop that theorem more formally for the two-dimensional case. 

3.10 Two-Dimensional State Space 

We now extend our discussion of state space to two-dimensional systems, where 
we shall see that the greater freedom provided by the higher dimensionality 
increases significantly the variety of behaviors and at the same time lifts some, but 
not all, of the geometrical constraints on the pattern of fixed points. Also, we shall 
see that a new type of attractor, a limit cycle, must be introduced to describe some 
of these new types of behavior. 

Our discussion for two-dimensional state spaces will proceed along the same 
lines as the discussion of one-dimensional systems. We assume that the equations 
describing the dynamics of the system can be written as a pair of coupled, first- 
order differential equations for the state variables, which we shall label XI and X2. 
(Occasionally, we will use x and y as the independent variables, but we want to 

l%& 3.7. A "cluster of initial conditions," indicated by the heavy line, along the X axis. 
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emphasize that in general the state space variables are not spatial coordinate 
variables.) The time evolution equations are 

The behavior of the system is followed by looking at trajectories in an XI-X2 
state space. Just as in one-dimension, the fixed points of Eq. (3.10-1) play a major 
role in the dynamics of the system. The fixed points, of course, are those points 
( X l O J 2 0 )  satisfying 

You have probably already anticipated the next step: The character of the 
fixed point and the behavior of trajectories in the neighborhood of the fixed point 
are determined by the derivatives of the functions fi and fi evaluated at the fixed 
point; however, since fi and fi generally depend on both X I  and X2, there are four 
partial derivatives to consider 

a4 a4 a f 2  J f 2  - - - - 
ax,' ax,' ax,' ax, 

The question then is how the characteristics of the fixed point depend on those four 
partial derivatives. 

A Special Case 
Before considering the general problem of fixed point characteristics in two 
dimensions, let us first look at a particularly simple case-the case for which only 
two of the four derivatives are not equal to 0. In particular, let us assume that at the 
fixed point (XI,, X2J the derivatives have the following values: 

a4 - 0  34 -A,  -- -- 
ax, 8x2 

3 f 2  -4 3f2 -0 -- -- 
ax, ax2 

In this special case, what happens along the X I  direction in the neighborhood of the 
fixed point depends only on A,, and what happens along the X2 direction depends 
only on 4. For this case, we say that the X I  and X2 axes are the characteristic 
directions with the associated characteristic values A, and 4. Please keep in 
mind that this independence of the X I  and X2 motions holds only in this special case 
and only in the vicinity of this fixed point.) 
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+ Fig. 3.8. Sample trajectories near each of 
the four types of fixed points with real 
characteristic values in two dimensions. 

Types of Fixed Points in Two Dimensions 
We can now begin to construct the catalog of types of fixed points in two 
dimensions by fitting together the possible types of onedimensional behavior. We 
shall soon see, however, that there are new types of behavior possible in two 
dimensions. In the simplest case, il, and ;1, are both real numbers and both are 
nonzero. (When a characteristic value equals 0, then we need a more complicated 
analysis, just as we did in one-dimension.) By using arguments like those leading 
up to Eq. (3.6-3), we can see that there are four possible fixed points as listed in 
Table 3.2. In Fig. 3.8, sample trajectories are shown in the neighborhood of those 
fixed points. 

We are now in a position to understand why a saddle point is called a saddle 
point. The behavior of trajectories near a saddle point is analogous to the behavior 
of a ball rolling under the influence of gravity on a saddle-shape surface as shown 
in Fig. 3.9. In that picture, a ball rolling along the x axis will be attracted to the 
saddle point at (0,O). A ball rolling along the y axis will roll away from (be 
"repelled by") the saddle point. 

In more formal terms the connection is made by defining a function g(x,y) (to 
use the variables indicated in Fig. 3.9) such that 

The "force functions" fi and fi are given by the negative gradients of the 
"potential function*' g(x,y). Then at a fixed point of thefi,fi system the function g 
has an extremum (a local maximum or minimum). At a saddle point, the function 
g, as shown in Fig. 3.9, has a minimum while moving along the x axis but a 
maximum while moving along the y axis. For a mechanical system the function 
g(x,y) might represent the potential energy function for the system. 
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Table 3.2. 

Possible Fixed Point Characters 
with Real Characteristic Values 

A1 b Type of Fixed Point 
<O <O attracting node 
>O >O repellor 
>O <O saddle point 
<O >O saddle point 

Some Terminology 
Saddle points, and in particular the special trajectories that head directly toward or 
directly away from a saddle point, play an important role, as we shall see, in 
organizing the behavior of all possible trajectories in state space. Because of this 
role, special terminology has been developed to talk about these trajectories. 

The sets of points that form the trajectories heading directly to (approaching 
the saddle point as t + 00 ) or directly away from a saddle point are sometimes 
called the invariant manifohis associated with that saddle point. More specifically, 
the trajectories heading directly toward the saddle point form what is called the 
stable manifold (because the characteristic value 1 < 0 along those trajectories), 
while the trajectories heading directly away from the saddle point form what is 
called the unstable manifold. Other authors (e.g. [Abraham and Shaw, 19841 and 
[Thornson and Stewart, 19861) call these same manifolds insets and outsets 
respectively. We prefer to call them in-sets and out-sets to avoid possible 
confusion with the usual English meanings of the words inset and outset. 

Fig. 3.9. A Ae-type surface f a  a two-dimsional state space. The saddle point is 
ba ted  at (x,y) = (0.0). 
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The Importance of Saddle Points 
To get a feeling for the importance of saddle points and their in-sets and out-sets, let 
us consider a system that has only one fixed point. If that fixed point is a saddle 
point, and if the characteristic values are not equal to zero, then the in-sets and out- 
sets of that saddle point divide the state space up into four "quadrants." A 
trajectory that is not an in-set or an out-set is confined to the quadrant in which it 
starts as illustrated in the lower half of Fig. 3.8. In that sense, the in-sets and out- 
sets "organize" the state space. The out-sets and in-sets are part of the separatrices 
(if there are any) for the state space. 

For this kind of saddle point (for which neither of the characteristic values is 
O), the trajectories near the saddle point but not on either the in-set or out-set look 
like sections of hyperbolas. Hence, this kind of saddle point is called a hyperbolic 
point. In fact, the term hyperbolic is applied to any fixed point whose characteristic 
values are not equal to 0. (In the general case to be discussed later, the real parts of 
the characteristic values are not 0.) In this language, the one-dimensional saddle 
points discussed in the previous section, which we called structurally unstable, are 
nonhyperbolic because the associated characteristic value is 0. 

3.11 Two-dimensional State Space: The General Case 

In the most general case in two dimensions, all four of the derivatives in Eq. (3.10- 
3) are nonzero. How do we characterize the fixed point in that situation? It turns 
out that in this case there are still just two characteristic values associated with the 
fixed point, but the associated characteristic directions are no longer the X1 and X2 
directions, in general. 

At this point a specific example will help illustrate these ideas. We will 
describe the equations used to model a certain set of chemical reactions [Nicolis 
and Prigogine, 19891, called the Brusselator model because its originators worked 
in Brussels. The equations are 

A and B are positive numbers that represent the control parameters, and X and Yare 
variables proportional to the concentrations of some of the intermediate products in 
the chemical reaction. One can imagine monitoring these concentrations as 
functions of time with some appropriate electrodes or with some optical absorption 
measurements that are sensitive to those chemical concentrations. 

First let us find the fixed points for this set of equations. By setting the time 
derivatives equal to 0, we find that the fixed points occur at the values X,Y that 
satisfy 
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We see that there is just one point (X,Y) which satisfies these equations, and the 
coordinates of that fixed point are Xo =A,  Yo = BIA. 

What is the character of that fixed point? To see how we find these 
characteristic values, let us return to our general two-dimensional state space and 
make use of a Taylor series expansion of Eq. (3.10-1) in the neighborhood of the 
fixed points (XI,, Xb): 

In Eq. (3.1 1-4), we have evaluated the derivatives at the fixed point (XI,, Xb), and 
the ellipsis indicates all derivatives higher than the first, which we are ignoring. 
(Note that we use partial derivatives in the Taylor series expansion because the 
functions depend on both XI and X2.) It is useful to introduce new variables xl = (XI 
- XI,) and xz = (X2 - Xb), which indicate the deviation away from the fixed point. 
Noting that 

xI = XI and x2 = X2 (3.1 1-5) 

and ignoring all the higher-order derivative terms, we may write Eq. (3.1 1-4) as 

a!  af, i, =-XI +-x2 ax, ax, 
. af2 af2 x2 = X I  +-x2 

ax, ax2 

- 
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We now use the fust of Eq. (3.11-6) again to eliminate x2: 

4 = < A ,  +f22)xl+cf,,f21 -f,,f22)x, 

To solve Eq. (3.1 1-9), let us assume that the solution 
form 

(3.1 1-9) 

can be written in the 

Please note that Eqs. (3.11-6) are linear, first-order differential equations with 
constant coefficients (the factors multiplying xl and x2 are independent of time) for 
the new state variables xl and x2. There are many standard techniques for solving 
such differential equations. We shall use a method that gets us to the desired results 
as quickly as possible. 

To simplify the notation, we shall write 

where i and j = 1 or 2. First, we find a differential equation for xl alone by 
differentiating the first equation in Eq. (3.11-6) with respect to time and then 
eliminating x2 by the use of the second equation in Eq. (3.11-6): 

x, (t) = cek  (3.1 1-10) 

where A is a constant to be determined, and C is a constant (independent of time) to 
be determined from the initial (t = 0) conditions. Let us pause a second to note that 
if A is positive (and real) then the trajectory will be repelled by the fixed point; that 
is, we have an unstable fixed point. If A is negative (and real), then the trajectory 
approaches the fixed point; that is, we have a stable fixed point. As we shall see 
later, A may also be a complex number. 

Let us return to our solution. If we use Eq. (3.1 1-10) in Eq. (3.1 1-9), then we 
find that 

We call Eq. (3.1 1-1 1) the chumctektk equation for A, whose value depends only 
on the derivatives of the time evolution functions evaluated at the fixed point. Eq. 
(3.1 1-1 1) is a quadratic equation for A and in general has two solutions, which we 
can write down from the standard quadratic formula: 

We have denoted A+ as the result obtained with the + sign in front of the square root 
in Eq. (3.11-12) and A. the result obtained with the - sign. Obviously, the 
characteristic values will be real numbers if the argument under the square root sign 
in Eq. (3.11-12) is positive. They will be complex numbers if the argument is 
negative. 

The most general solution of Eq. (3.11-9) can then be written as 

where C and D are constants that can be found from the initial conditions 
x,(t =O)and x2(t =0).  

Before interpreting the general solutions, we should note that we have 
considerable freedom in the choice of coordinates for the state space. We started 
out using xl and x2 as the coordinates, but we could equally well use xl and i, 
since, from Eq. (3.11-6), if we know xl and i, , then we know x2. We could, 
however, also use x2 and i, or other pairings of variables. The general geometric 
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behavior of the trajectories is not influenced by the choice of state space 
coordinates. 

Exercise 3.11-1. Show that Eq. (3.1 1-12) reduces to Eq. (3.10-4) in the 
special casefi2 = 0 andfil = 0. 

initial conditions xI(0) and xz(0). Hint: differentiate Eq. (3.1 1-13) and use 
Eq. (3.1 1-9) to get a second condition on C and D. This exercise requires 
a modest amount of algebra, and the final results are not particularly 

Exercise 3.11-3. Show that x2 satisfies a differential equation that is 
exactly the same as Eq. (3.11-9). Combine these results to specify the 
complete dynamics of the system represented by Eq. (3.11-6). 

3.12 Dynamics and Complex Characteristic Values 

What are the dynamics of the system when the characteristic values are not real, but 
are complex numbers? This situation occurs when the argument of the square root 
in Eq. (3.1 1-12) for the characteristic values is negative. We shall find that this 
case describes behavior in which trajectories spiral in toward or away from the 
fixed point, as illustrated in Fig. 3.10. 

When the argument of the square root in Eq. (3.1 1-12) is negative, we may 
write the characteristic values as 

where 

Using the standard mathematical language of complex numbers, we say that R is 
the "real part" and 8 is the "imaginary part" of these complex numbers. The two 
eigenvalues A + and A - form a complex conjugate pair: A + is the complex 
conjugate of A - and vice versa. To see what the trajectory behavior is like in this 
case, we use these characterisdc values in the equation for xl(t): 
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Fi 3.10. A spiral node (left) and a spiral repellor (right) occur when the characteristic 
values of a fixed point are complex numbers. 

xl (t) = ce(& )' + ~ e ' ~ ' '  
= eRf [ ce iW + ~ ~ - i m  I 

To see what is going on, let us consider the special case x,(O) = 0, which tells 
us that C = - D. We now use the famous Euler formula 

to write 

x, (t) = ~ e "  sin(51t) (3.12-5) 

where F is a constant that depends on x2(0). From this result we see that xl 
oscillates in time with an angular frequency 51 while the amplitude of the 
oscillation increases or decreases exponentially (depending on whether R > 0 or R < 
0). x2 undergoes similar behavior. The corresponding state space behavior is 
shown schematically (with different initial conditions) in Fig. 3.10. For more 
general initial conditions, the state space behavior is still the same: oscillations 
with exponentially increasing or decreasing amplitude. 

Exercise 3.12-1. Show that the constant Fin Eq. (3.12-5) is given by 
F = f,,x,(O)lQ 

Exercise 3.12-2. For the reader with a bit more algebraic fortitude: Work 
out the most general solution of Eq. (3.12-3) in terms of xI(0) and ~ ~ ( 0 )  
and show that the behavior is as described at the end of the previous 
paragraph. 
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x2 I Fig. 3.11. A rectande of initial conditions in 

For the fixed point on the left in Fig. 3.10, we say we have a spiral node 
(sometimes called a focus) since the trajectories spiral in toward the fixed point. 
On the right in Fig. 3.10, we have a spiml repellor (sometimes called an unstable 
focus). In the special case when R = 0, the trajectory forms a closed loop around 
the fixed point. This closed loop trajectory is called a cycle. If trajectories in the 
neighborhood of this cycle are attracted toward it as time goes on, then the cycle is 
called a limit cycle. We need a more detailed analysis to see if this cycle is itself 
stable or unstable. An analysis of cycle behavior will be taken up in Section 3.16. 

It is important to realize that the spiral type behavior shown in Fig. 3.10 and 
the cycle type behavior discussed in the Section 3.16 are possible only in state 
spaces of two (or higher) dimensions. They cannot occur in a one-dimensional 
state space because of the No-Intersection Theorem (recall Exercise 3.8-2). 

3.13 Dissipation and the Divergence Theorem 

Now we show how we can test for dissipation in two-dimensional state space. We 
shall then see that, in principle, the generalization to many dimensions is easy. In 
two dimensions, we start with a cluster of initial conditions of the two variables X, 

~ - - - -  
- - A  

and X2 in some (small) area delimited by the coordinates (Xlc, Xzc) and (XIB, XZB) as 
shown in Fig. 3.1 1. 

Again we compute the rate of change of that area 

A = ('1, - X , ~ ) ( X 2 ~  - '28) (3.13-1) 

where we have used the time-evolution equations 
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We make use of a Taylor series expansion 

with a similar expression for f2. When these expansions are substituted into Eq. 
(3.13-2), we obtain, after dividing through by A 

1 dA - a! a f z  +- (3.13-5) 
A dt ax, ax, 

Once again we see that the relative growth or shrinkage of the area containing 
the set of initial conditions is determined by the derivatives (here partial 
derivatives) of the time evolution functions. If the right-hand side of Eq. (3.13-5) is 
negative, then the initial phase space area shrinks to 0, and we say that the system is 
dissipative. The trajectories all collapse to an attractor whose geometric dimension 
is less than that of the original state space. For two state space dimensions, the 
attractor could be a point (a node) or a curve (a limit cycle). It should be (almost) 
obvious that for N dimensions, the evolution of an N-dimensional volume V of 
initial conditions in state space is given by 

where the right-hand equality defines what is called the divergence of the set of 
functionsi . If div( f )  < 0 on the average over state space, we know that the initial 
volume of initial conditions will collapse onto a geometric region whose 
dimensionality is less than that of the original state space, and we know that the 
state space has at least one attractor. 

Exercise 3.13-1. Evaluate div( f )  for the Lorenz model equations 
introduced in Chapter 1 for parameter values r = 0.5, p = 10, and b = 813. 
Is the Lorenz system dissipative throughout its state space? 

3.14 The Jacobian Matrix for Characteristic Values 

We would now like to introduce a more elegant and general method of finding the 
characteristic equation for a fixed point. This method makes use of the so-called 
Jacobian muink of the derivatives of the time evolution functions. Once we see 
how this procedure works, it will be easy to generalize the method, at least in 
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principle, to find characteristic values for fixed points in state spaces of any 
dimension. The Jacobian matrix for the system is defined to be the following 
square array of the derivatives: 

where the derivatives are evaluated at the fixed point. We subtract A from each of 
the principal diagonal (upper left to lower right) elements and set the determinant of 
the matrix equal to 0: 

Multiplying out the determinant in the usual way then yields the characteristic 
equation (3.1 1-1 1). The Jacobian matrix method is obviously easily extended to d- 
dimensions by writing down the d-by-d matrix of derivatives of the d time- 
evolution functionsf,, forming the corresponding determinant, and then (at least in 
principle) solving the resulting dth order equation for the characteristic values. 

We now introduce some terminology from linear algebra to make some very 
general and very powerful statements about the characteristic values for a given 
fixed point. First, the trace of a matrix, such as the Jacobian matrix (3.14-l), is 
defined to be the sum of the principal diagonal elements. For Eq. (3.14-1) this is 
explicitly 

If we look at the solution for the characteristic values given in Eq. (3.1 1-12), we see 
that the sum of the diagonal elements is in fact equal to the sum of the characteristic 
values. 

According to Eq. (3.13-5), however, this is just the combination of derivatives 
needed to test whether or not the system's trajectories collapse toward an attractor. 
To make a connection with the previous section, we note that TrJ = 2R, so that we 
see that the of TrJ determines whether the fixed point is a node or a repellor. 

Linear algebra also tells us how to find the directions to be associated with the 
characteristic values. For a saddle point, these directions will be the directions for 
the in-sets and out-sets in the immediate neighborhood of the saddle point. The 
basic idea is that by transforming the coordinate system, (in general the new 
coordinates are linear combinations of the original coordinates), we can bring the 
Jacobian matrix to the so-called diagonal form in which only the principal diagonal 
elements are non-zero. In that case the matrix has the form (for a two-dimensional 
state space) 
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Table 3 3  
Fixed Points for Two-dimensional State Space 

T r l < n  TrJ > 0 .." - - - .  

A > (11 ~MT~J) '  spiral node spiral repellor . , .  . 

0 < A < (1 /4 ) (~rJ )~  node repellor 
A<O saddle point saddle point 

In linear algebra this procedure is called "finding the eigenvalues and 
eigenvectors of the matrix." For our purposes, the eigenvalues are the characteristic 
values of the fixed point and the eigenvectors give the associated characteristic 
directions. However, we will not need these eigenvectors for most of our purposes. 
The interested reader is referred to the books on linear algebra listed at the end of 
the chapter. 

We now introduce one more symbol: 

A = h f 2 2  - f 2 1 A 2  (3.14-6) 

A is called the determinant of that matrix. Then we may show that the nature of 
the fixed point is determined by TrJ and A as listed in Table 3.3. 

I Exercise 3.14-1. Use the definitions in Eqs. (3.14-3) and (3.14-6) and Eq. I 
L(3.11-12) to verify the entries in Table 3.3. 1 

Summary of Fixed Point Analysis for Two-dimensional State Space 
1. Write the time evolution equations in the first-order time derivative form of 

Eq. (3.10-1). 

2. Find the fixed points of the evolution by finding those points that satisfy 

3. At the fixed points, evaluate the partial derivatives of the time evolution 
functions to set up the Jacobian matrix 
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4. Evaluate the trace and determinant of the Jacobian matrix at the fixed point and 
use Table 3.3 to find the type of fixed point. 

5. Use Eq. (3.1 1-12) to find the numerical values of the characteristic values and 
- - ~ ~ 

to specify the behavior of the state-space trajectories near the fixed point with 
Eq. (3.11-13). 

Example: The Brusselator Model 
As an illustration of ow techniques, let us return to the Brusselator Model given in 
Eq. (3.1 1-1). The Jacobian matrix for that set of equations is 

Following the Jacobian determinant method outlined earlier, we find the 
characteristic values: 

In the discussion of this model, it is traditional to set A = 1 and let B be the 
control parameter. Let us follow that tradition. We see that with B c 2, both 
characteristic values have negative real parts and the fixed point is a spiral node. 
This result tells us that the chemical concentrations tend toward the fixed point 
values Xo = A = 1, Yo = B as time goes on. They oscillate, however, with the 
frequency Q = (B(B -4)lX as they head toward the attractor. For 2 c B < 4, the 
fixed point becomes a spiral repellor. However, our analysis cannot tell us what 
happens to the trajectories as they spiral away from the fixed point. As we shall 
learn in the next section, they tend to a limit cycle as shown in Fig. 1.1 in Section I 
(for a different model). 

Exercise 3.14-2. Characterize the fixed point of the Brusselator model for 
B > 4. 

3.15 Limit Cycles 

In state spaces with two or more dimensions, it is possible to have cyclic or periodic 
behavior. This very important kind of behavior is represented by closed loop 
trajectories in the state space. A trajectory point on one of these loops continues to 
cycle around that loop for all time. These loops are called limit cycles if the cycle is 
isolated, that is if trajectories nearby either approach or are repelled from the limit 
cycle. The discussion in the previous section indicated that motion on a limit cycle 
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in state space represents oscillatory, repeating motion of the system. The 

oscillatory behavior is of crucial importance in many practical applications, ranging 
from radios to brain waves. 

We shall formulate the analysis in answer to two questions: (1) When do 
limit cycles occur? and (2) When is a limit cycle stable or unstable? The first 
question is answered for a two-dimension state space by the famous PoincartG 
Bendisson Theorem. The theorem can be formulated in the following way: 

1. Suppose the long-term motion of a state point in a two-dimensional state space 
is limited to some finite-size region; that is, the system doesn't wander off to 
infinity. 

2. Suppose that this region (call it R) is such that any trajectory starting within R 
stays within R for all time. [R is called an "invariant set" for that system.] 

3. Consider a particular trajectory starting in R. The Poincar6-Bendixson 
Theorem states that there are only two possibilities for that trajectory: 

a. The trajectory approaches a fixed point of the system as t + m . 
b. The trajectory approaches a limit cycle as t + m . 

A proof of this theorem is beyond the scope of this book. The interested 
reader is referred to [Hirsch and Smale, 19741. We can see, however, that the 
results are entirely reasonable if we take into account the No-Intersection Theorem 
and the assumption of a bounded region of state space in which the trajectories live. 
The reader is urged to draw some pictures of state space trajectories in two 
dimensions to see that these two principles guarantee that the only two possibilities 
are fixed points and limit cycles. 

a trajectory starting inside the limit cycle can never get out and a 

The Brussellator model displays the typical situation in which a limit cycle 
develops. An invariant region R contains a repelling fixed point. Trajectories 
starting near the repelling fixed point are pushed away and (if there is no attracting 
fixed point in R) must head toward a limit cycle (which can be proved to enclose 
the repellor). 

Vincent TOURN AT 
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As an aside, we should point out that if the differential equation describing the 
system is more complicated than the type considered here, then limit cycles and 
even chaotic behavior can occur even for what appear to be one-dimensional 
systems. For example, the following differential equation is a so-called delay- 
d u e r e d  equation: 

Note that the second term on the right-hand side of this equation depends on the 
behavior of the function g evaluated at an earlier time t - T. If we try to use the 
"trick" introduced in Section 3.3 to reduce Eq. (3.15-1) to a set of autonomous first- 
order differential equations, we find we need an infinite number of them! From a 
state space point of view, the system described by Eq. (3.15-1) is certainly not a 
one-dimensional system. Having limit cycle or chaotic behavior for such a system 
does not violate the No-Intersection Theorem or the Poincark-Bendixson Theorem. 

Finally, we point out that some powerful theorems in topology link the 
numbers of nodes and saddle points that can occur as a function of state space 
dimensionality and topology (for example, whether the state space has "holes" or 
not). For two-dimensional state spaces, the relevant theorem is called the Poincare' 
Index Theorem. For an introductory exposition of the Poincark Index Theorem, 
see [Kaplan and Glass, 19951. For extension of these ideas to higher-dimensional 
state spaces, see GLA75. 

3.16 Poincad Sections and the Stability of Limit Cycles 

We have seen that in state spaces of two (or more) dimensions, a new type of 
behavior can arise: motion on a limit cycle. The obvious question is the following: 
Is the motion on the limit cycle stable? That is, if we push the system slightly away 
from the limit cycle, does it return to the limit cycle (at least asymptotically) or is it 
repelled from the limit cycle? As we shall see, both possibilities occur in actual 
systems. 

You might expect that we would proceed much as we did for nodes and 
repellors, by calculating characteristic values involving derivatives of the functions 
describing the state space evolution. In principle, one could do this, but Poincark 
showed that an algebraically and conceptually much simpler method suffices. This 
method uses what is called a Poincare' section of the limit cycle. The Poincark 
section is closely related to the stroboscopic portraits used in Chapter 1 to discuss 
the behavior of the diode circuit. 

For a two-dimensional state space, the Poincark section is constructed as 
follows. In the two-dimensional state space, we draw a line segment that cuts 
through the limit cycle as shown in Fig. 3.12 (a). This line can be any line 
segment, but in some cases one might wish to choose the XI or X2 axes. Let us call 
the point at which the limit cycle crosses the line segment going, say, from left to 

P 
(b) P I  p2 p3 + p3 pz PI 

Attracting cycle 

p3 p2 P I  P I  pz p3 
Repellingcycle -0 t = + = = = 

P' ,  P' ,  P I  P ,  P3 

Saddle cycle 2--+ 
P3 P,  P I  P', P' ,  P ' ,  

Saddle cycle + - + =  = = 
Fig. 3.12. (a) The Poincak line segment intersects the limit cycle at point P. (b) The four 
possibilities for sequences of Poincak intersection points f a  trajectories near a limit cycle in 
two dimensions. 

right, point P. (We need to specify right-to-left or left-to-right to pick out just one 
of the two possible crossing points.) 

If we now start a trajectory in the state space at a point that is close to, but not 
on, the limit cycle, then that trajectory will cross the Poincark section line segment 
at a point other than P. Let's call the first crossing point PI. As the trajectory 
evolves, it will cross the Poincark line segment again at points P2, P3, and so on. If 
the sequence of points approaches P as time goes on for any starting point in the 
neighborhood of the limit cycle, we say that we have an amcting limit cycle or, 
equivalently, a stable limit cycle. In other words, the limit cycle is an attractor for 
the system. If the sequence of intersection points moves away from P (for any 
trajectory starting near the limit cycle), we say we have a repelling limit cycle or, 
equivalently, an unstable limit cycle. Another possibility is that the points are 
attracted on one side and repelled on the other: In that case we say that we have a 
saddle cycle (in analogy with a saddle point). These possibilities are shown 
graphically in Fig. 3.12 (b). 

How do we describe these properties quantitatively? We use what is called a 
Poincme' map function (or Poincare' map, for short). The essential idea is that 
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given a point PI, where a trajectory crosses the Poincd line segment, we can in - 
principle determine the next crossing point P2 by integrating the time-evolution 
equations describing the system. So, there must be some &thematical function, 
call it F, that relates PI to P2: Pz = F(Pl). (Of course, finding this function F is 
equivalent to solving the original set of equations and that may be difficult or 
impossible in actual practice.) In general, we may write 

In general the function F depends not only on the original equations describing the 
system, but on the choice of the Poincark line segment as well. 

Exercise 3.16-1. For the simple harmonic oscillator, the state space 
coordinates x(t), the position coordinate, and u(t), the velocity of the 
oscillator, are given by 

( if the initial conditions are x(t = 0) = x, and u(t = 0) = 0. Take the positive 1 
x axis as the Poincard section line and find the corresponding Poincark 
map function. Then do the same for a Poincark section line at an angle 8 
with respect to the positive x axis. 

To analyze the nature of the limit cycle, we can analyze the nature of the 
function F and its derivatives. Two points are important to notice: 

1. The Poincard section reduces the original two-dimensional problem 
to a one-dimensional problem. 

2. The Poincark map function states an iterative (finite-size time step) 
relation rather than a differential (infinitesimal time step) relation. 

The last point is important because F gives P,,, in terms of P,,. The time 
interval between these points is roughly the time to go around the limit cycle once, 
a relatively big jump in time. On the other hand, a one-dimensional differential 
equation x = f (x) tells us how x changes over an infinitesimal time interval. The 
function F is sometimes called an iterated mapfunction (or iterated map, for short). 
(Because of the importance of iterated maps in nonlinear dynamics, we shall devote 
Chapter 5 to a study of their properties.) 

Let us note that the point P on the limit cycle satisfies P = F(P). Any point P* 
that satisfies P* = F(P*) is called afued point of the map function. If a trajectory 
crosses the line segment exactly at P*, it returns to P* on every cycle. In analogy 
with our discussion of fixed points for differential equations, we can ask what 
happens to a point PI close to P*. In particular, we ask what happens to the distance 
between PI and P* as the system evolves. Formally, we look at 
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and use a Taylor series expansion about the point P* to write 

If we define di = (Pi - P*), we see that 

We now define the characteristic multiplier M for the Poincard map: 

M is also called the Floquet multipler or the Lyapunov multiplier. In terms of M, 
we can write Eq. (3.16-4) 

d,  = Md, (3.16-6) 

We find in general 

d,,l = M "dl 

We see that if M < 1, then d2 < dl, dj < dz, and so on: The intersection points 
approach the fixed point P. In that case the cycle is an attracting limit cycle. If M > 
1, then the distances grow with repeated iterations, and the limit cycle is a repelling 
cycle. For saddle cycles, M is equal to 1 but the derivative of the map function is 
greater than 1 on one side of the cycle and less than 1 on the other side. However, 
based on our discussion of saddle points for one-dimensional state spaces, we 
expect that saddle cycles are rare in two-dimensional state spaces. Table 3.4 lists 
the possibilities. 

Exercise 3.16-2. In a state space with two dimensions, M cannot be 
negative. Show that this must be the case to avoid violating the No- 
Intersection Theorem. Hint: If M is negative, then the intersection points 
must oscillate from one side of P* to the other on subsequent iterations. 

We can also define a chamcteristic exponent associated with the cycle by the 
equation 



Table 3.4. 
The Possible Limit Cycles and Their Characteristic 

Multipliers for Two-Dimensional State Space 
Characteristic Multiplier Type of Cycle 

M < 1  Attracting Cycle 
M >  1 ~ e ~ e l l i n g  ~ i c l e  
M = l  Saddle Cycle 

(rare in two-dimensions) 

The idea is that the characteristic exponent plays the role of the Lyapunov exponent 
but the time unit is taken to be the time from one crossing of the Poincark section to 
the next. 

Let us summarize: The Poincark section method allows us to characterize the 
possible types of limit cycles and to recognize the kinds of changes that take place 
in those limit cycles. However, in most cases, we cannot find the mapping function 
F explicitly; therefore, our ability to predict the kinds of limit cycles that occur for a 
given system is limited. 

Appendix I provides a discussion of these ideas for a model system called the 
van der Pol oscillator. Appendix J looks a some simple models of laser dynamics 
in which these ideas are also useful. 

3.17 Bifurcation Theory 

We have seen that the characteristic values associated with a fixed point depend on 
the various parameters used to describe the system. As the parameters change, for 
example as we adjust a voltage in a circuit or the concentration of chemicals in a 
reactor, the nature of the characteristic values and hence the character of the fixed 
point may change. For example, an attracting node may become a repellor or a 
saddle point. The study of how the character of fixed points (and other types of 
state space attractors) change as parameters of the system change is called 
btfurcation theory. (Recall that the term bifurcation is used to describe any sudden 
change in the dynamics of the system. When a fixed point changes character as 
parameter values change, the behavior of trajectories in the neighborhood of that 
fixed point will change. Hence the term bifurcation is appropriate here.) Being able 
to classify and understand the various possible bifurcations is an important part of 
the study of nonlinear dynamics. However, the theory, as it is p k n t l y  developed, 
is rather limited in its ability to predict the kinds of bifurcations that will occur and 
the parameter values at which the bifurcations take place for a particular system. 
Description, however, is the first step toward comprehension and understanding. 

In this section we will give a brief introduction to bifurcation theory as 
applied to state spaces with one and two dimensions. Furthermore, we will restrict 
the discussion to those bifurcations that occur when just one control parameter of 

. the system is changed. A more extensive discussion of bifurcations is given in 
Appendix B. We should also emphasize that simple bifurcation theory treats only 

- - - - - - -- - - - - - -- - 
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c 0 the fixed point is a node. For 6 > 0 the 
/ fixed point is a repellor. A bifurcation 

the changes in stability of a particular attractor (or, as we shall see in Chapter 4, a 
particular basin of attraction). Since in general a system may have, for fixed 
parameter values, several attractors in different parts of state space, we often need 
to consider the overall dynamical system (that is, its "global" properties) to see 
what happens to trajectories when a bifurcation occurs. 

To keep track of what is happening as the control parameter is varied, we will 
use two types of diagrams. One type, which we have seen before, is the bifurcation 
diagram, in which we plot the location of the fixed point (or points) as a function of 
the control parameter. In the second type of diagram, we plot the characteristic 
values of the fixed point as a function of the control parameter. 

To see how this kind of analysis proceeds, let us begin with the one- 
dimensional state space case. In a one-dimensional state space, a fixed point has 
just one characteristic value A . The crucial assumption in the analysis is that A 
varies smoothly (continuously) as some parameter, call it p, varies. For example, if 
A@) < 0 for some value of p, then the fixed point is a node. As p changes, A might 
increase (become less negative), going through zero, and then become positive. 
The node then changes to a repellor when A > 0. 

Let us consider a specific example: 

x=(p-l)(x-a)  (3.17- 1) 

The fixed point is located at x = +a. The characteristic value is p - 1. Thus, for p < 
1, the fixed point is a node. For p > 1, the fixed point is a repellor. We say that at p 
= 1 there is a bifurcation and the node (a stable fixed point) changes to a repellor 
(an unstable fixed point). 

) Exercise 3.17-1. What kind of fixed point does this example have at p = 

In the literature on nonlinear dynamics, it is traditional to redefine the control 
parameter and the independent variable such that the bifurcation occurs when the 
parameter equals 0 and, sometimes, when the independent variable equals 0. Thus, 
for our previous example, we define a new parameter 6 = p - 1 and a new variable 
y = x - a. Then the dynamical equation becomes 



Fi 3.14. The bifurcation diagram for the repellor-node (saddle-node) bifurcation. The solid 
line indicates the x value for the node as a function of the parameter value. The dashed line is 
for the repellor. Note that there is no fixed point at all for p < 0. 

We then plot the characteristic value as a function of the parameter as shown in Fig. 
3.13. 

The previous example was rather artificial in many ways. In particular, at the 
bifurcation value of p = 1, every value of x is a fixed point. Let's consider a 
different one-dimensional model: 

For p positive, there are two fixed points: one at x = +& , the other at x = -& . 
For p negative there are no fixed points (assuming, of course, that x is a real 
number). If we use Eq. (3.6-3), which defines the characteristic value for a fixed 
point, to find the characteristic value of the two fixed points (for p > 0), we see that 
the fixed point at x = -& is a repellor, while the fixed point at x = +& is a 
node. 

If we start with p c 0 and let it increase, we find that a bifurcation takes place 
at p = 0. At that value of the parameter we have a saddle point, which then changes 
into a repellor-node pair as p becomes positive. We say that we have a repellor- 
node bifurcation at p = 0. 

If we shift the function shown in Fig. 3.5 so that the fixed point occurs at x = 
0, then Fig. 3.5 shows how the function Ax) changes as we pass through the 
bifurcation. Figure 3.14 shows the bifurcation diagram for the repellor-node 
bifurcation. Note that at the repellor-node bifurcation point, the fixed point of the 
system is structurally unstable in the sense discussed in Section 3.6. Structurally 
unstable points are important because their existence indicates a possible 
bifurcation. 

Fig. 3.15. Phase portraits above and below a saddle-node bifurcation. The one-dimensional 
trajectories have been lifted to a two-dimensional state space as described in the text. For p  > 
0, there is a saddle point at XI = - d p  and a n m  There is no fixed point fwp < 
0. 

In the nonlinear dynamics literature, the bifurcation just described is usually 
called a saddle-node bifurcation, tangent bifurcation, or a fold bifurcation. The 
origin of these names will become apparent when we see analogous bifurcations in 
higher-dimensional state spaces. For example, if we imagine the curves in Fig. 
3.14 as being the cross section of a piece of paper extending into and out of the 
plane of the page, then the bifurcation point represents a "fold" in the piece of 
paper. Also, Fig. 3.5 shows how the function in question becomes tangent to the x 
axis at the bifurcation point. 

To visualize the trajectories, it is customary to add another dimension to the 
state space. Trajectories moving along the added X2 direction are assumed to be 
attracted toward the XI axis (the original x axis). The one-dimensional repellor then 
becomes a two-dimensional saddle point. Thus in this w e d  or suspended sme 
space, the bifurcation involves the interaction of a saddle point and a node. Hence, 
we call this event a saddle-node bifurcation. Figure 3.15 gives a sketch of the 
system's (lifted) phase portrait above and below the bifurcation value p = 0. 

There are other types of bifurcations possible in a one-dimensional state 
space, but the repellor-node bifurcation is the most common. Appendix B contains 
a more elaborate treatment of bifurcation theory and a list of references to the 
appropriate literature. 

Bifurcations in Two Dimensions 
Let us begin with a consideration of fixed points. We will then take up the question 
of bifurcations of limit cycles. In a two-dimensional state space, a fixed point can 
have either a single characteristic value (an exceptional case) or, more generally, 
two real characteristic values or a pair of complex-valued characteristic values. 
(Recall that the two complex values form a complex conjugate pair.) If the two 
characteristic values turn out to be just real values, then we can plot those values as 
a function of parameter value. For example, in the Brusselator model, the 
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Fig. 3.16. Characteristic values f a  the 
fixed point of the Brusselator model for 
B parame$er values greater than 4. For B 
< 4, the characteristic values are 

4 complex. 

characteristic values are given by Eq. (3.14-8). For the parameter B > 4, the 
characteristic values are real as shown in Fig. 3.16. 

For 0 5 B 1 4 , the characteristic values are complex, with both real and 
imaginary parts. Figure 3.17 shows the real and imaginary parts of the 
characteristic values for the Brusselator model. 

Corresponding to the repellor-node bifurcation in one dimension, the saddle- 
node bifurcation is very common in two-dimensional state space systems. The 
behavior of the trajectories near the fixed points is often modeled with the so-called 
nonnal form equations (see Appendix B for more details): 

To emphasize that these equations hold only in the neighborhood of a fixed point 
and close to the bifurcation value of the parameter, we have used lower case letters 

ii a From 7 3 . 1 7 - 4 )  we see that there are two fixed points (when p > 0); one at 
(x], xd = (+ p ,0); the other at (- & -0). The one at (+ & ,O) is a node; the one 
at (-& ,0) is a saddle point. For p negative, there is no fixed point. A saddle- 
node bifurcation occurs at p = 0 where the saddle-node pair is born. Figure 3.15 
shows the corresponding phase portraits. 

Limit Cycle Bifurcations 
As we saw earlier, a fixed point in a two-dimensional state space may also have 
complex-valued characteristic values for which the trajectories have spiral-type 
behavior. A bifurcation occurs when the characteristic values move from the left- 
hand side of the complex plane to the right-hand side; that is, the bifurcation occurs 
when the real part of the characteristic value goes to 0. 

We can also have limit cycle behavior in two-dimensional systems. The birth 
and death of a limit cycle are bifurcation events. The birth of a stable limit cycle is 
called a Hopf bifurcation (named after the mathematician E. Hopf). (Although this 
type of bifurcation was known and understood by Poincark and later studied by the 
Russian mathematician A. D. Andronov in the 1930s Hopf was the first to extend 
these ideas to higher-dimensional state spaces.) Since we can use a Poincark 
section to study a limit cycle and since for a two-dimensional state space, the 
Poincark section is just a line segment, the bifurcations of limit cycles can be 
studied by the same methods used for studying bifurcations of one-dimensional 
dynamical systems. 

A Hopf bifurcation can be modeled using the following normal form 
equations: 

The geometric form of the trajectories is clearer if we change from (xl, x2) 
coordinates to polar coordinates (r,@ defined in the following equations and 
illustrated in Fig. 3.18. 

Fig. 3.18. The definition of polar coordinates. r is 
the length of the radius vector from the origin. 8 is 
the angle between the radius vector and the positive 
x, axis. 

Fig. 3.17. The real and imaginary parts of the characteristic value A+ for the Brusselator 
model are shown as a funaim of the parameter B. For h, the imaginary part is negatwe. 
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Fig. 3.19. The bifurcation diagram for the Hopf bifurcation. For p c 0, the fixed point is a 
spiral node. For p 0, the fixed point at the origin is a spiral repellor and the attractor for the 
system is the limit cycle. 

r = ,/(xf +xi )  

x2 (3.17-6) 
tan0 =- 

XI 

Using these polar coordinates, we write Eqs. (3.17-5) as 

Exercise 3.17-2. Use the relations in Eq. (3.17-6) to show that Eqs. (3.17- 
7) follow from Eq. (3.17-5) 

Now let us interpret the geometric nature of the trajectories that follow from 
Eqs. (3.17-7). The solution to Eq. (3.17-7b) is simply 

that is, the angle continues to increase with time as the trajectory spirals around the 
origin. For p < 0, there is just one fixed point for r, namely r = 0. By evaluating 
the derivative offir) with respect to r at r = 0, we see that the characteristic value is 
equal to p. Thus, for p < 0, that derivative is negative, and the fixed point is stable. 
In fact, it is a spiral node. 

For p > 0, the fixed point at the origin is a spiral repellor; it is unstable; 
trajectories starting near the origin spiral away from it. There is, however, another 
fixed point for r, namely, r = f i  . This fixed point for r corresponds to a limit 

cycle with a period of 2n [in the time units of Eqs. (3.17-7)]. We say that the limit 
cycle is born at the bifurcation value p = 0. Fig. 3.19 shows the bifurcation 
diagram for the Hopf bifurcation. 

In a two-dimensional state space the possible types of bifurcations are also 
limited. As explained in Appendix B, the saddle-node bifurcation and the Hopf 
bifurcation are the most "common" two-dimensional bifurcations for models with 
one control parameter. As we shall see in the next chapter, once we move to a state 
space with three or more dimensions the number of common bifurcations increases 
tremendously. 

Appendix J contains a detailed discussion of a case history of bifurcations in 
which a simplified model of laser dynamics illustrates several of the features 
discussed in this chapter. 

3.18 Summary 

In this chapter we have developed much of the mathematical machinery needed to 
discuss the behavior of dynamical systems. We have seen that fixed points and 
their characteristic values (determined by derivatives of the functions describing the 
dynamics of the system) are crucial for understanding the dynamics. We have also 
seen that the dimensionality of the state space plays a major role in determining the 
kinds of trajectories that can occur for bounded systems. 

Moreover, as the control parameters of a system change, the character of fixed 
points and the nature of trajectories near them can change dramatically at 
bifurcation points. Bifurcation diagrams are used to describe the change in 
behavior near bifurcation points. We again saw that the dimensionality of the state 
space limits the kinds of bifurcations that can commonly occur. 

In state spaces with two or more dimensions, limit cycles, describing periodic 
behavior, can appear. The stability of a limit cycle can be discussed by means of a 
Poincark section and the characteristic multiplier determined by the derivative of 
the corresponding Poincark map function. A limit cycle may be born via a Hopf 
bifurcation. 

The growth and behavior of these limit cycles form an important paradigm in 
nonlinear dynamics and illustrate several crucial features that can occur in nonlinear 
systems but not in linear systems. In Chapter 1, we discussed qualitatively the 
novelty of "spontaneous" generation of time-dependent behavior of a system 
"living" in an environment that is completely steady in time. No such behavior is 
possible for a linear system. A linear system can maintain time-dependent behavior 
only in the idealized (and unrealistic) case in which dissipative forces (such as 
friction) are completely absent. If we include dissipation, a linear system must 
eventually relax to a time dependence determined by the time dependence of the 
external forces (in the most general sense of force) applied to it. On the other hand, 
nonlinear systems can spontaneously break the time symmetry of the environment, 
at least for some range of control parameter values. For a twodimensional state 
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space system, this time-dependent behavior must be a limit cycle if the system 
remains bounded. 

3.19 Further Reading 

Books on Phase Space and State Space 

J. B. Marion and S. T. Thornton, Classical Dynamics of Particles and 
Systems, 4" ed. (Saunders, Fort Worth, 1995). This text, aimed at intermediate 
level undergraduate physics majors, gives a nice introduction to nonlinear 
oscillations, phase space, and so on in Chapter 4. 

J. W. Gibbs, Elementary Principles in Statistical Mechanics (C. Scribner's 
Sons, New York, 1902). A classic and still worth reading for its careful 
consideration of questions of fundamentals. 

V. I. Arnold, Geometric Methods in the Theory of Ordinary Differential 
Equations (Springer-Verlag, New York, Heidelberg, Berlin, 1983). One of the best 
introductions to the use of geometric methods for differential equations. 

A. P. Pippard, Response and Stability (Cambridge University Press, 
Cambridge, 1985). A delightful book, filled with physical insight. This extended 
essay treats driven oscillators, nonlinear oscillators, bifurcations, catastrophes, 
phase transitions, and broken symmetries at the advanced undergraduate level. 

P. Hagedorn, Nonlinear Oscillations (Clarendon Press, Oxford, 1981). A 
more advanced treatise on analytic methods of dealing with non-linear oscillators. 
Good discussion of stability criteria and limit cycles. 

M. W. Hirsch and S. Smale, Differential Equations, Dynamical Systems, and 
Linear Algebra (Academic Press, New York, 1974). Contains a proof of the 
Poincar&Bendixson theorem. 

J. A. Sanders and F. Verhulst, Averaging Methods in Nonlinear Dynamical 
Systems (Springer-Verlag, New York, Berlin, Heidelberg, 1984). Provides a 
systematic introduction to many of the analytic tools used to get approximate 
descriptions of the behavior of nonlinear systems. 

Linear Alegebm and Mathematical Methods 

Mary L. Boas, Mathematical Methods in the Physical Sciences, 2nd ed. (John 
Wiley and Sons, New York, 1983). 

S. Hassani, Foundations of Mathematical Physics (Allyn and Bacon, Boston, 
1991). 

Seymour Lipschutz, Linear Algebra (Schaum's Outline Series)(McGraw- 
Hill, New York, 1968). An inexpensive book with hundreds of problems and 
worked examples. 

D. Gulick, Encounters with Chaos (McGraw-Hill, New York, 1992). A 
' 

mathematician's introduction to iterated maps and systems of differential equations 
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as dynamical systems. Chapter 3 has a particularly nice introduction to the linear 
! algebra of matrices. Many good examples and exercises. 

F m t a l  Basin Boundaries and Riddled Basins of Attraction 

Fractal basin boundaries are discussed in C. Grebogi, S. W. McDonald, E. 
Ott, and J. A. Yorke, "Final State Sensitivity: An obstruction to predictability," 
Phys. Lett. A 99,415-418 (1983) and S. W. McDonald, C. Grebogi, E. Ott, and J. 
A. Yorke, "Fractal Basin Boundaries," Physica D 17, 125-153 (1985). 

The driven damped pendulum exhibits fractal basin boundaries as discussed 
in E. G. Gwinn and R. M. Westewelt, 'Fractal Basin Boundaries and Intermittency 
in the Driven Damped Pendulum," Phys. Rev. A 33,4143-55 (1986). 

J. C. Alexander, J. A. Yorke, Z. You, and I. Kan, 'Xiddled Basins," Int. J. 
Blfur. and Chaos 2, 795-80 (1992). This paper introduced the notion of riddled 
basins of attraction. 

J. C. Sommerer and E. Ott, "A physical system with qualitatively uncertain 
dynamics," Nature 365,136-140 (1993). Gives a nice example of riddled basins of 
attraction. 

J. F. Hagey, T. L. Carroll, and L. M. Pecora, "Experimental and Numerical 
Evidence for Riddled Basins in Coupled Chaotic Systems," Phys. Rev. Lett. 73, 
3528-31 (1994). 

State Space Topological Considemtions 

See [Kaplan and Glass, 19951, pp. 253 ff. 
L. Glass, "Combinatorial and topological methods in nonlinear chemical 

kinetics," J. Chem Phys. 63,1325-35 (1975). 
[Guckenheimer and Holmes, 19831, pp. 50-5 1. A discussion of the Poincark 

Index Theorem. 

The Brusselator Model 

G. Nicolis and I. Prigogine, Exploring Complexity (W. H. Freeman, San 
Francisco, 1989). This wide-ranging book contains a detailed discussion of the 
Brusselator Model and its dynamics. 

Poincare' Sections 

Most of the more formal books listed at the end of Chapter 1 have extensive 
discussions of Poincari sections. 

The Poincark section technique can be generalized in various ways. For 

example, in cases where a system is driven by "forces" with two incommensurate 
frequencies, taking a Poincari section within a Poincark section is useful. See F. C. 
Moon and W. T. Holmes "Double Poincark Sections of A Quasi-Periodically 
Forced, Chaotic Attractor," Physics Lett. A 111, 157-60 (1985) and [Moon, 19921. 
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3.20 Computer Exercises 

Chapter 3 

CE3-1. Use Chaos Demonstrations to study the van der Pol equation limit 
cycles in state space. (See Appendix I for a discussion of the van der Pol model.) 
Vary the parameter h (equivalent to the parameter R used in Appendix I) to see how 
the oscillations change from simple harmonic (for small values) to relaxation 
oscillations for larger values. 

CE3-2. Use Chaotic Dynamics Workbench to study the Shaw-Van der Pol 
Oscillator with the force term set to 0 (to make the state space two-dimensional). 
Observe the time dependence of the dynamical variables and the state space 
diagrams as the coefficient A (corresponding to R in Appendix I) increases. 

Three-Dimensional State Space and Chaos 

The chaos is come of the organized disorder, The consistently inappropriate 
and the simple wrong. George Barker, The First American Ode. 

4.1 Overview 

In the previous chapter, we introduced some of the standard methods for analyzing 
dynamical systems described by systems of ordinary differential equations, but we 
limited the discussion to state spaces with one or two dimensions. We are now 
ready to take the important step to three dimensions. This is a crucial step, not 
because we live in a three-dimensional world (remember that we are talking about 
state space, not physical space), but because in three dimensions dynamical systems 
can behave in ways that are not possible in one or two dimensions. Foremost 
among these new possibilities is chaos. 

First we will give a hand-waving argument (we could call it heuristic if we 
wanted to sound more sophisticated) that shows why chaotic behavior may occur in 
three dimensions. We will then discuss, in parallel with the treatment of the 
previous chapter, a classification of the types of fixed points that occur in three 
dimensions. However, we gradually wean ourselves from the standard analytic 
techniques and begin to rely more and more on graphic and geometrical 
(topological) arguments. This change reflects the flavor of current developments in 
dynamical systems theory. In fact, the main goal of this chapter is to develop 
geometrical pictures of trajectories, attractors, and bifurcations in three-dimensional 
state spaces. 

Next, we will discuss the types of attractors that can occur for dissipative 
dynamical systems with three-dimensional state spaces. Two new possibilities 
emerge: (1) quasi-periodic attractors and (2) chaotic attractors. 

When the parameters of a system are changed, chaotic behavior may appear 
and disappear in several different ways, even for the same dynamical system: We 
may have several routes to chaos. These routes can be put into two broad 
categories with several subdivisions within each category. One category includes 
sequences of bifurcations involving limit cycles (or equivalently, fixed points of the 
associated Poincark map). (The period-doubling sequence in Chapter 1 belongs to 
this category.) The other category involves changes in trajectories associated with 
several fixed points or limit cycles. Since these changes involve the properties of 
trajectories ranging over a significant volume of state space, these changes are 
called "global" bifurcations (in contrast to "local" bifurcations associated with 
changes in individual fixed points). 
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Rather sudden changes from regular to chaotic behavior, such as we have 
seen with the Lorenz model in Chapter 1, are characteristic of these global 
bifurcations. Although the nature of the long-time attractor changes suddenly as a 
parameter is varied, these sudden changes are often heralded by chaotic transients. 
In a chaotic transient, the system's trajectory wanders through state space, in an 
apparently chaotic fashion. Eventually, the trajectory approaches a regular, 
periodic attractor. As the control parameter is changed, the chaotic transient lasts 
longer and longer until finally the asymptotic behavior is itself chaotic. 

The questions we want to address are the following: How does this 
complicated chaotic behavior develop? How does the system evolve from regular, 
periodic behavior to chaotic behavior? What changes in the fixed points and in 
trajectories in state space give rise to these changes in behavior? 

Of course, it is impossible to give a single, simple answer to any of these 
questions. Different dynamical systems seem to behave quite differently depending 
on both parameter values and initial conditions. These complications arise because, 
in general, a dynarnical system may have several attractors (like the two fixed 
points of the Lorenz model) that "coexist" for a given range of parameter values. 
The system can change its behavior because the attractors change their characters 
(for example, a limit cycle becomes unstable and is replaced by a period-doubled 
limit cycle) or the basins of attraction can interact (both with each other and with 
in-sets and out-sets of saddle points and saddle cycles) in such a way as to give rise 
to chaotic dynamics. We shall discuss each of these possibilities in later sections of 
this chapter. 

4.2 Heuristics 

We will describe, in a rather loose way, why three (or more) state space dimensions 
are needed to have chaotic behavior. First, we should remind ourselves that we are 
dealing with dissipative systems whose trajectories eventually approach an 
attractor. For the moment we are concerned only with the trajectories that have 
settled into the attracting region of state space. When we write about the divergence 
of nearby trajectories, we are concerned with the behavior of trajectories within the 
attracting region of state space. 

In a somewhat different context we will need to consider sensitive 
dependence on initial conditions. Initial conditions that are not, in general, part of 
an attractor can lead to very different long-term behaviors on'different attractors. 
Those behaviors, determined by the nature of the attractor (or attractors), might be 
time-independent or periodic or chaotic. 

As we saw in Chapter 1, chaotic behavior is characterized by the divergence 
of nearby trajectories in state space. As a function of time, the "separation" 
(suitably defined) between two nearby trajectories increases exponentially, at least 
for short times. The last restriction is necessary because we are concerned with 
systems whose trajectories stay within some bounded region of state space. The 
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system does not "blow up." There are three requirements for chaotic behavior in 
such a situation: 

1. no intersection of different trajectories; 
i 2. bounded trajectories; 

3. exponential divergence of nearby trajectories. 

These conditions cannot be satisfied simultaneously in one- or two- 
dimensional state spaces. You should convince yourself that this is true by 

sketching some trajectories in a two-dimensional state space on a sheet of paper. 
However, in three dimensions, initially nearby trajectories can continue to diverge 
by w-rapping over and under each other. Obviously sketching threedimensional 
trajectories is more difficult. You might try using some relatively stiff wire to form 
some trajectories in three dimensions to show that all three requirements for chaotic 
behavior can be met. You should quickly discover that these requirements lead to 
trajectories that initially diverge, then curve back through the state space, forming 
in the process an intricate layered structure. Figure 4.1 is a sketch of diverging 
trajectories in a three-dimensional state space. 

The crucial feature of state space with three or more dimensions that permits 
chaotic behavior is the ability of trajectories to remain within some bounded region 
by intertwining and wrapping around each other (without intersecting!) and without 
repeating themselves exactly. Clearly the geometry associated with such 
trajectories is going to be strange. In fact, such attractors are now called strange 
a#ractors. In Chapter 9, we will give a more precise definition of a strange 

Fig. dl. A sketch of trajectories in a three-dimensional state space. Notice how two nearby 
trajectories can continue to behave quite differently from each other yet remain bounded by 
weaving in and out and over and under each other. 
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attractor in terms of the notion of fractal dimension. If the behavior on the attractor 
is chaotic, that is, if the trajectories on the attractor display exponential divergence 
of nearby trajectories (on the average), then we say the attractor is chaotic. Many 
authors use the terms strange aftractor and chaotic ataactor interchangeably, but 
in principle they are distinct [GOP84]. 

The notion of exponential divergence of nearby trajectories is made formal by 
introducing the Lyapunov exponent. If two nearby trajectories on a chaotic 
attractor start off with a separation 4 at time t = 0, then the trajectories diverge so 
that their separation at time t, denoted by d(t), satisfies the expression 

The parameter A in Eq. (4.2-1) is called the Lyapunov exponent for the 
trajectories. If A is positive, then we say the behavior is chaotic. (Section 4.13 
takes up the question of Lyapunov exponents in more detail.) From this definition 
of chaotic behavior, we see that chaos is a property of a collection of trajectories. 

Chaos, however, also appears in the behavior of a single trajectory. As the 
trajectory wanders through the (chaotic) attractor in state space, it will eventually 
return near some point it previously visited. (Of course, it cannot return exactly to 
that point. If it did, then the trajectory would be periodic.) If the trajectories exhibit 
exponential divergence, then the trajectory on its second visit to a particular 
neighborhood will have subsequent behavior, quite different from its behavior on 
the first visit. Thus, the impression of the time record of this behavior will be one of 
nonreproducibility, nonperiodicity, in short, of chaos. 

To illustrate some of the issues involved here, let us consider a 
counterexample. Imagine a ball perched precariously at the (unstable) equilibrium 
point at the top of a hill surrounded by an infinite plane surface. This situation 
displays sensitive dependence on initial conditions: The path the ball takes depends 
sensitively on how it is disturbed and pushed away from the top of the hill. 
However, if the hill and plane are frictionless, then the ball keeps rolling forever, 
and there are no bounded trajectories. If friction is present, then the ball eventually 
stops rolling at some point determined by the direction and size of the initial 
"push." Each final state is associated with a particular initial condition. There is no 
attracting region of the state space, which pulls in trajectories from some finite 
basin of attraction. 

The point of these remarks is to remind us that our notions of sensitive 
dependence on initial conditions and divergence of ne&bv trajectories are . ., - -  

meaningful and useful only for those systems that are bounded and have attractors 
in the sense defined in Chapter 3. (In Chapter 8. we shall see how to generalize 
these ideas to bounded Hamiltonian systems for which there is no dissipation and 
no attractor.) 

The study of chaos has brought two surprises: (1) the ubiquity of chaotic behavior 
and (2) the universality of the routes to chaos. Why are these surprising? Although 

1 mathematicians such as Poincark long ago recognized the pssibilitv of what we 
F now call chaotic behavior, the general impression was that this type of behavior 

was in some sense unusual and pathological; in any case, its detailed character 
would be particular to the nonlinear system being studied. The standard general 
methods developed to solve linear differential equations fail for nonlinear 
differential equations. Solutions to only a few nonlinear differential equations were 
known and each of these needed to be developed by methods particular to the case 
at hand. Mathematicians reasoned, we might imagine, that since no general 
solution methods exist, there could be no general character to the solutions. What 
we are now just beginning to appreciate is the universality that does exist among 
the solutions to these nonlinear equations, at least, in the case of systems with just a 
few degrees of freedom. What may be even more surprising is that this universality 
seems to be exhibited by the actual physical, chemical, and biological systems that 
we model with these equations. 

The universality we want to describe is the universality of the routes or 
transitions to chaos. How does a (nonlinear) system change its behavior from 
regular (either stationary or periodic) to chaotic (or vice versa) as the control 
parameters of the system are (slowly) changed? (The parenthetical "slowly" is 
introduced to remind us that we are concerned with the long-term behavior of the 
system after transients have died out. In an experiment, we change a parameter's 
value, let the transients die out, and then look at the "asymptotic" behavior.) What 
we have learned in the past twenty years or so is that the transitions to chaos 
exhibited by many experimental systems and the equations used to describe them 
can be grouped into just a few broad categories. Once we find which type of 
transition a system exhibits, we can then make many qualitative and quantitative 
predictions about how that transition will proceed. 

Two facts about these transitions are important to note: First, a given system 
may exhibit several different types of transitions to chaos for different ranges of 
parameter values (recall our examples in Chapter 1). Second is a point of humility: 
The theory of nonlinear systems is not yet sufficiently developed to allow us to tell 
in advance what type(s) of transition will occur for what range of parameters for a 
given system. More "routes to chaos" will undoubtedly be recognized 
(discovered), particularly as we learn to deal with systems with larger numbers of 
degrees of freedom. However, at present the recognized transitions to chaos can be 
gathered under two large headings as shown in Table 4.1. 

In the first category of transitions (via local bifurcations), a limit cycle occurs 
for a range of parameter values. As some control parameter of the system is 
changed, the limit cycle behavior "disappears" and chaotic behavior appears. In the 
second category (via global bifurcations), the long-term behavior of the system is 
influenced by unstable fixed points or cycles as well as by an attractor (or several 
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Table 4.1 

Transitions to Chaos 

I. Via Local Bifurcations 

A. Period-doubling 
B. Quasi-periodicity 
C. Intermittency 

1. Type I (tangent bifurcation intermittency) 
2. Type I1 (Hopf bifurcation intermittency) 
3. Type 111 (period-doubling intermittency) 
4. On-off intermittency 

11. Via Global Bifurcations 

A. Chaotic transients 
B. Crises 

attractors). As a parameter is changed, the transient trajectories, which would 
eventually end up approaching the fixed point (or cycle) become more and more 
complicated, producing what we call chaotic transients. These chaotic transients 
eventually last forever and the long-term behavior of the system is chaotic. 

The two categories of transitions are also distinguished to some extent by the 
mathematical and geometrical tools needed to analyze them. In the local 
bifurcation category, the Poincark section technique allows us to understand and 
describe how the transition takes place. The three subcategories indicate the ways 
the fixed points of the Poincark section evolve as parameters are changed. In the 
global bifurcation category, the analysis requires following trajectories over a 
significant range of state space and seeing how these trajectories are influenced by 
various attractors, fixed points and cycles that may coexist in different parts of the 
state space. Poincark sections are still used, but information about individual fixed 
points and limit cycles (''local information") is no longer sufficient to determine the 
nature of the long-term trajectories. We need a broader, more global view of the 
structure of state space. 

We shall also see that the two categories of transitions are not as distinct as a 
first reading might suggest. In fact, to understand the dynamics of intermittency, 
for example, we need to track trajectories through a significant region of state 
space. Conversely, global bifurcations are influenced by the locations and 
properties of (local) fixed points. However, the two categories do serve as a useful 
starting point for organizing our thoughts about and our understanding of the 
development and emergence of chaotic behavior. 
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4.4 Three-Dimensional Dynamical Systems 

We will now introduce some of the formalism for the description of a dynamical 
system with three state variables. We call a dynamical system three-dimensional if 
it has three independent dynamical variables, the values of which at a given instant 
of time uniquely specify the state of the system. We assume that we can write the 
time-evolution equations for the system in the form of the standard set of first-order 
ordinary differential equations. (Dynamical systems modeled by iterated map 
functions will be discussed in Chapter 5.) Here we will use x with a subscript 1,2, 
or 3 to identify the variables. This formalism can then easily be generalized to any 
number of dimensions simply by increasing the numerical range of the subscripts. 
The differential equations take the form 

The Lorenz model equations of Chapter 1 are of this form. Note that the three 
functionsfi,h, andf3 do not involve time explicitly; again, we say that the system 
is autonomous. 

As an aside, we note that some authors like to use a symbolic "vector" form to 
write the system of equations: 

Here I stands for the three symbols x, , x2*x3 , and j stands for the three functions 
on the right-hand side of Eqs. (4.4-1). 

The differential equations describing two-dimensional systems subject to a 
time-dependent "force" (and hence nonautonomous) can also be written in the form 
of Eq. (4.4-1) by making use of the ''trick'' introduced in Chapter 3: Suppose that 
the two-dimensional system is described by equations of the form 

The trick is to introduce a third variable, x3 = t. The three "autonomous" equations 
then become 

which are of the same form as Eq. (4.4-1). As we shall see, this trick is particularly 
useful when the time-dependent term is periodic in time. 
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Exercise 4.4-1. The "forced" van der Pol equation is used to describe an 
electronic triode tube circuit subject to a periodic electrical signal. The 
equation for q(t), the charge oscillating in the circuit, can be put in the 
form 

d29 -+y(q)-+q(t) = gsinwt 
dt2 dt 

Use the trick introduced earlier to write this equation in the standard form 
of Eq. (4.4-1). 

4.5 Fixed Points in Three Dimensions 

The fixed points of the system of Eqs. (4.4-1) are found, of course, by setting the 
three time derivatives equal to 0. [Two-dimensional forced systems, even if written 
in the three-dimensional form (4.4-4), do not have any fixed points because, as the 
last of Eqs. (4.4-4) shows, we never have x3 = t = 0 . Thus, we will need other 
techniques to deal with them.] The nature of each of the fixed points is determined 
by the three characteristic values of the Jacobian matrix of partial derivatives 
evaluated at the fixed point in question. The Jacobian matrix is 

In finding the characteristic values of this matrix, we will generally have a cubic 
equation, whose roots will be the three characteristic values labeled A,, 4, il, . 

Some mathematical details: The standard theory of cubic equations tells us 
that a cubic equation of the form 

can be changed to the "standard" form 

by the use of the substitutions 

If we now introduce 

the three roots of the x equation can be written as 

from which the characteristic values for the matrix can be found by working back 
through the set of substitutions. Most readers will be greatly relieved to know that 
we will not make explicit use of these equations. But it is important to know the 
form of the solutions. - 

There are three cases to consider: 

1 .  The three characteristic values are real and unequal (s c 0). 
2. The three characteristic values are real and at least two are equal (s = 

0). 
3. There is one real characteristic value and two complex conjugate 

values (s > 0). 

Case 2 is just a borderline case and need not be treated separately. Just as we did in 
the previous chapter, we can classify the types of fixed points according to the 
nature of their characteristic values. We are about to list the fixed points that can 
occur in three-dimensional state space. In Figs. 4.2 and 4.3, we have drawn 
sketches of trajectories in state space to indicate the behavior near the fixed point. 
We have also shown a graph of the complex plane indicating the real and imaginary 
parts of the corresponding characteristic values. 
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Fig. 42. On the left, sketches of trajectories for fixed points in a three-dimensional state 
space. The location of the fixed point is indicated by the asterisk. On the right, the 
characteristic values for the fixed points are indicated in the complex plane. The imaginary 
part is plotted on the vertical axis; the real part on the horizontal axis. 

For state spaces with three or more dimensions, it is common to specify the 
so-called index of a fixed point. 

In more geometric terms, the index is equal to the spatial dimension of the out-set 
of that fixed point. For a node (which does not have an out-set), the index is equal 
to 0. For a repellor, the index is equal to 3 for a three-dimensional state space. A 
saddle point can have either an index of 1, if the out-set is a curve, or an index of 2, 
if the out-set is a surface as shown in Fig. 4.3. 

The four basic types of fixed points for a three-dimensional state space are: 

1 .  Node. All the characteristic values are real and negative. All trajectories in the 
neighborhood of the node are attracted toward the fixed point without looping 
around the fixed point. 

Three-Dimensional State Space 

Saddle Point 
Index 1 

Saddle Point 
Index 2 

Fig. 4.3. More sketches of trajectories for fixed points in a thmxlimensional state space. 
Not shown are possible spiral versions of the two types of saddle points. On the right, the 
characteristic values for the fixed points are indicated in the complex plane. F a  a spiral 
index-1 W e  point, trajectories spiral toward the fixed point on the in-set surface. For a 
spiral index-2 saddle point, the trajectories spiral away from the fixed point on the out-set 
surface. 

1s. Spiral Node. All the characteristic values have negative real parts but two 
of them have nonzero imaginary parts (and in fact form a complex 
conjugate pair). The trajectories spiral around the node on a "surface" as 
they approach the node. 

2. Repellor. All the characteristic values are real and positive. All trajectories in 
the neighborhood of the repellor diverge from the repellor. 
2s. Spiml Repellor. All the characteristic values have positive real parts, but 

two of them have nonzero imaginary parts (and in fact form a complex 
conjugate pair). Trajectories spiral around the repellor (on a "surface") as 
they are repelled from the fixed point. 

3. Soddle point - index-I. All characteristic values are real. One is positive 
and two are negative. Trajectories approach the saddle point on a surface (the 
in-set) and diverge along a curve (the out-set). 
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3s. S p a  Saddle Point - index-1. The two characteristic values with 
negative real parts form a complex conjugate pair. Trajectories spiral 
around the saddle point as they approach on the in-set surface. 

4. Saddle point - index-2. All characteristic values are real. Two are positive 
and one is negative. Trajectories approach the saddle point on a curve (the in- 
set) and diverge from the saddle point on a surface (the out-set). 
4s. Spiral Saddle Point - index-2. The two characteristic values with 

positive real parts form a complex conjugate pair. Trajectories spiral 
around the saddle point on a surface (the out-set) as they diverge from the 
saddle point. 

To anticipate what will come in the next few sections, we point out that just as 
in one- and two-dimensional state spaces, the in-sets and out-sets of saddle points 
tend to organize the global (large scale) behavior of trajectories in state space. As 
we shall see, when out-sets and in-sets approach each other (in loose terms) as 
some control parameter is varied, the overall behavior of the system can change 
dramatically. 

Appendix B gives a brief introduction to bifurcations for the fixed points in 
three-dimensional state space systems. 

4.6 Limit Cycles and Poincarii Sections 

As we saw in Chapter 3, dynamical systems in two (and higher) dimensions can 
also settle into long-term behavior associated with repetitive, periodic limit cycles. 
We also learned that the Poincark section technique can be used to reduce the 
dimensionality of the description of these limit cycles and to make their analysis 
simpler. 

First, we focus on the construction of a Poincark section for the system. For a 
three-dimensional state space, the Poincark section is generated by choosing a 
Poincare' plane (a two-dimensional surface) and recording on that surface the 
points at which a given trajectory cuts through that surface. (In most cases the 
choice of plane is not crucial as long as the trajectories cut the surface transversely, 
that is, the trajectories do not run parallel or almost parallel to the surface as they 
pass through; see Fig. 4.4.) For autonomous systems, such as the Lorenz model 
equations, we choose some convenient plane in the state space, say, the XY plane 
for the Lorenz equations. When a trajectory crosses that plane'passing from, for 
example, negative Z values to positive Z values, we record that crossing point. 

If the system has a natural period associated with it, say the period of a 
(periodic) "force" applied to the system, then the Poincark plane could be a surface 
corresponding to a definite (but arbitrarily chosen) phase of that force. In the latter 
case the Poincark section is analogous to a "stroboscopic portrait" of a mechanical 
system recorded with a flash (or strobe) lamp fired once every period of the motion. 
In that sense we can say that the Poincark section "freezes the motion" of the 
dynamical system. 
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Fig. 4.4. A P o i n d  section for a hee-dimensional state space. On the left the trajectory 
crosses the P o i n d  plane transversely. On the right the intersection is not transverse 
because the trajectory runs parallel to the plane for som: distance. 

For the sake of concreteness, let us consider the latter case with periodic 
forcing with independent variables Xo and XI. See Fig. 4.5. (All of our results will 
apply equally well to the autonomous case.) The Poincark section is formed by 
recording the values of Xo and XI whenever the phase of the periodic force reaches 
some definite value. (As usual, we restrict the phase to be between 0 and 2n.) 
Therefore, we actually have a three-dimensional state space generated 
geometrically by rotating the X,-Jl plane about some axis (see Fig. 4.5). 

If after transients have died away, the asymptotic behavior of the system is 
periodic with a period equal to the period of the force g(t),  then the Poincark section 
record will consist of a single point whose coordinates in the dane we label xl* and 
x;. On the other hand, if the long-term behavior is a subharmonic of the periodic 
force, say with period T = N Tf, (where N is a positive integer) then, in general, the 
Poincark * * section record will consist of N points whose coordinates can be labeled 
(xl , ~ ~ ) ~ , i = l , . . . ,  N. 

Phase 

Fig. 45. Fbr a periodically driven system, the state space is a thregdirnensional cylinder 
generated by rotating the XrXo plane about an axis. An ellipbcal trajectory in the &XI 
plane resides on the surface of a tom in the three-dimensional state space. Here the torus is 
shown in a cross sectional view. (For this diagram the coordinates are labeled XI and Xo so 
the rotation of the &XI plane can be made more obvious typographically.) The phase of 
the driving force indicates the circumferential location of a trajectary point. 
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Fig. 4.6. The sequence of points Po, PI,  P2, . . . is the record of successive intersections of a 
single trajectory with the P o i n d  plane (the plane with x3 = 0) as the trajectory goes from x3 
>Ot0x3<0. 

this series of dots will be connected with a smooth curve intersecting (xl*, 
x;). It is important to remember that this curve is not a trajectory. In fact 
the Poincark intersection of any single trajectory is just a sequence of 
points as shown in Fig. 4.6. If a smooth curve is drawn on this kind of 
diagram, it represents the intersection points of an infinite family of 
trajectories, all of which are approaching (x,', x;). Later we shall see 

We now return to the general discussion of limit cycles. The stability of the 
limit cycle is determined by a generalization of the Poincark multipliers introduced 
in the previous chapter. We assume that the uniqueness of the solutions to the 
equations used to describe the dynamical system entails the existence of a Poincare 
map function (or in the present case, a pair of Poincark map functions), which relate 
the coordinates of one point at which the trajectory crosses the Poincark plane to the 
coordinates of the next (in time) crossing point. (Again we assume we have chosen 
a definite crossing sense; e.g., from top to bottom, or from left to right.) These 
functions take the form 
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where the parenthetical superscript indicates the crossing point number. 
Here these Poincark map functions have arisen from the consideration of a 

Poincark section for trajectories arising from a set of differential equations. In 

1 Chapter 5, we shall consider such map functions as interesting models in their own 
right, independent of this particular heritage. 

The fixed points of the Poincark section are those points that satisfy 

1 Each fixed point in the Poincari section corresponds to a limit cycle in the full 
three-dimensional state space. 

We can characterize the stability of these fixed points by finding the 
characteristic values of the associated Jacobian matrix of derivatives [sometimes 

I called the Floquet mahir, after Gaston Floquet (1847-1920), a French 
mathematician who studied, among other things, the properties of differential 
equations with periodic terms]. This matrix is analogous to the Jacobian matrix 
used to determine the characteristic values of a fixed point in the full state space. 
The Jacobian matrix JM is given by 

where the matrix is to be evaluated at the Poincark map fixed point in question. 
The characteristic values of this matrix determine the stability of the limit cycle. A 
stable limit cycle attracts nearby trajectories, while an unstable limit cycle repels 
nearby trajectories. In principle, we can use the mathematical methods given in 
Chapter 3 to find these characteristic values. In practice, however, we most often 
cannot find these characteristic values explicitly, since, to do that, we would need to 
know the exact form of the Poincark map function, and in most cases, we do not 
know that function. [In Chapter 5, we will examine some models that do give us 
the map function directly. However, for systems described by differential 
equations in state spaces of three (or more) dimensions, it is in general impossible 
to find the map functions.] 

Since the Jacobian matrix is a 2x2  matrix for a Poincark section in a three- 
dimensional state space, the fixed point has two characteristic values. Hence, we 
have the same set of stability cases here that we had for fixed points in a two- 
dimensional state space, with one addition: The intersection points may alternate 
from one side of the fixed point to the other. (Recall that this alternation was not 
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possible in two dimensions because the trajectory would have to cross itself. In 
three dimensions the trajectory can wind over and under itself to give the 
alternation without intersection.) 

Dissipation 
For a 2x 2 matrix, there are two characteristic values. We denote the characteristic 
values as MI and M2 since we use them as Floquet multipliers in determining how 
trajectories approach or diverge from the Poincark intersection point of the limit 
cycle. Just as for PoincarC sections in a two-dimensional state space, the criterion 
for dissipation can be formulated in terms of the multipliers since dissipation is 
linked to the contraction of clusters of initial conditions. Because MI, the first 
multiplier, determines the expansion in the xl direction and M2 the expansion in the 
x2 direction, we see that the product MIM2 determines the expansion or contraction 
of areas in the Poincark plane. For a dissipative system, we must have M1M2 < 1 
on the average (not only near the fixed points). In Chapter 8, we shall consider 
model map systems that preserve state-space area. They have MIM2 = 1. 

Stability of Limit Cycles 

As we saw in two-dimensional systems, if the fixed point is to be stable and have 
trajectories in its neighborhood attracted to it, then the absolute value of each 
multiplier must be less than 1. [In state spaces with three or more dimensions, we 
can have M c 0; so the stability criterion is formulated using the absolute value of 
the multipliers.] 

The types of limit cycles are 

I. Stable limit cycle (node for the Poincark map) 
11. RepeUing limit cycle (repellor for the Poincark map) 
111. Saddle cycle (saddle point for the Poincark map) 

Table 4.2 lists the categories of characteristic multipliers, the associated 
PoincarC plane fixed points and the corresponding limit cycles for three- 
dimensional state spaces. (Compare this table to Table 3.4 for limit cycles in two- 
dimensional state spaces.) 

Table 4.2 
Characteristic Multipliers for PoincarC Sections 

Three-Dimensional State Space @rz q::Node 

of Three-Dimensional State Spaces 
Type of Fixed Point Characteristic Multiplier Corresponding Cycle 

Repellor 

Node 
Repellor 

M 
Spiral Repellor 

I 

Fig. 47. Characteristic multipliers in the complex plane. If both multipliers lie within a 
circle of unit radius (the unit circle), then the corresponding limit cycle is stable. If one (or 
both) of the multipliers lies outside the unit circle, then the limit cycle is unstable. 

Saddle I M , ~  < 1, I M J  > 1 Saddle Cycle 

- 
Exercise 4.6-1. Let Tr be the trace of the Jacobian matrix in Eq. 4.6-3 and 
A its determinant. 

MI 
M I ,  

I (a) Show that the two characteristic multipliers can be expressed as I 

, M2 
M, 

(b) Show that the expansion (contraction) factor for state space areas is 
given by 

Limit Cycle 
>1  Repelling Cycle 

(c) In Chapter 3, we found that the trace of the Jacobian matrix is the 
signature of dissipation for a dynamical system modeled by a set of 
differential equations. Here, we use the determinant of the Jacobian 
matrix. Explain the difference. 

Of course, the characteristic multipliers could also be complex numbers. Just 
as we saw for fixed points in a two-dimensional state space, the complex 
multipliers will form a complex-conjugate pair. In more graphic terms, the 
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successive Poincark intersection points associated with complex-valued multipliers 
rotate around the limit cycle intersection point as they approach or diverge from 
that point. Mathematically, the condition for stability is still the same: the absolute 
value of both multipliers must be less than 1 for a stable limit cycle. In terms of the 
corresponding Argand diagram (complex mathematical plane), both characteristic 
values must lie within a circle of unit radius (called the unit circle) for a stable limit 
cycle. See Fig. 4.7. As a control parameter is changed the values of the 
characteristic multipliers can change. If at least one of the characteristic multipliers 
crosses the unit circle, a bifurcation occurs. Some of these bifurcations will be 
discussed in the latter part of this chapter. 

Exercise 4.6-2. Show that we cannot have spiral type behavior around a 
saddle point in the (two-dimensional) Poincark section of a three- 
dimensional state space. 

4.7 Quasi-Periodic Behavior 

For a three-dimensional state space, a new type of motion can occur, a type of 
motion not possible in one- or two-dimensional state spaces. This new type of 
motion is called quasi-periodic because it has two different frequencies associated 
with it; that is, it can be analyzed into two independent, periodic motions. For 
quasi-periodic motion, the trajectories are constrained to the surface of a torus in the 
three-dimensional state space. A mathematical description of this kind of motion is 
given by: 

x, = (R+rsino,t)cosw,t 

x2 = r cos art 
x, = (R + r sin a r t )  sin o,t 

where the two angular frequencies are denoted by o, and or . Geometrically, Eqs. 
(4.7-1) describe motion on the surface of a torus (with the center of the torus at the 
origin), whose large radius is R and whose cross-sectional radius is r. In general the 
torus (or doughnut-shape or the shape of the inner tube of a bicycle tire) will look 
something like Fig. 4.8. The frequency on corresponds to the rate of rotation 
around the large circumference with a period T, = 2n/o, , while the frequency 
o, corresponds to the rate of rotation about the cross section with Tr = 2n/or . A 
general torus might have elliptical cross sections, but the ellipses can be made into 
circles by suitably rescaling the coordinate axes. 

The Poincark section for this motion is generated by using a Poincari plane 
that cuts through the torus. What the pattern of Poincari map points looks like 
depends on the numerical relationship between the two frequencies as illustrated in 
Fig. 4.9. If the ratio of the two frequencies can be expressed as the ratio of two 
integers (that is, as a "rational fraction," 14/17, for example), then the Poincark 
section will consist of a finite number of points. This type of motion is often called 
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minor 

X3 major radius 

Fig. 4.8. Quasi-periodic trajectories roam over the surface of a torus in thmxlimensional 
state space. Illustrated here is the special case of a torus with circular cross sections. r is the 
minor radius of the aoss section. R is the major radius of the torus. A peiiodic trajectory on 
the surface of the torus would close on itself. On the right. a perspectwe view of a tarus and 
a P o i n d  plane. 

frequency-locked motion because one of the frequencies is locked, often over a 
finite control parameter range, so that an integer multiple of one frequency is equal 
to another integer multiple of the other. (The terms phase-locking and mode- 
locking are also used to describe this behavior.) 

If the ratio of frequencies cannot be expressed as a ratio of integers, then the 
ratio is called "irrational" (in the mathematical, not the psychological sense). For 
the irrational case, the Poincark map points will eventually fill in a continuous 
curve in the Poincari plane, and the motion is said to be quasi-periodic because the 
motion never exactly repeats itself. (Russian mathematicians call this conditionally 
periodic. See, for example, [Arnold, 19831. The term almostperiodic is also used 
in the mathematical literature.) 

In the quasi-periodic case the motion, strictly speaking, never exactly repeats 
itself (hence, the modifier quasi), but the motion is not chaotic; it is composed of 
two (or more) periodic components, whose presence could be made known by 
measuring the frequency spectrum (Fourier power spectrum) of the motion. We 
should point out that detecting the difference between quasi-periodic motion and 
motion with a rational ratio of frequencies, when the integers are large, is a delicate 
question. Whether a given experiment can distinguish the two cases depends on the 
resolution of the experimental equipment. As we shall see later, the behavior of the 
system can switch abruptly back and forth between the two cases as a parameter of 
the system is varied. The important point is that the attractor for the system is a 
twodimensional surface of the torus for quasi-periodic behavior. 

This notion can be generalized to higher-dimensional state spaces. For 

example, quasi-periodic motion in a four-dimensional state space may be 
characterized by three frequencies, none of which are related by a rational ratio to 
any of the others. The trajectories then wander completely over the "surface" of a 
threedimensional torus. If there are only two frequencies, the motion would of 
course be restricted to the twodimensional surface of a torus. 
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Periodic 

Fig. 4.9. A P o i n d  section intersects a torus in thm-dimensional state space. The diagram 
on the upper left shows the P o i n d  map points for a two-frequency periodic system with a 
rational d o  of frequencies. The intersection points are indicated by asterisks. The diagram 
on the lower left is for quasi-periodic behavior. The ratio of frequencies is inrltional, and 
eventually the intersection points fill in a curve (sometimes called a "drift ring") in the 
P o i n d  plane. 

We have now seen the full panoply of regular (nonchaotic) attractors: fixed 
points (dimension 0), limit cycles (dimension l), and quasi-periodic attractors 
(dimension 2 or more). We are ready to begin the discussion of how these 
attractors can change into chaotic attractors. 

We will give only a brief discussion of the period-doubling. quasi-periodic, 
and intermittency routes. These will be discussed in detail in Chapters 5,6,  and 7, 
respectively. A discussion of crises will be found in Chapter 7. As we shall see, 
the chaotic transient route is more complicated to describe because it requires a 
knowledge of what trajectories are doing over a range of state space. We can no 
longer focus our attention locally on just a single fixed point or limit cycle. 

4.8 The Routes to Chaos I: Period-Doubling 

As we discussed earlier, the period-doubling route begins with limit cycle behavior 
of the system. This limit cycle, of course, may have been "born" from a bifurcation 
involving a node or other fixed point, but we need not worry about that now. As 
some control parameter changes, this limit cycle becomes unstable. Again this 
event is best viewed in the corresponding Poincark section. Let us assume that the 
periodic limit cycle generates a single point in the Poincark section. If the limit 
cycle becomes unstable by having one of its characteristic multipliers become more 
negative than -1 (which, of course, means > l), then, in many situations, the 
new motion remains periodic but has a period twice as long as the period of the 
original motion. In the Poincark section, this new limit cycle exhibits two points, 
one on each side of the original Poincark section point (see Fig. 4.10). 

Fig. 4.10. The P o i n d  section of a trajectory that has undergone a perioddoubling 
bifiucation. On the left is the original periodic trajectory, which intersects the P o i n d  plane 
in one point. On the right is the perioddoubled trajectory, which intersects the P o i n d  
plane in two points, one on each side of the original intersection point. 

i This alternation of intersection points is related to the characteristic multiplier 
associated with the original limit cycle, which has gotten more negative than -1. 

I Since > 1, the trajectory's map points are now being "repelled" by the original 
map point. The minus sign tells us that they alternate from one side to the other, as 
we can see formally from Eq. (3.16-6). This type of bifurcation is also called ajZ@ 
bifutcation because the newly born trajectory flips back and forth from one side of 
the original trajectory to the other. 

Question: Why don't we see period-tripling, quadrupling, etc.? Is there a 
simple explanation? See Chapter 5. 

As the control parameter is changed further, this period-two limit cycle may 
become unstable and give birth to a period-four cycle with four Poincark 
intersection points. Chapter 5 will examine in detail how, when, and where this 
sequence occurs. The period-doubling process may continue until the period 
becomes infinite; that is, the trajectory never repeats itself. The trajectory is then 
chaotic. 

4.9 The Routes to Chaos 11: Quasi-Periodicity 

In the quasi-periodic scenario, the system begins again with a limit cycle trajectory. 
As a control parameter is changed, a second periodicity appears in the behavior of 
the system. This bifurcation event is a generalization of the Hopf bifurcation 
discussed in Chapter 3; so, it is also called a Hopf bifurcation. In terms of the 
characteristic multipliers, the Hopf bifurcation is marked by having the two 
complex-conjugate multipliers cross the unit circle simultaneously. 

If the ratio of the period of the second type of motion to the period of the first 
is not a rational ratio, then we say, as described previously, that the motion is quasi- 
periodic. Under some circumstances, if the control parameter is changed further, 
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the motion becomes chaotic. This route is sometimes called the Ruelle-Takens 
scenario after D. Ruelle and F. Takens, who in 1971 first suggested the theoretical 
possibility of this route. The main point here is that you might expect, at first 
thought, to see a long sequence of different frequencies come in as the control 
parameter is changed, much like the infinite sequence of period-doublings 
described in the previous section. (In 1944 the Russian physicist L. Landau had 
proposed such an infinite sequence of frequencies as a mechanism for producing 
fluid turbulence. [Landau and Lifshitz, 19591.) However, at least in some cases, the 
system becomes chaotic instead of introducing a third distinct frequency for its 
motion. This scenario will be discussed in Chapter 6. 

Historically, the experimental evidence for the quasi-periodic route to chaos 
(GOS75) played an important role in alerting the community of scientists to the 
utility of many of the newly emerging ideas in nonlinear dynamics. During the late 
1970s and early 1980s there were many theoretical conjectures about the necessity 
of the transition from two-frequency quasi-periodic behavior to chaos. More recent 
work (see for example, BAT88) has shown that systems with significant spatial 
extent and with more degrees of freedom can have quasi-periodic behavior with 
three or more frequencies before becoming chaotic. 

4.10 The Routes to Chaos 111: Intermittency and Crises 

Chapter 7 contains a detailed discussion of intermittency and crises; so, we will 
give only the briefest description here. The intermittency route to chaos is 
characterized by dynamics with irregularly occurring bursts of chaotic behavior 
interspersed with intervals of apparently periodic behavior. As some control 
parameter of the system is changed, the chaotic bursts become longer and occur 
more frequently until, eventually, the entire time record is chaotic. 

A crisis is a bifurcation event in which a chaotic attractor and its basin of 
attraction suddenly disappear or suddenly change in size as some control parameter 
is adjusted. Alternatively, if the parameter is changed in the opposite direction, the 
chaotic attractor can suddenly appear "out of the blue" or the size of the attractor 
can suddenly be reduced. As we shall see in Chapter 7, a crisis event involves the 
interaction between a chaotic attractor and an unstable fixed point or an unstable 
limit cycle. 

4.11 The Routes to Chaos IV: Chaotic Transients and Hoinoclinic Orbits 

In our second broad category of routes to chaos, the global bifurcation category, the 
chaotic transient route is the most important for systems modeled by sets of 
ordinary differential equations. Although the chaotic transient route to chaos was 
one of the first to be recognized in a model of a physical system (the Lorenz 
model), the theory of this scenario is, in some ways, less well developed than the 
theory for period-doubling, quasi-periodicity, and intermittency. This lack of 
development is due to the fact that this transition to chaos is not (usually) marked 
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Three-Dimensional State Space 

Stable Manifold 
Fig. 4.11. A saddle cycle in a three-dimensional state space. The stable and unstable 

I manifolds are surfaces that intersect at the saddle cycle. Where the saddle cycle intersects a 
Poind plane we have a saddle point for the Poind  map function. A portion of one 
trajectory, repelled by the saddle cycle, is shown on the unstable manifold, and a portion of 
another trajectory, approaching the saddle cycle, is shown on the stable manifold 

x2 

by any change in the fixed points of the system or the fixed points of a Poincark 
section. The transition is due to the interaction of trajectories with various unstable 
fixed points and cycles in the state space. The common features are the so-called 
homoclinic orbits and their cousins, heternclinic orbits. These special orbits may 
suddenly appear as a control parameter is changed. More importantly, these orbits 
strongly influence the nature of other trajectories passing near them. 

What is a homoclinic orbit? To answer this question, we need to consider 
saddle cycles in a three-dimensional state space. (These ideas carry over in a 
straightforward fashion to higher-dimensional state spaces.) You should recall that 
saddle points and saddle cycles and, in particular, their in-sets and out-sets serve to 
organize the state space. That is, the in-sets and out-sets serve as "boundaries" 
between different parts of the state space and all trajectories must respect those 
boundaries. We will focus our attention on a saddle point in the Poincark section of 
the state space. This saddle point corresponds to a saddle cycle in the original 
three-dimensional state space (see Fig. 4.11). We can consider the saddle cycle to 
be the intersection between two surfaces: One surface is the in-set (that is, the 
stable manifold) associated with the cycle. The other surface is the out-set 
(unstable manifold) associated with the cycle. Trajectories on the in-set approach 
the saddle cycle as time goes on. Trajectories on the out-set diverge from the cycle 
as time goes on. Trajectories that are near to, but not on, the in-set will first 
approach the cycle and then be repelled roughly along the out-set (unstable 
manifold). 

Poincark Plane 

Unstable Manifold 

Saddlepoint 
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Fi 4.12 Point P is a saddle point in a 
Poin& section. It cormponds to a 
saddle cycle in the 111 thmdmensional 
state space. The intersection of the in-set 
of the saddle cycle with the P o i n d  
plane generates the m e  labeled W. 
The intersection of the out-set of the 
saddle cycle with the P o i n d  plane 
generates curve W .  

1 I 

Fig. 4.12 shows the equivalent Poincart? section with a saddle point P where 
the saddle cycle intersects the plane. We have sketched in some curves to indicate 
schematically where the in-set and out-set surfaces cut the Poincark plane. These 
curves, labeled W(P) and W(P), are called the stable and unstable manifolds of the 
saddle point P. Since the in-set and out-set of a saddle cycle are generally two- 
dimensional surfaces (in the original three-dimensional state space), the intersection 
of one of these surfaces with the Poincart? plane forms a curve. It is crucial to 
realize that these curves are not trajectories. For example, if we pick a point so on 
W(P), a point at which some trajectory intersects the Poincark plane, then the 
Poincark map function F gives us s,, the coordinates of the point at which the 
trajectory next intersects the plane. From sl, we can find s2, and so on. The 
sequence of points lies along the curve labeled W(P) and approaches P as n + m . 
Similarly, if u,, is a point along W(P), then F(u,,) = u,, F(ul) = u2, and so on, 
generates a series of points that diverges from P along W(P). If we apply the 
inverse of the Poincart? map function P-'' to u,,, we generate a sequence of points 
u-, , u, , and so on, that approaches P as n + -.. . The curves drawn in Fig. 4.12 
represent the totality of such sequences of points taken with infinitely many starting 
points. For any one starting point, however, the sequence jumps along W or W, it 
does not move smoothly like a point on a trajectory in the original state space. 

As a control parameter is changed, it is possible for W(P) and W(P) to 
approach each other and in fact to intersect, say, at some point q. If this intersection 
occurs, we say that we have a homoclinic intersection at q, and the point q is called 
a homoclinic (intersection) point. It is also possible for the unstable manifold of 
one saddle point to intersect the stable manifold from some other saddle point. In 
that case we say we have a heteroclinic intersection. Other heteroclinic 
combinations are possible. For example, we could have the intersection of the 
unstable manifold surface of an index-2 saddle point and the stable manifold of a 
saddle cycle. (For a nice visual catalog of the possible kinds of intersections, see 
[Abraham and Shaw, 1992][Abraham, Abraham, and Shaw, 19961.) For now we 
will concentrate on homoclinic intersections. 

We now come to an important and crucial th~rem:  
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To prove this statement, we consider the result of applying the mapping 
function F to go. We get another point ql. Since go belongs to both W and W, so 
must q,, since we have argued in the previous paragraphs that applying F to a point 
on W or W generates another point on W or W. By continuing to apply F to this 
sequence of points, we generate an infinite number of homoclinic points. Fig. 4.13 
shows part of the resulting homoclinic tangle, which must result from the 
homoclinic intersections. 

Please note that the smooth curves drawn in Fig. 4.13 are individual 

trajectories. (We cannot violate the No-Intersection Theorem!) The smooth curves 
are generated by taking infinitely many starting points on W and W. Only those 
trajectories that hit one of the homoclinic points will hit (some of) the other 
homoclinic points. 

What is the dynamical significance of a homoclinic point and the related 
homoclinic tangle? If we now shift our attention back to the original three- 
dimensional state space, we see that a homoclinic point in the Poincar6 section 
corresponds to a continuous trajectory in the original state space. When a 
homoclinic intersection occurs, one trajectory on the unstable manifold joins 
another trajectory on the stable manifold to form a single new trajectory whose 
Poincark intersection points are the homoclinic points described earlier. (To help 
visualize this process, recall that the in-set and out-set of a saddle cycle in the three- 
dimensional state space are, in general, two-dimensional surfaces.) This new 
trajectory connects the saddle point to itself and hence is called a homoclinic 
trgjectory or homoclinic orbit and is said to form a homoclinic connection. As our 
previous theorem states, this homoclinic trajectory must intersect the Poincart? 
plane an infinite number of times. 

Fig. 4.13. A homoclinic tangle results 
from the homoclinic intersection of the 
unstable manifold W(P) with the stable 
manifold W(P) of the saddle point P. 
Each of the circled points is a homoclinic 
(intersection) point. For clarity's sake, 
only a portion of the tangle is shown. 
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Poincarc? Plane 

Heteroclinic &?..- It" ( \Y 

Fig. 4.14. The P o i n d  section of a 
heteroclinic connection. TWO &dl: 
cycles intersect the plane at P and P 
respectively. A heteroclinic orbit links 
together two saddle cydes forming a 
heteroclinic connection. For the sake of 
clarity only the part of the tangle 
involving the unstable manifold of P 
intersecting the stable manifold of P' is 
shown 
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How does a homoclinic orbit lead to chaotic behavior? To understand this, 
we need to consider other trajectories that come near the saddle point of the 
Poincark section. Generally speaking, the trajectories approach the saddle point 
close to (but not on) the in-set (stable manifold), but they are then forced away from 
the saddle point near the out-set (unstable manifold). After a homoclinic tangle has 
developed, a trajectory will be pushed away from the saddle point by the out-set 
part of the tangle, but it will be pulled back by the in-set part. It is easy to see that 
the homoclinic tangle can lead to trajectories that seem to wander randomly around 
the state space region near the saddle point. 

The same general type of behavior can result from a heternclinic orbif, which 
connects one saddle point (or saddle cycle in the original state space) to another. A 
second heteroclinic orbit takes us from the second saddle point back to the first. 
When such a combined trajectory exists, we say we have a heternclinic connection 
between the two saddle cycles. Figure 4.14 shows schematically a part of a 
heteroclinic connection in a Poincark section of a three-dimensional state space. It 
is also possible to have heteroclinic orbits that link together sequentially three or 
more saddle cycles. Figure 4.15 shows examples of homoclinic and heteroclinic 
connections in three-dimensional state spaces for which the in-sets and out-sets of a 
saddle cycle are two-dimensional surfaces. Also shown are partial pictures of the 
resulting Poincar6 sections. 

Exercise 4.11-1. Prove that the unstable manifold of one saddle point (or 
saddle cycle) cannot intersect the unstable manifold of .another saddle 
point (or cycle). Similarly, prove that two stable manifolds cannot 
intersect. 

Figure 4.16 shows three-dimensional constructions of homoclinic and 
heteroclinic tangles resulting from the intersections of the in-sets and out-sets of 
saddle cycles. Partial diagrams of the corresponding Poincark sections are also 
shown. 

Three-Dimensional State Space 

. heteroclinic 
connection 

F i  4.15. Diagrams illustrating the formation of homoclinic and heteroclinic connections in 
a three-dimensional state spaces. In (a) the in-set and out-set of a saddle cycle join smoothly 
to form a homoclinic connection. In (b) and (c), the out-set of one saddle cycle joins the in- 
set of a second saddle cycle to form a heteroclinic connection. In both cases, examples of 
two-dimensional P o i n d  sections are shown. (From [Ottino, 19891) 

As an example of how homoclinic and heteroclinic connections affect 
dynamics, let us return to the Lorenz model introduced in Chapter 1. This model 
provides a nice example of chaotic transients due to homoclinic and heteroclinic 
connections eventually leading to chaotic behavior. A homoclinic comection is 
formed when the parameter r is near 13.93 (with b = 813 and p = 10, as in Chapter 
1). At that parameter value, the one-dimensional out-set of the fixed point at the 
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Fig. 4.16. A three4mensional representation of the homoclinic (top) and the heteroclinic 
(bottom) tangles resulting from the intersections of the in-set and out-set surfaces associated 
with saddle cycles. Also shown are sketches of parts of the two-dimensional P o i n d  
sections resulting from the tangles. (From [Ottino,1989]) 

origin, which is now a saddle point, touches, over its entire length, the two- 
dimensional in-set of that same saddle point. Actually, a double homoclinic 
connection is formed because there are two branches of the one-dimensional out- 
s* one leading to one of the off-origin fixed points, the other leading to the other 
Off*gin fixed point. Trajectories passing near the homoclinic connections are 
su-ivel~ repelled by and attracted to the saddle point at the origin many times 
*Wc wwdcnng back and forth between regions around the two off-origin fixed 
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I 
I Fig. 417. An illustration of heteroclinic behavior in the Lorenz model at r = 35.0. The XY 

1 plane projection of the trajectory is shown. The trajectory starts near the saddle point at the 
origin. The out-set of the origin connects to the in-set of one of the saddle cycles near the 
fixed point at X = Y = +9.5 . The trajectory then leaves that saddle cycle on its out-set which 
connects to the in-set of the other saddle cycle. After orbiting near the fixed point at X = Y = 
-9.5, the trajectory heads back toward the origin on the out-set of the saddle cycle. Near the 
origin, it is again repelled. 

points before finally settling into one of the off-origin fixed points. Such behavior 
looks chaotic, but because it is really only transient behavior, it is called transient 
chaos. For more information about transient chaos, a fascinating topic in its own 
right, see the references at the end of this chapter. 

When this homoclinic connection occurs, two saddle cycles are also created. 
These saddle cycles play an essential role in the development of the chaotic 
attractor in the Lorenz I. As r increases beyond 13.93, the saddle cycles, 
which surround the off-origin fixed points (which themselves are spiral nodes), 
begin to decrease in size and contract around the spiral nodes. At r = 24.74, the real 
part of the complex eigenvalues of the spiral nodes goes to 0, and the saddle cycles 
collapse onto the nodes. Before this, however, at r < 24.06, the out-set of the saddle 
point at the origin falls outside the saddle cycles. For r > 24.06 the out-set falls 
inside the saddle cycles; therefore, at r = 24.06 (approximately), the out-set of the 
saddle point at the origin must intersect the saddle cycles to form a heteroclinic 
connection. For r < 24.74, there are still two (small) basins of attraction near the 
two spiral nodes, but trajectories starting outside these two small basins wander 
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chaotically due to the influence of the heteroclinic connection and resulting tangle. 
In effect, a chaotic attractor has been formed by this connection. Figure 4.17 shows 
how the resulting heteroclinic connections influence a trajectory that starts near the 
saddle point at the origin. 

A nicely illustrated and detailed discussion of trajectories and bifurcations in 
the Lorenz model can be found in Chapter 7 of [Jackson, Vol. 2, 19911. 

Sil'nikov Chaos 
A slightly different type of homoclinic situation is important in some dynamical 
systems. This case has been analyzed by Sil'nikov (SIL70), and the resulting 
behavior is called Sil'nikov Chaos. This situation occurs in three-dimensional state 
spaces when a saddle point has one real positive characteristic value A and a pair 
of complex conjugate characteristic values a f iP : The saddle point has a one- 
dimensional out-set and spiral behavior on a two-dimensional in-set. 

Sil'nikov showed that if a homoclinic orbit forms for this saddle point and if 
A > la1 , that is, trajectories are repelled more rapidly along the out-set than they are 
attracted along the (two-dimensional) in-set, then chaotic behavior occurs in a 
parameter range around the value at which the homoclinic orbit forms. This 
behavior should be contrasted with the behavior discussed earlier where no chaotic 
behavior occurs below the parameter value for which the intersection develops. 
[Guckenheimer and Holmes, 19901 gives a detailed mathematical treatment of 
Sil'nikov chaos. 

4.12 Homoclinic Tangles and Horseshoes 

A very elegant and useful geometric model of the effect of homoclinic and 
heteroclinic tangles on state-space orbits is the Smale horseshoe. This equestrian 
metaphor was introduced by the mathematician Stephen Smale (SMA67) to capture 
the essence of the effects of homoclinic tangles on dynamical systems. The 
horseshoe construction has the additional benefit of providing a scheme that allows 
mathematical proofs of many important aspects of the dynamics of the system. We 
shall introduce the basic horseshoe idea here. In Chapter 5, we will take up the 
mathematical results from this construction. 

To understand Smale's construction, let us consider a small rectangle of initial 
points surrounding a saddle point in the Poincark section of a dynamical system. 
As the system evolves, this rectangle of points will tend to be stretched out along 
the unstable manifold direction W and compressed along the W direction. The 
rectangle will eventually reach the tangled region of W shown in Fig. 4.13, and its 
shape will resemble a horseshoe. As the system evolves further, this horseshoe will 
in fact eventually overlap with the original rectangle. Smale constructed a mapping 
function, now known as the Smale horseshoe map, which captures the essence of 
this process. 

In the Smale horseshoe map, a square of initial points is first stretched in one 
direction and compressed in the orthogonal direction. The now elongated rectangle 
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Fig. 4.18. The Smale horseshoe map is an abstraction from the action of a homoclinic tangle 
on a rectangle of initial conditions. In the upper part of the figure a rectangle of initial 
conditions is shown superposed on part of a homoclinic tangle. Under the evolution of the 
system that rectangle will be stretched along the unstable manifold direction and compressed 
along the stable manifold direction. In the lower part of the figure is Smale's abstraction of 
that effect in the shape of a horseshoe s u p e m  on the original rectangle. 

I 

is folded and overlaid on the initial square (see Fig. 4.18). The process is iterated, 
and one looks for those points that remain within the area of the initial square as the 

I number of iterations goes to infinity. This stretching in one direction, compressing 

in another, combined with the folding, mimics the effect of the homoclinic tangle 
on trajectories in the dynamical system. The famous Smale-Birkhoff Homoclinic 
Theorem proves [Guckenheimer and Holmes, 19901 that having a homoclinic 
tangle guarantees that the system will have "horseshoe dynamics." 

ordinary differential equations has a homoclinic intersection, then th 
system has intersections with a Poincark plane whose behavior 

Siretching, Compression and Folding 
Although the original Smale horseshoe map does not have an attractor and hence 
cannot be a model for the chaotic behavior of a dissipative system, many authors 
have decided to equate chaotic behavior with horseshoe dynamics because the 
stretching (in at least one state space direction) gives rise to exponential divergence 
of nearby initial conditions. Certainly in the general sense of requiring stretching in 
one direction, compression in another, combined with folding to keep the system in 
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a finite region of state space, horseshoe dynamics must be a general feature of all 
chaotic behavior. 

As mentioned earlier, in many systems the stretching and folding is actually 
effected by heteroclinic connections, which link the unstable manifold of one 
saddle cycle (in the original state space, a saddle point in the corresponding 
Poincark section) to the stable manifold of another saddle cycle or saddle point. 
The unstable manifold of the latter may then reconnect back to the original saddle 
cycle. The net effect of this heteroclinic cycle on a cluster of initial condition 
points is the same topologically as the effect of a homoclinic connection. 

The effect of a homoclinic or heteroclinic tangle on a cluster of initial 
condition points can be seen elegantly in fluid mixing experiments. A two- 
dimensional fluid flow subject to a periodic perturbation may show chaotic 
trajectories for tracer particles suspended in the fluid. (We will explore this 
connection in more detail in Chapter 11.) Tracer particles injected near a saddle 
point (called a hyperbolic point in the fluid dynamics literature) show horseshoe 
type behavior with stretching, folding, and reinjection near the saddle point (see 
[Ottino, 19891 and OTT89 for beautiful pictures of these effects). 

4.13 Lyapunov Exponents and Chaos 

Our discussion of chaotic behavior has so far been qualitative. Now we want to 
introduce one method of quantifying chaotic behavior. There are two motivations 
here. First, we want some quantitative test for chaotic behavior; something that 
can, at least in principle, distinguish chaotic behavior from noisy behavior due to 
random, external influences. Second, we would like to have some quantitative 
measure of the degree of chaoticity; so, we can see how chaotic behavior changes 
as the system's parameters are changed. In this section, we will introduce 
Lyapunov exponents as one possible quantitative measure of chaos. In Chapter 5, 
we will describe how to find Lyapunov exponents for iterated maps. In Chapters 9 
and 10, we will describe how to find Lyapunov exponents, as well as other 
quantifiers of chaos, from experimental data. In this section we will focus attention 
on dynamical systems described by a set of ordinary differential equations. 

As we have seen in Section 3.7, a Lyapunov exponent is a measure of the rate 
of attraction to or repulsion from a fixed point in state space. In Section 4.2, we 
indicated that we could also apply this notion to the divergence of nearby 
trajectories in general at any point in state space. For a one-dimensional state 
space, let x,, be one initial point and x a nearby initial point. Let %(t) be the 
trajectory that arises from that initial point, while x(t) is the trajectory arising from 
the other initial point. Then, if we follow the line of reasoning leading to Eq. (3.7- 
3), we can show that the "distance" s between the two trajectories, s = x(t) - %(t) 
grows or contracts exponentially in time. Let us work through the details. 

The time development equation is assumed to be 
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Since we assume that x is close to %, we can use a Taylor series expansion to write 

We now find that the rate of change of distance between the two trajectories is 
given by 

i=i-i, ,  

where we have kept only the first derivative term in the Taylor series expansion of 
Ax). Since we expect the distance to change exponentially in time. we introduce the 
Lyapunov exponent il as the quantity that satisfies 

If we differentiate Q. (4.13-4) with respect to time, we' find 

I 
1 Comparing Eq. (4.13-5) and Eq. (4.13-3) yields 

Thus we see that if A is positive, then the two trajectories diverge; if il is negative, 
the two trajectories converge. 

In state spaces with two (or more) dimensions, we can associate a (local) 
Lyapunov exponent with the rate of expansion or contraction of trajectories for 
each of the directions in the state space. In particular, for three dimensions, we may 
define three Lyapunov exponents, which are the eigenvalues of the Jacobian matrix 
evaluated at the state space point in question. In the special case for which the 
Jacobian matrix has zeroes everywhere except for the principal (upper-left to lower- 
right) diagonal, the three eigenvalues (and hence the three local Lyapunov 
exponents) are given by 

af, =- 
ax, 
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where the partial derivatives are evaluated at the state space point in question. 
In practice, we know that the derivative of the time evolution function 

generally varies with x; therefore, we want to find an average of A over the history 
of a trajectory. If we know the time evolution function, we simply evaluate the 
derivative of the time evolution function along the trajectory and find the average 
value. (For a dissipative, one-dimensional system, we know that this average 
Lyapunov exponent must be negative.) 

Behuvwr of a Cluster of Initial Conditions 
To develop a geometric interpretation of the Lyapunov exponents, we consider a 
small rectangular volume of initial conditions with sides s,, s2. and s3 surrounding 
this point with the sides oriented along the three state space axes. That volume will 
evolve in time as: 

If we compare Eq. (4.13-8) with Eq. (3.13-6), we see that the sum of the three 
Lyapunov exponents gives us the mathematical divergence of the set of time 
evolution functions. Again, in practice, we are interested in the average of these 
Lyapunov exponents over the history of a trajectory. For a dissipative system, the 
average of the sum of the exponents must be negative. 

For a three-dimensional state space system described by a set of three first- 
order differential equations, one of the average Lyapunov exponents must be 0 
unless the attractor is a fixed point (HAK83). (The 0 value for a Lyapunov 
exponent corresponds to the negligible attraction or repulsion of trajectories starting 
from nearby points that could be carried into each other by following the same 
trajectory for a short time.) Thus, for a dissipative system, at least one of the 
remaining average Lyapunov exponents must be negative. If the system is chaotic, 
one of the Lyapunov exponents is positive for a three-dimensional state space. 

In state spaces with four (or more) dimensions, we might have more than one 
positive average Lyapunov exponent. In those cases, we say we have hyperchaos. 
One possible route from periodic behavior to hyperchaotic behavior is discussed in 
HAL99. 

It may be helpful to visualize what is happening with a more pictorial 
construction. For a dissipative system, we pick an initial point and let the resulting 
trajectory evolve until it is on the attracting region in state space. Then, we pick a 
trajectory point and construct a small sphere around it. Next, we follow the 
evolution of trajectories starting from initial points inside that sphere (some of 

/ / 

Fig. 4.19. A schematic representation of the evolution of a sphere of initial points in state 
space. The sphere starts in the upper-left-hand side. Time increases as we go clockwise 
around the figure. For a dissipative system, the volume associated with the set of initial 
points must go to 0. A chadic system will exhibit exponential stretching of the sphere in at 
least one direction. 

which may not be on the attractor). In general, the sphere may be stretched in one 
d i i t i on  and contracted in others as time goes on as shown schematically in Fig. 
4.19. The sphere will be distorted into an ellipsoid. (For a dissipative system, the 
volume must contract to 0 if we follow the system long enough.) 

If we evaluate the (assumed) exponential rates of stretching and contraction 
for the different axes of the ellipsoid, we can find the Lyapunov exponents for that 
region of the attractor. Repeating this procedure along the trajectory allows us to 
calculate the set of average Lyapunov exponents for the system. This set of 

average Lyapunov exponents is called the specnun of L y q p u ~ v  exponents. If at 
least one of the average Lyapunov exponents is positive, then we conclude that the 
system displays (on the average) divergence of nearby trajectories and is "truly" 
chaotic. Table 4.3 summarizes the relationship between the spectrum of Lyapunov 
exponents and the type of attractor. (0, -, -,) means that one of the Lyapunov 

Table 4.3 
S~ectra  of Lvavunov Exponents and Associated Attractors r - - .  

~hree-dim&sional State Space 

Signs of As Type of Attractor 

(-,-,-I Fixed Point 
(O,-,-) Limit Cycle 
(0.0,-1 Quasi-Periodic Torus 
(+,o,-) Chaotic 
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exponents is zero and two are negative. 
In practice the computation of these average Lyapunov exponents is 

complicated because the ellipsoid is rotated and distorted as the trajectories evolve. 
Various algorithms have been developed to calculate the Lyapunov exponents if the 
time evolution equations are known. The reader should consult the references 
given at the end of the chapter. 

In this chapter we have summarized in a qualitative way the general ideas of 
how chaos can arise in state spaces with three or more dimensions. The crucial 
feature is that trajectories wander aperiodically through the state space by winding 
over and around each other. For chaotic behavior, the divergence of nearby 
trajectories produces a stretching and folding of clusters of initial conditions. This 
analysis has been largely qualitative. In subsequent chapters we will build up more 
of the formalism for describing chaotic behavior quantitatively. 

A Cirutionury Tale About Lyapunov Exponents 
We have emphasized that "the" Lyapunov exponent is defined as an average 
quantity: the average rate of divergence of two initially nearby trajectories. We 
can legitimately conclude that the behavior of the system is chaotic only if this 
average Lyapunov exponent is positive. 

It is possible to find exponential divergence of nearby trajectories even for 
systems that are not chaotic in the strict sense of our definition. This pseudochaos 
occurs if the trajectories start off in the neighborhood of the out-set of a saddle 
point in state space. On the out-set of the saddle point, the characteristic exponent 
is positive. Trajectories that are near the out-set will have behaviors that are close 
to the behavior on the out-set since the characteristic values change smoothly 
through state space. Thus, two initially nearby trajectories in the neighborhood of 
the out-set of the saddle point will diverge exponentially with a local Lyapunov 
exponent close to the positive characteristic value associated with the out-set of the 
saddle point. The danger lies in assuming that the average Lyapunov exponent is 
positive based on following the trajectories for only a short time. 

As an example of this kind of behavior, let us consider the simple pendulum, 
well known from introductory physics courses. The position of the pendulum is 
given by the angle 0 between the pendulum rod and a vertical line. By convention, 
we choose 0 = 0 when the pendulum is hanging straight down. We describe the 
motion of the system by following trajectories in a state space whose coordinates 
are the angular velocity ( 8  ) and the angle (8). Using u = 6, we write the state 
space equations for the system as 

where, as usual. g is the local gravitational field strength (9.8 N/kg near Earth's 
surface) and L is the length of the pendulum. 

r 
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time time 

Fig. 4.20. On the left the difference between the angular positians of the simple pendulum 
(with g/L = 1) for two initially nearby trajectories is plotted as a hction of time. One 
trajectory starts at 6 = 3.00 radians and d6Vdt = 0.0724 and the other at f& = 3.02 radians and 
d@dt = 0. The natural log of those differences is plotted on the right. For exponential 

! divergence, the plot on the right should be a straight line whose slope is the local Lyapunov 
exponent. The dashed line on the right has a slope of 1. 

I 
t By using the methods of Chapter 3 for this two-dimensional state space, we 

see that the system has fixed points at 8 = 0 and 0 = O,a . The fixed point at 
0 = a is a saddle point with characteristic values 

Exercise 4.13-1. Verify the statements about fixed points and 
characteristic values for the simple pendulum. 

Thus, we see that if two trajectories start in the neighborhood of the out-set of 
the saddle-point, they will be pulled toward the unstable manifold and then diverge 
(until they leave the neighborhood of the saddle point) with a characteristic 
exponent of m. In Fig. 4.20, we have plotted the difference between the 
angular positions for two trajectories, one with initial angle 0, = 3.00 radians, the 
other with 8, = 3.02 radians. The angular velocity in the first case is 0.0724 
radians per second while it is 0 in the second case. (This choice gives the 
pendulum the same initial energy in both cases.) (We have set m = 1 .) On the 
right of Fig. 4.20 is plotted the natural logarithm of the difference between the two 
angular positions as a function of time. You can see that after an initial transient, 
the divergence is exponential with a characteristic value of 1 (as expected) up to 
about t = 2.5. 
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However, if we follow the trajectories for a longer time, we would see that the 
difference between the angular positions later decreases, giving an average 
Lyapunov exponent of 0 as required for our model with no friction (no dissipation). 
If we had followed the trajectories only to t = 2.5, we might have (erroneously) 
concluded that the behavior was chaotic. To avoid this pitfall, we must follow the 
trajectories a sufficiently long time to allow the trajectories to wander over the full 
extent of the state space region they will visit. (In practice, it may not be easy to 
tell how long is long enough.) Then the (average) Lyapunov exponent will be a true 
indicator of the chaotic or nonchaotic behavior of the system. 

4.14 Further Reading 

I Routes to Chaos 

Routes to chaos are discussed in most of the introductory books listed at the 
end of Chapter 1. 

[Abraham and Shaw, 19921 and F. D. Abraham, R. H. Abraham, and C. D. 
Shaw, Dynamical Systems: A Visual Introduction, (Science Frontier Express, 

i 
1996). These books provide lavishly illustrated examples of homoclinic and 
heteroclinic tangles, including their effects on the Lorenz attractor. Various 

I 
bifurcation events are depicted graphically. 

J. M. Ottino, i%e Kinematics of Mixing: Stretching, Chaos, and Transport 
(Cambridge University Press, Cambridge, 1989) pp. 11 1-15. Provides an excellent, I 
illustrated introduction to homoclinic and heteroclinic tangles. 

[Guckenheimer and Holmes, 19901. The authors discuss homoclinic and 
heteroclinic orbits throughout their book. 

M. A. Harrison and Y.-C. Lai, "Route to high-dimensional chaos," Phys. Rev. I 
A 59, R3799-R3802 (1999). 

I Strange but not Chaotic Aamctors I 

C. Grebogi, E. Ott, S. Pelikan, and J. A. Yorke, "Strange Attractors that are 
not Chaotic," Physica D 13,261-68 (1984). 

I Quasi- Periaiicity 

L. D. Landau and E. M. Lifshitz, Fluid Mechanics, (Pergamon, London, 
1959). Discusses the conjecture of an infinite number of periods required to 
explain turbulence. 

J. P. Gollub and H. L. Swinney, "Onset of Turbulence in a Rotating Fluid," 
Phys. Rev. Lett. 35,927-30 (1975). The first experimental evidence for the Ruelle- 
Takens quasi-periodic route to chaos. 

P. M. Battelino, "Persistence of Three-Frequency Quasiperiodicity under 
Large Perturbation," Phys. Rev. A 38, 1495-502 (1988). This paper shows that in 
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some cases more than three incommensurate frequencies may coexist before chaos 
begins. 

Tmnsient Chaos 

H. Krantz and P. Grassberger, "Repellers, Semi-attractors, and Long-lived 
Chaotic Transients," Physica D 17,75-86 (1985). 

T. TB1, 'Transient Chaos," in [Hao, 19901. 

Sil'nikov Chaos 

L. P. Sil'nikov, "A contribution to the problem of the structure of an extended 
neighborhood of a rough equilibrium state of saddle-focus type," Math. USSR 
Sbornik 10,91-102 (1970). 

[Hale and Kocak, 19911. Section 17.3 gives a brief introduction to Sil'nikov 
chaos. 

[Guckenheimer and Holmes, 19901. Gives an extended mathematical 

treatment of Sil'nikov chaos. 

The Horseshoe Map 

S. Smale, "Differentiable Dynarnical Systems," Bull. Amer. Math. Soc. 73, 
747-8 17 (1967). 

[Guckenheimer and Holmes, 19911. 
[~ulick, 19921. 
rottino. 19891 and J. M. Ottino, 'The Mixing of Fluids," Scient$c American, 

260 (l), 56-67, (January, 1989). Illustrates the connection between horseshoe 
dvnarnics and fluid tracer experiments. Beautiful examples of stretching, 
compression, and folding. 

Lyapunov Exponents 

H. Haken, "At Least One Lyapunov Exponent Vanishes if the Trajectory of 
an Attractor does not Contain a Fixed Point," Phys. Lett. A 94,71-74 (1983). 

Various methods for finding Lyapunov exponents are discussed in: 
A. Wolf, J. B. Swift, H. L. S w i ~ e y ,  and J. A. Vasano, "Determining 

Lyapunov Exponents from a Time Series," Physica D 7,285-317 (1985). 
A. Wolf "Quantifying Chaos with Lyapunov Exponents," in Chaos, A. V. 

Holden, ed. (Princeton University Press, Princeton, 1986). 
S. Neil Rasband, Chaotic Dynamics of Nonlinear Systems (Wiley, New York, 

1990). 

4.15 Computer Exercises 

CE4-1. Use Chaotic Dynamics Workbench or Chaos for Java (see the 
information at the end of Chapter 2) to explore the behavior of the Lorenz model 
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near the parameter values r = 13.96 and r = 24-25. Use Poincark sections in 
Chaotic Dynamics Workbench to see the effects of the repelling fixed point at the 
origin and the repelling cycles near the off-origin fixed points. 

CE4-2. Use Chaotic Dynamics Workbench to calculate the Lyapunov 
exponents for the Lorenz model. Verify that the sum of the exponents is negative 
for the Lorenz model. Verify that one Lyapunov exponent is (close to) 0. Verify 
that for a chaotic orbit, one Lyapunov exponent is positive. 

CE4-3. Consider a system described by the simple differential equation l 
(a) First, write this system as a pair of first-order differential equations and then find 
the locations of the fixed points in the x -x  two-dimensional state space. Show 

I 
that there is a saddle point at (-1,O) and a repellor at (0.0). (b) This system has a 
homoclinic orbit associated with the saddle point. Write a computer program to 
display the trajectories in the neighborhood of the saddle point and the repellor. 
Try to find the homoclinic orbit. [Hint: The homoclinic orbit passes through the 
point (0, 1/& ) . In Chapter 8, we will see why that is the case.] I 

CE4-4. The Rossler model (ROS76) is a simplified version of the Lorenz 
equations introduced in Chapter 1. The model's equations take the following form: 

I 

a, b, and c are parameters while x, y, and z are the dynamical variables. Find the 
fixed points of the system. Then use Chaos for Java to explore the behavior of this 
system with a = 0.2 and b = 0.2, using c as the variable parameter. (Start with c in 
the range between 2.5 and 6.) View the behavior with xyz state-space plots, a 1 
"return map" using x-, the (local) maximum value of x plotted as a function of c, 
and a Poincark section See [Strogatz, 19941, pp. 376-379 for some graphical 
results for this system. Write your own program to generate a bifurcation diagram, I 
plotting x- as a function of c. 

Iterated Maps 

What she's doing is, every time she works out a value for y, she using that 
as her next value for x. And so on. Like a feedback. She's feeding the 
solution back into the equation, and then solving it again. Iteration, you see. 
Tom Stoppard, Arcadia (p. 44). 

5.1 Introduction 

In this chapter we will develop the theory and analysis of iteratd map functions 
viewed as dynamical systems. One motivation for studying such maps is their 
origin in the description of intersections of state space trajectories with Poincark 
sections as described in the previous chapter. These maps, however, have a 
mathematical life of their own. Furthermore, in many cases, we can use the maps 
as models for physical systems even if we do not know the underlying differential 
equation model. This approach to modeling has its pitfalls, some of which we will 
discuss later, but nevertheless it can give us useful insights for the dynamics of 
complex systems. 

The initial discussion will focus on those systems whose dynamics can be 
described by so-called one-dimensional iterated maps. A one-dimensional iterated 
map is based on a function of a single (real) variable and takes the form 

Section 5.2 provides some arguments about the conditions under which we might 
expect such one-dimensional iterated maps to be good models for systems whose 
"natural" description would be in the form of differential equations. 

The reader should be warned that the theory of nonlinear dynamics does not 
(yet) provide us with the tools needed to say in advance under what circumstances, 
if any, we can use the results developed in this chapter to describe the behavior of a 
particular system. We can say, however, that many systems, both theoretical and 
experimental, do seem to be well described by such a scheme, at least for some 
range of control parameter values. We believe that the arguments given in Section 
5.2 should make this fact reasonable. 

In any case, the mathematical theory of one-dimensional iterated maps has 
played an important role, both historically and conceptually, in the development of 
chaos theory, and these maps can be studied quite fruitfully in their own right. We 
shall present a pedestrian view of some of the theory in the remaining sections of 
the chapter. However, one of the themes of this book is that nonlinear dynamics is 
a scientific study of the "real world." So, we must focus on those aspects of the 
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mathematical development that are most closely related to the description of actual 
systems. Much of the discussion, however, will concentrate on the mathematics. 
Applications will be taken up in later chapters. The references at the end of the 
chapter will satisfy the needs of the mathematically inclined and of those readers 
whose appetites have been whetted for a more detailed mathematical treatment. 

5.2 Poincard Sections and Iterated Maps 

As we discussed in the previous chapter, the Poincark section of the state space 
dynamics simplifies the geometric description of the dynamics by removing one of 
the state space dimensions. The key point is that this simplified gwmetry 
nevertheless contains the "essential" information about the periodicity, quasi- 
periodicity, chaoticity, and bifurcations of the system's dynamics. 

For a three-dimensional state space, the Poincark section is a two- 
dimensional plane chosen so that the trajectories intersect the plane transversely (in 
the sense defined in Section 4.6). Figure 5.1 shows such a Poincark plane, where 
we have set up a Cartesian coordinate system with coordinates u and v (to 
distinguish them from state space coordinates XI, x2, and x3). 

The assumed uniqueness and determinism of the solutions of the differential 
equations describing the dynamics of the system imply the existence of a Poincark 
map function, which relates a trajectory intersection point to the next intersection 
point. Suppose a trajectory intersects the Poincark plane at the point (ul, v,). Then, 
after "circling" around state space, the trajectory next crosses the plane at (uz, Q). 
In essence, we assume that there exists a pair of Poincark map functions that relate 
(~29 2)2) to ( ~ l r  VI): 

I From the pair (uz, &), we can find (u3, q) and so on. Hence, if the map functions 
P, and P ,  are known, we have essentially all the information we need to ~ characterize the dynamics of the system. We want to emphasize that we need not 
restrict ourselves to the long-term behavior of the system, that is, we need not 
restrict ourselves to what we have called the attractor for dissipative systems. 
However, most of the applications of the Poincark section technique will focus on 
the attractors and how they evolve as parameters are changed. 

In a (perhaps) surprisingly large number of cases, the Poincark map functions 
reduce to a one-dimensional iterated map. To see what this collapse means, let us 
start with a three-dimensional state space and a two-dimensional Poincark plane. In 
general, we need to know both coordinates (say, u and v) of one trajectory 
intersection point on the plane, as well as the map functions, to be able to predict 
the location of the next intersection point. However, in some cases, the system 

I behaves in such a way that less information is required. For example, we may need 
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Poincar6 
Plane 

Fig. 5.1. A P o i n d  plane, which is the P o i n d  section for trajectories in a three- 
dimensional state space. The coordinates u and u label the location of the intersection points 
(indicated by asterisks) in the plane. 

to know only u, in order to be able to predict v,,. In this case the mapping functions 
can be written as 

where A is some control parameter. 
Let us assume that we are dealing with a dissipative system You will recall 

from our discussion in Chapters 2 and 3 that dissipative systems (by definition) are 
those for which a cluster of initial points, occupying some finite (nonzero) volume 
in state space, collapses into a cluster of 0 volume as the system evolves in time. 
(The points may still be spread over a finite area or along a finite-length curve, but 
the volume tends to 0.) That 0 volume cluster is part of the state space attractor for 
the system. From the point of view of a Poincark section, this cluster of initial 
points corresponds to (for a three-dimensional state space) a cluster of points 
occupying a finite area of the Poincark surface of section. (We could think of 
building our volume of initial points around the Poincark plane and then recording 
the intersection points as the subsequent trajectories cross the plane.) As time 
evolves, the collapse of the volume of points in the three-dimensional state space 
means that the Poincark points will collapse onto a "curve" (perhaps of very 
complicated gwmetry) on the Poincark plane. (In the special case in which the 
attractor is a periodic limit cycle in the three-dimensional state space, the Poincark 
section will consist of a finite number of points, rather than a curve.) Figure 5.2 
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Fig. 5.2 A sketch of the evolution of a 
cluster of initial condition points 
viewed on the P o i n d  plane of a 
threedimensional dissipative system 
As time goes on, the cluster collapses 
to a curve or a series of points. 

Cluster of 
initial conditions Some later time I u 

shows a schematic representation of the collapse of the cluster of initial points into 
a curve. 

In some cases, the attractor for the dynamical system under study will have a 
characteristic multiplier for one direction in the Poincark plane that is much smaller 
than the characteristic multiplier for the other direction. This small multiplier means 
that an intersection point of a trajectory that is just outside the attractor will be 
pulled very quickly onto the attractor from that direction. (In the language of 
Lyapunov exponents, the small multiplier corresponds to a large negative 
Lyapunov exponent.) The net result of this rapid collapse is that after a very short 
time (short compared to the overall time evolution of the system), we need concern 
ourselves only with the evolution of the system along this curve in the Poincar6 
plane. If this curve has sufficiently simple geometry, then we say that the evolution 
of the system is essentially one-dimensional corresponding to evolution along the 
curve. We make this statement more formally later. 

Although the theory of nonlinear dynamics does not yet provide a complete 
analysis of when this kind of collapse to one-dimensional dynamics will occur, the 
general working rule-of-thumb is that this one-dimensional behavior occurs when 
the system is "sufficiently" dissipative. (We put quotation marks around 
sufficiently because there is no general rule for telling us how much dissipation is 
sufficient.) For example, in the diode circuit described in Chapter 1, we get 
sufficient dissipation by increasing the amount of electrical resistance in the circuit. 
In a fluid experiment, we could (in principle) increase the viscosity of the fluid. In 
many such cases, we do find that the Poincar6 map function becomes effectively 
one-dimensional as the amount of dissipation increases, even for systems with state 
spaces of more than three dimensions. This last remark indicates that our analysis 
is more general than one might conclude from our considerations of three- 
dimensional state spaces. 

We can recognize this one-dimensional behavior by recording measured 
values of some variable, say u ,  taken at successive intervals of time and then 
plotting u,,, as a function of u,. If that graph results in a single-valued functional 
relationship 

then we say the evolution is essentially one-dimensional. 
Figure 5.3 shows some data taken with the diode circuit described in Chapter 

1. The value of the current flowing through the diode was recorded at a fixed phase 
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Fig. 5.3. A return map for the diode circuit described in Chapter 1. The (n+l)th sample of 
the current I is plotted as a function of the nth sample. On the lefl, the circuit dissipation is 
relatively high and the evolution is essentially one-dimensional. On the right, with lower 
relative dissipatm, the double-valuedness (loop) seen on the far right indicates higher- 
dimensional behavior. (A technical point: the relative dissipation of the circuit was varied by 
changing the drive frequency. On the left the drive frequency is 30 kHz On the right, it is 
50 kHz In other words, the Q ("quality factor") for the circuit is lower on the left and higher 
on the right. Lower Q corresponds to higher relative dissipation.) 

point of the sinusoidal voltage driving the circuit, thereby forming a stroboscopic 
portrait. We have plotted In+, as a function of I,. On the left, the dissipation in the 
circuit was relatively high and the displayed points indicate that knowing In allows 
us to predict I,,,. Thus, we say the behavior is one-dimensional. On the right, the 
amount of dissipation was weaker. Toward the far right of the diagram, a loop is 
formed that indicates that there are two possible I,,, values for a certain range of I, 
values. In this region the behavior is not one-dimensional. 

Of course, tracking one variable does not tell us the details of the behavior of 
other variables. If period-doubling occurs for one variable, however, then it 
generally occurs for the others as well. Hence, following the behavior of one 
variable allows us to determine the overall periodicity and bifurcations for the 
system. 

In a few cases, effective one-dimensional behavior has been demonstrated for 
models based on differential equations. A popular example for physicists is the 
model of a pendulum driven periodically by an external torque and subject to 
frictional damping. The pendulum is taken to consist of a mass M attached to the 
end of a rigid rod of length L as shown in Fig. 5.4. (We assume the rod has 0 
mass). The other end of the rod is fixed at the pivot point. As usual the angular 
displacement from the vertical direction is indicated by the angle 8 .  For this 
model the time evolution equation is 
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Angular VelocityrO 

Fig. 5.4 On the left, a schematic diagram of the pendulum On the right is a plot of the 
(n+l)th sample of the angular velocity variable as a hction of the nth for the driven damped 
pendulum The angular velocity was sampled when the external torque was at phase 0. The 
amplitude of the external torque = 2.048 MgL, the frequency ratio is 3 3  and the damping 
factor is 1.0. Note that the functional dependence is essentially one-dimensional. They = x 
line is drawn for reference. 

On the right of the previous equation, the first term represents the torque due to 
gravity; the second gives the damping due to friction, and the third describes the 
external torque, which is assumed to vary periodically in time. 

If we now introduce some dimensionless variables, then the equations are 
more suited for numerical work. The natural oscillation fr uency of the pendulum 
in the absence of damping and external torques is o, = & for small amplitude 
motion; therefore, we choose to measure time in units of 11% . The damping is 
proportional to l1Q (the reciprocal of the quality factor). Small Q means a large 
amount of damping per oscillation. (Q is defined as the ratio of the total 
mechanical energy of the system E to the energy lost to dissipation per oscillation 
cycle.) The torque is measured in units of the product MgL, which is the torque 
required to hold the pendulum at rest, 90' from the vertical position. Using those 
variables, the time evolution equation becomes 

Here b measures the amount of damping; s is the dimensionless time variable; F is 
the amount of torque relative to MgL, and D is the ratio of the drive frequency to 
the natural oscillation frequency. Our standard procedures show that this system 
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has a three-dimensional state space, where the variables can be taken to be the 
angular displacement, the angular velocity, and the phase of the external torque. 

Figure 5.4 shows the return map plotted for the angular velocity of the driven 
damped pendulum with D = 213, b = 1.0, and F = 2.048, which yields chaotic 

I behavior following a period-doubling sequence of bifurcations. (The values were 
sampled when the phase of the external torque was at 0.) The return map shows 
that for this set of parameter values, the behavior of the angular velocity can be 
modeled by a one-dimensional iterated map. 

Much theoretical work has gone into analyzing how Poincare map functions 
for the Lorenz model, inrroduced in Chapter 1 ,  reduce to one-dimensional iterated 
maps. For further information, see the references at the end of this chapter. 

53 One-Dimensional Iterated Maps 

The discussion in the previous section should have convinced you that using one- 
dimensional iterated maps as models for the dynamics in a state space with three (or 
more) dimensions is at least plausible. We will now turn to a discussion of such 
map functions as examples of dynamical systems in their own right. Later, we will 
return to the question of applying what we have learned to the full dynamics of the 
system. 

The mathematical literature on onedimensional iterated maps is vast and 
sophisticated. In the limited space available in this book we cannot do justice to the 
elegance of the many mathematical results that are known. We hope, however, to 
bring the readers to the point where they will be ready to tackle the more detailed 
treatments given in the references at the end of the chapter. 

Let us begin with a brief review of some of the notions introduced in Chapter 
1. We will now call the independent variable x; the iterated map function will be 
Ax). In general the map function depends on some parameter p, which we will not 
usually show explicitly. When we want to emphasize the parameter dependence, 
we will display the parameter p as a subscriptf,(x). 

The iteration scheme begins with an initial value of x, call it %, and we 
generate a trajectory (or orbit) by successive applications of the map function: 

and so on. 

uation systems because the iterated maps are free from the constrain 
continuity. By that we mean that x for the iterated map can jump fro 

ne value to another without passing through the intermediate values of 
in Chapter 3, the constraint of continuity on the solutions of 
ional differential equation severely restricts the kinds o 
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It will be helpful to have a specific example in front of us. We will use the 
logistic map from Chapter 1 as our model system. (We will discuss several other 
map functions later.) Recall that the logistic map function is given by 

where A is the control parameter, taken to be a positive, real number. 
We are most interested in maps that keep the values of x within some finite 

interval along the x axis. If the function Ax) always produces x values within that 
interval when we start with an x,, within that interval, we say that the function f is "a 
map of the interval onto itself." (It is traditional to scale the x values so that interval 
is either 0 I x I 1 or -1 I x I +I .) For example, for the logistic map, the relevant 
interval is between 0 and 1. 

Let us also review the notion of fixed points. In analogy with fixed points for 
dynamical systems described by differential equations, we are often interested in 
the fixed points of the map function. x* is a fixed point of the map functionAx) if it 
satisfies 

If Eq. (5.3-3) is satisfied, then repeated application of the function f to x* yields the 
same value. It is important to note that a given map function may have several 
fixed points for a given control parameter value. For example, the logistic map has 
fixed points at x* = 0 and x* = 1 - 1IA. 

What happens to trajectories that start near a fixed point; that is, what is the 
stability of the fixed point? If those trajectories approach x* as the iteration process 
proceeds ( n + = ), we say that x* is an attracting fied point or (equivalently) a 
stable fied point. (The phrase asymptotically stable is also used.) If the 
trajectories move away from x*, then we say that x* is a repellingfied point or 
(equivalently) an unstable fied point. 

As we saw in the previous chapters, we can investigate the stability of a fixed 
point by finding the derivative of the map function evaluated at the fixed point. In 
geometric terms, we are looking at the slope of the map function at the fixed point. 
Figure 5.5 shows a graphical representation of the iteration process introduced in 
Chapter 1. In the immediate neighborhood of a fixed point, the function can be 
approximated as a straight line. 

It should be obvious from those graphs that the following criteria hold for the 
stability of the fixed point (the subscript on the derivative reminds us that we are 
evaluating the derivative at the fixed point): 
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I 

F i i  5.5. A graphical representation of the effect of repeated use of map function Ax). The 
map function is plotted as a dashed line. The Ax) = x line is solid. (a) 0 < &dx < 1 gives a 
stable fixed point. (b) djdJ > 1 gives an unstable fixed point. (c) -1 < djdJ < 0 gives a 
stable fixed point. (d) djdx < -1 gives an unstable fixed point. Note that when dj& < 0, the 
successive iteration points alternate from one side of the fixed point to the other. 

In Chapter 3, we used a Taylor series expansion near x* to amve at the same 
results analytically. For a trajectory starting at x,, near x*, we can write 

Keeping only the fist-derivative term in the expansion, we write this result in terms 
of the difference between x, and x*: 

If the magnitude of the derivative evaluated at the fixed point is c 1, then the 
distance decreases with subsequent iteration, and the trajectory approaches the 
fixed point. If the magnitude of the derivative is greater than 1, then the distance 
increases, and the trajectory moves away from the fixed point. Note that if the 
derivative is negative, then the sign of the difference changes with each iteration, 
and the trajectory points altemate being on the left or the right of the fixed point. 
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Exercise 5.3-1. Find the fixed points of the following map functions. 
Determine the stability of each fixed point. 

Exercise 5.3-2. Explore the logistic map model with the parameter A < 0. 
Find the fixed points and study their stability as A changes. 

5.4 Bifurcations in Iterated Maps: Period-Doubling, Chaos, and Lyapunov 
Exponents 

As we have seen with other dynamical systems, the nature of the fixed points of 
iterated maps can change as the control parameters of the system change. In this 
section we will examine bifurcations in the logistic map as a model of the kinds of 
bifurcations that can occur for one-dimensional iterated maps. In particular we will 
focus on the sequence of period-doublings that leads to chaotic behavior. 

First let us examine the stability of the two fixed points x* = 0 and x* = 1 - 
1IA. We evaluate dfldx at each of those fixed points: 

We see from Eq. (5.4-1) that the fixed point at x = 0 is an attracting (stable) fixed 
point for A < 1 and that the fixed point at x = 1 - I IA is a repelling (unstable) fixed 
point for A c I .  Thus, for A c 1, we expect all trajectories with 0 c x, c 1 to 
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approach the fixed point at x = 0 (except for the trajectory that starts exactly at x, = 
I - 11A). 

Exercise 5.4-1. What happens to logistic map trajectories with x, < 0 and 
xn >1 for A c l ?  Can you explain that behavior in terms of a fixed point of I the map functionflx)? I 
We also see from Eq. (5.4-1) that for 1 < A < 3, the two fixed points exchange 

stability. That is, for A > 1 the fixed point at x = 0 is an unstable fixed point. For 1 
< A  < 3, the fixed point at x = 1 - 1IA becomes a stable fixed point. 

Exercise 5.4-2. Use the graphic iteration technique and also a computer 
calculation of trajectory values to show that all trajectories starting 
between x = 0 and x = 1 approach = 1 - 1IA for the logistic map when 1 
< A < 3 .  

The trajectory behavior becomes more interesting for A > 3. As we saw in 
Chapter 1, for A values just greater than 3, the trajectories settle into a pattern of 
alternation between two points, which we shall label < and x i .  These values 
satisfy the equations 

These two points are attracting fixed points of a "two-cycle." Thus, we say that at 
A = 3, the logistic map trajectories undergo a period-doubling bzfurcation. Just 
below A = 3, the trajectories converge to a single value of x. Just above A = 3, the 
trajectories tend to this alternation between two values of x. 

To describe what happens at A = 3, we introduce what is called the second- 
itemte off. The second-iterate of the map function is defined to be 

that is, the second-iterate off is what we get by applying the function f twice, first to 
the value of x, then to the result of the first application. (We will use the 
parentheses around the superscript to remind us that we are concerned with the 
second-iterate, not the square of the function.) The two-cycle points x; and xi are 
fixed points of the second-iterate function: 

Thus, we conclude that for A just greater than 3, these two fixed points of the 
second-iterate function become stable fixed points. 

Let us see how the derivatives of the map function and of the second-iterate 
function change at the bifurcation value, which we shall label as A = A, = 3. Eq. 
(5.4-1) tells us that dfldx (the derivative of the map function) passes through the 
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value -1 as A increases through 3. What happens to the derivative of f "' ? We 
can evaluate the derivative of the second-iterate function by using the chain rule of 
differerentian: 

If we now evaluate the derivative at one of the fixed points, say, x,* , we find 

- -- df "' (x) 

ah I, 
In arriving at the last result, we made use of xi = f (x;) for the two fixed points. 
Eq. (5.4-6) states a rather surprising and important result: The derivatives of f "' 
are the same at both the fixed points that are part of the two-cycle! This result tells 
us that both of these fixed points are stable or both are unstable and that they have 
the same "degree" of stability or instability. 

We gain insight about what happens at the bifurcation value A = 3 by 
realizing that for A = 3, the fixed point 1 - 11A forflx) coincides with the two fixed 
points for f "'(x) . Since the derivative ofAx) is equal to -1 for that value of A, 
Eq. (5.4-6) tells us that the derivative of f "' is equal to + 1 for that value of A. As 
A increases further, the derivative of f"' decreases and the two fixed points 
become stable. Figure 5.6 shows a graph of f '2'(x) for a value of A just below 3 
and a value just above 3. For A just greater than 3, we see that the slope of f "' at 
those two fixed points is less than 1 and that hence they are stable fixed points of 
f "' . From the perspective offlx), a trajectory jumps back and forth between those 
two values. Note also in Fig. 5.6 that the unstable fixed point offix) located at 1 - 
1IA is also an unstable fixed point of f "'(x) . 

Before continuing our discussion, we would like to make a few remarks about 
fixed points and how to extend these notions to higher-order iterates. First, we 
point out that the nth iterate of fix) is defined as the function that results from 
applying f n-times: 

with n p  on the right-hand-side. A moment's reflection should convince you that a 
fixed point ofAx) is also a fixed point of f '"' , but that the converse is rn always 
true. Furthermore, if x* is a stable fixed point ofAx), it is also a stable fixed point 
of f '"' . Again, the converse is not always true. 
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Fig. 5.6. A graph of the second-iterate of the logistic map. On the left, the value of A is 2.8. 
On the right, just above the first perioddoubling bifurcation, the value of A is 3.2. Note that 
the slopes of the second iterate off at the two fixed points near 1 - 11A are the same and for A 
= 3.2 have magnitude less than 1. 

The smallest n (n > 0) for which x* is a fixed point defines theprimeperiod of 
that fixed point. For example, the two distinct values of x that satisfy Eq. (5.4-4) 
have a prime period of 2. The point x = 1 - 1IA is also a fixed point of f "' , but its 
prime period is 1. 

Exercise 5.4-3. Show that the iterates off obey the so-called composition 
,.,,le: f '"+"" (x) = f '"'(f'"'(x)) . 

Exercise 5.4-4. Use the chain rule to prove that the derivative of f '"' 
evaluated at any of the fixed points of an n-cycle has the same value. 

Now we are ready to continue our discussion of the behavior of the logistic 
map as A increases. The two 2-cycle fixed points of f "' continue to be stable 
fixed points until A = l +  & . At this value of A, which we shall call A2, the 
derivative of f "' evaluated at the 2-cycle fixed points is equal to -1 and for values 
of A larger than A2, the derivative is more negative than -1. Hence, for A values 
greater than A2, these 2-cycle points are unstable fixed points. What happens to the 
tmjectories? We find that for A values just greater than A& the trajectories settle 
into a 4-cycle, that is the trajectory cycles among 4 values, which we can label < . 
xi ,$ , and x; . These x values are fixed points of the fourth-iterate &tion f "' . 
We have another period-doubling bifurcation: The system has changed from 2- 
cycle behavior to 4cycle behavior. The mathematical details of this bifurcation are 
exactly the same as the discussion for the birth of the 2cycle behavior since we can 
view f '4' as the second-iterate of f '" . Thus, we see that the 4-cycle is born when 
the derivative of f "' evaluated at its Zcycle fixed points passes through the value 
-1 and becomes more negative while the derivative of f '4' evaluated at its 4-cycle 
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Fig. 5.7. A graph of the fourth-iterate of the logistic map function for A = 3.50 just greater 
than the value Aq at which the period-4 cycle becomes stable. 

fixed points becomes less than 1. Figure 5.7 shows the function f '4'(x) for the 
logistic map for values of A just greater than A2. 

Exercise 5.4-5. Show that the bifurcation giving rise to stable period4 
behavior occurs at A = 1 + & . Hint: When period4 is born, 
df '2 ' /dr = -1. 

As we saw in Chapter 1, this sequence of bifurcations continues with ever 
longer periods, until we reach a parameter value at which the period of the 
trajectory becomes infinite. That is equivalent to saying that the trajectory never 
repeats itself. We are at the onset of chaos. We also saw in Chapter 1 that there are 
periodic windows beyond the parameter value at which chaos begins. Below we 
will have more to say about those periodic windows. 

It is important to note that as a result of the sequence of period-doubling 
bifurcations, the logistic map has an infinite number of unstable periodic orbits, 
those that correspond to period 1,2,4, and so on, orbits that became unstable when 
they gave birth to the next generation of orbits. These unstable periodic points turn 
Out to play an important role in the behavior of other trajectories. 
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Exercise 5.4-6. Use the methods developed in this section to study the 
behavior of the so-called quadratic ,map, which is given by the 
expression 

Chaos and Lyapunov Exponents 
We are now ready to explore what chaotic behavior means quantitatively. One of 
the signatures of chaos is the divergence of nearby trajectories. In fact, as 
introduced in Section 4.2, for a chaotic system, this divergence is exponential in 
time (or for an iterated map, exponential as a function of the iteration number). 
Thus stated, the property of being chaotic is a characteristic of a group of 
trajectories. However, a trajectory on a chaotic attractor for a bounded system also 
returns infinitely often, infinitely closely to any previous point on the trajectory. 
Thus, we could also examine the divergence of these nearby points (corresponding 
to quite different times) on a single trajectory. 

How do we state this more formally? We begin by considering an attractor 
point xo and a neighboring attractor point xo + E . We then apply the iterated map 
function n times to each value and consider the absolute value of the difference 
between those results: 

1 

If the behavior is chaotic, we expect this distance to grow exponentially with n, so 
we write 

In particular, find its fixed points, and study the period-doubling sequence, 
which occurs as the parameter C is increased. 

This last pair of equations defines what we mean by the Lyapunov exponent A for 
the trajectory. (We will tighten up the definition shortly.) 

If we now let E -+ 0 we recognize from elementary calculus that the ratio on 
the right-hand side of Eq. (5.4-10) is just the definition of the absolute value of the 
derivative of f '"' with respect to x. We have also seen that by applying the chain 
rule for differentiation, the derivative of f '"' can be written as a product of n 
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derivatives offix) evaluated at the successive trajectory points %, xl, x2, and so on. 
Thus, we can put the definition of the Lyapunov exponent in a more intuitive form 

1 
= ;ln(lf '(a)llf '(4 )I.. .lfr(x.-,)I) (5.4-1 1) 

where f '(x) = df /dx . We may rewrite Eq. (5.4-1 1) as 

Eq. (5.4-12) tells us that the Lyapunov exponent (the rate of divergence of the 
two trajectories) is just the average of the natural logarithm of the absolute value of 
the derivatives of the map function evaluated at the trajectory points. Let us 
unravel this rather complicated statement. If the application of the map function to 
two nearby points leads to two points further apart, then the absolute value of the 
derivative of the map function is greater than 1 when evaluated at those trajectory 
points. (We are assuming that E is small enough that the derivative is the same at 
both starting points.) If the absolute value is greater than 1, then its logarithm is 
positive. If the trajectory points continue to diverge, on the average, then the 
average of the logarithms of the (absolute values of the) derivatives is positive. 

A practical computational question: How large must n be to give a precise 
value for n? n must be large enough to give us a reasonable average, but 
if n gets too large the rate of divergence will no longer be exponential 
because the range of x values is bounded. Obviously, the smaller E is, the 
larger n can be and still give us exponential divergence. A good rule of 
thumb is the following: Choose n to be the value that makes d, about half 
the size of the overall range of x values. These questions will be 
addressed in more detail in Chapter 9 on Quantifying Chaos. 

So far, our Lyapunov exponent has been calculated for a single starting point 
x,,. If we compute the Lyapunov exponent for a sample of starting points and then 
average those results, we define the average Lyapunov exponent for the system. 
(Most authors call this simply Lyapunov exponent.) Our quantitative definition 
of chaotic behavior is the following: 

yapunov exponent is positive 

In most cases this exponent must be computed numerically. In Chapter 9, we 
will return to the consideration of the computation of Lyapunov exponents. 
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Exercise 5.4-7. In Chapter 3, we defined average Lyapunov exponents 
for systems described by ordinary differential equations and found that the 
Lyapunov exponents were related to the derivatives of the time evolution 
functions. In this section, we saw that for iterated map functions, the 
average Lyapunov exponent is given by the logarithm of the absolute 
value of the derivative of the map function. (a) Explain why the 
definitions are different in the two cases. (b) Use Eq. (1-26) of Appendix 
I. the linearized form of the van der Pol oscillator model, and the 
approximate Poincark map function in Eq. (1-28) to compare the two 
definitions. 

5.5 Qualitative Universal Behavior: The U-Sequence 

In this section we will discuss the generality of the types of bifurcations and period- 
doublings that we found in the last section for the specific case of the logistic map. 
Obviously, it is indeed the generality of these bifurcations that makes the study of 
one-dimensional maps more than just a mathematical curiosity. We will focus here 
on qualitative universality; that is, certain kinds of behavior occur in certain 
universal sequences, but we are not concerned with the numerical values of 
parameters at which such bifurcations occur. In the next section we will take up the 
question of quantitative universal features. 

Let us begin with the most general kinds of universality and then proceed to 
others that put more restraints on the iterated map functions. First, we restrict 
ourselves to map functions that take an interval of the x axis (usually the interval 
between x = 0 and x = 1) and map points in that interval back into the interval. (As 
long as the map function takes some finite segment of the x axis and maps it into 
the same range of x values, we can always make that interval be the unit interval 0 
< x < 1 by suitably shifting and rescaling coordinates.) Second, we restrict 
ourselves to so-called unimodal map functions. 

The existence of a maximum in Ax) inside the interval [0,1] is important 
because it creates the possibility that two initial points, say, % and %' in Fig. 5.8, 
lead to the same point x, after one iteration of the function. As we shall see this 
lack of uniqueness in the "prehistory" of xl means that clusters of initial points will 
be stretched and folded by the mapping procedure, and that this stretching and 
folding, under the appropriate conditions, leads to chaotic behavior. 

In 1973, Metropolis, Stein, and Stein (MSS73), pointed out that such 
unimodal maps have a well-defined and apparently universal sequence of periodic 
trajectories as a control parameter is changed. MSS concentrated on periodic 



Chapter 5 

Fig. 5A On the let? is the graph of a unimodal map function. Two different initial points, .q, 
and 4, lead to the same trajectory point XI. On the right is a map function that is not 
unimadal. By rescaling and shifting the x axis, the relevant x axis interval can be made to be 
the unit interval [0,1]. 

trajectories, one member of which is the value at which the maximum (or critical 
value) of the map function occurs. The MSS procedure is: Find the parameter 
value for which x, is a member of the periodic trajectory of length, say, n, and write 
down the sequence of x values: 

The last equality follows because we have assumed that we have a periodic 
trajectory of period n; so, after n applications off, we return to our starting value of 
x. Next, in place of the x values, we write a symbol R or L according to the 
following rule: If x, > x,, then we write R (since in this case xi falls to the right of 
x,). If xi < x,, then we write an L. By this procedure, the trajectory of period n is 
represented by a set of n-1 symbols RLLRRL and so on. (x, is the nth member of 
the sequence.) Such a representation, sometimes called a kneading sequence 
(because the iteration process generates a kind of folding as in the kneading of 
dough), is an example of symbolic dynamics, to which we shall return later. 

The cycles that involve x, are sometimes called supercycles because the 
derivative of the map function is 0 for these cycles. That means that the stability is 
"highest" for these cycles since they are "midway" between their birth (with 
derivative = +1) and their death (with derivative = -1). The parameter values for 
these supercycles are fairly easy to compute by using f '"'(x,) = xc . Given an A 
value close to the supercycle value, it is straightforward .to have a computer 
Program find the supercycle value to high precision by an iterative process. (Initial 
estimates of the values can be calculated from Eq. (2.4-1) and its obvious extension 
Once the supercycle values for n = 1 and n = 2 have been found.) 

Exercise 5.5-1. Use the graphic representation of the iteration process to 
show that the first symbol in the MSS sequence must be an R ifAx) has a 
m i m u m  at x,. 
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MSS found that these RL sequences always appear in the same order for any 

1 unimodal map function as the appropriate control parameter is varied. Hence, they 
named this sequence the U (for universal) sequence. These results, found 
numerically by MSS, were put on a more rigorous basis by GUC81. Table 5.1 lists 
the U-sequences for periods up to period 6. Also listed are the parameter values for 
which these sequences are supercycles for the logistic map function. 

Note that we have listed only periods up through 6 in the table. Thus, period- 
8, -16, and so on, which follow period-2 and period-4 in the period-doubling 
sequence leading to chaos at about A = 3.5699 . . . are not listed. Also note that for 
any period greater than 3, there are several possible RL sequences. For example, 
there are three different period-5 U-sequences, and these occur for three different 
parameter values. We should also note that these are stable periodic orbits, since 
they involve xc as a member. Hence, for all iterates f '"' , the derivative of the nth 
iterate function evaluated at xc is equal to 0. Thus, we conclude that once we are 
beyond the period-doubling accumulation point (at A = 3.5699 . . . for the logistic 
map), these periodic orbits are part of the periodic windows that occur within the 
chaotic regime. The period-6 and period5 windows can be seen in Fig. 5.9. 

There are two important (and related) points to note for the results listed in the 
table. First, we can conclude that if the dynamics of the system is described by a 
one-dimensional iterated map function and if the system shows, for example, a 
period4 RLR U-sequence for some parameter value, then for a smaller parameter 
value it must have had a period-2 R cycle. Second, the sequence in which various 
periods and the corresponding U-sequences occur is independent of the details of 
the map function. The quantitative values of the parameters for which the periods 
occur do depend on the map function, but the qualitative behavior is the same for 
all unimodal map functions. 

Table 5.1 
U-Sequences through Period 6 (from MSS 73) 

Period U-Sequence Parameter for Logistic Map 
2 R 3.2361 
4 RLR 3.4986 
6 RLRRR 3.6275 
5 RLRR 3.7389 
3 RL 3.8319 
6 RLLRL 3.8446 
5 RLLR 3.9057 
6 RLLRR 3.9375 
4 RLL 3.9603 
6 RLLLR 3.9778 
5 RLLL 3.9903 
6 RLLLL 3.9976 
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What can we say about the behavior of real physical systems whose dynamics 
might be modeled by such a unimodal map function? Do they exhibit the same set 
of U-sequences? The answer is a qualified yes. The answer must be qualified 
because only a few experiments have had sufficient parameter resolution to see 
many of these sequences (most seem to occur over very small parameter ranges). 
The experiment might see some of the period-2, -4, and -5 sequences, but have 
difficulty resolving the intervening period-7 sequences. We can say, however, that 
the sequences t!!at have been resolved do seem to occur in the MSS U-sequence 
order. For example, the first period-4 behavior that occurs in the diode circuit and 
illustrated in Fig. 1.5, shows the expected RLR pattern (see Exercise 5.5-2). More 
detailed examinations of U-sequences have been given in studies of oscillating 

chemical reactions (SWS82) and a varactor diode circuit (TPJ82). However, 
deviations from the U-sequence have been seen in oscillating chemical reactions 
(CMS86) when the effective one-dimensional map describing the system is not 
always concave downward. (See Section 5.9, The Gaussian Map, for an example.) 

Exercise 5.5-2. If an experimental system shows, say, period4 behavior 
as illustrated in Fig. 1.5, how can we assign an RL pattern to the 
observations since we do not (usually) know the variable value 
corresponding to x,? Hints: First we identify the peaks (or alternatively, 
the valleys) of the variable as the quantities corresponding to x,. Next we 
note that&) gives us the largest value of x in the sequences of xs for that 
parameter value. Even if the trajectory does not involve x, directly, we 
can still assign an RL sequence if we use for the variable value separating 
R from L the peak value that precedes the largest peak in the seauence for - A 1 - -  --- 
that parameter value. Show that this procedure leads to an RLR sequence 
for Fig. 1.5 in agreement with the MSS pattern. 

In the following subsections, we will present some more general 
mathematical results concerning one-dimensional iterated maps. The main point to 
take away from reading those sections is that a great deal of the structure of 
periodic windows and the existence of orbits of various periods is quite general. 
Many of these features are independent of the details of the iterated m a p h m b a  
For funher details and proofs, the reader is referred to the references given at the 
end of the chapter. 

Some Mathematical Comments 
We would like to point out that some of the restrictions we have imposed on the 
map functions are chosen mainly for mathematical convenience; they are by no 
means necessary for most of the results. In this section we will discuss how some 
of the conditions can be relaxed. 

In our discussion, we have assumed that the map function has a single 
maximum in the interval under discussion. Most of the results are the same if the 
function has a single minimum on that interval. For example, consider the map 
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function f (x) = 1 - Ax(1- x) This function is an inverted version of the logistic 
map function. It has a minimum at x = 112. You should convince yourself that this 
function maps the interval [0,1] onto itself, 'and that as A, the control parameter 
increases, the iterates of Eq. (5.5-2) pass through a period-doubling sequence to 
chaos just like that for the logistic map. However, the iterate values are different. 
For example, for A < 2, the point x = 1 is the stable fixed point attractor for the 
svstem. and for 2 < A < 3, the stable fixed point attractor occurs at x = 1IA. 
- 4  

I Exercise 5.5-3. Rove the results stated in the previous paragraph. 

The restriction to the interval [0,1] is not necessary either. For example, 
consider the map function 

f (x) = Bx(b - x) (5.5-3) 

This function has a maximum at x = b/2 and it goes to 0 at x = 0 and x = b. By 
using a new variable, say, u = xlb, the map function can be converted into the 
logistic map function. Thus, by rescaling the independent variable, we can make 
the interval be the interval [O, 11. 

kercise 5.5-4. In most experiments, various "transducers" convert the 
~hvsical signal of interest to an electrical form (usually a voltage). The 
electronic equipment often will amplify the signal by some amount. The 
signal may be inverted in sign, and shifted dat ive to a 0 value. If the 
dynamics of the system under study can be modeled with a one- 
dimensional map function, show that these transformations do not affect 

Uniqueness of Stable Periods and the SchwarziQn Derivahahve 
The MSS U-sequence presented earlier says nothing about the uniqueness of the 
listed periodic cycles. In fact, in general there might exist several periodic cycles 
for a given parameter value. (Of course, only one of these can involve x,.) In 1978, 
D. Singer (SIN78) proved that unimodal map functions with a negative value of the 
so-called S c h w d n  deriv&'ve can have at most three stable periodic cycles for a 
given parameter value and in many cases there is at most one stable periodic cycle 
[Devaney, 1986, page 701. Thus, if a stable periodic cycle exists for some 
parameter value, that periodic cycle is unique. Furthermore, if it exists, a trajectory 
starting at x, is attracted to this periodic cycle. (x, is part of the cycle only for 
supercycle parameter values.) 

What is a Schwarzian derivative and why must it be negative for this 
uniqueness to hold? The notion of a Schwarzian derivative is due to H. A. Schwarz 
(1869) and has applications in various areas of analysis (see for example, [Hille. 
19691). Its relevance to one-dimensional iterated maps apparently went unnoticed 
until Singer's work in 1978. The Schwarzian derivative, denoted here as SDMx)), 
of a functionAx) is defined as: 
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where f '  means the first derivative off  with respect to x; 
f a  is the second 

derivative, and f" is the third derivative. Singer's theorem holds if SDV(x)) is 
negative over the entire interval [0,1]. 

Exercise 5.5-5. Prove that the logistic map function has a negative 
Schwarzian derivative over the entire interval [0,1]. Are there any 
restrictions on the parameter A? Prove that the sine map [see Eq. (2.2-2)] 
has a negative Schwarzian derivative over the interval [0,1]. 

A proof of Singer's theorem would take us too far afield. The interested 
reader is referred to [Devaney, 19861, [Gulick, 19921, and [Davies, 19991. Some 
intuition, however, about why SDV(x)) is important can be gathered from noting the 
following lemma [Devaney, 1986, page 701: If SDV(x)) < 0, then f'(x) cannot 
have a local minimum where it is positive or a local maximum where it is negative. 
Remarks: you may recall that a point at which ff(x) has a maximum or a 
minimum is called an inflection point. This lemma states that certain types of 
inflection points cannot occur forfix) on the interval for which SDMx)) < 0. 

Exercise 55-6. Sketch a graph of a function that has an inflection mint 1 
- r ----- with a positive Schwarzian derivative of the function at the inflection 

point. Sketch a graph of a function that has a negative Schwarzian 
derivative at an inflection point. Use the graphic iteration method to show 
why the first case might lead to more than one stable fixed point for the 
function. 

Sarkovskii's Theorem 

In our discussion of the U-sequence we were concemed with the appearance of 
different periodic cycles as a control parameter was changed. We can also ask 
about the existence of periodic cycles (some stable and some unstable) for a fixed 
control parameter value. As we have hinted earlier, the existence of unstable 
periodic cycles can have a significant influence on the behavior of trajectories that 
are not part of the cycles. In 1964, the Russian mathematician A. N. Sarkovskii 
proved the following remarkable theorem: 

parameter value, f has a periodic point with prime period m, then f also has 
(for the same parameter value) a periodic point of period n, where n 
occurs to the right of m in the following ordered set: 
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What is the organization of this set? First we list all of the positive odd 
integers starting with 3 (3,5,7, . . .) in increasing order. Then we list the positive 
integers that are two times the odd integers (again starting with 3) in increasing 
order, then the positive integers that are four times the odd integers, and so on. 
Finally, we list in decreasing order the positive integers that we have not yet listed. 
These are the integer powers of 2: . . . 24, 23, 2', 2', 2'. (You should convince 
yourself that there are no duplications and no omissions in this listing of the 
positive integers.) 

A proof of this theorem can be found in [Devaney, 19861. (An alternative, 
elementary proof based on geometrical ideas can be found in KAP87). Here we 
will be concemed only with the significance of the result. first (and most important . . -- 

for chaos) is the observation that iff has a period3 point for some parameter value, 
then for that same parameter value it has periodic trajectories of all lengths, 
including infinitely many of infinite length! As mentioned earlier, an infinite 
period is equivalent to an aperiodic trajectory, and this is one signature of chaos. 
However, it is not the kind of chaotic trajectory we can observe. For example, in 
the logistic map, when A = 3.8319. . . , there is a stable period-3 trajectory. By 
Sarkovskii's theorem, the logistic map also has infinitely many periodic cycles for 
that parameter value, including ones of infinite length. However, they are all 
unstable by Singer's theorem. Thus, the only one we see in a computer calculation 
of trajectories is the stable period-3 trajectory. 

Sarkovskii's theorem is essentially the result presented (apparently 
independently) in a famous paper by Li and Yorke in which the word chaos first 
appeared in its contemporary scientific meaning (LIY75). It is important to note, 
and this point seems to be often missed, that Li and Yorke's result, like the 
Sarkovskii theorem, applies specifically to a fixed parameter value. Neither result 
directly implies that chaotic behavior will occur for other parameter values, though 
the existence of trajectories with infinite periods is quite suggestive. 

Although Sarkovskii's theorem applies only to a single parameter value, in 
some cases at least, the ordering stated by the theorem is also the order in which the 
periodic orbits occur in their &&& form as a function of parameter value. For 
example, for the logistic map, starting with small values of the parameter A, we first 
have period-1, then period-2, then period-4, and so on, as A increases. Then within 
the chaotic bands beyond the period-doubling accumulation point are periodic 
windows, first with periods of very large (odd) values, gradually decreasing in 
length according to the Sarkovskii ordering and finally between A = 3.7 and A = 
3.83, we have period-7, then period-5, and finally period-3 (see Fig. 5.9). A 
rationale for this behavior is given shortly. 

You should note that Sarkovskii's ordering does not describe the multiple 
appearance of trajectories, with different U-sequences, of a particular periodicity. It 
describes only the order in which the periodic trajectories first appear. 
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Fig. 5.9. The bi-tim diagram f a  the Iogjstic map function. In the upper part 100 
trajectory points have been plotted (atier transients have been allowed to die away) f a  each 
vdue of A. In the lower p ~ ,  superposed an the bifumtion d i a m  (with only 10 points 
plotted f a  each value of A for clarity's sake) are the first eight trajectory points that follow 
brmq = 0.5. Note tha~ these points coincide with the attracta points only for the supercycle 
values of A. In all cases they give the upper and lower ranges for the attractor and its 
wands .  
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The Organization of Chaotic Behavior 

, We now discuss some details of the bifurcation diagrams for one-dimensional 
iterated maps. The upper part of Fig. 5.9 shows the bifurcation diagram for the 
logistic map for 3.4 < A < 4. The eye immediately picks up a great deal of order 
that exists even within the chaotic regimes of the diagram. 

First we want to concentrate on the heavy ''curves" of points that run through 
the chaotic regions. These heavy concentrations of points are due to trajectories 
that pass near the critical point (x = 0.5 for the logistic map function) of the iterated 
map function. All trajectories that pass near the critical point track each other for 
several subsequent iterations because the slope of the map function (and all of its 
higher iterates) is 0 at the critical point. Thus, those trajectories diverge rather 
slowly leading to concentrations of points in the bifurcation diagram. 

The trajectory points that follow exactly from the critical point value x, 
determine many of the properties of the bifurcation diagram. (These points are 
called the images of the critical point.) For example, x, =AxC) is the maximum x 
value visited by trajectories on the attractor for that particular parameter value. x- 
=Axmax) = f "'(xC) is the minimum value of x visited for that parameter value. 
That is, the first two iterates off, starting from x,, give the upper and lower limits 
for the attracting region. (Here, we assume that the critical point falls within the 
attracting region. Transient trajectories may start outside this region, and periodic 
attractor trajectories may exist entirely inside the boundaries, without touching the 
boundaries.) Further iterates, leading to higher-order images of the critical point, 
map out the interior boundaries of the regions visited by the trajectories for a given 
parameter value. 

The lower part of Fig. 5.9 shows the first eight images of the critical point 
superposed on the bifurcation diagram. Note that these trajectory points do not 
coincide with the periodic attractor points except at the supercycle values of the 
parameter A. However, for A > 3.569 ... these images of the critical point do 
delimit a set of chaotic "bands" to which the trajectories are confined. As A 
increases, those chaotic bands merge. Beyond A = 3.68 (approximately) the 
trajectories occupy one large chaotic band. 

Exercise 5.5.-7. Explain what happens near A = 3.68 where two chaotic 
bands merge into one and there seems to be a convergence of the curves 
of the image points. This special point is called the Misiurewicz point 
(MIS81). Notice that the same type of crossing (convergence) occurs 
where four chaotic bands merge to give two bands near A = 3.6. Hint: 
consider f '3' (x, ) . 

The lower part of Fig. 5.9 also shows that periodic windows occur when some 
of the images of the critical point merge. For example, near A = 3.83 some of the 
image lines merge in the region of the period-3 window. The lines actually touch at 
the supercycle value for period-3. Similarly, near A = 3.74 some of the images 
merge in the region of a period-5 window. The same effect is seen in a narrow 
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period-7 window near A = 3.7. In general, this merging comes about because, for 
each periodic window, there is some parameter value, the supercycle value, for 
which the critical point is part of the periodic trajectory. Since the trajectory is 
periodic, some image of the critical point must return to the critical point value. 

We can now understand the order in which the periodic windows occur. The 
windows are ordered as they are because the higher-order images form curves (as a 
function of A) rising more steeply away from the convergence point near A = 3.68. 
Thus, the higher-order images are the first to merge with the first image; this 
merging is a sign of a periodic window. Furthermore, the higher-order images are 
more sharply peaked near the A values at which they touch the first image curve. 
The sharpness of the peak is clearly correlated with the length of the periodic 
window along the A axis: Sharp peaks correlate with narrow windows. We see 
that the period-7 window is narrower than the period-5 window, which, in turn, is 
narrower than the period-3 window. 

This same association of image merging and periodic windows occurs in the 
region between A = 3.569.. . and A = 3.68, where there are multiple chaotic bands. 
Within each band are periodic windows, with period-3 occurring to the right (larger 
A value) of periodJ, which occurs to the right of period-7, and so on. Because 
there are multiple chaotic bands, however, these windows actually occur as 
windows of higher periodicity. For example, near A = 3.62, where there are two 
chaotic bands, each subband shows a period3 window, which together form a 
period-6 window. 

If you compare the Sarkovskii order of periods as given in the previous 
section, you see that this order corresponds exactly to the ordering of the periodic 
windows established by the mergings of the critical point image curves. These 
curves are graphs of the functions, polynomials in the parameter A in the case of the 
logistic map, determined by iterating the map function starting from the critical 
point. The geometric properties of these functions control the behavior of the 
trajectories. For exampleAxC) = A14 for the logistic map; so the upper boundary of 
the chaotic bands (for A > 3.59) is a straight line that hits x = 1 at A = 4. f "'(xC) is 
given by ( ~ ~ 1 4 )  (1 - Al4). Thus, the lower boundary of the chaotic bands is a cubic 
curve that hits x = 0 at A = 4. This analysis can be continued to understand the 
behavior of each of the image curves. 

As A increases, a particular periodic window, which begins with period-n, 
disappears through a sequence of period-doublings. Then a set of n chaotic bands 
is formed. Finally, the chaotic bands suddenly merge in an event called a criszk, 
which we shall explore in Chapter 7. The periodic orbits still exist, but they are 
unstable. The Sarkovskii ordering tells us the order in which the periodic windows 
are created. Thus, if we see a period3 window for some parameter value, we know 
that all of the windows corresponding to the numbers that precede 3 in the 
Sarkovskii ordering have been created and their remnant unstable periodic orbits 
coexist with the period3 orbit. 
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Exercise 5.5-8. Work through the details of the previous argument to 
verify the Sarkovskii ordering. 

Exercise 5.5-9. Each chaotic band has its own Misiuriewicz point. 
Describe the condition that determines where that point will occur as a 
function of the parameter A. 

5.6 Feigenbaum Universality 

We discussed in Chapter 2 several quantitative features that are shared by many 
one-dimensional iterated maps. The most famous of these are the two Feigenbaum 
numbers a and 6. In this section we present a brief "derivation" of the Feigenbaum 
a based on COP99. A more detailed derivation for both a and 6 is given in 

Appendix F. Other quantitative universal features are discussed in Appendix H. 
We recall from Chapter 2 that the Feigenbaum a is defined as a size scaling 

factor relating "vertical" distances on a bifurcation diagram of the logistic map 
function for successive bifurcations as a parameter, say A for the logistic map, is 
varied. (See Fig. 2.3 and Eq. (2.5-I).) To be specific, we focus on supercycles in 
the period-doubling cascade leading to chaotic behavior. Those supercycles are the 
cycles that include the critical value x, = M in the trajectory. The relevant distance 
is the distance between M and the value of x that occurs halfway through the cycle. 
This value of x is the trajectory value closest to the trajectory point x = M. For a 
cycle of period 2", the relevant distance is 

That is, we start the trajectory at x = M, iterate 2"-' times, halfway through a cycle of 
period 2". The subscript on 4' tells us that we are looking at a supercycle of 
period 2". 

The Feigenbaum a is defined as the number that satisfies 

The minus sign reminds us that the "nearest neighbor" is alternately above and 
below x = M. 

To find the numerical value of a, we need to establish the existence of a 
universal function gb) that satisfies 
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This equation tells us that there is a special function g and a special number such 
that iterating the function once gives the same result as rescaling the independent 
variable axis by the value -a, iterating twice and then multiplying the result by -a. 
We now show the connection between the definition given in Eq. (5.6-2) and the 
function defined in Eq. (5.6-3). 

We start with Eq. (5.6-2) re-expressed in terms of a new variable y = 4i - 
x. (We are just shifting the independent variable axis so that the maximum of the 
iterated map function occurs at y = 0. Then, we introduce the notation 

Dropping the limit in Eq. (5.6-2) and assuming that the ratio still holds for values 
near y = 0 we may write 

COP99 provides some numerical and graphical evidence for this assumption. 
Since we are claiming that Eq. (5.6-5) holds for all values of n, we may also write 

We are seeking a map function g that generates this sequence of y values: 

Y[n+,l  = ~ ( Y , ~ J )  

Using this definition, we may rewrite Eq. (5.6-6) as 

Finally, we use Eq. (5.6-5) and assume that the result holds for all n. We may then 
drop the subscripts on y to get our desired result: 

If we assume that the map function has quadratic behavior near its 
maximum value, we write 

where we have assumed without any lose of generality that the maximum value of 
the function is 1. We then insert Eq. (5.6-10) into Eq. (5.6-9) to find 

Since we are interested in small values of y, we drop the y4 term. For the 
resulting equation to hold for a variety of values of y, we must have 

1 = <(l-c) andc = a 1 2  (5.6- 12) 

Equations (5.6-12) then lead to a quadratic equation for a 
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whose solution is a = 2.73, a value within 10% of Feigenbaurn's value 2.502.. .. 
Appendix F shows how to improve this argument to find a more precise value 

for a and the function g(y) itself. Similar arguments, also presented in Appendix F, 
show how to obtain Feigenbaum's S. The crucial point is that the values of a and 6 
depend only on very general features of the iterated map function, specifically its 
mathematical behavior near the critical point. Hence, we expect to find the same 
values of a and S for a wide variety of iterated map functions and for physical 
systems whose dynamics are well modeled by such map functions. 

5.7 Tent Map 

In this section we examine the behavior of iterates of another one-dimensional map 
function called the tent map, because its graph reminds one of the front view of a 
tent. (Because of its shape, it is also called a hiangle map.) The tent map is an 
example of a class of map functions that are called piece-wise linear. This 
terminology means that the map function graph is made up of sections of straight 
line segments. The tent map function is continuous, but it does not have a 
derivative at the point where the straight-line segments of different slopes meet. 
The derivative has one value to the left of the meeting point and changes 
discontinuously to another value to the right of the meeting point. As we shall see, 
this lack of continuity in the derivative of the map function makes the behavior of 
the iterates quite different from the behavior of the iterates of the smooth, unimodal 
map functions discussed thus far. 

The tent map function is given by the equation 

where r is the control parameter and as usual, we restrict ourselves to x values in the 
interval [0,1]. Figure 5.14 shows a graph of the tent map function for two different 
values of r: one with r < 112; the other with r > 112. 

It should be clear from Fig. 5.10 that there is only one fixed point for the tent 
map function for r < 112. That fixed point is located at the origin. Since the slope of 
the map function is less than one at the origin (for r < 112), that fixed point is stable; 
that is, trajectories starting anywhere on the interval [0,1] are attracted toward x = 0 
for r < 112. 

Exercise 5.7-1. Use the graphic iteration method to show that tent map 
trajectories starting between 0 and 1 are attracted to x = 0 for r < 112. 
What happens if a = l ?  What happens if % is outside the interval [O,l]? 

For r > 112, there are now two fixed points; one at x = 0; the other at 
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Fig. 5.10. The tent map fundion is plotted as a function of x. On the left the control 
parameter r = 114. On the right r = 1. For reference the line y = x is also plotted on the 
graph. 

From Fig. 5.10, we see that the magnitude of the slope of the map function is 
greater than 1 at each fixed point. Thus, we conclude that both fixed points are 
unstable; trajectories are repelled by fixed points. 

Exercise 5.7-2. (a) Show that Eq. (5.7-2) gives the location of the second 
fixed point for the tent map for r > 112. (b) Show that the magnitude of 
the slope of the tent map function is greater than 1 for r > 112. (The 
magnitude of the slope for the tent map is the same everywhere, except at 
x = 112, where it is not defined.) (c) What happens to a trajectory that 
reaches x = 112 for r = l?  Do you expect this behavior to cause a problem 
in a graphical or numerical calculation of trajectories? 

What happens to trajectories for r > 112? You should convince yourself, by 
using either the graphic iteration method or a computer program, that trajectories 
starting between 0 and 1 remain bounded (for r I 1 ) in the interval [0,1] and, more 
importantly, that two trajectories starting close to each other, say, to the left of x = 
112, diverge until they are "folded back" by mapping from the right-hand side of the 
map function. In fact, these initially close trajectories diverge exponentially as a 
function of the iteration number. These trajectories are chaotic. The constancy of 
the magnitude of the slope of the tent map allows us to find the rate of divergence 
quite easily (Exercise 5.7-3). The crucial point to be noted here, however, is that in 
the case of the tent map the behavior of the iterates changes dramatically from 
stable fixed point behavior for r < 112 directly to chaotic behavior of r > 112. The 
iterates do not pass through a sequence of period-doublings to reach chaos. 

Exercise 5.7-3. Use Eq. (5.4-12) to compute the average Lyapunov 
exponent for the tent map. Show that it is positive for r > 112. Hint: The 
absolute value of the slope of the tent map hcction is the same at every 
trajectory point. 
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r = 1.0 

5.11. A graph of the fourth-iterate of the tent map function with r = 1.0. The line y = x 
is included for reference. 

We can get some understanding of why the period-doublings are missing by 
plotting some higher iterate of the tent map function, say f '4'(x) as shown in Fig. 
5.11. We see that the magnitude of the slope of f '"' (x) is greater than the slope of 
Ax) (except at the peak and valley points where the slope is not defined). In fact the 
magnitude of the slope of the nth iterate off is the magnitude of the slope off raised 
to the nth power. 

df '"' (x) df (x) " 
171 = IT1 

This result is easy to demonstrate: Look at the first segment of the original tent 
map function; that is, the segment from 0 to 112. For the nth iterate, the first 
segment goes from x = 0 to x = (1/2)", arriving at the same ordinate value, but in a 
shorter horizontal distance. Hence, its slope must satisfy Eq. (5.7-3). 

We conclude from the preceding analysis that all the fixed points of the 
higher-order iterates of the tent map are unstable if the fixed points of Ax) are 
unstable. By way of contrast, we should recall that what made period-doubling 
possible for the logistic map was the stability of some of the fixed points of 
f'"(x) when the fixed points of Ax) became unstable. Thus we see that the 
smoothness (continuous differentiability) of the map function is crucial in having a 
period-doubling sequence precede the onset of chaos. In more practical terms, if 
we use a piece-wise linear map function to model the dynamics of some system, we 
should not expect to see a period-doubling sequence for that system. 
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( Exercise 5.7-4. What happens to iterates of the tent map for r > l ?  

5.8 Shift Maps and Symbolic Dynamics 

We will now introduce some piece-wise linear map functions for which the 
function itself has a discontinuity as a function of x; that is, the function jumps 
suddenly from one value to another. We shall see that a certain class of such map 
functions leads to a very powerful, but abstract way of characterizing chaotic 
behavior. 

Let us begin our discussion with a map function whose graph is shown in Fig. 
5.12. (We have adapted this example from [Stewart, 19891.) We call this the 
decimal shift map. In algebraic terms, we can write the map function as follows: 

x,,,, = lox,, mod [l] (5.8-1) 

The iteration procedure is as follows: We start with a number between 0 and 1. 
We multiply that number by 10, and then lop off the digit to the left of the decimal 
point. (That "lopping off' is what is meant by the "mod [I]." "mod" is short-hand 
for modulus.) For example, if we start with % = 0.89763428, we multiply by 10 to 
get 8.97634280, and then drop the 8 to the left of the decimal point to arrive at x, = 
0.97634280. Following the procedure again leads to xz = 0.76342800. As you can 
see, the procedure shifts the decimal digits left by one location each iteration and 
chops off the digit that goes to the left of the decimal point. (We have added zeroes 
to fill in the places that have been vacated by the shift; that is, we have assumed that 
the original number was actually 0.897634280000000.. .) 

We can now ask the important question: What happens to the trajectories that 
begin with various values of %? It should be obvious from the example in the 
previous paragraph that any x,, represented by n digits followed by an infinite string 
of zeroes will give rise to a trajectory that ends up at x = 0 after n iterations. Can 
we conclude that x = 0 is an attractor for the system? Let us answer this by looking 
at the trajectory that begins with % = ll7 = 0.142857142857142 . . . . It should be 
obvious that this trajectory will cycle among seven values of x forever since the 
same seven digits appear over and over again in the decimal representation of 1/7. 
In fact any rational number, that is, any number that can be presented by a ratio of 
two integers, say m and n, results in a decimal representation that ends in repeating 
digits (which may be zeroes as in the cases of 318 or 1/10, for example). Thus we 
can conclude that any initial % that is a rational number will lead to a periodic 
trajectory under the action of the decimal shift map. (Settling to x = 0 is obviously 
Just a special case of a periodic trajectory.) 

What happens, however, to trajectories that start on x values that are not 
rational numbers? (These numbers are called irrational. These numbers cannot be 
represented exactly as ratios of integers.) For example, what happens if 
-% ? Since n is an irrational number. it consists of a sequence of digits that 
"ever repeats. Hence, the trajectory starting from this % will never repeat. In fact, 
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Fig. 5.12 The ddted line is a plot of the decimal shift map function. The function is 
discontinuous at x = 0.1.0.2, and so on. The d i d  line y = x is included for reference. 

as we shall see later, it wanders, apparently randomly, over the entire interval 
between 0 and 1. 

What happens to nearby trajectories? Suppose we start one trajectory on 
x,, = n/10 and a second trajectory on % = 22/70, a rational number close to n 110 , 
an irrational number. By the arguments presented earlier, we know that the second 
trajectory will eventually settle down to a periodic cycle, while the first will wander 
randomly throughout the interval. Thus, we can conclude that this system displays 
sensitive dependence on initial conditions. Nearby starting points can lead to 
completely different long term behaviors. 

Are the trajectories chaotic? This would appear to be a subtle question 
because some trajectories-those that begin on rational values of x-lead to 
periodic trajectories, while those beginning on irrational values of x wander over 
the interval never repeating. However, we have adopted the definition of chaos 
given in Section 5.5; namely, the average Lyapunov exponent must be positive. 
Thus, we see that the decimal shift map has chaotic trajectories because the slope of 
the map function is always greater than 1, except at those isolated points of 
discontinuity at which the derivative is not defined. 

Another important question is: Do most of the starting values lead to 

periodic or aperiodic trajectories? The answer is that most values of % lead to 
aperiodic trajectories. What do we mean by "most"? To understand this issue, we 
will rely on some results from number theory in mathematics. (The interested 
reader is referred to [Wright and Hardy, 19801 and [Zuckerman, Montgomery, 
Niven, and Niven, 19911 for more details.) Fist, let us note that between 0 and 1 
there are an infinite number of rational values of x. Thus, it might seem that there is 
no "room" left for the irrational numbers. However, we can measure how much of 
the interval is taken up by rational numbers by noting that we can form a one-to- 
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one correspondence between the rational numbers and the positive integers. Thus, 
we say that the rational numbers are countably infinite, because we can count them 
by this one-to-one correspondence. Finally, we need to know that the length of an 
interval occupied by a countable set of points is 0. Thus, essentially all of the 
interval between 0 and 1, in the sense specified here, consists of irrational numbers, 
which give rise to aperiodic trajectories. Thus, if you were to choose a number 
between 0 and 1 "at random," you would almost certainly hit an irrational number 
and thus generate an aperiodic trajectory. 

This decimal shift map raises some important questions about the numerical 
computation of trajectories. On any real computer, a number is represented with a 
finite number of decimal places. (Actually, most computers use a binary 
representation with a certain number of "bits," but the point is the same.) In the 
common computer language BASIC, most numbers are represented with an 
accuracy of only seven or eight decimal places. Other versions of BASIC and other 
computer languages, such as FORTRAN or PASCAL or C, have "double 
precision" representations that use 15 or 16 decimal places. The main point is that 
no matter what precision you use, you represent any number, rational or irrational, 
by a finite string of digits. Hence, when you apply the decimal shift map to a 
number on the computer, after seven or eight shifts in BASIC, for example, you 
will have shifted away all the numbers you originally specified. What happens 
after that depends on the computer language you are using. Most languages (but 
not all) will fill in zeroes and hence all trajectories, even those starting from what 
you think might be irrational numbers, will eventually end up at x = 0. 

We now introduce a shift map that is based on a binary number 
representation. In algebraic terms, the map function can be written 

xn+, = 2xn mod [1] (5.8-2) 

This map function is called the BernouUi shifl map (after the brothers Jakob 
and Johann Bernoulli, Swiss mathematicians active in the late 1600s). The graph of 
the Bernoulli shift map function is shown in Fig. 5.13. 

The Bernoulli shift map tells us to multiply our starting number by 2 and 
again lop off any part that ends up to the left of the decimal point. If we use a 
decimal representation of %, it may not be so obvious that we are performing a shift 
operation. However, if we use a binary number representation of the xs, where the 
possible symbols are 0 and 1 and the place values to the right of the "binary point" 

1 -- :;w Fig. 5.13. A graph of the Bernoulli shift 
map. The line y = x is included for 
reference. 
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are 112, (112)', (112)~, and so on, then multiplying the original value by 2 is 
equivalent to shifting the string of 1s and 0s left one place, and mod [I] is 
equivalent to dropping anything to the left of the binary point. For example, if we 
start with % = 0.1 11000 (this is equivalent to the decimal 0.875000 = 718), then 
multiplying by 2 yields 1.110000, and the mod [I] gives us 0.110000. We see that 
the overall process is equivalent to a shift of the 1s and 0s one place to the left. 

Which values of % lead to which kinds of trajectories? The reasoning is 
exactly that used for the decimal shift map: Any rational number is represented by 
a repeating sequence of 1s and 0s and hence leads to a periodic trajectory. Any 
irrational number is represented by a nonrepeating sequence of 1s and 0s and hence 
leads to an aperiodic trajectory. Since there is an irrational number close to every 
rational number (and vice versa), the map exhibits sensitive dependence on initial 
conditions. Again, we have an infinite number of initial points leading to periodic 
trajectories and an infinite number of initial points leading to aperiodic trajectories. 
If you choose an % at random though, you are likely to choose one leading to an 
aperiodic trajectory. 

Exercise 5.8-1. Show that the Lyapunov exponent for the Bernoulli shift 
map is equal to In 2. 

The Bernoulli shift map is easily tied to the notion of randomness. Suppose 
we flip a coin many times and record the sequence of heads and tails that we obtain 
by the sequence of symbols HTTHHHTHTHTTHH, and so on. Let us now replace 
H by 1 and T by 0. This leads to a sequence of 1s and 0s that look just like the 

uence of 1s and 0s from the binary representation of an irrational number, say 3 - 1. Another way of saying this is: If we give you a "random" sequence of 1s 
and Os, you cannot tell whether the sequence comes from the procedure of tossing a 
coin, which we take as a paradigm for randomness, or from reading the 1s and 0s 
that appear next to the binary point when the Bernoulli shift operation is applied to 
the binary representation of an irrational number. The sequence of 1s and 0s 
generated by the Bernoulli shift applied to an irrational number is as random as a 
coin toss. 

The Bernoulli shift map is an example of symbolic dynamics, a formalism in 
which our attention is focused solely on a sequence of a finite number of symbols 
(usually just two). Obviously we are far from any direct connection to the physical 
world, but the dynamics of the symbols does allow us to say something about the 
periodicity or chaoticity of the dynamics. The RLRR-type of sequence used in the 
description of the U-sequence for one-dimensional maps is another example of 
symbolic dynamics. As we have seen, the nature of the symbolic sequence can be 
analyzed in terms of the sequence of symbols used to represent rational or irrational 
numbers. Hence, all the results of number theory can be used to help characterize 
the kinds of possible sequences. For more information on symbolic dynamics and 
its use in the theory of chaos, the reader is referred to [Devaney, 19861. 
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A Special Case of the Logistic Map 
A rather special situation occurs for the logistic map function when A = 4: By a 
clever change of variables, we can show that the logistic map function for this value 
of A is equivalent to the Bernoulli shift map! To see this connection, we introduce 
a new variable 8, which is related to the logistic map variable by 

where the variable 8 lies in the range 0 to 1. If Eq. (5.8-3) is used in the logistic 
map Eq. (5.3-2) with A = 4, then we find after some algebraic manipulation that 

This equation is satisfied if 

which we recognize as a Bernoulli shift map function. We conclude that for A = 4, 
the logistic map function is equivalent to the Bernoulli shift map function. 

From a sequence of the 6s generated from Eq. (5.8-5), we could find the 
corresponding sequence of xs for the logistic map by using Eq. (5.8-3). We also see 
that the Lyapunov exponent for the logistic map for A = 4 must be equal to the 
Lyapunov exponent for the Bernoulli shift map-namely, In 2. Furthermore, all the 
statements made earlier about the randomness of the sequences of values generated 
by the Bernoulli shift map apply immediately to the sequences of x values 
generated by the logistic map for A = 4. In fact, the logistic map function iteration 
can be used as a random number generator for computers [CFH92]. 

5.9 The Gaussian Map 

Do all smooth one-dimensional map functions with a single maximum lead to 
period-doubling, chaos, chaotic bands, and periodic windows? The answer is no. 
In this section, we examine a relatively simple mapping function whose iterates 
behave, for some range of parameter values, quite differently from the iterates of 
the logistic or sine maps. We shall see that there is a simple geometric reason to 
explain these differences. 

The map function we will discuss is one we call a "Gaussian map" since it is 
based on an exponential function, which is often called a Gaussian function. This 
map function is characterized by two control parameters, which we shall label b 
and c: 

- 
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Fig. 5.14. On the left, the Gaussian map function is plotted with b = 7.5 and c = - 0.9. Note 
that there are three fixed points. On the right, b = 7.5 and c = - 0.3. Here there is only one 
fixed point. 

Based on our discussion of Feigenbaum scaling, we might expect the 
behavior of this map function to be similar to the behavior of the logistic map 
function since the map functions are very similar close to their maximum values. 
(They are both quadratic.) As we shall see, however, the global structure of the 
map function is also important. Since there are two control parameters, the 
behavior of the iterates of this map function is much more complicated than is the 
behavior for the logistic map. 

First, let us explore the properties of this function. Figure 5.14 shows the 
Gaussian map function for b = 7.5 and two different values of c. The parameter b 
controls the "width" of the Gaussian map function: The maximum value occurs at x 
= 0; that maximum value is c + 1. For very large values of bl, the function drops to 
the value given by the parameter c. When x = 1/& the function has fallen off to 
C' of its maximum value above the "baseline" value set by the parameter c. Thus, 
a rough measure of the width of the function is 2/& . It is important to note that 
this Gaussian map function has two infiction points; that is, points at which the 
slope of the map function has maximum positive and negative values. For large 
values of x, the magnitude of the slope is small. As x approaches 0, either from the 
left or from the right, the slope first increases in magnitude, reaches a maximum 
value at the inflection points and then decreases as x gets close to 0. 

Exercise 5.9-1. Show that the inflection points for the Gaussian map 
occur at x = + l / f i  . Hint: at an inflection point, the second derivative 
of the function is equal to 0. Evaluate the magnitude of the slope of the 
map function at the inflection point in terms of the parameter b. 

To display some of the behavior of the iterates of the Gaussian map, we plot 
some bifurcation diagrams in which the long-term values of the iterates of Eq. (5-9- 
1) are displayed as a function of the parameter c. We will then examine what 
happens to these bifurcation diagrams for various values of the parameter b. First, 
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- 1.0 
- 1.0 C 1 .o 

Fig. 5.15. The bifurcation diagram for the Gaussian map with b = 7.5 and % = 0. 

Gaussian Map b = 7.5 

/ 

let us begin with a set of parameter values that leads to a bifurcation diagram 
somewhat reminiscent of the diagram for the logistic map function. 

Figure 5.15 shows the bifurcation diagram for this value of b. You should 
compare this figure with the bifurcation diagram for the logistic map in Fig. 1.14. 
You will note, starting on the left, that the Gaussian map diagram shows a period- 
doubling sequence leading to chaos, chaotic bands, and periodic windows (period-3 
is particularly clear), just like the logistic map. For larger values of c, however, the 
two diagrams look quite different. The diagram for the logistic map ends abruptly 
at A = 4. (Recall that for A > 4, most trajectories of the logistic map lead to 
x + -m .) For the Gaussian map, the diagram goes through chaotic band mergings 
and period-doublings-should we call them "period-undoublings"?-and finally 
ends up with period-one behavior again. 

We can understand why the diagram recollapses back to period-one by 
looking at the location of the fixed points of the map function. It should be clear 
from Fig. 5.14, that for the extreme values of c, the fixed points occur on the 
"wings" of the Gaussian function, where the slope is very small. This means that 
the fixed points are stable and correspond to period-one behavior. By way of 
contrast, the magnitude of the slope of the logistic map function continues to 
increase at the fixed point as the parameter A is increased; therefore, period-one 
behavior occurs for only one range of parameter values. Thus, we see that the 
existence of the inflection point for the Gaussian map function is important in 
allowing period-one behavior to occur for two ranges of control parameter values. 
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Gaussian Map b = 4.0 

Let us now look at the bifurcation diagram for a smaller value of b, namely, b 
= 4. Recall that smaller b values mean that the Gaussian function is wider, as a 
function of x, and hence the maximum value of the slope of the function is smaller. 
The resulting bifurcation diagram is shown in Fig. 5.16. As a function of c, the 
behavior undergoes a period-doubling bifurcation from period-one to period-two 
and then another from period-two to period-four. Instead of continuing on to chaos, 
however, the system period-undoubles to period-two and then finally back to 
period-one. In a whimsical mood, you might call this "period-bubbling" (BIB84). 
In a more biological frame-of-mind, you might call it the "mouse map." 

-1.0 

Exercise 5.9-2. Describe qualitatively what happens to the fixed point of 
the Gaussian map function and the slope of the function at that fixed point 
for the range of c values shown in Fig. 5.16. 

- 

The Gaussian map, however, has more surprises in store for us. In Fig. 5.17, 
we show the bifurcation diagram with b = 7.5, the same value used in Fig. 5.15. 
The diagrams, however, are different! For values of x near - 1, the behavior is 
period-one but with a value different from that shown in Fig. 5.15. There is, then, a 
sudden change to a diagram that looks just like that in Fig. 5.15. What is the 
difference between the two figures? In Fig. 5.17, the initial value for the iterations 
was q= 0.7. In Fig. 5.15, we used q = 0. 

If we look at Fig. 5.14, we can see that for c near -1 and b = 7.5, the Gaussian 
map has three fixed points, two of which are stable. Some initial values of x lead to 
trajectories that end up on one of the stable fixed points; others lead to trajectories 

-1 .o C 1 .o 
Fig. 5.16. The bifurcation diagram for the Gaussian map with b = 4. The initial value in the 
iteration is %= 0. 
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- 1 

- 1 C + 1 

Fig. 5.17. The bifurcation diagram for the Gaussian map function with b = 7.5, but with 
trajectories starting at % = 0.7. 

Gaussian Map b = 7.5 

/ 

heading to the other stable fixed point. Figure 5.18 shows the graphic iteration 
procedure applied to a starting value of % = 0. The trajectory obviously approaches 
the fixed point that occurs at positive x values. Figure 5.19 shows the graphic 
procedure applied to a trajectory starting at % = 0.5. That trajectory approaches the 
other stable fixed point. Thus, for these values of b and c, the Gaussian map has 
two stable fixed points, each of which has its own basin of attraction. For larger 
values of c, say c = - 0.3, we can see from the right-hand side of Fig. 5.14 that there 
is only one fixed point. Hence, all initial points lead to the same attractor. 

Fig. 5.18. A graphic iteration of a 
trajectory of the Gaussian map starting at 

b = 7.5 % = 0. The trajectory approaches the 
r = - 0 . 9  fixed point just to the right of x = 0. 
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Fig. 5.19. A graphic iteration of a 
trajectory of the Gaussian map starting at 

b = 7.5 xo = 0.5. The trajectory approaches the 
c = - 0 9  fixed point at the left of the diagram. 

Exercise 5.9-3. Write a computer program to find the basin of attraction 
for each of the fixed points shown on the left side of Fig. 5.14. What kind 
of bifurcation event marks the disappearance of the fixed point located at 
negative x values? 

Should we have anticipated this unusual behavior for the Gaussian map? The 
crucial feature here is the decrease in the magnitude of the slope of the function for 
large values of x. By way of contrast, the magnitude of the slope of the logistic 
map functions increases monotonically as we go away from the maximum at x = 
112. Thus, the logistic map does not display a set of period-undoublings. We 
would expect that a physical system such as the diode circuit of Chapter 1 that 
displays these period-undoublings (see Figs. 1.8 and 1.9) should be modeled by an 
iterated map function that has this inflection point property. The return map (Fig. 
5.3) for the diode circuit does show such an inflection point. 

The Gaussian map and other maps that share its characteristic geometric 
features violate the MSS U-sequence. Some of the U-sequences occur for more 
than one range of parameter values. A set of reverse bifurcations (period- 
undoublings) seems to herald this type of behavior. In addition to the diode circuit, 
this type of behavior has been seen in oscillating chemical reactions (CMS86). 

A similar type of behavior has been called antimonotonicity because the 
sequence of bifurcations does not necessarily follow the monotonic sequence found 
in the logistic map model. Such effects can occur when there is more than one 
critical point within the attracting region of state space. The signature of 
antimonotonicity is the formation of a "dimple" in the return map near the critical 
point. NKG96 discusses these effects for the diode-inductor circuit. 

5.10 Two-Dimensional Iterated Maps 

In this section we extend our discussion of iterated maps to map functions of two 
variables, say, x and y. Just as we saw for systems described by differential 
equations, increasing the number of dimensions (here, variables) for iterated maps 
increases greatly the range of possible behaviors. For the most part, the systematic 
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study of two- (or higher- ) dimensional iterated map functions is unexplored 
territory. For more details, refer to [Devaney, 1986, Chapter 21. 

To explore the behavior of two-dimensional maps, let us consider a map 
function, which has become something of a classic in the literature of nonlinear 
dynamics, the Hknon map. This map function was first discussed by Hknon 
(HEN76), who introduced it as a simplified model of the Poincark map for the 
Lorenz model. The Hknon map function is essentially a two-dimensional extension 
of the one-dimensional quadratic map (Exercise 5.4-6): 

C is a positive parameter. We see that when B = 0, the Hknon map function 
reduces to the quadratic map function. The map function applies to the entire xy 
plane. Depending on the values of the parameters B and C, some regions of the 
state space give rise to bounded trajectories; other initial points may lead to 
trajectories that escape to infinity. See Exercise 5.10-2. 

The Henon map is an invertible map function. That is, if we are given xn and 
yn, we can find the unique pair of values x,, and y,,, which gave rise to these 
values. Thus, we can follow both the forward and backward iterations of the 
Hknon map. By way of contrast, for the logistic, quadratic, and Gaussian maps, 
there are two possible x,, values for each x,. 

Exercise 5.10-1. Derive the general expression that gives x,, and yWl in 
terms of x, and yn for the Hknon map. 

We will restrict ourselves to values of B'such that 0 < PI < 1; SO that the 
iterations of the Hknon map, when applied to a cluster of initial conditions in the xy 
plane, collapse that cluster in the y direction. The value B = 0.3 has been well 
studied in the literature, and we shall use that value. Figure 5.20 shows the action 
of the Hknon map on a rectangular cluster of initial points. Note that the Hknon 
map induces an effective stretching and folding of the cluster of initial points. 

Exercise 5.10-2. (After [Strogatz, 19951). For fixed values of the 
parameters B and C, the Hknon map traps some regions of state space in 
the sense that trajectories starting within those regions stay within that 
region. Let B = 0.3 and C = 1.4. Show that the quadrilateral with vertices 
(-1.33, 0.42). (1.32, 0.133), (1.245, -0.14), (-1.06, -0.5) is mapped to a 
new region that is entirely inside the original quadrilateral. Hint: write 
the equation for the straight line segments that form the boundary of the 
quadrilateral and apply the Hknon map to those lines. Other trajectories 
may escape to infinity. Find an initial point of the Hknon map that leads 
to a trajectory that escapes to infinity. 

We can construct a bifurcation diagram for the Hknon map by plotting the 
values of xn (after allowing transients to die away) as a function of the control 
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Fig. 5.20. The result of applying the Hknon map function once to the borders of the inner 
rectangular region in the ny plane. The origin is at the center of the diagram Here B = 0.3 
and C =  1. The area contained inside the initial rectangle is stretched and foIded by the action 
of the map function. The new boundary is indicated by the dotted curve. 

parameter C for a fixed value of B. Figure 5.21 shows such a bifurcation diagram. 
The important feature to note is the presence of two chaotic attractors for C values 
near 1.08. One of the attractors consists of four chaotic bands, the other of six 
chaotic bands. Some initial conditions will lead to one attractor; other initial 
conditions lead to the other. When several attractors coexist for a given parameter 
value, the system will show hysteresis; that is, its behavior depends on its past 
history. 

You may also notice that near C = 1.08, one of the chaotic attractors abruptly 
disappears. This type of event has been called a crisis and will be discussed in 
detail in Chapter 7. 

Figure 5.21 shows several periodic windows. We might ask for what range of 
the two parameters B and C do those periodic windows occur. This question has 
been addressed in rather general terms in BHG97. 

5.11 The Smale Horseshoe Map 

In Chapter 4, we described qualitatively how homoclinic and heteroclinic orbits 
lead to "horseshoe dynamics" in the corresponding Poincark sections. We will now 
describe a two-dimensional map, which captures the essence of that stretching, 
compression, and folding. This map, called the Smale horseshoe map, is defined 
in such a way that the methods of symbolic dynamics can be applied to describe the 
trajectories that iterates of the map follow. However, in constructing such a map, 
we give up the notion of an attractor; that is, under the Smale horseshoe map, an 
area of initial conditions in the xy plane does not collapse to some attracting region. 
We say that the Smale horseshoe map is "area-preserving." Thus, this map cannot 
be a good model for a dissipative system. On the other hand, the resulting 
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1.05 C 4 L +  1.09 

Fig. 521. A bifurcation diagram for the Hknon map for B = 0.3. Cis the control parameter. 
Note the coexistence of two attractors for a certain range of C values indicated by the arrows. 
Different initial conditions give rise to trajectories that lead to the two attractors. 

characterization of trajectories is so important and powerful (and it can be applied 
as a model for nondissipative systems) that we need to understand how the 
horseshoe map works. 

First, we should point out that the horseshoe map is defined geometrically; we 
do not write down any formulas for the map functions. We begin by considering a 
square S of initial conditions in the xy plane. The horseshoe map operation can be 
broken down into two stages: First, the initial square is stretched in the y direction 
by a factor s and simultaneously compressed in the x direction by a factor 11s. (We 
could use different stretching and compression factors without changing the 
essence of the argument.) The new long, thin rectangle, whose area is the same as 
the area of the original square, is then folded over and shifted back so that the 
rectangular parts of the "legs" overlap the original area. This sequence is shown in 
Fig. 5.22. (To keep the curved part of the stretched rectangle out of the original 
rectangle, we need to use s > 2.) We want to concentrate on those sections of the 
horseshoe that overlap the original square. We label these "vertical" rectangles Vo 
and V, .  Where did these regions originate? Figure 5.22 shows that the points in Vo 
and V, came from two horizontal strips, labeled Ho and HI.  Points in Ho are 
mapped into Vo and points in HI are mapped into Vl.  

We will also be concerned with the inverse of the horseshoe map, which we 
shall label as h'-". In particular, we want to know what happens when we apply h"" 
to the original square S. We can see what this action is by thinking of applying h'"' 
to the two vertical strips that we obtained by applying h to the original square. If 
we use the set theory symbol n to indicate the intersection or overlap of two sets 
of points, we may write 
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Fig. 5.22 On the left, a picture of the compression-stretching and folding-shifting stages of 
the horseshoe map. On the right is shown the results of a second iteration of the map, 
enlarged for the sake of clarity. The subscripts, read from left to right indicate the "history" 
of that strip, as explained in the text. We focus our attention on those regions of the 
horseshoe that overlap the original square. These are indicated by the filled-in rectangles. 

The previous equation says that applying h'-') to the two vertical rectangles [which 
are the overlap of S and h(S)] gives us the overlap of S with what we get by 
applying h"') to S. The result of this operation is just the two horizontal rectangles, 
Ho and HI shown on the left in Fig. 5.23. If the inverse map is applied to these two 
horizontal rectangles, we arrive at the four thin horizontal rectangles shown in Fig. 
5.23. The subscript labels are read from the right. For example, Hol is that set of 
points that were in HI after the first application of h'-", but end up in Ho after the 
next application of h'-". 

A second forward iteration of the horseshoe map leads to results shown in the 
right-hand side of Fig. 5.22. The meaning of the subscripts is: Vol, for example, 
labels the strip that results from applying h(2) to Hol. More formally, we write Vii = 
h'2)(~i i ) .  Thus, we see that forward iteration of the horseshoe map leads to an 
intricate sequence of narrow, vertically oriented rectangular regions. The width of 
each of the rectangles after n iterations is (1ls)n. The horseshoe map is constructed 
so that in the overlap regions, the map function is linear. Thus, we get the same 
stretching and the same compression factors for each iteration of the map. 
Likewise, repeated application of h(-" leads to an intricate sequence of thin 
horizontally oriented rectangles. 

Now we are ready to be more formal about the horseshoe map. We want to 
concern ourselves with those points that remain in the square S under all forward 
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Fig. 5.23. The horizontal rectandes 
shown on the left trimsfom u n d e r e  
action of the horseshoe map into the 
rectangle shown in Hg. 5.22. Applying 
h(-" to the two horizontal rectangles 
the left yields the four rectangles shown 
on the right. The subscripts are 
explained in the text. 

and backward applications of h, that is, for all h(") and all h'"'. It should be fairly 
obvious that this set of points, which we shall label IN (for invariant), is contained 
in the regions that result from overlapping the horizontal and vertical rectangles 
constructed earlier. To illustrate how this overlap works, we show in Fig. 5.24 the 
overlap regions resulting from h'2' and h'-". (Not all the points inside the overlap 
rectangles remain in the original square, but all those that do remain, are inside the 
overlap rectangles.) 

The labels on the overlap regions are determined as follows. Each overlap 
region is labeled with a sequence of 1s and 0s: a-2, . %, al.  The symbol q is 0 if 
the overlap region is in Ho and is 1 if the overlap region is in HI.  Then al = 0 if h 
applied to this overlap region results in a region in Ho and is 1 if the resulting region 
is in HI. Similarly, the symbols a.~, and so on, are determined by application of 
h'-I) . Thus, all overlap blocks across the top of Fig. 5.24, should have labels nr. 10, 
while the second row has labels xr. 1 1. 

Exercise 5.11-1. Verify that the labels of the overlap regions correctly 
describe the actions of h and h'-" on those regions. Verify that the labels 
are also given by combining the subscripts of the H and V regions which 
overlap. For example, the overlap region 01.00 occurs at the intersection 
of Vol (which gives the subscripts to the left of the period) and Hoe, which 
gives the labels to the right of the period. 

Fig. 5.24. The overlap regions for hCL' 
and h'-2" The points that remain in S 

HI0 under the action of h"' and h'") for all n 
are contained in these overlap regions. 

HI I The labeling of the regions is explained 
in the text. 

H01 

Hoo 
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If we extend the construction of the set IN by letting the number of forward 
and backward iterations become very large, then the labeling of the overlap regions, 
which contain the points of IN, proceeds exactly as described earlier. Thus, we see 

I that each point of IN can be labeled with a doubly infinite sequence of 1s and 0s. 
This labeling leads to an important connection between the dynamics of points 
under the action of the horseshoe map and symbolic dynamics. The trajectory of 
one of the points that remains in S under the action of the horseshoe map can be 
given by the sequence of labels . . . a.2, a.~. %, al ,  a2, . . . meaning that the point 
(x,y) (assumed to be a member of IN) is in region Hi for ~(O(X,~). 

Note that by our overlap construction, all possible sequences of the symbols 0 
and 1 occur. [For the regions shown in Fig. 5.24, there are 16 possible 
combinations. Also note that symbol sequences that are identical in their values 
around the period (.) are close to each other on the diagram. For example, the four 
intersection regions at the top left of Fig. 5.24 all have the labels -0.1- .] Finally, 
note that the application of the horseshoe map is equivalent to shifting the symbol 
sequence one unit to the left. The horseshoe map is, therefore, equivalent to a 
symbol shift. 

Exercise 5.11-2. Verify that the horseshoe map is equivalent to shifting 
the symbol swuence, defined earlier, left one msition. 

Since we may view the sequences of 0s and 1s as binary representations of 
numbers, we can invoke number theory to make the following powerful statements: 

1. There is an infinite number of periodic points in the set IN. A point is 
periodic if repeated application of h bring us back to the same point. 
This occurs if the sequence symbol contains a repeating pattern of 0s 
and 1s. (This is expressed formally by saying that the point has 
period n if ai = ai, for all i. The period is said to be a primary period 
n if the previous equation does not hold for any smaller value of n.) 
From number theory, we know that these repeating sequences occur 
when the number is a rational number. Since there is an infinity of 
rational numbers, there is an infinity of periodic points in the set IN. 
Note, however, that these are unstable periodic points in the sense 
that nearby points either leave the square under repeated iterations of 
h or go off on quite distinct (and in general nonperiodic) trajectories. 

2. There is an infinite number of aperiodic points in the set IN. A point 
is aperiodic if repeated applications of h never bring us back exactly 
to that point. The corresponding symbol sequence is that of an 
irrational number. Since there is an infinite number of irrational 
numbers, there is an infinite number of aperiodic points in the set IN. 

3. There is at least one point in the set IN whose trajectory comes 
arbitrarily close to every point in the set IN. (This trajectory is then 
called a dense trajectory.) We find this trajectory by construction. 
That is, we specify the "closeness" by specifying the number (say, n) 
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of binary symbols around the full stop that must agree when the two 
points are close to each other. We then construct all possible 
sequences of n 0s and 1s and string them together. This string 
describes a point whose trajectory comes "close" to all the points of 
IN as we shift the symbols to the left by the application of h. 

What is the dynamical significance of the horseshoe map? The crucial point 
is that a trajectory entering a region in which the dynamics are (at least 
approximately) described by a horseshoe map will undergo very complicated 
behavior under the influence of the unstable periodic and aperiodic points. Since 
nearby trajectories will behave very differently, this complex behavior is equivalent 
to what we have been calling "chaotic behavior." 

5.12 Summary 

We introduced several types of iterated map functions and explored them as 
dynamical systems in this chapter. The theory of one-dimensional iterated map 
functions is well-established. A combination of analysis, geometric constructions, 
and number theory allows us to make many general statements about the attractors 
and bifurcations associated with these map functions. In two or more dimensions, 
however, much remains to be learned. In later chapters, we will introduce yet more 
iterated map functions as models for dynamical systems, and we will often return to 
the functions introduced in this chapter as familiar friends on which to try out new 
ideas for characterizing nonlinear dynamics. 

5.13 Further Reading 

Geneml Treatments of Iterated Map Functions 

Most of the texts listed at the end of Chapter 1 have significant sections 
devoted to iterated maps as dynamical systems. We particularly recommend the 
books [Devaney, 19861 and [Gulick, 19921. 

P. Collet and J. P. Eckmann, Iterated Maps on the Interval as Dynamical 
Systems (Birkhauser, Cambridge, MA, 1980). A thorough introduction to the 
mathematics of iterated maps. 

[Schuster, 19951 gives a detailed treatment of piece-wise linear maps and 
quadratic maps at a level just slightly more sophisticated than the treatment here. 

[Jackson, 1989, Chapter 41 covers one-dimensional iterated maps ("'difference 
equations"). Appendix E shows how a "digraph method can be used to prove 
Sarkovskii's Theorem. 

R. M. May, "Simple mathematical models with very complicated dynamics," 
Nature 261,459-67 (1976) (reprinted in [Cvitanovic, 19841 and [Hao, 19841). A 
stimulating introduction to iterated maps ante Feigenbaum. 
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J. Guckenheimer, "One-dimensional Dynamics," Ann. N.Y. Acad. Sci. 357, 
343-347 (1981). Provides proofs of many properties of iterated map functions and 
their trajectories. 

Reduction of Dynamics to Ztemted Maps 

LOR63 shows numerically that the dynamics of the Lorenz model can be 
reduced to a one-dimensional iterated map function. 

The driven damped pendulum mentioned in Section 5.2 is discussed in detail 
in [Baker and Gollub, 19961. See also E. G. Gwinn and R. M. Westervelt, 
"Horseshoes in the driven, damped pendulum," Physica D 23,396401 (1986). 

Universal@ in Ztemted Maps 

N. Metropolis, M. L. Stein, and P. R. Stein, "On Finite Limit Sets for 
Transformations of the Unit Interval," J. Combinatorial Theory (A) 15, 2 5 4  
(1973) (reprinted in [Cvitanovic, 19841). Introduced the U-sequence. 

T.-Y. Li and J. A. Yorke, "Period Three Implies Chaos," Amer. Math. 
Monthly 82,985-992 (1975) 

M. Feigenbaum, 'The Universal Metric Properties of Nonlinear 
Transformations," J. Stat. Phys. 21, 669-706 (1979) (reprinted in [Hao, 19841). 
Provides a proof of the universality of a and 6. 

M. J. Feigenbaum, "Universal Behavior in Nonlinear Systems," Los Alamos 
Science 1, 4-27 (1980) (reprinted in [Cvitanovic, 19841). Gives a quite readable 
introduction to the universal features of one-dimensional iterated maps. 

0. E. Lanford 111, "A Computer-Assisted Proof of the Feigenbaum 
Conjectures," Bull. A m  Math. Soc. 6 ,  427-34 (1982) (reprinted in [Cvitanovic, 
19841). Generates a power series representation of the universal gb) function. 

H. Kaplan, "A Cartoon-Assisted Proof of Sarkovskii's Theorem," A m  J. 
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5.14 Computer Exercises 

CE5-1. Write a computer program to find the average Lyapunov exponent 
for the logistic map function. Show that for A = 4, that exponent is equal to In 2 as 
stated at the end of Section 5.8. 
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CE5-2. Write a computer program to plot the first eight images of the critical 
point for the logistic map as a function of the control parameter A. If possible, use 
different colors to keep track of the successive images. Verify that the images form 
the boundaries of the attracting regions and that images merge in the periodic 
windows. Explain what happens at the Misiuriewicz points. 

CE5-3. Write a computer program to generate bifurcation diagrams for the 
Gaussian map introduced in Section 5.9. Explore behavior over a range of b and c 
values. Explain what you observe. 

CE5-4. Use the program Bifur in Appendix E or Chaos for Java to zoom in 
on the chaotic bands for the logistic map. Verify that the parameter values for band 
mergings are at least approximately described by the Feigenbaum 6. Use the 
program to examine the bifurcations that take the large period3 window into 
chaotic behavior. Are the values of S and a the same as they are for the "main" 
period-doubling sequence? 

CE5-5. Modify the program Bifur to add some "noise" to the trajectory 
values for the logistic map function. You can do this by means of the BASIC 
function RDN, the random number generator. Then produce a bifurcation diagram 
and observe the effects of different average sizes of the noise. See Appendix H for 
some ideas of what to expect. 

CE5-6. Write a computer program to generate a bifurcation diagram for the 
tent map of Section 5.7. Explain how and why it differs from the bifurcation 
diagram of the logistic map. 

CE5-7. Use Chaos Demonstrations Hknon map section to study the chaotic 
attractor for various values of the two control parameters. Zoom in on sections of 
the map to see some of the fine structure. 

CE5-8. Write a computer program to implement the so-called baker's 
transformation, which is a two-dimension map function defined as follows 

Y,+I = 2 y ,  (mod 1) 
x,,, =bx ,  for 0 1  y, 1112 

= 112 + bx, for 112 < y, I 1 

where the parameter b I 112. First, sketch what one iteration of this map does to a 
square of unit length whose lower left comer is at the origin of the xy axes for b = 
112. Then show that this iteration procedure is similar to that of the Smale 
horseshoe map. Finally, show that the map has two Lyapunov exponents, one for 
the x direction and one for the y direction with 5 = In 2 and Ax = In b . [Moon, 
1992, pp. 317-191 discusses a slightly fancier version of the baker's transformation. 
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FOY83 also use this transformation as an example for calculations of fractal 
dimensions. 

CE5-9. Use Chaotic Dynamics Workbench to study Poincark sections for the 
driven damped pendulum. Show that near torque F = 2.048, the dynamics of the 
Poincark map are equivalent to those of a one-dimensional unimodal map when the 
frequency ratio is 213 and the damping is 1.0. Explore other values of the torque to 
find more complicated dynamics. 

CE5-10. Using the supercycle parameter values given in Table 2.1, write a 
computer program to find d,, as defined in Eq. (5.6-1) for the logistic map function. 
Then use the d,, values to estimate the value of the Feigenbaum a as defined in Eq. 
(5.6-2). 

CE5-11. Write a computer program to create a bifurcation diagram for the 
logistic map model with its parameter A < 0. Explore the range 0 > A > -2. 
Compare that diagram with the bifurcation diagram for the logistic map model with 
A > 0. Explore similarities and differences between the two diagrams. 



Quasi-Periodicity and Chaos 

Chaos is the score upon which reality is written. Henry Miller, Tropic of 
Cancer 

6.1 Introduction 

In this chapter, we discuss another important scenario of bifurcations that leads 
from regular (periodic) behavior to chaotic behavior. This scenario, which involves 
motion described by several fundamental frequencies, is called the quasi-periodic 
route to chaos. It has been observed in experiments on several different kinds of 
systems, some of which we will describe briefly as we proceed. A considerable 
body of theory has been developed for this route to chaos. As in the case of the 
period-doubling route to chaos, the theory tells us that there should be some 
universal quantitative features associated with this scenario. Unfortunately, as is 
also the case with period-doubling, the theory fails to tell us when we might expect 
such a scenario to occur for a particular system. As we shall see, there are some 
"weak" theoretical statements that tell us when this scenario is "likely to occur." 
However, the types of systems that exhibit quasi-periodicity also show several 
kinds of complex behavior, some of which are chaotic and some are not. Our 
understanding of this complex behavior is incomplete. 

The quasi-periodic scenario involves competition, in a rough sense, between 
two or more independent frequencies characterizing the dynamics of the system. 
This scenario occurs in (at least) two kinds of systems: 

1. A nonlinear system with a "natural" oscillation frequency, driven by 
an external periodic "force." Because the system is nonlinear, the 
natural oscillation frequency, in general, depends on the amplitude of 
the oscillations. Here the competition is between the externally 
applied frequency and the natural oscillation frequency. 

2. Nonlinear systems that "spontaneously" develop oscillations at two 
(or more) frequencies as some parameter of the system is varied. In 
this case we have competition among the different modes or 
frequencies of the system itself. 

In both cases, there are two (or sometimes more) frequencies that characterize the 
behavior of the system, and as these frequencies compete with each other, the result 
may be chaos. 
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In our discussion, the "independence" of the two (or more) frequencies will be 
important. The following terminology, first introduced in Chapter 4, is used to 
describe the ratio of the two frequencies, say,fi andf2. If there are two (positive) 
integers, p and q, that satisfy 

then we say that the frequencies are commensurete or, equivalently, that the 
frequency ratio is retional. If there are no integers that satisfy Eq. (6.1-I), then we 
say that the frequencies are incommensumte or, equivalently, that the frequency 
ratio is irrational. As we saw in Chapter 4, if the ratio is rational, then we say that 
the system's behavior is periodic. If the ratio is irrational, then we say that the 
behavior is quasi-periodic. (The terms conditionaUy periodic or almost periodic 
are sometimes used in place of quasi-periodic.) 

A note on conventions: We usually assume that the ratio plq has 
been reduced to its simplest form; that is, any common factors in 
the ratio have been removed. Hence, if hlfi = 416, we would 
remove the common factor of 2 and writef2/f1 = U3. We shall 
also refer to the plq frequency ratio as the p:q frequency ratio. 

The term quasi-periodic is used to describe the behavior when the two 
frequencies are incommensurate because, in fact, the system's behavior never 
exactly repeats itself in that case. Indeed, the time-behavior of a quasi-periodic 
system can look quite irregular. Figure 6.1 shows the time evolution of a system 
described by two frequencies. On the left, the frequencies are commensurate, and 
the behavior is obviously periodic. On the right, the frequencies are 
incommensurate, and the behavior looks quite irregular. However, a power 
spectrum measurement of the quasi-periodic behavior shows clearly that only two 
frequencies are present. If the behavior on the right were chaotic, then the power 
spectrum would involve a continuum of frequencies. See Appendix H, Figure H.2. 

As we shall see in our subsequent discussion, whether the frequencies are 
commensurate or incommensurate plays an important role in the behavior of the 
system. We must ask, therefore, how do we know in practice whether two 
frequencies fi and f2 are commensurate or incommensurate? The problem is that 
any actual measurement of the frequencies has some finite precision. Similarly, any 
numerical calculation, say on a computer, has only finite arithmetical precision: any 
number used by the computer is effectively a rational number. All we can say is 
that to within the precision of our measurements or within the precision of our 
numerical calculations, a given frequency ratio is equal to a particular irrational 
number or a particular rational number, which is close to that irrational number. 
Beyond that we cannot say whether the ratio is "really" rational or irrational. 
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Fig. 6.1. On the left is the time evolution of a system with two frequencies. Herefi = 2h. 
On the right is the time evolution when the two frequencies are incornrnensurateh = J2fi. 
The behavior on the right looks quite imgular, but the power spectrum shown in the lower 
part of the figure indicates that only two frequencies (with different amplitudes) are 
contributing to the behavior. The crucial point is that in the case on the right has two 
incommensurate frequencies. The widths of the power spectrum "peaks" are due to the 
relatively short time interval of data used in the analysis. 

The question just raised is similar to the one raised in earlier chapters: Is the 
behavior of a system really chaotic or does it merely have a very long periodicity, 
that is, long compared to the time duration of our experiment? All we can say is 
that if the behavior is nonperiodic at a certain level of measurement or 
computational precision and displays, within the precision of the measurements, 
divergence of nearby trajectories, then the system is behaving chaotically at that 
level of precision. Similarly, if two frequencies appear to be incommensurate at a 
certain level of measurement or computational precision, then we expect the 
corresponding behavior to occur roughly at that same level of precision. 

6.2 Quasi-Periodicity and Poimar6 Sections 

As we have seen before, the use of Poincark sections will reduce considerably the 
geometric complexity of the description of the state space behavior of the system. 
Let us review how commensurate and incommensurate frequencies lead to rather 
distinct Poincark sections. 
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Poincark Sections 0 0 Fig. 6.2 On the left is the P o i n d  
section for a trajectory with frequency 
ratio = 2:3. The trajectory starts at point 
0, then hits at point 1, then 2, and finally 
anives back at its starting point at 3. On 
the right is the P o i n d  section for a 
trajectory with a frequency ratio of 35. 

2 : 3  3 : 5 

As we learned in Chapter 4 ,  behavior with two frequencies can be described 
by trajectories confined to the surface of a torus. One frequency, say fi, is 
associated with the motion of the trajectories around the large circumference of the 
torus; the other frequency, f2. is associated with the motion around the small cross 
section of the torus. In the cases for which one of the frequencies is the frequency 
of some modulation or disturbance that we apply to the system, then that frequency 
is under our control. For those conditions, we will associate that frequency withfi 
because Poincd  sections are most easily constructed by sampling the behavior of 
the system at a fixed phase of the externally controllable frequency. 

If we choose a Poincark section that slices across the torus as shown in Fig. 
4.9, we then arrive at the following description of the Poincark intersection points 
for different values of the frequency ratio plq: Let T, = l l f i  be the time period for 
one trip around the outer circumference of the torus. TI = llf2 is the time for a trip 
around the small cross section. Since the frequency ratio is plq, the ratio of the 
periods is 

For example, if plq = 2l3, then the time to go around the small cross section is 312 
the time period to go around the large circumference. 

How does this ratio show up in the Poincark section? Figure 6.2 shows the 
Poincark intersection points for two different frequency ratios. The trajectories start 
at the point labeled 0. After one time around the large circumference of the torus, 
the trajectory point is back to the Poincark plane. For the graph on the left of Fig. 
6.2, the trajectory has traveled 213 of the way around the small cross section during 
that time. Hence, it arrives at the point marked 1 in the diagram. After one more 
trip around the outside of the torus, the trajectory point is 413 of the way around and 
arrives at point 2. Finally, after three times around the outer circumference, the 
trajectory point arrives back at its starting point. The sequence of Poincark 
intersection points for a frequency ratio of 315 is shown on the right side of Fig. 6.2. 
Since we associate fi with the motion around the outer circumference of the torus 
and fi with the motion around the crass section of the torus, and since we have 
chosen a Poincark plane that cuts the torus perpendicular to the large 
circumference, the Poincark section will consist of q points if the frequency ratio 
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fi& = plq. The trajectory "skips over" p - 1 points from one intersection with the 
plane to the next. 

Exercise 6.2-1. Draw the Poincark intersection points for motion on a 
torus with frequency ratio fifi = 217. How could you distinguish that 
Poincark section from one with frequency ratio = 3/7? Do the same for 
filfl = 9ff. 

If the two frequencies are incommensurate, the Poincark points will never (in 
principle) repeat. Eventually, the Poincark points fill in a curve in the Poincark 
plane as shown in Fig. 4.9. The intersection points drift around the curve forming 
what is called a drifC ring. 

Let us consider once more the problem of distinguishing periodic from quasi- 
periodic motion. Suppose our experimental resolution is such that we can 
distinguish 79 points around the curve formed by the intersection of the state space 
torus with the Poincark plane. Then, if the motion consists of two commensurate 
frequencies with frequency ratio of 67/79, we can identify that motion clearly as 
one with a rational ratio of frequencies. However, if the frequency ratio is 82/93, 
then we cannot distinguish this motion from quasi-periodic motion with an 
irrational frequency ratio simply by looking at the Poincark section; both motions 
seem, at this level of resolution, to fill in a drift ring. 

6.3 Quasi-Periodic Route to Chaos 

We are now ready to describe the quasi-periodic route to chaos. This scenario is 
shown schematically in Fig. 6.3 in terms of the attractors of the system in state 
space. 

Chaotic 

Parameter + 
Fig. 6.3. A schematic representation of the evolution of attractors in state space fa the quasi- 
periodic route to chaos. A periodically driven system does not have a fixed point, but begins 
its evolution with a limit cycle. As a parameter of the system is changed, a second frequency 
may emerge. If that frequency is incommensurate with the first, then quasi-periodic behavior 
results. As the parameter is changed further, the behavior may become chaotic. 
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The system, if it is not externally driven by a periodic force, may start with a 
fixed-point attractor (i.e., a time-independent state). As a control parameter is 
changed, the system may undergo a Hopf bifurcation to develop periodic behavior 
characterized by a limit cycle in state space. A second frequency may appear with 
a further change in the control parameter. The state space trajectories then reside 
on the surface of a torus. If the second frequency is incommensurate with the first, 
then the trajectory eventually covers the surface of the torus. Further changes in the 
control parameter then lead, for some systems, to the introduction of a third 
frequency. In state space the trajectories live on a three-dimensional torus (which is 
not easy to visualize). With further parameter changes, the system's behavior may 
become chaotic. (Some systems may apparently go directly from two-frequency 
behavior to chaotic behavior. We shall discuss this issue in the next section.) 

behavior that we have seen before: We need at least three state space 
dimensions for chaos. If the state space trajectories are confined to the 
two-dimensional surface of a torus, then the system's behavior cannot be 
chaotic. We need a third state space dimension, signified either by the 
third frequency or by the "destruction" of the two-dimensional torus 
urface as the trajectories move off the surface and show three 

To see the significance of this scenario, we must learn something about an 
older scheme proposed to explain the appearance of chaotic (turbulent) behavior in 
such systems. This scheme was originally proposed by the eminent Soviet 
physicist L. Landau in 1944 (LAN#) [Landau and Lifshitz, 19591 to explain the 
production of turbulence in fluid systems as they are driven away from equilibrium. 
In Landau's scheme, the system's behavior would be characterized by an infinite 
sequence of Hopf bifurcations, each generating a new frequency incommensurate 
with the others, as a control parameter is changed. With an infinite number of 
incommensurate frequencies, Landau hoped to describe the complex behavior of 
turbulent fluids. In contrast, the quasi-periodic scenario leads to chaos (which is 
not the same as fully developed turbulence) with the generation of only two (or 
perhaps three) incommensurate frequencies. Some experiments, described later, 
indicate that nature seems to take the quasi-periodic route. Other experiments 
(WKP84), however, show that in spatially extended systems, we may have 
nonchaotic behavior with more than three incommensurate frequencies. 

6.4 Universality in the Quasi-Periodic Route to Chaos 

As we mentioned earlier, the theory underlying the quasi-periodic route to chaos 
tells us only that this scenario is likely to lead to chaotic behavior, not that it must. 
In 197 1, Ruelle and Takens (RUT71) first proposed the quasi-periodic scenario. In 
1978, Newhouse, Ruelle, and Takens (NRT78) proved more rigorously that if the 
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state space trajectories of a system are confined to a three-dimensional torus 
(corresponding to three-frequency quasi-periodic motion in a state space with four 
or more dimensions), then even a small perturbation of the motion (due to external 
noise, for example) will "destroy" the motion on the torus and lead to chaos and a 
strange attractor. 

We will not go into the details of what constitutes a suitable small 
perturbation, but only say that in practice the transition to chaos does seem to occur 
as described. In the cases when only two frequencies are observed before chaos 
sets in, we might say that the three-dimensional torus is destroyed by extremely 
small perturbations. In an experiment using two coupled nonlinear electrical 
oscillators driven by a sinusoidal signal source (so, there are generally three 
independent frequencies), Curnrning and Linsay (CUL88 and LIC89) showed that 
for weak coupling between the oscillators, two-frequency and three-frequency 
quasi-periodicity were easily observable, but that chaos also occurred for certain 
ranges of parameter values. 

Other experiments that display a transition from two-frequency quasi- 
periodicity directly to chaos seem to involve stronger couplings between the 
oscillators and happen to have a set of parameter values that place them in a chaotic 
regime of the parameter space. In these regions, bands of chaotic behavior 
generally alternate with bands of two-frequency quasi-periodicity. Hence, we can 
say that the smallest noise perturbation destroys the three-frequency quasi- 
periodicity for these systems, and chaotic behavior occurs. The system is bumped 
immediately to a chaotic attractor. This scenario seems to dominate when the 
coupling between the oscillators is moderately strong. When the coupling is weak, 
the three-frequency quasi-periodicity is more likely. In general there seems to be a 
complex interplay between the strength of the coupling and the amplitude of the 
individual oscillators in determining the details of the scenarios that are observed. 

In 1982, on the basis of numerical calculations, Shenker (SHE82) suggested 
that the quasi-periodic route to chaos displays universal quantitative features much 
like the Feigenbaum universality for one-dimensional iterated maps. Shortly 
thereafter, two groups (ROS82 and FKS82) published papers in which they 
established, using renormalization theory techniques similar to those outlined in 
Appendix F for the perioddoubling route, that one would expect universal 
quantitative features in the quasi-periodic route to chaos if the transition to chaos 
were made with the frequency ratio approaching a specified irrational number. (In 
Section 6.10, we will discuss this matter in more detail.) Here universal means that 
the same numbers should occur for different systems as long as the frequency ratios 
are held fixed to the same values. Later we shall see that systems can also become 
chaotic via ajiequency-locking route and that there are different features for that 
route. Before we can understand the significance of these universal features, 
however, we need to discuss the notion of frequency-locking to which we turn in 
the next section. 
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6.5 Frequency-Locking 

Frequency-locking is a common phenomenon whenever two or more "oscillators" 
interact nonlinearly. Each oscillator is characterized by some frequency fi for 
oscillator number 1 and f i  for oscillator number 2. (The oscillators may be 
physically distinct oscillators-two different pendulum clocks, for e x a m p l ~ r  
they may be different "modes of motion" within the same physical system.) If the 
two frequencies are commensurate over some range of control parameter values, 
that is, iffilfi = plq (p,q integers) over this parameter range, then we say that the 
two oscillators are frequency-locked (or equivalently, mode-locked or phase- 
locked). One frequency is locked into being a rational number times the other 
frequency. For example, frequency-locking explains the fixed relationship between 
rotation frequency and orbital frequency for the Moon's motion around the Earth 
(we, on the Earth, get to see only one side of the Moon) and the motion of Mercury 
about the Sun. In both cases, tidal forces cause an interaction between the axial 
motion of rotation and the orbital motion. The two motions become locked 
together. 

To understand the physical significance of frequency-locking, we need to 
keep in mind two facts about nonlinear systems: 

First, for a nonlinear oscillator, in general, the actual oscillation frequency 
depends on the oscillator's amplitude of motion. Thus, under normal conditions, 
we would expect the frequency of a nonlinear oscillator to change if some 
parameter of the system changes, because this change in parameter will cause the 
amplitude of the oscillation to change. On this account, we might expect that we 
need a very precise setting of parameter values to get a particular frequency ratio, 
say plq. However, in frequency-locking the same ratio plq holds over some range 
of parameter values. 

Second, for a fixed set of parameter values, the time behavior of an oscillator 
can be characterized by a Fourier series of sinusoidal oscillations (see Appendix A). 
Thus, for oscillator number 1, we can write 

- 
x, (t) = B, sin(2nkJ t + $k) 

k = l  

where k is a positive integer. Bk is the amplitude associated with the harmonic 4, 
and $k is the phase for that frequency. The crucial point here is that the motion can 
be thought of as being made up of periodic motion with frequenciesfi, 2fi, 3fi, . . ., 
and amplitudes El ,  El, B j ,  . . .. Similarly, oscillator number 2 can be described by 

Now, if the two frequencies fi and fi are commensurate with the frequency 
ratiofilfi = plq, then the pth harmonic offi (that is, pfi) is the same as the 9th offi 
@fi = qfi). Since the two oscillators are interacting, this equality means that the 
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9th harmonic offi can "tickle" the motion associated with the pth harmonic off, to 
generate a kind of resonance effect. (Note that if qfi  = pfi, then there will be an 
infinite number of overlapping frequencies with nqfi = npfi and n = 1,2,3, ... If the 
frequencies were incommensurate, then none of the harmonics would coincide, and 
the mutual resonance would not occur.) 

These notions allow us to say that the frequency-locking occurs whenever the 
resonance interaction of harmonics (due to nonlinearities) wins out over the 
tendency of the oscillators' frequencies to change (also due to nonlinearities). 
Based on this picture, we would expect that as one of the frequencies is changed 
(say,fi, which might be the frequency of the oscillator driving the system) with the 
strength of the nonlinearities held fixed, the frequencies would lock for some range 
of fi values, but then would either unlock (become incommensurate) or jump to 
another integer ratio for the new value off,. We might also guess that if the ratio 
plq has small p and small q, for example 112,213, but not 17119, then the range off, 
over which frequency-locking occurs might be larger than if p and q (again 
assuming we have removed all common divisors) were large. The reasoning here 
is that the amplitudes of the motion associated with the low harmonics (the low 
values of k and j in Eqs. (6.5-1) and (6.5-2) are usually (but not always) larger than 
those for the higher frequency harmonics. Thus, if the fundamental offi is the 
same as the second harmonic of&, that is, fi = 2 fi, then we would expect greater 
interaction between the oscillators than if 17fi = 19fi, where only the seventeenth 
and nineteenth (and higher) harmonics interact. Although this is just a hand- 
waving argument, we shall see that it does describe what happens in many systems. 

6.6 Winding Numbers 

As we indicated in the previous section, the ratio of frequencies involved in 
periodic or quasi-periodic behavior is fundamental to the description of that 
behavior. In fact, we shall need (and make use of) two different frequency ratios. 
The first is traditionally labeled 52 . We shall call Q the frequency-mtio 
parameter because it specifies the ratio of the two frequenciesfi andfi that would 
occur in the limit of vanishingly small nonlinearities and couplings between the two 
oscillators. A concrete example might be helpful: Consider a sinusoidally driven, 
damped pendulum. The pendulum is driven by an externally applied torque whose 
time variation is sinusoidal with a frequency fi. be the small-amplitude 
oscillation frequency of the pendulum f2 = (11 2n) , where, as usual, L is the 

the surface of the Earth.) The expression 
length of the pendulum and g is local gravitational field strength. (g = 9.8 Nkg near 

gives us the ratio of these two frequencies. 
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As the amplitude of the pendulum's oscillations grows, the actual frequency 
of its oscillatory motion decreases, a typical nonlinear oscillator effect. Let us 
denote the actual frequency by f,' . The ratio of f,' tof, (the oscillator frequency, 
which we shall consider to be under our control) is called the winding number (or 
rotation number): 

f,' w = - (6.6-2) 
f ,  

The term winding number comes from the state space picture of trajectories 
winding around a torus. The winding number tells us how many times the 
trajectory winds around the small cross section of the torus for each time around the 
large circumference of the torus. If w is a rational number, then the resulting 
motion is periodic: The trajectory closes on itself. If w is irrational, the motion is 
quasi-periodic, and the trajectory wanders over the entire surface of the torus, never 
exactly repeating itself. 

If we focus our attention on Poincar6 sections, winding numbers and 
frequency ratios that differ by an integer value will give the same Poincark section. 
Hence, it is sometimes useful to remove any integer part of 52 and w. That is, we 
give just the fractional part. In mathematical terminology, we are expressing 52 and 
w modulo 1. For example, 2.3 mod [I] = 0.3 and 16.77 mod [I] = 0.77. In 
general, a mod [b] = N - alb, where N is the smallest integer satisfying Nb 2 a . 
We implement this truncation because the resulting Poincark section looks exactly 
the same if the winding number is 0.3,4.3 or 173 1.3. Since we will be focusing our 
attention on the Poincark section, it is appropriate to give the winding number 
modulo 1. (We can, of course, distinguish among these cases by seeing how the 
Poincark section points change if we move the location of the Poincar6 plane 
around the torus.) 

6.7 Circle Map 

The discussion in the previous section can be made more concrete by looking at a 
mathematical model that exhibits the phenomenon of frequency-locking in a 
relatively straightforward way. In fact, this particular model has become the 
standard tool for investigating the quasi-periodic route to chaos. 

The model is an iterated map scheme similar to the one-dimensional iterated 
maps we studied in Chapter 5. Now, however, the iteration variable is interpreted 
as the measure of an angle that specifies where the trajectory is on a circle. This 
notion is motivated by consideration of Poincar6 sections of state space motion on a 
torus. If the state space variables are properly scaled, then the intersection points 
will lie on a circle in the Poincar6 plane. Of course, for models of many physical 
systems and for many models based on differential equations, the torus cross 
section will be circular. Even in those cases, we can use an angle to specify 
where the trajectory lies on the cross section (see Fig. 6.4). For almost all of our 
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Sections 
Fig. 6.4. Two P o i n d  sections for state 
space motion on a torus. On the left the 
torus aoss section is (almost) circular. 
On the right, the cross section is not 
circular. In both cases, we can use an u angle variable to tell us where the 
trajectory point is on the cross section. 

discussion, the details of the shape of the torus cross section are not important, and 
we gain a great deal of simplicity by using a circular cross section. 

A general iterated map of this type can be written as 

where the functionAB) is periodic in the angle 6. We define a trajectory (or orbit), 
just as we did for one-dimensional iterated maps, as the sequence of angles 6, 4 ,  
4, .... 

It is conventional to measure the angle 8 in units such that 6 = 1 corresponds 
to one complete revolution around the circle. (More familiar units would have 8 = 
360' or 6 = 2n  radians for one complete revolution.) The map variable 6 in Eq. 
(6.7-1) is defined modulo 1. With this convention, the angles 6 = 0.7 and 6 = 1.7 
refer to the same point on the circle. 

Before we introduce the map function used to study the quasi-periodic route 
to chaos, let us look at a simpler case, a case in which the map function AB) is 
linear: 

Here the mapping operation consists simply of adding the number Q to the 
previous angle value. Thus, the mapping operation moves the trajectory around the 
circle in steps of size Q. Figure 6.5 shows two examples of such linear map 
functions. 

To define the winding number for such maps, we first compute 

without taking 6 mod [I], thereby computing the angular distance traveled after n 
iterations of the map function. The winding number for the map is defined to be 
the limit of the ratio 

w = lim f '"'(60) -6, 
n+- 

(6.7-4) 
n 

The limit is included to allow any transient behavior, if it is present, to die away. 
There are no transients for the linear map given in Eq. (6.7-2). 

It is easy to see that w and Q are the same for the linear map of Eq. (6.7-2): 
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F i  6.5. Two graphs of the linear map function of Eq. (6.7-2). Owl is plotted as a function 
of 8,. The Owl = 8, line is shown for reference here and in the following three figures. On 
the left 51 = 0.2; on the right 51 = 0.6. The sudden jump fromf(8) = 1 down to 0 is a result of 
Omod [I]. There is no physical jump in the trajectory point's location. 

nQ+6, -6, - 
w = lim - 

n-+- n 

As we shall see, for nonlinear map functions, w and Q will generally be different. 
For the reasons discussed in Section 6.6, we shall restrict ourselves to values of S2 
between 0 and 1. If Q is a rational number, then w is rational and the trajectory is 
periodic. If Q is irrational, then the trajectory is quasi-periodic. 

With these preliminaries out of the way, we are now ready to introduce the 
famous sine-circle map, sometimes called simply the circle map. The sine-circle 
map is a nonlinear map function with the nonlinearity taking the specific form of a 
sine function: 

K 
On+, = 6, + Q - -sin(2~6,) mod [I] (6.7-6) 

2n 

The parameter K (with K > 0) is a measure of the strength of the nonlinearity. When 
K = 0, the circle map reduces to the simple linear map of Eq. (6.7-2). The 2n in 
the denominator is just a convention tied in with our using [O,I] as the range of 
angle values. 

Note that the sine-circle map in Eq. (6.7-6) differs from most of the one- 
dimensional iterated maps discussed in Chapter 5 in having two control parameters: 
Q for the frequency ratio and K for the strength of the nonlinearity. Since Q is the 
winding number when K = 0, we call 51 the bare winding number, or, preferably, 
thefrequency-ratio parameter. 

K = 1 corresponds to an interesting change in behavior of the map function 
and its iterates, as we shall see shortly. For K > 1, some values of 6,+1 have more 
than one possible precursor 6,. (We say that for K > 1, the sine-circle map is not 
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Fig. 6.6. On the left is the sinecircle map function for K = 0.8. On the right is the sinecircle 
map function for K = 2.0. Owl is plotted as a function of 8, with 51 = 0.5. Note that for K > 1, 
there are someff8) vaIues that have two possible 66 as precursors. Hence, we say that for K 
> 1, the sinecircle map is not invertible. 

invertible.) Hence, as we know from the Chapter 5 discussion of one-dimensional 
iterated maps, the iterated map function will introduce a "folding" of the 
trajectories, which folding may lead to chaotic behavior. 

Again, the discontinuity in the map function as seen in Fig. 6.6 is only 
apparent. When the angle value exceeds 1, we subtract 1 from that value and return 
to the lower branch of the function as plotted in the figure. 

Given our discussion of iterated maps in Chapter 5, the first question to ask is 
obviously: What are the fixed points of the sine-circle map? The fixed point 
values satisfy the equation 

or equivalently 

2 m  - = sin 2x8 
K 

Thus, we see that if 

then there will be at least one fixed point for the circle map. The important result is 
that fixed points can occur only for certain combinations of K and 8. If there are 
fixed points, then we can examine their stability (that is, the behavior of trajectories 
in their neighborhood) by examining the derivative of the map function evaluated at 
those fixed points: 
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Fig. 6.7. On the left, the sine-circle map is plotted with K = 0.5 and Q = 0.04. The graphic 
iteration mthod shows that trajectories approach the stable fixed point near 8 = 0.1 . The 
fixed point near 8 = 0.4 is unstable. On the right, K = 0.5 and Q = 0.95. The map now has a 
stable fixed point at 8 = 0.9 and an unstable fixed point near 8 = 0.6. 

Thus, we see that if K gets too large, so that the magnitude of the derivative exceeds 
1, then the fixed point, if it exists, may be unstable. A fixed point 8' of the sine- 
circle map will be stable if 0 < K cos 27t8' < 2 .  Otherwise, the fixed point will be 
unstable. 

To get some feel for the behavior of the sine-circle map, let us look at the 
fixed points of the map for K < 1. As we shall see, fixed points of the sine-circle 
map give rise to frequency-locking ratios 0: 1, 1 : 1,2: 1 ,  and so on, which will occur 
over some range of SL. For example, according to Eq. (6.7-9), for a specific value 
of K, there will be a stable fixed point of the map function for a range of small 
values of SL, that is, for 0 I Q I K 127t . Within this range, the winding number [as 
defined by Eq. (6.7-3)] is equal to 0 and is independent of the starting value of 8 for 
the trajectory. 

It is instructive to use the graphical iteration technique to get a better sense for 
what is occurring. Figure 6.7 shows on the left a graph of the sine-circle map with 
K = 0.5 and Q = 0.04. A graphic iteration of the map is started from 8 = 0.55. We 
see that the trajectory converges to the fixed point near 8 = 0.1. We also see that 
there is another fixed point at 8 = 0.4, which we note is just 0.5 minus the value of 
the first fixed point; however, that second fixed point is unstable. 

For a different range of Q values, we get 1: 1 frequency-locking. For Q values 
near 1, we need to take into account that we are measuring the angles modulo 1. 
Thus, a fixed point can occur that satisfies 
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(6.7-1 1) 

This leads to the condition 

Note that for this situation sin 2n8 is negative because 8 is close to (but less than) 
1. 

Let us summarize what we have found: For a fixed value of K, there are two 
ranges of SZ values that lead to stable fixed points of the sine-circle map. One range 
is 0 I SZ I K 12n corresponding to 0: 1 frequency-locking; the other range is 
1 - K 12n 1 52 I 1 and is the 1: 1 frequency-locking region. Thus, we see that as K 
approaches 1, the range of Q values over which frequency-locking occurs 
increases. In the lower range of SZ values, 8 remains fixed once transients have 
died away. In the higher B range, 8 increases by 1 for each iteration. Both ranges 
lead to a single fixed point in the Poincark section. If we imagine the circle map as 
representing the Poincark section of the trajectory motion on the surface of a torus 
in three-dimensional state space, the lower range corresponds to trajectories that do 
not rotate at all about the small cross section of the torus. The upper range 
corresponds to trajectories that go once around the small cross section for each trip 
around the large circumference of the torus. 

Exercise 6.7-1. Show that the two fixed points identified earlier as stable 
fixed points are indeed stable. Show that the two other fixed points are 
unstable. 

Exercise 6.7-2. If we allow B to be greater than 1, find the ranges of K 
for which 2: 1 and 2:2 frequency-locking occur. 

Now let us turn our attention to 1:2 frequency-locking. On the left Fig. 6.8 
shows the iterates of the sine-circle map with K = 0.8 and SZ = 0.5. Note that the 
trajectory settles into a cycle of two values corresponding to 1:2 frequency locking. 
The right-hand side of Fig. 6.8 shows that these two cycle values correspond to the 
(stable) fixed points of the second-iterate of the sine-circle map function. It is easy 
to see that as K increases, the range of Q values for which 1:2 frequency-locking 
occurs also increases. Although we cannot find the range of 1:2 frequency-locking 
analytically, it is reasonably straightforward to find it numerically for a given value 
of K. We simply find the range of B that gives fixed-points for f "' . For example, 
for K = 0.5, the range is approximately from 0.491 to 0.509; for K = 1.0, the range 
is approximately from 0.464 to 0.562 (with an uncertainty of M.0005 ). 

It is traditional to illustrate the range over which the various ratio frequency- 
lockings occur by drawing a diagram in the K-SZ plane and indicating those areas 
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Fig. 6.8 On the left the sinecircle map function is shown with K = 0.8 and Q = 0.5. The 
graphic iteration technique shows that this value yields a trajectory corresponding to 1:2 
fkquency-locking. The initial 0 value is 0.1. On the right, the second-iterate of the sine- 
circle map function is shown, indicating that the two cycle values correspond to the second- 
iterate function's two stable fixed points located near O =  0 and O =  0.5. 

corresponding to frequency-locking. Figure 6.9 shows the 0:1, 1:2, and 1:l 
frequency-locking regions. As K increases, the frequency-locking regions expand 
to fill finite intervals along the SL axis. These regions are called, rather 
imaginatively, Arnold tongues after the Russian mathematician who pioneered the 
study of frequency-locking via circle maps [Arnold, 19831. 

As a further example, let us look at the iterations with K = 0.9 and B = 0.65. 
In Fig. 6.10, we see that the iterations lead to a three point cycle, which in this case 
represents 2:3 frequency-locking. On the right side of that figure, we see that the 
cycle points correspond to the stable fixed points of f '3'. 

By comparing Fig. 6.10 with Fig. 6.8, we can see why the range of Q for 
which p:q frequency-locking occurs gets smaller as q increases. Changing SL 
corresponds to shifting the graph vertically. We get p:q frequency locking when 
the qth iterate of the map function overlaps the 45' line. For larger values of q, the 
amplitude of the oscillatory part of the function decreases; hence, the range of Q 

I Fig. 6.9. A sketch of the 0: 1, 1 :2, and 
1:1 frequency-locking regions for the 
sine-circle map. The shaded regions, 
called Arnold tongues, are the regions in 
which frequency-locking occurs. There 
are frequency-locking regions for all 
positive integer ratiosp:q. At K= 0, most 
of the 52 axis consists of quasi-periodic 
behavior. As K increases the frequency- 
locked regions broaden. Above the line 
K = 1, the frequency-locking regions 
begin to overlap and chaos may occur. 
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Fig. 6.10. On the left the sine-circle map with the parameter values K = 0.9 and P = 0.65. 
The initial 6 value is 0.35. The trajectory corresponds to 2:3 frequency-locking. On the 
right, the third-iterate of the map function shows that the cycle values correspond to the three 
stable fixed points of that iterate, located near 0.4,0.65, and 0.98. 

over which the fixed points for that iterate exist is reduced. 
We can also understand why the frequency-locking tongues broaden as K  

increases. As K  approaches 1, the graph of the appropriate iterate of the mapping 
function develops larger oscillations around the monotonic increase due to the 8 + 
SL part of the map function. This larger set of oscillations means that there is a 
larger range of SZ values for which the oscillations overlap the 45' line in the graph 
of the map function, hence, a larger range of SL values over which the fixed points 
exist. On a more physical level, as we discussed earlier, the larger nonlinearity 
implied by the larger value of K  means that there is stronger coupling between the 
modes of oscillation for the physical system being described and that leads to larger 
ranges of parameter values over which frequency-locking occurs. 

To get more of an overview of the kind of behavior that occurs with the sine- 
circle map, we have plotted in Fig. 6.1 1 the winding number, computed from Eq. 
(6.7-3), as a function of the frequency parameter 52 for a fixed value of K = 1.0. 
Quite noticeable in Fig. 6.1 1 are the "plateaus" (e.g., near Q= 112) where w does 
not change over a substantial range of SZ . In fact, we find that as K  increases (at 
least up to K  = I), these plateaus broaden out until they apparently fill the entire 
interval between SZ = 0 and SZ = 1. These plateaus are called frequency-locking 
steps because here the winding number is a rational fraction (for example, 113 or 
217). We say that the "response frequency" (f2 in our previous notation) is 
rationally related to the "drive frequency" (fl). 

r 
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Fig. 6.11. The winding number, as defined by Eq. (6.7-3), plotted as a function of the 
fkquency parameter !2 for the sine-circle map with K = 1.0. Note the frequency-locking 
plateaus over which the winding number does not change for a substantial mnge of &2 These 
plateaus form what is called the Devil's Staircase. 
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One question we might readily ask is: How many frequency-loclung plateaus 
are there between SL = 0 and Q = l ?  It turns out there is an infinite number of these 
plateaus! There is one plateau for each rational fraction plq between 0 and 1. Since 
there is an infinite number of such rational fractions, there is an infinite number of 
plateaus or steps. If we imagine a small creature trying to climb this set of stairs to 
get from w = 0 to w = 1, we see that the creature would need to make an infinite 
number of steps. Hence, this set of steps is often called the Devil's Staircase. 

How do we know that w is precisely equal to a rational fraction (e.g., 112) in 
the center frequency-locked plateau? We can verify this rationality by plotting the 
resulting trajectory points (after allowing transients to die away). For example, for 
any SL value under that center step, we should have just two trajectory points, since 
there 2f2 = fi. For SZ values that do not correspond to a locking plateau, the 
trajectory values should eventually fill in a complete curve (drift ring) on a 
versus 0, plot. Figure 6.12 shows the results of graphically iterating the sine-circle 
map for parameters that give quasi-periodic behavior. 

6.8 The Devil's Staircase and the Farey Tree 

In this section we will explore some intriguing connections between the sine-circle 
map and simple numerology. It may at first seem surprising that number theory 
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Fig. 6.12. The graphic iteration of the sinecircle map with K = 0.5 and B = 0.6180339. = 
0.35. The behavior is quasi-periodic (not frequency-locked). The trajectory would 
eventual] y fill in a complete range of 8 values. 

can tell us anything about dynamics. We have had a hint of this connection in our 
earlier discussions of symbolic dynamics; here, we will see more results of this 
nature. 

In a previous section we gave a rough argument that indicated we might 
expect to see broader frequency-locking plateaus when p and q are relatively small 
integers. A glance at Fig. 6.11 seems to indicate the result is indeed true. We 
would now like to describe how results from number theory account for this size 
ordering. Please keep in mind that these results do not explain (physically) why the 
frequency-locking occurs (that explanation lies in the competition between 
resonance and nonlinear frequency shifts), but these results do allow us to 
understand the ordering, which is observed in almost all systems that display 
frequency-locking. 

The basic observation we want to take into account is that the frequency- 
locking plateaus decrease in length (along the 51 axis) when the denominator in the 
fraction plq increases. For example, the plateau for w = 114 is shorter than the 
plateau for w = 113. (For the sine-circle map the plateaus for a given q but different 
ps, all have the same length.) 
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u 
Fig. 6.13. The Farey tree construction which orders the rational numbers between 0 and 1. 

From the theory of numbers (see, for example, [Wright and Hardy, 19801) we 
know that if we have two rational fractions p 1 q and p'l q' , the rational fraction 
that lies between them and has the smallest denominator is the rational fraction 

Since the denominator controls the frequency-locking plateau size, we expect that 
the plateau corresponding to this fraction will be the largest plateau to be found 
between the p 1 q and the p'l q' plateaus. 

We also know that between any two rational fractions lie an infinite number 
of other rational fractions; hence, between any two frequency-locking plateaus lie 
an infinite number of other frequency-locking plateaus. However, for the larger 
denominators, the frequency-locking plateaus are so short along the Q axis that 
they are essentially unobservable. 

We can order the rational fractions that lie between 0 and 1 according to their 
increasing denominators by constructing the so-called Farey tree, shown in Fig. 
6.13. As we go up the Farey tree, each new fraction is formed by adding the 
numerators and denominators of the rational fractions to which the corresponding 
"branches" are attached. At each horizontal layer, all the fractions have the same 
denominator and correspond to frequency-locking plateaus of the same size for the 
sine-circle map. The plateau sizes decrease as we move up the tree. 
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From this diagram we can read off the order in which the plateaus occur as a 
function of SL . For example, between the w = 114 and w = 112 plateaus, we will 
see plateaus corresponding to w = 217, 113,318, Y5, and 3/7 for denominators up to 
8. The plateaus will have the following size order (from largest to smallest): 113, 
Y5,2/7 and 317,318. Note that the Farey tree tells us the order and relative sizes of 
the plateaus, but it does not tell us how long the steps are; that size depends on the 
value of K, the nonlinearity strength. The generality of the Farey tree, however, 
suggests a universality in the frequency-locking behavior. We shall study that 
universality in Section 6.10. 

Exercise 6.8-1. Use the frequency-locking steps displayed in Fig. 6.11 to 
verify the statements of the previous paragraph. 

An Analytic Approach to the Connection Between Frequency-Locking and the 
Farey Tree 
We will now give an argument that shows more explicitly the connection between 
the Farey tree and the frequency-locking plateaus. (After [Schuster, 19951.) 
Suppose that for some value of SL = SL1 we have frequency-locking with w = plq. 
(Again, we assume that the fraction has been reduced to simplest form.) Another 
way of expressing the frequency-locking is to note that after q iterations of the 
circle map function f,, , we have 

That is, after q iterations of the map function, the angle value we amve at is the 
original angle value plus p. We have added a subscript to the function to indicate 
explicitly the dependence on Q. Suppose for a somewhat larger value of Q we get 
locking with w = p'l q' , that is 

Now let us formally combine the two iterations to write 

(Note that the two parts of the iteration use different values of SL .) We want to be 
able to write this result as a single q + q' iteration with a single value of 51 = Q3. 
To find this value, we note that if we increase $2, we would get a result larger than 
p + p' + 0 because f (0) increases monotonically with SL. We can compensate 
for the overshoot, however, by decreasing the value of Q2. Thus, by increasing QI 
while simultaneously decreasing SL2, we can finally end up with a single value B3 
for which we can write 
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6.9 Continued Fractions and Fibonacci Numbers 

In our later discussion, we will be concerned particularly with situations in which 
the winding number is an irrational number (i.e., the system is not frequency- 
locked). It will be helpful in that discussion to have in hand some ways of 
approximating a given irrational number as a sequence of rational numbers. One 
way to do this is the method of continued fractions. Let us illustrate what this 
means by use of a specific example. The irrational number 

Fig. 614. The ordering of the Amdd 
tongues (frequency-locking regions) 
based on the ordering of ~ O d  

fractions and the Farey tree. The 
intermediate region covers a smaller 
range of SZ because its denominator is 
lwer. 

K 

(often called the "Golden Mean," for reasons to be discussed later) can be written 
as 

n 

This last equation tells us that there is an SL3 value located between SLl (where plq 
locking occurs) and Q2 (where p'lq' locking occurs) for which we get locking 
with ( p  + p')l(q + q') . We note, however, that this is just the ordering of rational 
numbers produced by the Farey tree. Figure 6.14 illustrates this ordering of the 
Arnold tongues. 

PIS @+P')/(~+Y 3 p'lq' 

1 1 1 

The ellipsis in the previous equation means that we continue the process of putting 
more fractions in the denominator ad infinitum. If we stop with n denominators 
(i.e., we have n "fraction lines"), we have the nth order approximation to G. The 
first few approximations are: 

1.0 - 

I 

I 
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We say that the sequence of rational numbers G, converges to the irrational number 
G as n -, w . G, is called the nth convergent for G. 

Two somewhat more compact notations for the continued fraction are 

For G, we have Q = 0, a, = 1 for all n > 0. 
We see from the previous construction that in general 

As n -, w , the sequence of G, values approaches the limiting value G, which must 
then satisfy 

Eq. (6.9-6) yields a quadratic equation for G: 

G ~ + C - ~ = O  

Thus, we see that indeed G is the value given in Eq. (6.9-1). 

Exercise 6.9-1. The number G is often called the Golden Mean because it 
can be defined by the following geometric argument: Divide a line 
segment of length L into two parts, one of length I,, the other of length l2 
(with 1, + l2 = L), such that the ratio 1,IL is equal to the ratio 1d1,. Show 
that this ratio is equal to G as defined in Eq. (6.9-1). A rectangle whose 
sides have lengths whose ratio is the Golden Mean seems to be 
particularly appealing visually. N.B. Sometimes the reciprocal of G ( 1IG 
= 1.61 803.. .) is called the Golden Mean. 
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You may have observed that the sequence G3, G4. G5...couId also be 
generated by combining the numerators and denominators of the previous two 
numbers in the sequence, once we have the numbers GI and G2: 

1 
GI =-  

1 
1 

G, =- 
2 
1+1 2 G --=- 

3 - 1 + 2  3 
I 1 + 2  3 

G4 =-=- 
2 + 3  5 
2 + 3  5 G5=-=-  
3 + 5  8 

Note that this construction is reminiscent of the Farey tree construction. 
Another related construction uses the so-called Fibonacci sequence. 

(Fibonacci, also known as Leonardo of Pisa, learned arithmetic from Arab scholars 
in North Africa around 1200. His book Liber Abaci was very influential in the 
development of mathematics in Europe.) The Fibonacci sequence is defined using 
two base numbers Fo = 0 and F, = 1 and the recursion relation 

that is, the nth number in the sequence is equal to the sum of the two previous 
numbers in the sequence. Thus, the Fibonacci sequence based on 0 and 1 is O,1,1, 
2, 3, 5, 8, 13,. ..It is easy to see that the ith approximation to the Golden Mean is 
given by 

We see that both the numerators and denominators of the Gs are part of the 
Fibonacci sequence. 

Continued fractions that have all the as in Eq. (6.9-4) equal to integers are 
particularly simple fractions. A further simplification occurs if there are only a 
finite number of different a values and if these values occur in a periodic fashion. 
A continued fraction is said to be periodic if 

for some fixed k (called the period of the fraction) and for all m greater than some 
number M. A periodic continued fraction represents an irrational number that can 
be expressed as the solution of a quadratic equation with integer coefficients [e.g., 
Eq. (6.9-7) for GI. The converse is also true: The solution of any quadratic 
equation with integer coefficients can be expressed as a periodic continued fraction. 



234 Chapter 6 

Exercise 6.9-2. Show that the following periodic continued fractions are 
equal to the irrational numbers given: 

1 1 1  
(a) ---...=A- 1 

2 +  2 +  2 +  
1 1 1 1  

(b) ----... = &-1 
1+ 2 +  1+ 2+  

N. B. : (a) is sometimes called the Silver Mean. 

Exercise 6.9-3. The continued fraction expansion for any number x can 
be constructed as follows: First, define the "largest integer function" y = 
INT(x), where y is the largest integer less than x. The continued fraction 
expansion Eq. (6.9-4) is then constructed by setting a, =INT(x). We 
define b, =x-a, .  Then a, =INT(lIb,,). Nextweset b, =(l/bo)-a, 
and a, = INT(l1 b, ) . In general, we have a, = INT(1I 6,-, ) and 
b,, = ((llbn-,) -an)  . The algorithm continues as long as b, is not equal to 
0. Use this method to find the continued fraction expansion for the 
Golden Mean, the Silver Mean, and for n . 

The results stated in this section will prove to be important in quasi-periodic 
dynamics because we will want to approximate the irrational ratio of frequencies 
associated with quasi-periodic behavior by a series of rational numbers. The 
continued fraction scheme allows a systematic way of canying out that 
approximation. The reader intrigued by the mathematics of continued fractions is 
referred to [Wright and Hardy, 19801 for an elegant and rigorous discussion. 

6.10 On to Chaos and Universality 

After our detour through the land of frequency-locking, we are ready to resume our 
journey to chaos via quasi-periodicity. Let us focus on the sine-circle map for our 
initial tour. For the sine-circle map, we reach a critical value of nonlinearity when 
the parameter K = 1. What is special about this value? For K c 1, there is a unique 
value of 8 for each value of f (8) . We say the map is invertible. That is, given a 
value of 8,+, , we can find the unique value of 8, that led to it. However, for K > 1, 
this invertibility no longer holds. For K > 1, there may be two or more values of 8, 
that lead to the same value of en+,. This lack of invertibility is tied up with the 
possibility of chaotic behavior because it induces the trajectory folding, which is 
necessary for chaos. 

For K < 1, the sine-circle map leads to either periodic (frequency-locked) 
behavior, characterized by a rational winding number, or quasi-periodic behavior, 
characterized by an irrational winding number. In fact as K approaches 0, the 
fraction of the SZ axis occupied by frequency-locked steps goes to 0; that is, almost 
all SZ values lead to quasi-periodic behavior. As K approaches 1, the length of the 
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frequency-locking steps increases, and at K = 1, where chaotic behavior becomes 
possible, the frequency-locked steps occupy essentially the entire SZ axis. The 
quasi-periodic trajectories still occur at K = 1, but they occur for a vanishingly 
small fraction of the axis. (To characterize how much of the SZ axis is occupied by 
quasi-periodic behavior requires the notion of fractal dimension, to be taken up in 
Chapter 9.) This fraction turns out to be independent of the specific circle map and 
is an example of the universal behavior of circle maps, much like the Feigenbaum 
universality of one-dimensional unimodal iterated map functions discussed in 
Chapter 5. This particular fraction is called a global universal characteristic 
because it involves the entire SZ axis. Similarly, the fraction of the SZ axis occupied 
by quasi-periodic behavior approaches 1 as K approaches 0 with a (global) 
universal behavior given by the expression (JBB84) 

where c is a constant and p = .034 is a universal exponent for a wide class of 
circle maps. (As we shall explain later, the map classes are determined by a 
particular geometric property of the map functions.) 

For K > 1, some values of SZ lead to chaotic behavior. In those cases the 
winding number defined in Eq. (6.7-3) does not exist because the limit used in the 
definition does not exist. Other values of SZ lead to frequency-locked behavior. 
The regions in which these two types of behavior occur are intertwined in the K-Q 
diagram in a complicated fashion. If K becomes larger than 1 with SZ set so that 
quasi-periodic behavior occurs, then chaotic behavior sets in for K > 1. If, on the 
other hand, SZ is set so that the behavior is frequency-locked at K = 1, then the 
behavior generally remains periodic for K > 1 with a sequence of period-doublings 
leading to chaotic behavior as K continues to increase. 

In addition to these global features, there are also some local universal 
features (i.e., features that occur for a small range of SZ values). The most 
interesting of these local features involves the S2 values that give rise to a particular 
sequence of winding numbers (for K I 1 ). The most studied of these sequences is 
the sequence of winding numbers that approaches the Golden Mean winding 
number by following the sequence of ratios of Fibonacci numbers given in Eq. 
(6.9-10). To show how this universality is defined, we introduce a particular value 
of SZ,(K), which yields a winding number equal to the nth approximation to the 
golden mean and has 8 = 0 as a point on the trajectory 

[We include 8 = 0 because the slope of f (8) is 0 there for K = 1, which makes 
the cycle a supercycle, in the language of Chapter 5.1 In Eq. (6.10-2), we have used 
the notation of the previous section for Fibonacci numbers. We then introduce two 
scaling exponents that play the role for the circle map that the Feigenbaum 6 and a 
play for the iterated maps introduced in Chapter 5. The first gives the ratio of 
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successive differences in SZ values as we let the winding number approach the 
Golden Mean value: 

6 ( K )  = lim an (K) -an-, ( K )  
"'- Qnt, ( K )  -SZn(K) 

The second quantity gives the ratio of distances d,, between the point 8 = 0 and the 
nearest element in the cycle: 

d ( K )  a ( K )  = lim A 
n+- dntl ( K )  

The values of S ( K )  and a ( K )  can be found by the use of arguments much like 
those used to find the values of the Feigenbaum numbers (FKS82 and ROS82). For 
the sine-circle map with K = 1 ,  we have 

For K < 1 ,  a ( K )  = -G-' and 6 ( K )  = - G - ~  , where G is the Golden Mean. 
For sequences of SZ values constructed from sequences of rational fractions 

leading to other irrational values, the values of S(K)  and a ( K )  are different 
(SHE82). However, they can all be expressed in a similar form when K = 1 ,  the 
critical value: 

where a and b are constants that depend only weakly on the irrational number. For 
example, for the Golden Mean, a = 2.16443 ... and b = 0.52687 ..., while for the 
Silver Mean, a = 2.1748.. . and b = 0.5239.. . (SHE82). N is defined in terms of the 
ratio of differences in rational winding numbers used in the approach to the 
irrational number. If we let Wi represent the ith rational number in the sequence, 
analogous to the sequence in Eq. (6.9-3), then N is defined by 

For the Golden Mean and the Silver Mean, N turns out to be equal to the irrational 
number itself. 

Exercise 6.10-1. Show that for p:q frequency-locking trajectory f 'P'(0)  
gives the trajectory point closest to 8 = 0 . 

Exercise 6.10-2. Prove that for K < 1 and the sequence of SZ values given 
in Eq. (6.10-2), we get a = -G-' and S = - G - ~  . 
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Exercise 6.10-3. Show that the values of a and b cited in the text when 
used in Eq. (6.10-6) give the values listed in Eq. (6.10-5). 

In Chapter 5 and Appendix F, we pointed out that the "standard" Feigenbaum 
values apply only to those one-dimensional iterated map functions that have 
quadratic behavior near their maximum values. For other functional dependences, 
the values of 6 ( K )  and a ( K )  are different. Thus, these one-dimensional maps 
fall into various universality classes depending on their behavior near the maximum 
value. Similarly, we can define various universality classes of circle maps. For 
circle maps, it is the functional dependence of the map function near the inflection 
point at 8 = 0, which occurs for K = 1 .  (Recall that at an inflection point, the 
second derivative is equal to 0.) Hu, Valinia, and Piro (HVP90) have studied these 
universality classes by calculating S(K)  and a ( K )  , as defined earlier, for the map 
functions 

Here 8 is defined to be in the interval [-112, 1/21. The parameter z controls the 
"degree" of the inflection. For z = 3, we have a so-called cubic inflection and the 

0 
0.5 K 5.5 

Fig. 6.15. The bifurcation diagram for the sine-circle map with 51 = 0.5. The value of K is 
plotted along the horizontal axis. The initial value of 0 is 0. Note that no chaotic behavior 
occurs until well above the critical value of K = 1. Compare the perioddoubling sequences 
and chaotic band-mergings to those of the onedimensional iterated maps of Chapter 5. 
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0 K 5.0 
Fig. 6.16. The bifurcation digram for the sine-circle map with 52 = 0.606661. Note that 
below K = 1.0 the behavior s quasi-periodic. Immediately above K = 1 there is chaotic 
behavior, but this chaotic behvior immediately gives way to a window of periodic behavior. 
Above K = 1, there are period.loubling and more chaos. 

map function defined in 9. (6.10-8) yields the values for 6(K) and a(K)  equal 
to the values for the sine-drcle map. HVP90 list the values of 6(K) and a(K)  
for various values of z. Fo~large z, these values seem to approach the values a (K)  
= -1.0 and 6(K) = 4 . 1  lsmoothly. (Large z means that that the map function is 
very flat near the inflectiopint.) 

Exercise 6.10-4. (a Show that the sine-circle map has cubic type 
behavior in the neighbrhood of its inflection point at 8 = 0 and K = 1. (b) 
Where is the inflectio~ point for the f (8) given in Eq. (6.10-8)? Show 
that z does indeed givethe degree of the inflection. 

As mentioned previotsly, if we keep the winding number for the sine-circle 
map tuned to the irrational hlden Mean value, chaos sets in at K = 1. On the other 
hand, if we approach K : 1 in a frequency-locked region, we see no chaotic 
behavior until K has increaed significantly beyond K = 1 and then the approach to 
chaotic behavior occurs viaa period-doubling sequence. 

Above K = 1, the bifrcation diagram for the sine-circle map becomes quite 
complicated. Figures 6.15 ind 6.16 show the bifurcation diagrams for a range of K 
values and two values of 6,0.5 and 0.606661, the latter of which gives a winding 
number close to the Golder Mean. 
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Fig. 6.17. The (average) Lyapunov exponent is plotted as function of K for 52 = 0.606661. 
By comparing this figure with Fig. 6.16, we see that the Lyapunov exponent is 0 for quasi- 
periodic behavior and positive for chaotic behavior. 

Three important points emerge from those diagrams. First, we must be 
careful to distinguish the smear of points that occurs for K < 1 due to quasi- 
periodicity from the smear of points for K > 1 in the chaotic regions. One should 
notice the banded structure of the quasi-periodic behavior and compare that to the 
"random scatter'' of the chaotic areas. Second, we note that for & = 0.5, we pass K 
= 1 in a frequency-locking tongue; chaotic behavior does not emerge directly at K = 
1 but occurs only above K = 1. Third, we note that the diagrams depend 
significantly on the & value. To some extent, the behavior also depends on the 
trajectory starting point in the frequency-locking tongues. Above K = 1, the Arnold 
tongues overlap, and different starting points may lead to different frequency- 
locking ratios. 

To verify that the regions above K = 1 with a scattering of trajectory points 
are actually chaotic, we should compute the (average) Lyapunov exponent for the 
trajectory. Figure 6.17 shows the Lyapunov exponent, calculated according to the 
method described in Chapter 5, as a function of K corresponding to the bifurcation 
diagram of Fig. 6.16. We see that the Lyapunov exponent is positive in those 
regions above K = 1 that appear chaotic. The quasi-periodic regions give a 
Lyapunov exponent of 0. Hence, we can use the Lyapunov exponent to distinguish 
between quasi-periodic and chaotic behavior, which to the eye appear to be very 
similar. 
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6.11 Some Applications 

In this section we will discuss briefly some physical systems that display the quasi- 
periodic transition from regular to chaotic behavior. We should note that the sine- 
circle map can serve as a useful guide to this behavior for parameter values below 
what is called c ~ ~ ,  which for the sine-circle map means below K = 1. Below 
criticality, frequency-locking and quasi-periodicity are the only possible types of 
behavior. Above criticality, chaos may occur. For a physical system described by 
a set of ordinary differential equations, we know that chaos requires trajectories to 
move through at least three state space dimensions. However, even above K = 1, 
the sine-circle map continues to describe the motion of points on a circle, which 
would correspond to the intersection of a two-dimensional state space surface with 
the Poincari plane. If the Poincari section were just a circle (or other closed curve) 
for a system described by ordinary differential equations, then the motion could be 
at worst quasi-periodic. If we have chaotic behavior for a system described by 
ordinary differential equations, the Poincari section corresponding to chaotic 
behavior must fill out more than a curve in the Poincari plane. Thus, we cannot use 
the K > 1 behavior of the sine-circle map as a guide to what happens above 
"criticality" for those kinds of systems. In fact, the region above the critical line is 
largely unexplored temtory, both theoretically and experimentally. Most of the 
applications described later have focused on the frequency-locking regions below 

hot 
F& 6.18. A schematic diagram of the periodically-modulated RayleigbBknard experiment. 
The fluid is merauy. A magnetic field (B), indicated by the arrows, is applied parallel to the 
convection cell axes. An alternating electrical current is applied in a sheet dividing the two 
convection rolls. The dotted line indicates the main flow of electrical current. 
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the critical line and on the transition to chaos via quasi-periodic behavior with an 
irrational winding number. In those experiments, at least two parameters must be 
adjusted to maintain the required winding numb&. 

1 Forced Rayleigh-Bkmrd Convection 
I 

We introduced Rayleigh-BCnard fluid convection in Chapter 1 in the discussion of 
the Lorenz model. As we mentioned there, if the temperature difference between 

I the bottom and top of the cell is made large enough, the convective rolls begin to 
oscillate. This type of behavior would be described by a limit cycle in state space. 
Stavans, Heslot, and Libchaber (SHL85) have carried out a Rayleigh-Binard 
experiment in a small cell (so there are only two convection rolls) filled with 
mercury. They applied a steady magnetic field of about 200 gauss to the system 
with the magnetic field direction parallel to the axis of the convective cells as 
illustrated in Fig. 6.18. By sending an alternating electrical current through the 
vertical plane separating the two convection rolls, they induced a periodic 
modulation of the fluid flow. (Recall that charged particles moving through a 
magnetic field feel a magnetic force that is perpendicular to both the velocity of the 
charged particle and the magnetic field.) The frequency and amplitude of the 
alternating current could be varied. The ratio of the natural oscillatory frequency of 
the fluid to the frequency of the alternating current corresponds to SZ for the circle 
map. The amplitude of the alternating electrical current corresponds to K in the 
sine-circle map. 

For small values of the alternating current amplitudes (say, less than 10 
milliamp), the system exhibited frequency-locking and quasi-periodic behavior 
organized by Arnold tongues, much like those for the sine-circle map. With the 
frequency-ratio set to approach the Golden Mean value via the sequence described 
in Section 6.10, SHL determined the value of 1 6 ( ~ ) I  to be 2.8kO.3, a value that 
agrees well with the universality prediction. They also measured I ~ ( K ) /  for the 
sequence of frequency-ratio values approaching the silver mean value and found 
I~(K)I  = 7.M.7, also in good agreement with the theoretically expected value. In 
addition, they investigated the so-called fractal dimension of the quasi-periodic 
regions just at the onset of chaos. We shall discuss those measurements in Chapter 
9. 

Periodically Perturbed Cardiac Cells 
In some sense, most living systems owe their continued existence to oscillatory 
behavior. For humans, the most obvious oscillations are the repetitive beating of 
the heart and the (more or less) regular respiratory behavior of the lungs. There are 
many others, however, including regular oscillations of electrical signals in the 
brain and many chemical osciIIations with a period of about 24 hours. (The latter 
lead to what are called circadian rhythms.) It is not surprising that over the last 
fifteen years or so, many scientists have begun to apply the methodology of 
nonlinear dynamics to understand the behavior of these oscillating systems. In a 
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Fig. 6.19. Graphs of the circle map function used to model the periodically stimulated heart 
cell dynamics. On the left, the conditions yielded quasi-periodic behavior. On the right, the 
conditions led to chaotic behavior. Note that on the right the map function is not invertible 
and leads to the fdding of trajecmies. The thick dashed lines give a rough idea of the scatter 
of experimental points. [Based on (GSB86, pp. 248-249).)] 

living organism, these oscillating systems interact with each other and with external 
perturbations, so we might expect the phenomena of frequency-locking, quasi- 
periodicity, and perhaps chaos to apply to them. 

As an example of how nonlinear dynamics is applied to the study of these 
systems, we will describe a series of elegant experiments carried out at McGill 
University [Glass and Mackey, 19881 (GGB84) (GSB86). There, L. Glass and co- 
workers applied an external, periodic electrical stimulation to a culture of chick 
embryo heart cells. The culture consisted of small aggregates, each about 100 pm 
in diameter, of cells taken from 7-day-old embryonic chicks. Each aggregate beats 
spontaneously with a period of about 0.5 see, much like a mature heart in a living 
chicken. In the experiment, the amplitude and frequency of the external 
stimulation, which was an electrical pulse applied through an intracellular 
electrode, were varied. 

The qualitative results of the experiment were in agreement with expectations 
based on the behavior of the sine-circle map. For moderate amplitude stimulation, 
the cardiac cells exhibited frequency-locking and quasi-periodic behavior organized 
in Arnold tongues. For large amplitude stimulation, regions of chaotic behavior 
introduced by period-doubling were observed. In these experiments, the variable 
recorded is the time between successive beats of the heart cell culture. Chaotic 
behavior means that these time intervals seem to have no recognizable periodicity. 
This behavior is again qualitatively like the large K behavior of the sine-circle map 
(see Figs. 6.15 and 6.16). 

Glass and co-workers modeled the dynamical behavior of the cardiac cell 
system by making a connection with a circle map: The external perturbation can be 
said to occur at a particular phase of the spontaneous oscillation cycle, given by the 
angle variable 8, where 0 c 8 c 1, as in our discussion of circle maps. The effect of 
the pulse perturbation is to reset the oscillator to a new phase value 8' : 
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where the function g is given by the so-called phase transition curve. The latter can 
be measured by applying a single pulse to the system at various values of 8. 

When the system is subject to a periodic sequence of stimulus pulses, the 
behavior of the phase of the spontaneous oscillations just before the nth pulse is 
given by 

en = g(en-,) +Q (6.1 1-2) 

where 8 is the ratio of the spontaneous oscillation frequency to the stimulus 
frequency. This is exactly the form of a circle map. Figure 6.19 shows on the left a 
graph of the circle map determined from the heart cell data in the range of 
parameters in which quasi-periodic behavior occurs. On the right is the 
corresponding graph for a parameter range in which chaotic behavior occurs. The 
qualitative similarities to the sine-circle map are obvious. 

Comments on Biological Models 
This is a good point to inject a few words of commentary. The heart cell example 
raises a number of important methodological (and philosophical) questions. What 
does it mean to say that the chick heart cell dynamics is modeled by a circle map? 
Are we to infer that there is (the equivalent of) a small computer inside the heart 
cells rapidly iterating a circle map to determine their behavior? In more general, 
and perhaps less facetious terms, what is the role of a mathematical model of a 
biological system? 

At one level, we can say that we expect on the basis of our study of nonlinear 
dynamics to see many universal features among perturbed oscillating systems, 
whether they are physical, chemical, or biological. Since these features are present 
in simple mathematical schemes, such as circle maps, we can use the circle map to 
guide our investigation. Indeed this procedure of learning from models has been 
extremely important in the development of our understanding of nonlinear 
dynamics and chaos. As we have seen, the behavior of nonlinear systems is 
exceedingly complex, and we need some guidance just to develop a useful 
taxonomy of behavior. Moreover, we have learned that certain types of transitions, 
for example, between frequency-locking, organized in Arnold tongues, and quasi- 
periodicity, or between periodic behavior and chaotic behavior via a sequence of 
period-doublings, are common to wide classes of models. Hence, we can use any 
one of the models to guide our investigations of the "real" system. 

On the other hand, we would like our models to be "realistic" (i.e., to give us 
some information about what is "really" going on in the chick heart cells). A 
realistic description of the experiment would presumably tell us what goes on with 
the cell membrane electrical potentials that are influenced by the external 
stimulation, which the circle map does not provide. It might be argued that using a 
circle map to model the dynamics is just playing with numbers. The circle map 
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gives us no information on what is really going on with the heart cells and that we 
would be better off, as scientists, focusing on a more realistic description. 
Moreover, the natural biological variability between systems and even within a 
system (sometimes called biological noise) means that the circle map used for one 
heart cell aggregate is different from (at least in detail) the circle map for another 
aggregate or even for the same aggregate at a later time. The systems are living, 
often growing, or dying, always changing. 

We would not disagree with the goal of obtaining a realistic picture of the 
system's behavior. We would say, however, that mathematical modeling with 
simplified models such as the circle map provides an important intermediate step in 
our understanding of the biological system. The mathematical model, if it captures 
the correct, but gross, features of the dynamics, gives us a guide for organizing our 
study of the behavior. It is not a replacement for a realistic model, however, which 
gives us an understanding of the detailed biological mechanisms of the system. 

Biological systems are complex systems, at least compared to those 
commonly studied by most physicists and chemists. It may be surprising that 
anything at all can be said quantitatively about their behavior. Perhaps the most 
important discovery is that biological dynamics, at least for relatively simple 
systems (on the biological scale), can be organized in terms of models with only a 
few degrees of freedom. [Glass and Mackey, 19881 and [Winfree, 19801 provide 
an excellent introduction to the use of nonlinear dynamics in understanding some 
aspects of biological oscillators. 

Periodically Driven Relaxation OsciUator 

As a final example of quasi-periodic behavior, we turn to a variation of the van der 
Pol oscillator, introduced in Appendix I. There we saw that solutions of the van der 
Pol equation (1-4) describe spontaneously generated limit cycles; that is, with time- 
independent voltage inputs, an electrical circuit described by the van der Pol 
equation will exhibit periodic oscillations. However, as we argued in Appendix I, 
the dynamical possibilities of the van der Pol model are limited. We can enrich the 
range of dynamical possibilities by adding another term to the equation, a term 
describing a periodic modulation of the circuit. This modulation can take many 
forms but a common one is to add a periodic "force" term to the right-hand side of 
Eq. (1-4): 

where F is the magnitude of the force and f is its frequency of oscillation. 
The forced van der Pol osciUator has a venerable history. In 1928, van der 

Pol and van der Mark (VAV28) used this equation to model some aspects of 
heartbeats and their abnormalities known as arrhythrmas. As an outgrowth of the 
study of electrical oscillators used in the development of radar, Mary Cartwright 
and J. Littlewood published a mathematical study of the forced van der Pol 
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oscillator equations in 1945 (CAL45). It is apparent they noted the possibilities of 
what we would now call chaotic solutions (see also CAR48). N. Levinson 
published similar results in 1949 (LEV49). [S. Smale was led to his horseshoe map 
(SMA63) in his study of Levinson's work.] More recent work, but before the 
recognition of chaotic behavior,in a formal way, is summarized in [Hayashi, 19641. 
It turns out that steady-state (as compared to transient) chaotic behavior is more 
readily observable if the periodic modulation is put into the "velocity" term (the 
tenn involving dQldz ) rather than being introduced as a periodic force. This 
model has been extensively studied by R. Shaw (SHA81). More recently Abraham 
and Simo (ABS86) have studied forced van der Pol systems with asymmetric 
forcing terms in which chaos appears more readily. 

With this brief (and inadequate) survey of some theoretical studies of forced 
relaxation oscillators, we now turn to an experiment. By adding periodic 
modulation to an operational amplifier relaxation oscillator, Cumming and Linsay 
(CUL88) provided a detailed quantitative study of the quasi-periodic route to chaos. 
They were able to locate over 300 Arnold tongues. Somewhat surprisingly they 
found significant deviations from the supposedly universal sine-circle map 
predictions at the onset of chaos. In particular, the value of S(K) found using the 
sequence of winding numbers approaching the Golden Mean did not converge, as 
expected from Eq. (6.10-3), but oscillated between two values, -3.3 + 0.1 and -2.7 
+ 0.2. Moreover, the fractal dimension (to be discussed in Chapter 9) did not agree 
with the value expected on the basis of the sine-circle map. 

An explanation of these deviations was supplied by Alstrom, Christiansen, 
and Levinsen (ACL88), who used an "integrate and fue" model to show that in 
some relaxation oscillators, the transition to complete frequency-locking and the 
transition to chaos are distinct transitions. In the sine-circle map model, chaos first 
begins at K = 1 when the Arnold tongues expand to cover the entire 51 axis. Thus, 
for the sine-circle map the two transitions are identical. ACL argue that for a 
periodically-modulated integrate-and-fire relaxation oscillator, which is a better 
physical model for the operational amplifier relaxation oscillator, the two 
transitions can be distinct and hence the quantitative features of the sine-circle map 
need not apply. However, they also argue that in a real system the gap predicted by 
the integrate-and-fire models will be smoothed over and the numerical values for 
the characterization of the transition to chaos will not be too different from those 
predicted by the sine-circle map. (For a discussion of biological oscillators and 
integrate-and-fire models, see [Glass and Mackey, 19881.) 

This last example provides us with a cautionary tale: We should not expect 
too much from simple models. The sine-circle map does provide us with a useful 
guide to quasi-periodic behavior, but it does not capture all of nature's possibilities. 
As in many other areas of nonlinear dynamics, we lack a complete categorization 
and understanding of these possibilities. 
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The quasi-periodic route to chaos is discussed in almost every book on 
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appropriate at the level of this book are [Berge, Pomeau, and Vidal, 19841 and 
[Schuster, 19951. 
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quasiperiodic route to chaos," Chaos 6, 3 2 4 2  (1996). A very nice overview of 
quasiperiodicity, the sine-circle map, and the theory of universality in the quasi- 
periodic route to chaos. 
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Electr. Eng. 95,88-96 (1948). 
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York, 1964; reprinted by Princeton University Press, 1985). 
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York, 1980). 
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Press, Princeton, NJ, 1988). 
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D. Ruelle and F. Takens, "On the Nature of Turbulence," Commun. Math. 
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6.13 Computer Exercises 

CE6- 1. Use Chaotic Mapper to explore the sine-circle map by looking at the 
results of graphic iteration, its bifurcation diagram and Lyapunov exponent as a 
function of the nonlinearity parameter K for various values of Q. 

CE6-2. Write a computer program to plot the Devil's staircase for the sine- 
circle map. 



Intermittency and Crises 

Chaos, a rough and unordered mass. Ovid, Metamorphoses. 

7.1 Introduction 

For the third (and final) chapter on routes to chaos in dissipative systems, we will 
discuss two more scenarios. One involves a type of behavior called intennittency 
because, as we shall see, the behavior of the system switches back and forth 
intermittently between apparently regular behavior and chaotic behavior. The 
second scenario is signaled by a so-called crisis, during which a strange attractor in 
state space suddenly changes in size or suddenly disappears. The intermittency 
route to chaos was first described by Pomeau and Manneville (MAP79 and 
POM80) and is sometimes called the Pomeau-Manneville scenario. The notion of 
crisis-another important class of bifurcation events-was introduced by Grebogi, 
Ott, and Yorke (GOY82) and (GOY83). 

Both scenarios have been observed in several experiments. However, like the 
theory of period-doublings and the quasi-periodic route to chaos, the theory of 
intermittency and crises has been based primarily on the study of iterated maps, 
viewed either as dynamical systems in their own right or as models of Poincark 
map functions for systems described by differential equations. We will introduce 
the basic phenomenology of the behavior for both intermittency and a crisis and 
then discuss (briefly) some of the theoretical analysis. 

7.2 What Is Intermittency? 

Intermittency occurs whenever the behavior of a system seems to switch back and 
forth between two qualitatively different behaviors even though all the control 
parameters remain constant and no significant external noise is present. The 
switching appears to occur "randomly" even though the system is (supposedly) 
described by deterministic equations. We shall focus on two types of intermittency 
(with brief discussions of two other types as well). In the first type, the system's 
behavior seems to switch between periodic behavior and chaotic behavior. The 
behavior of the system is predominantly periodic for some control parameter value 
with occasional "bursts" of chaotic behavior. As the control parameter value is 
changed, the time spent being chaotic increases and the time spent being periodic 
decreases until, eventually, the behavior is chaotic all the time. As the parameter is 
changed in the other direction, the time spent being periodic increases until at some 
value, call it A,, the behavior is periodic all the time. In the second type of 
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intermittency, the system's behavior seems to switch between periodic and quasi- 
periodic behavior. 

We have used the word seem quite consciously in the previous paragraph to 
describe intermittency. Of course, for fixed control parameters, the behavior of the 
system is whatever it is. In principle, no switching occurs. However, in an 

intermittent situation, the behavior avuears to have a certain character (e.g., 
periodic) for a long time (long compared to the typical time period associated with 
the system) and then "abruptly" (again, compared to the typical time period for the 
system) switches to behavior of a qualitatively different character (e.g., chaotic). 

To get a better feeling for what intermittency means, we have plotted in Fig. 
7.1 a long stretch of a "signal" that was computed from the now familiar logistic 
map function (Eq. 1.4-5.) for two different parameter values. On the left, the 

behavior is periodic with period-5. On the right, for a slightly smaller value of the 
parameter A, the behavior is intermittent. It is apparent from the right-side of Fig. 
7.1 that the trajectory appears to be periodic for a while (with period-5 behavior) 
and then chaotic for a while, with no apparent periodicity. The switching between 
the two behaviors appears to be random. If we decrease the parameter A a small l 1  

amount, the chaotic regions expand and the periodic regions decrease in size. 
I 

I 

The reason for the cautious description of the behavior should be obvious: If 11 

the signal were exactly periodic, there would be no possibility of a "switch" to 414 

chaotic behavior. Also, the "chaotic" part looks chaotic, but we have not 'Ill 

established that it has a positive Lyapunov exponent. The observation that each of 
the chaotic sections appears to be quite distinctive in character and in length even 
though the preceding periodic parts appear to be (nearly) identical is a strong 
suggestion, but not a proof, that the irregular behavior is chaotic. 

Intermittency also occurs in systems described by differential equations. 
Figure 7.2 shows the time dependence of the Lorenz model variable Z (see Eqs. 
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Fig. 7.1. On the left is a plot of the x values for sucoessive iterations of the logistic map 
function for A = 3.74. Period-5 behavior is evident. On the right A = 3.7375 and the 
behavior is intermittent. Parts of the behavior appear to be periodic with period-5. Other 
parts appear to be chaotic. The switching between the two types of behavior appears to be 
random 
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Fig. 7.2 The time dependence of the Z variable in the Lorenz model (Eqs. 1.5-1). On top, 
the parameters are r = 165, b = 813, and p = 10. The trajectory shows periodic behavior after 
a short initial transient In the bottom half, r = 167, and the trajectory shows intermittent 
behavior, switching between periodic behavior and (very) short bursts of chaotic behavior 
(near t = 7.5 and near r = 11). The intermittency would be more obvious in a longer time 
sequence. 

1.5-1) for two different values of the parameter r. For the smaller value of r, the 
behavior is periodic. For the slightly larger value, we see irregular switching 
between periodic and chaotic behavior. As r is further increased, the chaotic 
intervals gradually expand to fill all of time. 

We now tackle the following questions: How do we understand the origin 
(cause) of intermittency? Is there anything quantitative to be said about how 
chaotic behavior begins to dominate over periodic behavior as a control parameter 
is varied? Are there different kinds of intermittency? 

73 The Cause of Intermittency 

The switch to chaotic behavior via intermittency should be contrasted with the two 
previously discussed routes to chaos: period-doubling and quasi-periodicity. In 
both the previous scenarios, the long-term behavior of the system was either 

I 
Interrnittency and Crises 253 

Fig. 73. On the left is a plot of the fifth iterate of the logistic map function for A = 3.74. On 
the right is a plot of the same function for a slightly smaller value A = 3.72. lteration of the 
logistic map function on the left leads to period-5 behavior. For the value used on the right, 
we get intermittency behavior. Notice the small "gaps" on the right between the function and 
they = x (diagonal line) near the locations of the period-5 fixed points. At the intermittency 
transition, the fifth iterate function is just tangent to the diagonal line at 5 points. 

completely periodic (or quasi-periodic) or completely chaotic, depending on the 
parameter value. In the case of intermittency, the behavior apparently switches 
back and forth. We emphasize "apparently" again because we shall see that the 
behavior in the intermittent regime, for our first type of intermittency, is completely 
aperiodic (and chaotic). What we need to explain is why some parts of the 
behavior are apparently periodic. 

The general scheme is the following: For parameter values above (for 
example) some critical parameter value A,, the behavior of the system is completely 
periodic. For an iterated map function, the behavior is determined by the fixed 
points of the appropriate nth iterate if we have period-n behavior. For a system, 
such as the Lorenz model, described by a set of differential equations, we can use 
the Poincare section technique and focus our attention on the n points of the 
Poincar6 section, which are fixed points of the (generally unknown) Poincari map 
function. The general feature that gives rise to intermittent behavior is the 
"disappearance" of these fixed points as the relevant parameter is changed. In 
contrast to period-doubling, the previously stable fixed points are not replaced by 
new stable fixed points. Hence, the motion becomes irregular (in fact, chaotic) and 
the trajectories wander over a considerable region of the state space. 

What then causes the episodes of apparently periodic behavior? Perhaps a 
concrete example would be useful. Figure 7.3 shows the fifth iterate of the logistic 
map for two parameter values. On the left is an A value that leads to period5 
behavior. After transients die away, trajectories cycle among the five stable fixed 
points. (There are also five unstable fixed points close to the stable fixed points. 
There are also two other unstable fixed points: one at x = 0, and the other at x = 1 - 
1/A, which correspond to the unstable fixed points of the original map function.) 
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Fig. 7.4 An expanded view of the "gap" 
in the plot of the fifth iterate of the 
logistic map near x = In. Here A = 

%+I 3.7375. The graphic iteration technique 
shows that a trajectory spends a 
significant amount of time near the 
location of the period-5 fixed points, 
which come into existence for slightly 
larger values of A when the function 
intersects the diagonal line. In the case 
illustrated here, the trajectay requires 
about four steps to traverse the gap. 
These four steps correspond to four 

a48 cycles of five iterations each of the 
a48 QSL original function. 

On the right, for a slightly smaller value of A, there are no stable fixed points, and 
the behavior is chaotic. 

We develop more insight concerning the apparent periodicity by examining 
the behavior of trajectories that go through the "gaps" between the appropriate 
iterate of the map function and the 45" line. Figure 7.4 shows an expanded view of 
one of these gaps for the logistic map. The graphic iteration technique shows that a 
trajectory spends a significant amount of time (many successive iterations) near the 
previously stable period5 fixed point. Eventually, however, the trajectory is 
repelled from this region and wanders off to another region of state space. 

Exercise 7.3-1. Carry out the graphic iteration technique for several size 
"gaps" between f '"(x) and the diagonal (45') line. Convince yourself 
that the smaller the gap size, the longer the time (that is, the larger the 
number of iterations) required to pass through the gap. 

As the gap size decreases, the trajectory spends more time (on the average) in 
the gap region. This is qualitative evidence that more time is spent in "periodic" 
behavior as the parameter approaches the critical value A,, at which point the gap 
vanishes and the behavior becomes exactly periodic. Since the map function (or its 
appropriate iterate) becomes tangent to the 45" line at A,, the beginning of 
intermittency is sometimes called a tangent bifurcation. Since a stable fixed point 
and an unstable fixed point annihilate each other at the beginning of intermittency, 
this event is also a type of saddle-node bifurcation. 

It is clear that for the "periodic" behavior to repeat in intermittency, the 
wandering trajectory must be re-injected into the vicinity of the narrow gap. We 
can use the graphic iteration technique "backward" to see how re-injection occurs: 
We ask what regions of the x axis lead upon the next iteration to trajectories that 
land near one of the small gaps. Figure 7.3 shows that there are two such regions 
for each gap for the logistic map. (Recall that if there is more than one possible 
antecedent for a given trajectory point, we say that the map function is not 
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invertible.) If a trajectory lands in one of these two re-injection regions, it will find 
itself back in the neighborhood of the small gap on the next iteration. The next few 
iterations will be confined to the vicinity of the gap, and the behavior will appear to 
be (almost) periodic since this next set of x values will all be close in value. 
However, the x values will not be exactly the same because there is no stable fixed 
point and the trajectory does slowly work its way through the gap. Exactly how 
long it takes clearly depends on where it is re-injected; therefore, we would expect 
to see (and we do see) considerable irregularity in the length of the "periodic" 
intervals. 

The weak point in our argument is the assumption that the wandering 
trajectory will hit one of the re-injection zones. In a rough sense, one might expect 
that to happen, but it seems difficult to prove in general that it should occur because 
we need to consider how a trajectory behaves as it wanders over an extended region 
of state space. Using terminology introduced before, we say that the periodic 
behavior is determined by the "local" behavior near the gaps while the wandering 
trajectories and subsequent re-injection are determined by the "global" behavior 
over an extended region of the state space. For a more detailed treatment of the re- 
injection process see [Berge, Pomeau and Vidal, 19861 and [Schuster, 19951. 

These tangent bifurcations leading to intermittency are in fact quite common. 
For the logistic map function, the periodic windows seen in the bifurcation diagram 
in Figs. 1.14,2.4, and 2.5 are "born" by tangent bifurcation events as the parameter 
A increases. At a tangent bifurcation birth for the period-n window, we have 

where the second equation tells us that x* is a fixed point of the nth iterate of the 
map function. As the parameter A decreases (for the logistic map function), the 
slope of f '"' near x* increases above + 1 as the fixed point disappears. (By way of 
contrast, recall that for a period-doubling, the slope of the appropriate iterate of the 
map function became more negative than - 1.) 

Let us summarize what we have found: Intermittency behavior is in fact 
aperiodic (chaotic) behavior characterized by irregularly occurring episodes of 
(almost) periodic behavior. The cause of the periodic behavior is a "trapping" of 
trajectories in the gaps that open up between the appropriate iterate of the map 
function and the diagonal line after a tangent bifurcation. 

We might also point out that intermittency of a slightly different character 
occurs in systems that show quasi-periodicity and frequency-locking. As we saw in 
Chapter 6, p:q frequency-locking in the sine-circle map occurs when the 9th iterate 
of the map function overlaps the xn+, = xn diagonal line. The frequency-locking 
clearly begins and ends, as the control parameter is changed, with tangent 
bifurcations just like the case of intermittency discussed here. However, in the case 
of the sine-circle map for K < 1, the intermittent behavior is a switching between 
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apparently frequency-locked behavior and quasi-periodic behavior. The apparent 
frequency-locking occurs when the trajectory is temporarily trapped in the narrow 
gaps between the 9th iterate of the map function and the diagonal line. Strictly 
speaking, we must say the behavior is quasi-periodic, but there may be long 
intervals of behavior that appears to be frequency-locked. 

Intermi#ency and I / f  Noise 
A wide variety of physical systems have "noisy" behavior for which the noise has a 
nearly identical power spectrum: The noise level increases as the power spectrum 
frequency decreases with an approximately llf frequency dependence. (We trust 
that using the symbol f for frequency will not cause confusion with its use as a 
function in other sections.) The ubiquity of this so-called llf noise obviously 
demands a very general explanation. Although no completely satisfactory 
explanation of llfnoise has been developed, recent work suggests that intermittent- 
type behavior may be the common feature linking all of these systems. The basic 
notion is that intermittency is essentially characterized by switching back and forth, 
apparently randomly as we have seen, between two (or perhaps, more) different 
types of behavior. This slow switching is then the "cause" of the llffluctuations, 
which we call noise. The relationship between intermittency and llf noise is 
discussed in more detail in [Schuster, 19951, MAN80, PRS83, and GWW85. 

7.4 Quantitative Theory of Intermittency 

In this section we will present several related arguments to establish some universal 
features associated with the intermittency route to chaos. We begin by focusing 
attention on a one-dimensional iterated map model. In particular, we look at the 
behavior of the appropriate iterate of the map function for parameter values close to 
the value at which a tangent bifurcation occurs and in the region close to one of the 
stable fixed points-the one that is about to disappear. In that region, the nth iterate 
of the map function can be approximated by the expression 

where a and b are constants that depend on the particular map function, iterate, and 
fixed point. Their exact values will play no role in our discussion. We have chosen 
the form of the parameter dependence term to match the behavior of the logistic 
map: We have periodic behavior for A > A,, and we have intermittent (chaotic) 
behavior for A < A,. 

It is traditional to put this approximate equation into a standard form by 
introducing new variables y = (x - x* ) 1 b , c = ab, and p = A, - A. These changes 
shift the fixed point location to y = 0. The parameter p is chosen so that when p = 
0, the tangent bifurcation takes place. For p < 0, the behavior is periodic. For p > 
0, the behavior is intermittent. The approximate form for the map function is then 
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A graph of Eq. (7.4-2) looks like the graph displayed in Fig. 7.4. 

Exercise 7.4-1. Verify the algebraic substitutions that lead from Eq. (7.4- 
1) to Eq. (7.4-2). 

I 

I We will now use a renormalization (scaling) argument (based on 
[Guckenheimer and Holmes, 19901) to determine how the average duration of the 

1 periodic bursts depends on the parameter p for values just above 0. We expect that 

1 the length should go to 0 as p increases and should increase to infinity as p 
1 approaches 0 from above. The first step in the argument is to recognize that the 

length of these periodic bursts can be determined by finding how many iterations it 
takes to move a trajectory through the gap between the map function and the 
diagonal line. Let us call that number n(p). Of course, n(p) depends on where the 
trajectory enters the gap and on what we mean precisely by coming through the 
gap. Our arguments, therefore, will give us an average value. Next, we note that if 
we use h"'b) in place of hb)  to step the trajectory through the gap, then we need 
only n o 1 2  steps to get through the gap because each step of h(2'(y) corresponds to 
two steps of hb). 

We are now ready for the crucial part of the argument: We show that if we 
rescale the y axis values by a factor a and the parameter value p by a factor 6 and 
multiply the function by a (just as we did in the renormalization arguments for 
period-doubling in Appendix F), then the second iterate h@'(y) looks just like hb). 
We will then relate the effect of a change in p to a change in the number of steps 
required to get through the gap. 

To see how this works, let us evaluate h(2'(y) directly: 

If we multiply out the last term and keep only terms linear in p and terms linear and 
quadratic in y (in the spirit of our original approximation), we find that 

Hence, we see that if we replace y with Y = g, and p with M = 6p and then 
multiply the function by a with a= 2 and 6 = 4, we arrive at a new function that 
looks just like the original function hb): 

The conclusion we draw from the previous argument is that changing to the second 
iterate of the function is equivalent to multiplying the parameter value by a factor of 
four. 

Let us now go back to counting the number of steps required to get through 
the gap. The last sentence in the previous paragraph tells us that no12  = n(4p). 
More generally, we can say that n012" = n(4"p). This equation is satisfied if 
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where k is a constant. Eq. (7.4-6) tells us that as p approaches 0 (from above) the 
average duration of the periodic bursts gets longer and longer. The average length 
of the periodic bursts increases as the reciprocal of the square root of p. For 
example, if we reduce p by a factor of four, making the "gap" smaller, the 
trajectories spend twice as long, on the average, in the region of the gap. This 
proportionality has been confirmed in experiments (JEP82 and YEK83) using 
semiconductor diode circuits similar to the one described in Chapter 1. 

We can recast this argument in more general terms using the language of 
renormalization theory. Based on scaling arguments, we can assert that there 
should be a universal function (with the possibility of different universality classes 
as in Chapter 5 and Appendix F) that satisfies 

g(x) = a g  (g (XI  a ) )  (7.4-7) 

Eq. (7.4-7) is identical to Eq. (5.6-3) but the minus signs are missing. The minus 
signs were included in Eq. (5.6-3) to account for the alternation of trajectory points 
from one side of the unstable fixed point to the other after a period-doubling occurs. 
(Recall that this alternation is linked to the negative value of the derivative of the 
map function evaluated at the fixed point with parameter values near the bifurcation 
value.) For the tangent bifurcation described here, the derivative of the map 
function is near +I; so, no minus sign is required in Eq. (7.4-7). 

We need to supplement Eq. (7.4-7) with two "boundary conditions": g(0) = 0 
and gf(0) = 1. The surprise is the fact that there is an exact solution to this 
renormalization equation. The solution is 

with a  = 2. For small values of x, Eq. (7.4-8) reduces to Eq. (7.4-2). Arguments 
similar to those presented in Chapter 5 and Appendix F show that 6 = 4. Hu and 
Rudnick (HUR82) have shown how to extend these arguments to iterated map 
functions that have different power law dependences near the tangent bifurcation. 
The results given here apply to the case for which the dependence is quadratic as 
shown in Eq. (7.4-2). Thus, like the case of period-doubling, we have many 
universality classes, but we expect the quadratic case to be the most common. 

Exercise 7.4-2. (a) Check that Eq. (7.4-6) satisfies the conditions on n(p) 
stated in the text. (b) Verify that Eq. (7.4-8) satisfies the renormalization 
condition Eq. (7.4-7) with a= 2. 
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7.5 Types of Intermittency and Experimental Observations 

In Chapter 4, in the introductory discussion of the routes to chaos, we mentioned 
four different types of intermittency. We have repeated that classification in Table 
7.1. The names given in quotation marks are intended to indicate the type of 
bifurcation event that accompanies the intennittency. 

The four types of intermittency can be distinguished by the behavior of the 
Floquet multipliers for the Poincar6 map function at the bifurcation event or the 
slopes of the iterated map functions for one-dimensional maps. Recall from 
Section 4.6 that a limit cycle becomes unstable by having the absolute value of its 
Floquet multipliers become greater than 1. For intennittency behavior this event 
can occur in four ways corresponding to the four types of intermittency listed in 
Table 7.1. Let us discuss each of the types. 

In Type I intermittency, the type discussed in the first sections of this chapter, 
the Floquet multiplier crosses the unit circle (see Fig. 4.7) along the real axis at + 1. 
As we have seen, this leads to irregularly occurring bursts of periodic and chaotic 
behavior. However, during these bursts, the amplitudes of the motion (going back 
to the full state space description) are stable (on the average). We call this 
(perhaps, oxymoronically) stable intennittency or tangent bifurcation 
intermittency since the bifurcation event is a tangent bifurcation or a saddle-node 
bifurcation. This type of intermittency has been seen in many experiments, 
particularly in systems that also show the period-doubling route to chaos. 

If the two Floquet multipliers form a complex conjugate pair, then the 
imaginary part indicates the presence of a second frequency in the behavior of the 
system. (The first frequency corresponds to the original limit cycle, which 
disappears at the bifurcation event.) At the bifurcation event, the limit cycle 
associated with the second frequency becomes unstable, and we observe bursts of 
two-frequency behavior mixed with intervals of chaotic behavior. Thus, Type I1 
intermittency is a type of Hopf bifurcation event. Type I1 intermittency has been 
observed, to date, in only a few experimental studies (HUK87, SEG89). 

If the Floquet multiplier is negative and becomes more negative than -1, then 
a type of period-doubling bifurcation event takes place. The amplitude of the 
subharmonic behavior created at the bifurcation point grows, while the amplitude 
of the motion associated with the original period decreases. This periodic behavior, 
however, is interrupted by bursts of chaotic behavior. Hence, we call this period- 
doubling intermittency since the Floquet multipliers change as they do for period- 
doubling, but after the bifurcation event, the period-doubled behavior is not stable. 

Table 7.1 
~ y p e s f  Intermittency 

1. Type I ("tangent bifurcation intermittency") 
2. Type I1 ("Hopf-bifurcation intermittency") 
3. Type I11 ("period-doubling intermittency") 
4. On-off Intermittency 
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Type 111 intermittency has been observed by Dubois, Rubio, and Berg, in an 
experiment on Rayleigh-Bknard convection (DRB83), by Tang, Pujol, and Weiss in 
an ammonia ring laser (TPW91) and by Kim, Yim, Ryu, and Park (KYR98) in a 
diode-inductor circuit. 

The fourth type of intermittency is called on-off intermittency because the 
behavior of the system seems to alternate between very quiescent behavior and 
chaotic bursts. This type of intermittency can be viewed as a variant of Type 111 
intermittency with the "new frequency" essentially at zero, that is we get 
approximately "steady-state'' behavior for some period of time. To explain this 
connection, we need to imagine that the dynamical variable being measured (call it 
x,) lies in part of the state space of the system which has a fixed point at (or near) 
x,,, = 0. More generally, there may be a hyperplane in the state space with x ,  = 0, x2 
= 0,. . .xk = 0 such that a trajectory starting on that plane stays on the plane. If the 
observed variable is one of the ( x i ]  associated with this plane or some linear 
combination of these state space variables, then the system will appear to be 
"quiescent" when a trajectory gets near to that plane. If the trajectory stays near the 
plane for some reasonable period of time, then we get the appearance that the 
system is "off." Of course, the trajectory will eventually leave the neighborhood of 
that plane. If it then wanders through a chaotic region of state space, we can have a 
burst of chaotic behavior (the "on" behavior). We can think of the behavior of the 
system as behavior on a k-dimensional plane perturbed by the degrees of freedom 
not associated with the plane. If the behavior of the other degrees of freedom is 
chaotic, then the amount of time spent near the quiescent hyperplane is 
unpredictable and we get seemingly random intervals of "off' behavior punctuated 
by seemingly random "on" behavior. 

To observe on-off intermittency, the observed variables must correspond to 
some of those associated with the special hyperplane. It is not obvious that we can 
always pick out the right variables. Some differential equation models and iterated 
map models displaying on-off intermittency are discussed in PST93. HPH94 and 
RCB95 report on experimental systems that exhibit on-off intermittency. There has 
been some conjecture that on-off intermittency may play a role in a variety of 
natural phenomena including "bursting" in fluid flow, sunspot activity, and 
reversals of the Earth's magnetic field. 

7.6 Crises 

A crisis is a bifurcation event in which a chaotic attractor (and its basin of 
attraction) disappears or suddenly expands in size (GOY82, GOY83). The former 
type of crisis is often called a boundary crisis for reasons that will become obvious. 
The sudden expansion (or contraction) of a chaotic attractor is called an interior 
crkis. In both cases, the crisis occurs because an unstable fixed point or an 
unstable limit cycle "collides" with the chaotic attractor as some control parameter 
of the system is changed. A metamorphosis (GOY87)(ATY91), another type of 
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crisis event, is the appearance or sudden enlargement of fractal structure in a basin 
boundary. 

To illustrate the behavior of a system at a crisis event, let us look at two 
bifurcation diagrams presented earlier. In Fig. 1.14 the bifurcation diagram for the 
logistic map suddenly ends at,A = 4. The chaotic attractor, which is present for A 
values just below 4, disappears in a boundary crisis event. In Fig. 1.8, the 
bifurcation diagram for the diode circuit shows the three chaotic bands, which 
occur at about V = 0.4 volts (about 213 of the way across the diagram), suddenly 
expanding into a single chaotic band. This is an example of an interior crisis event. 
Similar interior crises can be seen in the bifurcation diagram of the Gaussian map in 
Figs. 5.15 and 5.17. Let us now explore how these crisis events occur. 

Boundary Crisis 
First, we will discuss the boundary crisis for the logistic map at A = 4. Recall from 
the discussion of Chapter 5 that the logistic map has a fixed point at x = 0 and that 
this fixed point becomes unstable for A > 1. As A approaches 4, the chaotic 
attractor gradually expands in size until at A = 4 it touches (collides with) the 
unstable fixed point at x = 0. For A > 4, almost all initial points lead to trajectories 
that end up at x = -= . If the trajectory starts off between 0 and 1, however, the 
region in which the chaotic attractor had existed for A < 4, the trajectory will 
wander chaotically around the old attractor region before leaving for the new 
attractor at -= . For A > 4, the chaotic attractor and its basin of attraction have 
disappeared and are not replaced by a new attractor in the same region of state 
space. 

Exercise 7.6-1. Investigate the behavior of the quadratic map introduced 
in Exercise 5.4-6 and show that it has a boundary crisis at C = 2. Relate 
that boundary crisis to the behavior of the unstable fixed point that is 
"born" at C = - 114. 

We can understand some of the dynamics of the behavior for A just greater 
than 4 by applying the graphic iteration technique. Figure 7.5 shows the logistic 
map for an A value just greater than 4. Centered on x = 112 is a narrow range of x 
values called the "escape region." When a trajectory lands in the escape region, the 
next iteration will lead to an x value greater than 1; subsequent iterations then 
rapidly take the trajectory off toward -= . By finding the x values that lead to x = 
1, we find the boundaries of this loss region. Straightforward algebra leads to 

Thus, we see that the length of this loss region, given by the difference between the 
two boundary values, varies as (A - 4)'12 . Since a trajectory starting in the interval 
between 0 and 1 can escape only if it gets into the escape region, the average time 
the chaotic transient lasts before escaping to -- varies as (A - 4)-'I2 . This 
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Fig. 7.5. A plot of the logistic map for A = 4.2. For x values inside the "escape region" 
bounded by the vertical lines near x = 112, trajectories quickly escape to x = -00 . The 
boundaries of the escape regions are t h ~  x values that map to x = 1. Trajectories starting at 
otherx values between 0 and 1 will wander chaotically in the interval until they hit the escape 
region. 

behavior has been verified in numerical experiments on various map functions 
(GOY83). We would expect this behavior to be universal for any map function 
with quadratic behavior near its maximum value. 

Crises may also occur in higher dimensional map functions. In the HCnon 
map, a boundary crisis occurs as shown in Fig. 5.21. Near C = 1.08, the chaotic 
part of the six-piece attractor collides with a saddle point on the boundary 
separating the two basins of attraction, and the six-piece attractor (and its basin of 
attraction) suddenly vanish (GOY83). 

Interior Crisis 

Let us now turn to the other type of crisis-the interior crisis. For this type of 
bifurcation event, an unstable fixed point or an unstable limit cycle that exists 
within the basin of attraction of a chaotic attractor, collides with the chaotic - 
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Fig. 7.6. A expanded view of the bifurcation diagram for the logistic map in the vicinity of 
the period-three interior crisis. At A = 1 + 48, a tangent bifurcation gives rise to the period3 
window. (As an aside, note that the effects of intermittency can be seen in the clustering of 
trajectory points in three bands just to the left of the tangent bifurcation.) Three unstable 
fixed points are also created. As the control parameter A increases, the stable fixed points 
undergo a perioddoubling sequence to form chaotic bands. The locations of the unstable 
period-3 fixed points are indicated by the dashed lines. With further increase of A, the 
unstable fixed points come into contact with the chaotic bands and the chaotic attractor 
suddenly increases in size. 

attractor as some control parameter is varied. When the collision occurs, the 
chaotic attractor suddenly expands in size. This expansion occurs because 
trajectories on the chaotic attractor eventually come close to the unstable fixed 
point (or unstable limit cycle) and then are repelled by the fixed point into regions 
of the state space that were not visited before the collision took place. The net 
effect is the expansion of the region of state space over which the trajectories 
wander. 

From the discussion of intermittency and tangent bifurcations, we can see that 
an interior crisis is a likely partner of a tangent bifurcation that produces a periodic 
window because unstable as well as stable fixed points come into existence at a 
tangent bifurcation. For example, Fig. 2.4, which shows the period-5 window for 
the logistic map, contains an interior crisis to the right of the period-5 period- 
doubling cascade. The five chaotic bands suddenly expand in size to cover the full 
range of x values spanned by the period-five trajectories. Before the crisis, the 
(long-term) trajectories were restricted to the five relatively narrow bands. Figure 
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Fig. 7.7. A graph of the logistic map functip and its third iterate for A = 3.86, just larger 
than Ae3. The unstable fixed points labeled x are the three fixed points that have moved into 
the three chaotic bands indicated by the heavy lines labeled with numbers along the x axis. 
The region labeled Xr is the "re-injection region." Trajectories landing in Xr are re-injected 
into the narrow band regions. The points labeled with numbers are the trajectory points for 
successive iterations starting with x = 112. 

7.6 shows an interior crisis for the period3 window of the logistic map function. 
Before the crisis, the attractor consists of three distinct bands, which have 
developed from the period-three period-doubling cascade. At A = Ae3, an interior 
crisis occurs and the attractor suddenly expands to fill the previously avoided 
regions between the bands. 

The behavior of trajectories near an interior crisis shows several universal 
features (CHW81, GOY83). First, for parameter values just beyond the crisis value 
A.3 for the period3 interior crisis of the logistic map, the average time trajectories 
spend in the narrow band regions (the regions in which the trajectories moved 
before the crisis) varies as (A -A,~)-". The reasoning here is identical to that used 
for the boundary crisis: There exists a "loss region" near x = 112 (for the logistic 
map) that allows trajectories to get into the previously "forbidden" range. The size 
of this loss region grows as (A - A * ~ ) + ' ~  and hence the average time, call it z , spent 
before the escape occurs varies as (A -A*,)-'~. This behavior has been verified in 
numerical computations (GOY83) and in experiments on semiconductor diodes 
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(ROH84). For systems that are not well modeled by one-dimensional maps with a 
quadratic maximum, the exponent in the power-law behavior may not be equal to 
112 (GOR87). In fact, this type of behavior is sometimes called crisis-induced 
intennittency (GOR87) since the behavior switches intermittently from being 
confined to the original chaotic bands to wandering over a larger region of state 
space. 

The second type of universal behavior focuses on the fraction of time the 
trajectories spend in the previously forbidden regions of state space. We want to 
present the argument leading to this predicted behavior because it illustrates rather 
nicely how (relatively) simple geometric arguments can lead to detailed predictions 
about the dynamics of the system. We will use the logistic map function as an 
example, but it should become obvious that the results apply to any one- 
dimensional map function with a quadratic maximum. 

To simplify notation, let a = A - A, denote how far the parameter A has 
increased beyond the crisis value. Next, we note that for small values of a ,  the 
fraction of the time the trajectories spend in the previously forbidden region can be 
expressed as F = tJto, where tn is the average time spent in the new (previously 
forbidden region) and to is the average time spent in the old, narrow-band region. 
(We assume tn << to.) In the previous paragraph, we argued that to is proportional 
to a-In; therefore, we now need to calculate tn. 

To find tn, let us look at Fig. 7.7. The narrow chaotic bands are indicated by 
the heavy lines along the x axis. The edges of the chaotic bands are the points 
labeled by the numbers 1 through 6. These points are the results of applying f n- 
times to x = 112, that is, x, = f '"' (1 I 2) . (Recall from our discussion in Chapter 5 
that successive iterates of x = 112, the critical point, mark off the extreme values of 
x for a particular trajectory.) For A > A.3 the unstable period-three fixed points 
indicated by x* have moved into the chaotic bands. A trajectory getting near one of 
these fixed points will be repelled into the formerly forbidden region. In one of the 
formerly forbidden regions is an interval marked X, and called the "re-injection 
region." If the trajectory lands in this region, it will be re-injected into the narrow 
band regions. Thus, t, is determined by how long it takes a trajectory, on the 
average once it is in the previously forbidden region, to land in X, 

Exercise 7.6-2. Show that the period3 interior crisis for the logistic map 
occurs for A = 3.8568. Hint: When A = A13, the period3 unstable fixed 
points have just moved into the chaotic bands indicated in Fig. 7.7. 
Hence, the point labeled x4 is the same as the point that would be labeled 
x7. (x7 is the result of applying the map function to the point ~ 6 . )  Hence, 
for A = Af3, we must have f '4'(112) = f ("(112) . 

Consider a trajectory starting near x = 112. After six applications of the map 
function (or two applications of f3' ), the trajectory lands near the point labeled x6 
in Fig. 7.7. Note that x6 is close to one of the unstable fixed points. In fact, the 
distance x6 - X* is proportional to a ,  at least for small values of a (see Exercise 7.6- 
3). Since the trajectory is near an unstable fixed point, upon subsequent iteration of 
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f "', the distance between the trajectory point and the unstable fixed point will 
increase by a factor M, the characteristic multiplier for f '3' at the crisis point. (M 
= eA where A is the Lyapunov exponent for f '3' at the crisis point.) Hence, it will 
take n iterations of f '3' for the trajectory to cover the distance d from x* to X,, 
where n satisfies the equation 

and k is a constant. By taking the natural log of both sides of Eq. (7.6-2), we can 
solve for n: 

Note that the first term on the right-hand side of Eq. (7.6-3) is approximately 
independent of a for a particular map function. 

Since the number of iterations n is proportional to the time spent in the 
previously forbidden region, we have almost solved the problem. There is, 
however, a complication: Suppose the nth iterate of f '3' brings the trajectory 
considered into X, for a particular value of A. With a further increase of A, there 
may then be a range of A for which the nth iteration brings the trajectory outside X,, 
while the (n-1)th iteration has not yet moved into X,. The trajectory will then not 
be re-injected, and the time spent in the previously forbidden region will increase. 
When A is increased yet further, the (n-1)th iteration will finally hit X, and the time 
spent in the previously forbidden region will decrease. Hence, we expect t, to be a 
periodic function of In a. 

To see why the dependence is on In a and in fact to find the period length, let 
a, be the a value for which the nth iteration brings the trajectory to X, and a,,-1 be 
the value that brings the (n-1)th iteration to X,. These two values must satisfy 

If we take the natural log of both sides of Eq. (7.6-4), we find 

From Eq. (7.6-5), we see that this cycle of behavior depends on the difference of 
the natural logarithms of the a values and that the periodicity of this behavior is In 
M. Note, however, that our argument does not tell us specifically what this periodic 
function is; it need not be sinusoidal. 

Putting all of the pieces together, we find that the fraction of time spent in the 
previously forbidden regions varies with the parameter difference a as: 

constant + P(ln a) - - 
In M 
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where P is the unspecified periodic function with period In M, and K is a constant, 
independent of a .  This rather complicated result has been verified in numerical 
computations on the quadratic map (GOY83) and in experiments on semiconductor 
diodes (HIL85). What should be surprising here is that relatively simple geometric 
arguments give us rather detailed quantitative predictions about the trajectories' 
behavior near the interior crisis event. 

Suppose that distance was proportional to d, where p is some exponent. 
Follow through the steps of the derivation with this new dependence and 

Noise-Induced C k k  

In the previous section, we had assumed (implicitly) that we were dealing with a 
perfectly deterministic system; there was no external noise. If noise is present, then 
a system that is close to, but not yet in a crisis region can be "bumped" into and out 
of the crisis region by the noise. The average time z between excursions into the 
avoided regions between the chaotic bands is described by a scaling law (SOG91) 

where o is a measure of the "strength" of the noise (usually taken to be the standard 
deviation of the noise signal); A* is the parameter value at which the crisis occurs in 
the absence of noise; y is the scaling exponent for z for the crisis in the absence of 
noise; g is some function that depends on the system being studied and the 
characteristic frequency distribution of the noise. This relationship has been 
verified in an experiment (SDG91) on a nonlinear driven oscillator system. 

Double Crises 

If two parameters of a system are varied simultaneously, it is possible to have more 
complicated crisis events that might involve both an interior crisis and a boundary 
crisis or an interior crisis and a metamorphosis of a basin boundary, for example. 
These more complicated situations are discussed in GGY93 and SUG95 

7.7 Some Conclusions 

In this chapter, we investigated several routes to chaos and several bifurcation 
events involving chaotic attractors. Intermittency and crisis events are as common 
as period-doubling. The well-armed chaologist should be able to recognize these 
events when they occur. In all cases, we have seen that simple geometric and 
renormalization arguments give us powerful universal predictions for the behavior 
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of systems whose dynamics can be modeled by onedimensional iterated maps. 
The extension of these ideas to higher-dimensional maps and to more general types 
of dynarnical systems is still in its infancy. 
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7.9 Computer Exercises 

CE7-1. Explore intermittency in iterations of the logistic map function in 
both the period-5 region near A = 3.7375 and the period-3 region near A = 3.8319 
using a program that plots the x value as a function of iteration number. 
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CE7-3. Explore the crisis regions for the logistic map near A = 3.86 and for 
the Gaussian map function used in Chapter 5 by plotting bifurcation diagrams for 
those regions. 

CE7-4. Study the .transient behavior of iterates of the logistic map for 
trajectories that start near the fixed point at 1 - 11A for A > 4. Can you determine 
how the average length of the transients depends on the parameter difference A - 4? 

CE7-2. A more difficult problem: Verify numerically for the logistic map the 
scaling prediction for the average length of the periodic "bursts" given in Eq. (7.4- 
7). Try both period-5 and period-3 intermittency. 



Hamiltonian Systems 

"Physics is Where the Action Is" or "Minding Your Ps and Qs" 

8.1 Introduction 

In our discussions of nonlinear dynamics up to this point, we have dealt only with 
dissipative systems. The crucial feature of a dissipative system from the state space 
point of view is the "collapse" of a volume of initial conditions in state space. For 
most purposes, we can focus our attention on the attractor (or attractors, in general) 
in state space-those "areas" to which trajectories from a range of initial conditions 
are attracted. That is, we need consider only the attiactors to understand the long- 
term dynamics of the system. 

What happens if the amount of dissipation becomes smaller and smaller? In 
that case the system obviously takes longer and longer for trajectories that start 
away from the attractor to approach the attractor; it takes longer for a volume of 
initial conditions to collapse onto the attractor. In the limit in which there is no 
dissipation at all, we would expect that a volume of initial conditions would remain 
constant for all time and that there would exist no attractors for the trajectories. 

Systems (or models) with no dissipation are called conservative systems, or 
equivalently, Hamiltonian systems. The term conservative means that certain 
physical properties of the system (such as the total mechanical energy, the angular 
momentum, etc.) remain constant in time. We say that these quantities are 
conserved quantities. If the system starts with a certain amount of energy, then that 
amount of energy stays the same over time. The name Hamiltonian is applied to 
these systems because their time evolution can be described by the so-called 
Hamilton's equations (after Sir William Hamilton, 1805-1865, a noted Scottish 
mathematician). We shall discuss these equations in the next section. 

Do conservative systems occur in nature? In principle, the answer to this 
depends on our "level of description." Since we know that the total energy of an 
isolated system is conserved, though the energy may change form, we might 
conclude that Hamiltonian models are the only appropriate models. However, in 
practice, this full description is often too complex, and we instead focus our 
attention on one particular subsystem; the remaining part of the system acts as a 
source or sink of energy (i.e., as a source of dissipation). In that case, a dissipative 
model is appropriate. 
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In practice, many real systems are nearly conservative. The most famous 
(almost) conservative system is the solar system. In fact, it was a consideration of 
the dynamics of the solar system that led Poincad to introduce many of the 
methods already described f i r  dealing with nonlinear dynamics. Over the time 
periods of concern, which for the solar system are millions and billions of years, we 
can neglect most aspects'of dissipation. There are, however, dissipation effects in 

{ the solar system such as tidal forces, which act on planets and moons, and the drag 
effects of the "solar wind," streams of particles emitted by the Sun. For example, 
dissipative tidal forces are responsible for the locking of the Moon's rotation rate to 
its orbital period so that the same side of the Moon always faces the Earth, as 
mentioned in Chapter 6. To a high degree of approximation, however, these 
dissipative effects can be neglected if we limit ourselves to time periods of a few 
million years. Based on these considerations, we can model the dynamics of the 
solar system with a dissipation-free, conservative (Hamiltonian) model. 

Hamiltonian models are also important in the study of proton beams in high- 
energy particle accelerations, in quantum mechanics (more on this in Chapter 12). 
and as a branch of applied mathematics, for which there is now a vast literature. In 
this chapter, we will describe how chaos appears in Hamiltonian systems, and we 
will severely limit the 'amount of mathematical detail so that we can focus on how 
Hamiltonian systems differ from dissipative systems in some respects but are 
similar in others. By looking at a model with a variable amount of dissipation, we 
shall see how the two types of systems are connected. Most of the important 
theoretical results will simply be stated with only a sketch of a plausibility 
argument. The goal is to give you an intuitive picture of the rather complex 
behavior exhibited by Hamiltonian systems. Once the overall picture is in hand, the 
mathematically inclined reader can use the references at the end of the chapter for 
more detailed treatments. 

We will first introduce some of the basic notions of Hamiltonian systems 
including the statespace description. We will then discuss an important, but 
limited, subclass of Hamiltonian systems-hose called integmble. However, 
integrable systems cannot show chaotic behavior; therefore, we must explore what 
happens when a Hamiltonian system becomes nonintegrable. The chapter 
concludes with a brief description of some applications. 

83 Hamilton's Equations and the Hamiltonian 

Although we shall not make much direct use of Hamilton's equations, it will be 
helpful to introduce them briefly, both for the following discussion and for the 
chance to become familiar with some of the specialized jargon used in the study of 
Hamiltonian systems. In the Hamilton formulation of classical (NcWtO~an) 
mechanics, the time evolution of a system is described in terms of a set of 
dynamical variables, which give the positions (coordinates) and the momenta of the 
particles of the system. Traditionally, the coordinates are indicated with the 
symbols qi and the momenta by pi. The subscript notation is used to pick out a 
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particular particle and a particular component of the position vector and momentum 
vector for that particle. If the system consists of N point particles, each of which 
has three components for its position vector and three components for its 
momentum vector, the subscript i will run from 1 to 3N. For example, we might 
have q, = (<), and p, = (jj,), . Here, q, represents the x component of the 
position vector for particle number 1, and p l  the corresponding x component of the 
particle's momentum vector. Each pair qi,p, corresponds to a "degree-of-freedom'" 
for the Hamiltonian system. (Recall the discussion in Section 3.2 about different 
uses of the term degree-of-freedom.) 

The evolution of the Hamiltonian system is completely described if the time 
dependence of the qs and ps is known. That is, if we know qit) and pdt) for all t 
and for all i, then we know everything there is to know about the time behavior of 
the system. In the Hamilton formulation, the time-dependence of the qs and ps is 
determined by solutions of Hamilton's equations, which are written in terms of the 
derivatives of the Hamiltonian function (or just Hamiltonian, for short) H(q,p), 
where the unadorned symbols q and p mean that H depends, in general, on all the qi 
and pi. For the simplest cases, the Hamiltonian is just the total mechanical energy 
(kinetic energy plus potential energy) of the system, written as a function of the qs 
and ps. In any case, Hamilton's equations are a set of 2N coupled differential 
equations (for a system of N degrees of freedom) 

Exercise 8.2-1. Suppose a single particle with a mass m is constrained to 
move along the x axis. Its Hamiltonian H = p:/2m + U(q,) is the sum of a 
kinetic energy term and a potential energy U. Show that Hamilton's 
equations are equivalent to Newton's Laws of Motion for the system. 
Hint: The x component of the force acting on the system is given by F, = - 
dUldn, the negative gradient (in the x direction) of the potential energy 
function. 

Note that Hamilton's equations are similar in form to the standard first-order 
differential equations we have been using to describe dynamics in state space for a 
variety of systems. The similarity can be made more obvious by identifying the 
state space variables xl = q,, q = pl, x3 = q2, and so on. For a Hamiltonian system, 
the functions (analogous to the fi in our previous treatment) that give the time 
dependence of the state space variables can be written as (partial) derivatives of 
some common function, namely, the Hamiltonian. As we shall see in the next 
section, that crucial feature embodies the special nature of Hamiltonian systems. 
The special linkage between the qs and ps and the partial derivatives of the 
Hamiltonian function give Hamiltonian mechanics a special mathematical form 
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called a symplectic structure, which can be exploited to give elegant proofs of many 
features of the time behavior (see, for example, [Goldstein, 19801). 

An important consequence follows h m  Hamilton's equations: The value of 
the Hamiltonian itself represents a conserved quantity; it does not vary in time. We 
prove this by using the chain rule of differentiation: 

The terms inside the braces of Eq. (8.2-2) tell us how H depends on time because H 
depends on the qs and ps and the qs and ps (in general) depend on time. This part 
describes the so-called implica time-dependence of H. The last term in Eq. (8.2-2) 
tells us how H depends on time if the time variable appears explicitly in H. Explicit 
time dependence occurs if the system is subject to an externally applied time- 
dependent force, for example. We will not consider such cases; therefore, we will 
assume that the last term is 0. 

If we now use Hamilton's equations (8.2-1) in Eq. (8.2-2), we find for each 
term in the sum 

So, we see that the time derivative of H is 0 (if H does not depend explicitly on 
time). Hence, H represents a conserved quantity. If H represents the total energy 
of the system (as it usually does), then we say that the total energy is conserved for 
a Hamiltonian system. Alternatively, we say that the total energy is a "constant of 
the motion." 

Exercise 8.2-2. In simple cases the Hamiltonian of a system can be 
written as the sum of the kinetic energy and the potential energy of the 
system, written as a function of momentum and position. For a point 
particle with mass m moving along the x axis, the kinetic energy, 
(lI2)mv?, can be written in terms of the momentum in the x direction as 

2 p, /2m using p, = mu,, where as usual v, is the x component of the 
particle's velocity. For a point mass oscillating under the influence of an 
ideal spring (for which the force is described by Hooke's law F, = - kx, 
where x is the displacement of the particle from equilibrium and k is the 
so-called spring constant), show that the Hamiltonian is H(q, p) = p212m + 
(1/2)kq2, where q = x is the relevant coordinate and p = p, is the 
corresponding momentum. Use Hamilton's equations to find the time 

I evolution equations for this simple harmonic oscillator system. J 
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8 3  Phase Space 

We again find that a geometric state space description is useful, if not essential, for 
understanding how chaos occurs in Hamiltonian systems. State space for a 
Hamiltonian system is traditionally calledphase space, and the axes of phase space 
give the values of the qs and ps. Hence, if we have N degrees of freedom (in the 
Hamiltonian sense of that phrase), we have N pairs of qs and ps, and the phase 
space will have 2N dimensions. Thus, for a Hamiltonian system (with no explicit 
time dependence in H), the phase space always has an even number of dimensions. 
Even for simple cases we will have difficulty visualizing these multi-dimensional 
phase spaces; therefore, we can anticipate using projections and Poincar6 sections 
to simplify the description. 

Since the Hamiltonian function value (usually the energy of the system) is a 
constant of the motion, a trajectory for a Hamiltonian system cannot go just 
anywhere in phase space. It can go only to regions of (q, p) space that have the 
same energy value as the initial point of the trajectory. Thus, we say that 
trajectories in phase space are confined to a 2N - 1 dimensional constant energy 
sudace. (Of course, this "surface" may be a multidimensional geometric object in 
general.) 

Using techniques similar to those employed for dissipative systems, we can 
now show that a volume in phase space occupied by a set of initial conditions 
remains the same as the Hamiltonian system evolves. In Chapter 3, we established 
that the time-dependence of a small volume V occupied by a set of initial conditions 
in state space is given by 

To show that this time derivative is 0 for a Hamiltonian system, we first need 
to translate Eq. (8.3-1) into the language of Hamiltonian dynamics. It will be u s e u  
in our proof to identify, as we did earlier, xl with q,, x2 with the corresponding pl,  g 
with qz, xq with p2, and so on. We also recall that the time dependence of the xs is 
given by an equation of the form 

If we have 2N dimensions in the phase space, the index i will run from 1 to 2N. 
Then, using the correspondence between the xs and the qs and ps given earlier, we 
see that 

where the last equality in the two previous equations follows from Hamilton's 
equations. 

Let us now examine the terms that appear in the sum on the right-hand side of 
Eq. (8.3-1). In particular let us look at the first two terms and insert the results of 
Eqs. (8.3-3) and (8.34): 

" af2 - a ( 3 ~ )  ;,( g] -+--- - +- -- 
ax, ax, 34, ~ P I  

The final equality of Eq. (8.3-5) follows from the fact that the order of 
differentiation does not change the result for these second "cross" partial 
derivatives (unless H is an unphysically bizarre function of q and p). 

This cancellation of terms continues pairwise for all the qs and ps. Hence, we 
conclude that for a Hamiltonian system, the volume occupied by a set of initial 
conditions does not change in time as the system evolves. The practical 
consequence of this unchanging volume is the fact that Hamiltonian systems do not 
have phase space attractors in the way dissipative systems do. As we shall see, this 
lack of attractors is both a simplification and a complication. Since we have no 
attractors, we do not need to worry about transients; that is, we do not need to let 
the trajectory run for some time so that it settles onto the appropriate attractor. This 
usually simplifies the process of finding the appropriate solution for the trajectories. 
On the other hand, we shall see that the lack of attractors means that trajectories 
starting with different initial conditions may behave quite differently as time goes 
on; there is no common attractor onto which they settle. 

LiouviUe's Theorem and Phase Space Distributions 
We want to generalize the discussion of phase space volume and its time evolution. 
This discussion will be important when we take up the issue of chaos in quantum 
mechanics in Chapter 12. Suppose we specify a distribution of initial conditions in 
phase space by means of a probability density function p(q, p)  , where again q and 
p stand for the set of qis and pis. The probability function is defined so that the 
probability of finding a trajectory in a small volume dV of phase space centered at 
the values q and p is given by 

probability = p(q, p)dV (8.3-6) 

Furthermore, suppose that the initial conditions are confined to some volume 
V in phase space bounded by a "surface" of initial condition points. As the system 



278 Chapter 8 

evolves, the volume V will move through phase space. Its shape will generally be 
distorted, but the total volume occupied will remain constant. How does the 
probability density evolve? We can follow the argument used for the time 
dependence of H given earlier: 

The last equality defines the quantity {p,H} known as the Pokson bmcket. 
Again, the terms in the braces tell us how p varies because it depends on q and p. 
(We can think of looking at the time variation of p as we "ride" along a 
trajectory.) The last term tells us how p varies at a fixed location in phase space. 
In some ways, the motion of this probability density in the multidimensional phase 
space is like the motion of an incompressible fluid. In fluid mechanics, the so- 
called Lagmngian picture follows the trajectory of a small chunk of fluid and 
focuses attention on how the properties associated with the chunk change as it 
moves. The total derivative dp ld t  is then called the material derivative or 
(equivalently) the hydrodynumic derivative. The second point of view, watching 
the time behavior at a fixed point in (phase) space, is called the Eulerian picture. 
We shall exploit this analogy with fluid flow in Chapter 11. 

Liouville's Theorem (see, for example, [Goldstein, 19801) tells us that the 
total time derivative dpld t  = 0 and the phase space density around any evolving 
trajectory point remains constant. As the trajectories evolve, the phase space 
density in the neighborhood of any trajectory does not change. 

The theorem follows from a simple argument: For a Hamiltonian system, by 
definition, the volume of phase space delimited by some "surface of initial 
conditions" remains constant in time. Suppose we have M initial points inside that 
surface distributed with some probability distribution p(q, p) . As time goes on, 
the number of trajectory points inside the surface must remain fixed because if M 
were to change, a trajectory must cross the bounding surface and that cannot occur 
due to the No-Intersection Theorem. (The surface evolves following the 
trajectories that arise from initial conditions.) Both the fixed volume and 
constant M results apply to very small volumes dV and small numbers dM in phase 
space. Hence, the ratio dM/dV = p cannot change. This establishes Liouville's 
theorem. 

As an aside we want to point out that Liouville's Theorem can be generalized 
to describe dissipative systems as well. A rather elaborate, but straightforward 
calculation [Jackson, 1989, pp. 44-45 and Appendix C] shows that p(q,p) 
satisfies the differential equation 
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where theJs give the timedependence of the system as shown in Eqs. (8.3-3) and 
(8.3-4). For Hamiltonian systems, the "divergence requirement" is 

so that for Hamiltonian systems Eq. (8.3.-8) reduces to 

Using the correspondence between the xis and the qs and ps shows that Eq. (8.3-10) 
is the same as Eq. (8.3-7). 

The main point of the discussion is to note that both Eq. (8.3-6) and (8.3-7) 
are linear in p . Hence, by the general arguments presented earlier, the time 
evolution of p cannot be chaotic. This point is worth reflecting on for a moment. 
Even though the individual trajectories may show chaotic behavior, the probability 
distribution of trajectory points evolves in a nonchaotic fashion. More specifically, 
if we start with a slightly different probability distribution and watch it evolve in 
time, the difference between its evolution and the evolution of the original 
distribution will not grow exponentially. (We obviously need to define this 
"difference" appropriately.) We do not have sensitive dependence on initial 
conditions for the probability distribution. In other words, if we want to observe 
chaotic behavior, we cannot look at the probability distribution and its evolution. 
We must (apparently) look at the individual trajectories. We shall return to this 
point in our discussion on quantum mechanics in Chapter 12. In Section 8.8, the 
so-called Arnold cat map provides a simple example of the evolution of phase 
space distributions for chaotic Hamiltonian systems. 

8.4 Constants of the Motion and Integrable Hamiltonians 

In Section 8.2, we saw that the energy, represented by the Hamiltonian of a system, 
is conserved if the Hamiltonian does not depend on time explicitly. Let us flesh out 
some of the consequences of that result. If a trajectory in phase space starts at a 
point labeled (go, po), where q and p represent the entire set of 2N phase space 
coordinates, the system's energy is given by H(qo, po). As time goes on, the qs and 
ps evolve, but at any later time the energy will have the same value, namely 

where (q(t), p(t)) gives the phase-space trajectory originating from (go. po). Hence, 
each possible trajectory for a Hamiltonian system can be labeled by the energy 
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value that "belongs to" that trajectory. Note that the converse statement is not 
necessarily true: there may be many different trajectories corresponding to the 
same energy value. 

In some Hamiltonian systems there are additional quantities whose values 
also remain constant as the trajectory evolves. Let us see why this is important by 
looking at a special case. Suppose one of the ps, say pj does not change in time: 

The only way the last term in Eq. (8.4-2) can be 0 for all (q(t), p(t)) values along the 
trajectory is to have H(q, p) not depend on q, at all! We have the general rule: The 
momentum p, is a constant of the motion if, and only if, the Hamiltonian for a 
system does not depend on the corresponding q, explicitly. In that case, a trajectory 
can be labeled by its value of p, = pp as well as by its energy value H(qo, po). When 
this occurs, the trajectories are limited not only to those regions of phase space 
associated with a particular energy value, they are also constrained by the value of 
pi. Thus, the trajectories must "live" on a 2N-k dimensional "surface" in phase 
space, where k is the number of conserved quantities. 

For a special (and very limited, but theoretically important) class of 
Hamiltonian systems, there are as many constants of the motion as there are 
degrees of freedom. Such systems are called integrable, for reasons that will 
shortly become obvious. However, in most cases, the constants of the motion are 
not the ps in terms of which we initially wrote the Hamiltonian. The constants of 
the motion, however, can always be expressed as functions of the original qs and 
ps. The constants of the motion are usually called the action variables and are 
commonly written as Jig, p), i = 1, 2, . . . , N. For an integrable Hamiltonian 
system, the phase space trajectories are confined to an N-dimensional surface in 
phase space. 

Associated with each Jig, p) is another variable labeled Oi (q, p)  . This new 
variable is called the corresponding angle variable. (In an upcoming example, we 
shall see why these names are used.) The Jis and 8, s are chosen so that Hamilton's 
equations, expressed in terms of the Jis and 8, s have the same mathematical form 
as the original Hamilton's equations expressed in terms of the qs and ps: 

(Since the angle variable is dimensionless, we see that the action has units of energy 
multiplied by time, or equivalently, momentum multiplied by distance). If Eqs. 
(8.4-3) are satisfied, we say that the variables (8, J )  are related to the variables (q, 
p) by a canonical tmnsfonnation. (Here, canonical means "satisfying some canon 

Hamiltonian Systems 28 1 

or rule".) As we shall see, for a periodic trajectory in phase space, for which the 
trajectory forms a closed curve, the action has a nice geometric interpretation: The 
action associated with a periodic trajectory is proportional to the phase space area 
enclosed by the trajectory. 

The special case we are interested in is a canonical transformation that leads 
to a Hamiltonian that depends o& on the Jis and not on the 8, s. In that case, for 
all i = 1,2, . . . , N, we have 

and the Jis are the N constants of the motion. 
A Hamiltonian system that satisfies Eqs. (8.4-3) and (8.4-4) is called 

(somewhat unfortunately) an integmble system. The term integrable comes from 
the notion that the action Ji can be expressed as an integral over the motion of the 
system and that the corresponding equation for Bi can be easily integrated. 

The term integrable is a bit misleading because it seems to imply that the 
character of the system depends on our ability to find the appropriate 
canonical transformation or to do the required integral. In fact, one often 
finds phrases in the literature such as "A system is integrable, if we can 
find the canonical transformation . . ." In reality, the character of the 
system, that is the number of constants of the motion, is independent of 
our ability to find the appropriate canonical transformation. 

A minor technical point: For the system to be integrable and have the 
simple properties described later, the constants of the motion must have 
vanishing Poisson brackets among themselves: {J, , Jj  } = 0 for all i and j. 
If this condition is satisfied, the system is said to have N constants of the 
motion "in involution." 

By expressing the desired canonical transformation in terms of a so-called 
Birkhofl Series and by examining the convergence properties of that series, one 
can determine (at least in principle) whether a given Hamiltonian system is 
integrable or nonintegrable (HEUO). If the system is nonintegdle, it has fewer 
constants of the motion than degrees of freedom. 

We will now list (without proof) some results, which tell us what kinds of 
Hamiltonian systems are integrable (HEL80). 

1. All one-degree-of-freedom Hamiltonian systems, for which 
H is an infinitely differentiable (that is, "analytic") function 
of q and p, are integrable and the corresponding action J 
satisfies H = o J, where o = aH/aJ . 

2. All Hamiltonian systems for which Hamilton's equations 
are linear in q and p are integrable (via the so-called normal 
mode transformations). 
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3. All Hamiltonian systems with nonlinear Hamilton's 
equations that can be separated into uncoupled one-degree- 
of-freedom systems are integrable. 

Let us now explore the consequences of having an integrable Hamiltonian, for 
which all the Jis are constants of the motion. In this case, the time dependence of 
6, is easy to find 

The right-hand side of the previous equation defines what is called the angular 
frequency of the motion. For an integrable system, mi depends on the values of all 
the Jis, but because the Jis are independent of time, the mi s are also independent of 
time. Thus, we can immediately write 

6, (t) = mi t + 6, (0) (8.4-6) 

Hence, we see that if the system is integrable and if we can find the canonical 
transformations that give us Eqs. (8.4-3) and (8.4-4), then, amazingly, we have 
completely solved the dynamics of the system. 

If we want to find the behavior of the system in terms of the original ps and 
qs, we can use the inverse of the canonical transformations to write 

For a system that is bounded spatially, the qs and ps must be periodic functions of 
the 0, s since, according to Eq. (8.4-6), 0, (t) increases without limit as r + .o . 

A general mathematical procedure for finding the action-angle variable 
transformations is called canonical perturbation theory, in which the original qs 
and ps are written as power series functions of the new variables J and 6 .  If the 
series diverges, we recognize that the system is nonintegrable. 

We will now study two examples of one-degree-of-freedom Hamiltonian 
systems and their phase space behavior. 

The Simple Harmonic Oscillator 
In Exercise 8.2-2, we learned that the Hamiltonian for a one-dimensional simple 
harmonic oscillator with mass m and spring constant k is 

where q is the displacement of the oscillator from its equilibrium position. In this 
case, the numerical value of the Hamiltonian is the total mechanical energy of the 
system. The corresponding Hamilton's equations for the time evolution are 

7 Hamiltonian Systems 

Fig. 81. On the left is a phase space trajectory for the simple harmonic oscillator. Each 
ellipse is associated with a particular value of the energy. A larger ellipse has a larger value 

Of 

By rescaling the variables, the trajectories become circles whose radii are 
equal to J, the square root of the action value associated with that trajectory. The 
corresponding angle variable 8 locates the point on the trajectory. 

The one (spatial) dimension simple harmonic oscillator model has one degree 
of freedom and its phase space is two-dimensional. Since the Hamiltonian is 
independent of time, the phase space trajectories must reside on a 2N-1 = 1 
dimensional "surface" (i.e., on a curve). The trajectories are closed curves because 
the motion is periodic. Each value of the energy is associated with a unique closed 
curve. 

The phase space trajectories for the simple harmonic oscillator are ellipses 
with a larger ellipse associated with a larger value of the energy (Hamiltonian) of 
the system. If the phase space coordinates are suitably rescaled, as shown on the 
right in Fig. 8.1, then the trajectories become circles. As we shall see, the radius of 
each circle is equal to the square root of the value of the action associated with that 
trajectory. The corresponding angle variable gives the location of the trajectory 
point on the circle. 

Note that the simple harmonic oscillator model has only one fixed point, 
namely ( p  = 0, q = 0). In the language of Hamiltonian dynamics this kind of fixed 
point is called an erJiptic point because the trajectories near the fixed point are 
ellipses. 

For the simple harmonic oscillator, we know that the angular frequency of the 
oscillatory motion is given by w = m. Since this is a one-degree-of-freedom 
system or since Hamilton's equations are linear, we expect that this system is 
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integrable. The one constant of the motion is the Hamiltonian (energy) or some 
multiple thereof. Hence, we can write the action J as 

If we use and q- as the phase space variables, then the 
trajectories will be circles with radii equal to f i  . To complete the story, we can 
write the original phase space variables p and q in ten& of the action-angle 
variables (with 8 positive going counterclockwise from the positive q axis): 

Exercise 8.4-1. (a) Show that if the phase space coordinates are 
transformed as suggested in the text, the phase space trajectories for the 
simple harmonic oscillator are circles. (b) Show that the radius of the 
circular trajectory is given by f i  . (c) Show that in the original phase 
space the area enclosed by the ellipse is equal to 2n J . ! 
As Exercise 8.4-1 shows, the action associated with a closed trajectory is 

related to the phase space area enclosed by the trajectory. In general, we may write 

where the symbol $ means that the integral is taken around the closed path of the 
trajectory. 

The Pendulum 
One of the most studied and time-honored examples of a Hamiltonian system is the 
pendulum. This system consists of a point mass m suspended at the end of a rigid 
(but massless) rod of length L. The rod is free to pivot about an axis at the other 
end of the rod. To make the system Hamiltonian, we ignore any dissipation due to 
friction in the pivot or to air resistance. A picture of this system is shown in Fig. 
8.2. 

The Hamiltonian for this system is expressed as the sum of kinetic energy of 
rotation about the pivot point and gravitational potential energy (relative to the 
equilibrium point when the pendulum mass hangs downward): 

where p, is the angular momentum associated with the rotation about the axis and 
g is the acceleration due to gravity. Thus, we see that the pendulum is a one- 

F i  82 A picture of the pendulum The angle 8 
is defined relative to the stable equilibrium position. 
Gravity acts downward. 

degree-of-freedom system (with a two-dimensional phase space). Hence, by the 
arguments presented earlier, it is an integrable system with one constant of the 
motion, namely its total mechanical energy E. 

For a given value of the energy E, we can use Eq. (8.4-13) to solve for the 
momentum 

p, = +J2m~' [ E  - mg~(1- cos O)] (8.4-14) 

By convention, the momentum is positive when the pendulum is moving 
counterclockwise and negative when the pendulum is moving clockwise. From Eq. 
(8.4-14), we see that the momentum has its largest magnitude when 8 = 0, at the 
bottom of the pendulum's swing. For energies less than 2mgL, the highest point of 
the swing occurs when p, = 0 or in terms of the angular displacement from the 
vertical line, when E = mgL(1 -cost)). If we allow the pendulum to swing over 
the top by giving it sufficient energy (greater than 2mgL), then the minimum of its 
momentum magnitude occurs when 8 = n at the top of the swing. Eq. (8.4-14) 
can be used to plot the phase space trajectories as shown in Fig. 8.3. 

We can find the corresponding action J for the system by integrating the 
momentum over one cycle of the motion 

The resulting integral is known as an el&& integml and is tabulated numerically 
in many mathematical handbooks. The important point here is that we can 
determine the frequency of the motion, numerically, by using Eq. (8.4-15) with Eq. 
(8.4-5). 

The phase space diagram for the pendulum, shown in Fig. 8.3, is typical of the 
phase space diagrams for many integrable Hamiltonian systems. For relatively 
small values of the energy, the phase space trajectories are "ellipses" centered on 
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Angular Position 

Fig. 8.3. The phase diagram for the pendulum Angular velocity (vertical axis) is plotted as 
a function of angular position (horizontal axis). Each trajectory corresponds to a particular 
value of the total mechanical energy of the system Elliptic fixed points occur at the origin 
and at angular positions of kn2a for positive or negative integer n. Hyperbolic (saddle) 
points occur at 8 = flr . These are indicated by small circles. The trajectories that join the 
hyperbolic points are qaratnces. Inside the separatrices, the motion is periodic and 
oscillatory. The motion on trajectories outside the separatrices corresponds to 
counterclockwise revolutions for e > 0 and clockwise revolutions for e < 0. 

the origin. At the origin is an elliptic fixed point for the system: If the system starts 
with pe = 0 and 8 = 0, then it stays there for all time. These ellipses are the "tori'' 
on which the trajectories live in this two-dimensional phase space. 

Exercise 8.4-2. For low energies (small angles of oscillations), we can 
replace sin 0 in the pendulum problem with the angle value 0 in radians. 
Use this small angle approximation to evaluate J and then show that the 
frequency of oscillation is given by o = . 
There are also fixed points at pe = 0 and 8 = +nn , where n is an odd integer. 

These fixed points correspond to the pendulum's standing straight up with the mass 
directly above the pivot point. Note that 0 = are physically equivalent points 
since they both correspond to the vertical position of the pendulum. However, it is 
occasionally useful to allow the angle to increase or decrease without limit to 
visualize some aspects of the pendulum's motion. The physical equivalence shows 

up in the periodicity of the trajectory pictures in state space if you shift along the 0 
axis by multiples of 2 n  . 

The fixed points corresponding to the inverted vertical position are unstable in 
the sense that the slightest deviation from those conditions causes the pendulum to 
swing away from the isverted vertical position. These fixed points are called 
hyperbolic points for Hamiltonian systems because trajectories in their 
neighborhood look like hyperbolas. The fixed points are, of course, saddle points 
using the terminology introduced in Chapter 3. Trajectories approach the 
hyperbolic point in one direction and are repelled in another direction. 

The trajectories that lead directly to or directly away from a hyperbolic point 
are called sepamtrices (plural of separatrir) since they separate the phase space 
into regions of qualitatively different behavior. (The separatrices are the stable and 
unstable manifolds introduced before.) For the pendulum, the trajectories inside the 
separatrices correspond to oscillatory motion about the vertically downward 
equilibrium point. Trajectories outside the separatrices correspond to "running 
modes" in which the pendulum has sufficient energy to swing over the top. One 
type of running mode has an angular velocity that is positive (counterclockwise 
motion); the other type has a negative angular velocity (clockwise motion). In both 
cases, the magnitude of the angle 8 continues to increase with time. 

Systems with N Degrees of Freedom 

If we compare Eqs. (8.4-5) and (8.4-6) with the results of the simple harmonic 
oscillator example, we see that an integrable system with N degrees of freedom is 
equivalent, in terms of action-angle variables, to a set of N uncoupled oscillators. 
(The oscillators are simple harmonic if the oi are independent of the value of the Js. 
They are otherwise nonlinear oscillators for which w depends on J.) This 
comection explains why so much attention is paid to oscillating systems in the 
study of dynamics. 

Since there are N constants of the motion for an integrable system of N 
degrees of freedom, the trajectories in state space are highly constrained. For 
example, an integrable system with two degrees of freedom has trajectories 
confined to a two-dimensional surface in phase space. This surface, in general, is 
the surface of a torus residing in the original four-dimensional phase space. Like 
the quasi-periodic motion studied in Chapter 6, the trajectories are characterized by 
the two frequencies 



Chapter 8 

Fig. 8.4 The action-angle diagram f a  
an integrable single degree. of M o m  1 ........................ " " .-.- ............................................. Hamiltonian system Each trajectory ...... 1 consists of a umstant action and hence 
"resides" on a horizontal line in action- 
angle space. A periodic trajectory of 
period-n would consist of n points on a 
horizontal line. A quasi-periodic 
trajectory would eventually fill in 
completely a horizontal line. 

More generally, we say that a trajectory for an integrable system with N 
degrees of freedom is constrained to the N-dimensional surface of a torus (which 
resides in the original 2N-dimensional phase space). These tori are often called 
invariant ton since the motion is confined to these surfaces for all time. 

If the various frequencies mi are incommensurate and the motion is quasi- 
periodic, then the trajectory eventually visits all parts of the torus surface. Such a 
system is said to be ergodic because one could compute the average value of any 
quantity for that system either by following the time behavior and averaging over 
time (usually hard to do) or by averaging over the q ,  p values on the surface of the 
torus in phase space (usually much easier to do). 

Action-Angle Space 
Instead of the usual pq phase space, an alternative state space description makes use 
of the action-angle variables. The motivation for this is threefold. First, for an 
integrable system, each trajectory is characterized by a fixed value for each of the 
action variables. For example, for the simple harmonic oscillator, each elliptical 
trajectory in pq phase space corresponds to a fixed action as shown in Eq. (8.4-10). 

In action-angle space, the trajectories of an integrable system reside on 
horizontal lines of constant action. Each horizontal line in Fig. 8.4 corresponds to a 
"torus" in the original pq phase space. (we may think of cutting the torus around its 
outer circumference and then spreading the "surface" flat. The horizontal line 
corresponds to viewing the surface edge on.) 

The second motivation for this kind of diagram comes from the study of 
nonintegrable systems. As we shall see in the next section, when a Hamiltonian 
system becomes nonintegrable, the action associated with a trajectory is no longer 
constant (in general). This fact shows up most obviously in an action-angle space 
diagram as the trajectory points wander vertically in that diagram. 

The third reason for introducing action-angle space is related to the 
importance of action in quantum mechanics. As we shall see in Chapter 12, each 
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Fig. 8.5. For an Lntegrable twodegree-of-Worn system, the trajectories are confined to the 
surfaces of a set of nested tori. Each surface corresponds to a different set of values of the 
two constants of the motion. If the system becomes ndntegrable, the trajectories can move 
off the tori. 

allowable quantum state is associated with integer multiples (in most cases) of a 
fundamental unit of action. Thus, the allowed quantum states correspond to 
trajectories equally spaced in the action variable in an action-angle diagram. 

8.5 Nonintegrable Systems, the KAM Theorem, and Period-Doubling 

Since the behavior of an integrable Hamiltonian system is always periodic or quasi- 
periodic, an integrable system cannot display chaotic behavior. We have spent 
some time describing integrable systems because much of the literature on the 
chaotic behavior of Hamiltonian systems has focused on systems that are, in some 
sense, just slightly nonintegrable. We can then ask how the behavior of the system 
deviates from that of an integrable system as the amount of nonintegrability 
increases. 

We are immediately faced with the problem of visualizing the trajectories for 
nonintegrable systems because, as we learned in the last section, a nonintegrable 
system must have at least two degrees of freedom. If the system were integrable, 
then the trajectories would move on the two-dimensional surface of a torus and be 
either periodic or quasi-periodic. However, if the system is nonintegrable, then the 
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trajectories can move on a three-dimensional surface in this four-dimensional phase 
space because the energy is conse~ed and hence still constrains the trajectories. 
This three-dimensional motion allows for the possibility of chaos. 

For an integrable two-degree-of-freedom system, we can think of the phase 
space as consisting of a set of nested tori (see Fig. 8.5). For fixed values of the two 
constants of the motion, the trajectories are confined to the surface of one of the 
tori. When the system becomes slightly nonintegrable, the trajectories begin to 
move off the tori, and we say that the tori are destroyed. 

Poincark sections are used to simplify the description further. We pick out a 
phase space plane that is intersected "transversely" by the trajectories and then 
record the points at which trajectories intersect that plane. For a two-degree-of- 
freedom system, we thereby reduce the description to a set of points in a two- 
dimensional plane. 

For a general integrable two-degree-of-freedom system, the Poincar6 plane 
will look like a (distorted) version of the phase space diagram for the pendulum: 
There will be elliptic orbits, which form closed paths around elliptic points. (As in 
Chapter 6, the paths will consist of a finite number of discrete points for periodic 
motion. For quasi-periodic motion, the intersection points fill in a continuous curve 
on the Poincari plane.) In the neighborhood of hyperbolic points, there will also be 
hyperbolic orbits, some of which form apparent intersections at the hyperbolic 
(saddle) points. Figure 8.6 illustrates the Poincark plane for the Hknon-Heiles 
system, discussed in more detail in Section 8.6. 

If the system becomes nonintegrable, constraints are removed from the 
trajectories, and they can begin to move more freely through phase space. Hence, 
loosely spealung, we expect the highly organized pattern of the integrable system's 
Poincark section to "dissolve." Does the entire Poincark section, however, dissolve 
simultaneously leaving only a random scattering of points? The answer to this 
question is provided by the famous Kolmogorov-Arnold-Moser (KAM) Theorem 
[ h o l d ,  19781. 

The KAM theorem states that (under various technical conditions that need 
not concern us here) some phase space tori, in particular those associated with 
quasi-periodic motion with an irrational winding number, survive (but may be 
slightly deformed) if a previously integrable system is made slightly nonintegrable. 
This result is stated more formally as follows: The originally integrable system's 
Hamiltonian can be written as a function of the action variables alone: Ho(J). We 
now make the system nonintegrable by adding to HdJ) a second term, which 
renders the overall system nonintegrable. The full Hamiltonian is then 

where E is a parameter that controls the relative size of the nonintegrability term. 
The second term in (8.5-1) is sometimes called a "perturbation" of the original 
Hamiltonian, and "perturbation theory" is used to evaluate the effects of this term 
on the trajectories. The KAM Theorem states that for E << 1 (so the system is 
almost integrable), the tori with irrational ratios of the frequencies associated with 
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Fig. 8.6 A Poinm-6 section for a tw&gree+f-freedom (almost) integrable system (the 
HCnm-Heiles system of Section 8.6) with a fixed value of the energy. Each trajectory 
corresponds to a different value of the other constant of the motion. Two elliptic points, 
labeled bye, are surrounded by "elliptical" orbits. Three hyperbolic points, marked by h, are 
connected by separatnces that divide the plane into well-defined regions. 

the actions will survive. These are called KAM ton. As & increases, the tori 
dissolve one by one with the last survivor being the one with winding number equal 
to our old friend the Golden Mean, the "most irrational" of the irrational numbers. 

As soon as E increases above 0, the phase space tori associated with rational 
winding numbers break up. In a Poincark section representation, the points begin to 
scatter around the Poincark plane. This fast break-up can be explained as the kind 
of resonance effect discussed in Chapter 6. The nonintegrable part of the 
Hamiltonian essentially couples together what had been independent oscillations in 
the integrable case. When the frequency ratio for a torus is rational, there is 
considerable overlap of the harmonics associated with each oscillation. This 
overlap creates a "strong resonance" condition leading (usually) to a rapid growth 
of the amplitude of the motion in phase space and a rapid flight from the toms 
surface to which the trajectories had been confined in the integrable case. When 
the frequency ratio is irrational, however, there is no overlap in harmonics and we 
might expect the corresponding toms to survive for larger values of E. 

The KAM theorem states that the tori that survive for a given amount of 
nonintegrability have winding numbers w that satisfy the following inequality 
[Schuster, 19951 
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where we assume that the ratio of positive integers m/n has been reduced to its 
simplest form. The factor g(&), which increases with the amount of 
nonintegrability, is the same for all values of m/n . We see that tori with w close 
to rational fractions with small denominators (114 or 113, for example) will be the 
first to dissolve. Those tori with winding numbers, such as the Golden Mean, 
which are 'further" from low-order rationals, will survive to larger values of E . 

One way to visualize which tori dissolve first is to imagine building a region 
of size g(~)/n2" around each rational fraction m/n . Any toms with an irrational 
winding that falls within one of these regions dissolves. In the corresponding 
action-angle diagram, each of these regions consists of a horizontal band 
surrounding each horizontal line corresponding to a J with a rational winding 
number. This band, which we can think of as bounded by the separatrices 
associated with the hyperbolic points for that J value, is called a resonance 
structure. As the amount of nonintegrability increases, these resonances begin to 
overlap and destroy the irrational tori that lived in the region between them. This 
notion of resonance overlap provides a means to approximate for a given system 
the amount of nonintegrability required to destroy all such tori and to induce 
complete chaotic behavior (CHI79). 

What is the dynamical importance of the KAM tori? In the integrable case, 
we argued that phase space trajectories are confined to the surfaces of tori in phase 
space. As the system becomes nonintegrable, trajectories are able to move off these 
tori. However, the surviving KAM tori still have trajectories associated with their 
surfaces. In low-dimensional phase spaces, the surviving KAM tori can prevent a 
trajectory that has moved off a dissolving toms from ranging throughout the 
allowed energy region of phase space. In a sense, the KAM tori continue to 
provide some organization for the trajectories in phase space. 

Let us see how this organizational ability depends on the dimensionality of 
the phase space (that is, on the number of degrees of freedom for the system). In a 
2N-dimensional phase space, the constant energy "surface" has 2N - 1 dimensions. 
As we argued earlier, the tori for an integrable system have a dimensionality of N. 
Thus, for the tori to partition phase space, we can have either N = 1 or N = 2 . In 
other words, the tori can segregate regions of phase space only in systems with one 
or two degrees of freedom. In higher-dimensionality systems, when the tori begin 
to dissolve as the system becomes nonintegrable, a so-called stochastic web forms. 
In that case, trajectories may wander over large portions of the allowed energy 
region of state space. [Zaslevsky, Sagdeev, Usikov, and Chernikov, 19911 gives a 
very complete description of the formation of this stochastic web. 

PoincarC-Birkhoff Theorem 
What happens to the phase space trajectories when the rational-ratio tori break-up 
as the Hamiltonian becomes nonintegrable? This question is answered by the 

Fig. 87. A schematic action-angle diagram of the break-up of a rational winding number 
torus (solid line on the left) when an integrable system (on the left) becomes slightly 
nonintegrable (on the right). The elliptic points are indicted by circles. They are separated 
by hyperbolic points, whose in-sets and out-sets are sketched with sdid curves. 'Ihe in-sets 
and out-sets of the newly created hyperbolic points must avoid the remaining irrational 
winding number (KAM) tori (dashed curves). Each set of elliptic points with the 
corresponding hyperbolic points and their in-sets and out-sets constitute a 'lesonance." 

famous Poincari-Birkoff Theorem (BIR35) (HEL80). When the system is 
integrable, each point on a torus corresponding to a rational winding number m/n is 
part of a periodic orbit. As we saw in Chapter 6, each orbit on that toms leads to n 
points in the Poincark section of that toms. According to the Poincark-Birkhoff 
Theorem, when the system becomes nonintegrable, the torus breaks up into an 
alternating sequence of n elliptic points and n hyperbolic points. Around each 
elliptic point will be a series of elliptic orbits. Associated with the hyperbolic points 
will be a homoclinic orbit connecting stable and unstable manifolds of the saddle 
points. The event is shown schematically in Fig. 8.7. These hyperbolic points are 
important because an in-set (also called the stable manifold) and an out-set (the 
unstable manifold) is associated with each of them, as we discussed in Chapter 4 
for dissipative systems. These in-sets and out-sets, however, must avoid 
intersecting the remaining tori. Hence, we can see that it is not unreasonable for 
these in-sets and out-sets to get entangled. Since nearby trajectories feel the 
influence of these in-sets and out-sets, trajectories near them might be very 
complicated. From this argument, we expect that the decay of rational winding 
number tori lead to homoclinic and heteroclinic tangles, which, as we saw in 
Chapter 4, are a "cause" of chaotic behavior. 

The detailed structure, however, is even more complicated. Close to each of 
the newly formed elliptical orbits must be a chain of elliptic and hyperbolic points 
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according to the Poinc&Birkoff Theorem. Thus, there must be a complex nested 
structure of KAM tori, surrounded by chains of elliptic and hyperbolic points. 
However, most of these chains occur on such a small scale that it is difficult to find 
them in numerical computations (see Section 8.6 for an example). 

We can now appreciate one important difference between chaotic behavior in 
dissipative systems and chaos in Hamiltonian systems. In dissipative systems, 
initial conditions are not important because eventually the trajectories end up on an 
attractor. (Let us remind ourselves, however, that in general there may be several 
attractors for a given set of parameter values and different initial conditions may 
lead to trajectories ending up on different attractors.) However, in Hamiltonian 
systems, initial conditions are quite crucial. Some sets of initial conditions lead to 
regular behavior, while others lead to chaotic behavior. All of them have the same 
set of parameter values. As the amount of nonintegrability grows, however, the 
chaotic regions, in general, begin to crowd out the regular regions (or the regular 
regions, associated with the irrational winding number tori, shrink to allow the 
chaotic regions to grow). 

Figure 8.7 shows schematically how Poincark section tori break up when a 
system becomes nonintegrable. The irrational winding number tori, indicated by 
dashed curves, survive, but rational winding number tori, indicated by the solid 
lines, break up into elliptic points and hyperbolic points. The in-sets and out-sets of 
the hyperbolic points must wind around the newly created ellipses and avoid 
crossing the still existing KAM tori. 

If the original integrable system has some hyperbolic points, the in-sets and 
out-sets of those hyperbolic points seem to dissolve when the system becomes 
slightly nonintegrable. According to (HEL80, p. 433), these in-sets and out-sets 
develop homoclinic and heteroclinic tangles; these tangles cause chaotic behavior 
for the nonintegrable system. 

Chaotic Behavior and Phase Space Miring 

For a two-degree-of-freedom system that becomes nonintegrable, the chaotic 
behavior is associated with the homoclinic tangles that develop as rational winding 
number tori break up. However, the associated chaotic trajectories are constrained 
to relatively small regions of phase space by the surviving KAM tori. In fact, for 
small amounts of nonintegrability, the chaotic behavior, though present in principle, 
may not be noticeable at a practical level. With an increase in the amount of 
nonintegrability, enough KAM tori dissolve to allow the chaotic behavior to extend 
over a noticeable region of phase space. As the amount of nonintegrability grows 
further, the remaining KAM tori dissolve and eventually a single chaotic trajectory 
can roam through most of the allowed region of phase space. 

If the system has three (or more) degrees of freedom and becomes 
nonintegrable, the (2N - 1)-dimensional manifolds, which are the surfaces of the 
KAM tori, can no longer act as boundaries for chaotic trajectories, and a given 
chaotic trajectory can roam through large regions of phase space. This roaming 
through phase space is called Arnold Diffusion. It represents a kind of statistical 

mixing due to chaos. However, for two-degree-of-freedom systems, the KAM tori 
still protect some regions of phase space until the tori dissolve as the amount of 
nonintegrability increases. 

Lyapunov Exponents 
How do we know that chaotic behavior is present when a Hamiltonian system 
becomes nonintegrable? We can again turn to Lyapunov exponents. There are as 
many Lyapunov exponents as there are dimensions in phase space. We can 
calculate the Lyapunov exponents for the system's trajectories in a straightforward 
fashion by techniques to be discussed in detail in Chapters 9 and 10. We find that 
at least one of the Lyapunov exponents is positive for trajectories associated with 
the fuzzy regions that develop around hyperbolic points for a nonintegrable system. 
For a Hamiltonian system, the sum of the Lyapunov exponents must be 0 (since 
phase space volume is conserved). For a two-degree-of-freedom system (the 
minimum number required to support chaotic behavior), there are four Lyapunov 
exponents. For chaotic trajectories, one of these is positive, two are 0, and one is 
negative. 

In many cases, we are interested in the behavior of trajectories that are close 
to periodic trajectories (some of which may be stable and some unstable). If we use 
the symbol i(t) to represent a trajectory near a periodic orbit (in phase space) and 
SZ(t) to represent the "distance" between the actual trajectory and the periodic 
orbit, the evolution of 6Z(t) is described by the so-called monodromy maaix M : 

The eigenvalues of the monodromy matrix come in pairs il and llil since the 
product of the eigenvalues must equal 1 due to the preservation of phase space area 
as the system evolves. 

Period-Doubling for Hamiltonian Systems 
When an integrable system becomes nonintegrable, according to the Poincar6 
Birkhoff Theorem, a Poincark section ellipse corresponding to a torus with winding 
number mln breaks up into an equal number of smaller ellipses and hyperbolic 
points. These smaller ellipses correspond to tori with winding number 2m/2n, so 
we see twice as many points in the Poincark section. As the amount of 
nonintegrability is further increased, each of these ellipses breaks up into pairs of 
ellipses (and hyperbolic points) in a sequence reminiscent of period-doubling 
bifurcations in dissipative systems. In fact, Feigenbaum numbers (BCGSO) have 
been worked out using renormalization type arguments. For Hamiltonian systems 
the parameter difference scaling 6, and the size scaling parameters a, are 

where the subscript H reminds us that these numbers apply to I-hIniltonian systems. 
This kind of period-doubling has been seen in many mathematical models (see 
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Sections 8.6 and 8.7), but we will not pursue the subject further since it has not yet 
been applied to any actual physical systems. 

Period-n-tuplings, with n > 2, are seen frequently in Hamiltonian systems. 
For example, a cycle of period-2 points can undergo a period-quintupling and split 
into a period-10 cycle. In simple terms, these higher-order period multiplications 
come about due to various "resonances" among the nonlinear oscillators that make 
up the system (see, for example, GMV81). 

There is some evidence that bifurcations of periodic orbits in Hamiltonian 
systems often occur in organized groups. The method of "normal-form theory" 
(see, Appendix B) provides a method for investigating this organization (SSD95). 
Meyer's theorem [Meyer and Hall, 19921 asserts that the periodic orbits usually 
undergo only five types of bifurcations. 

For the sake of completeness, we would like to mention that some 
Hamiltonian systems have trajectories that show chaotic behavior, not because of 
nonintegrability in the sense introduced here, but because the Hamiltonian has 
"singularities," points at which it is not differentiable. These singularities arise in 
models of collisions of rigid billiard balls for example. In a rough sense these 
models are analogous to the piece-wise linear iterated maps discussed in Chapter 5 
and piece-wise linear differential equation models to be mentioned briefly in 
Chapter 12. 

The discussion of Hamiltonian systems has been rather abstract and general. 
In the next two sections, we shall present two model Hamiltonian systems, which 
illustrate the general features described earlier. 

8.6 The H6non-Heiles Hamiltonian 

In this section we will explore the properties of a particular model Hamiltonian to 
illustrate the dynamics of Hamiltonian systems. The model was first introduced by 
H6non and Heiles (HEH64) as a model for the motion of a star inside a galaxy. 
The Hamiltonian has two degrees of freedom (two pairs of ps and qs) and takes the 
form 

This Hamiltonian represents two simple harmonic oscillators (compare Exercise 
8.2-2) coupled by a cubic term, which makes the Hamiltonian nonintegrable. If we 
let ql = x, q2 = y, pl = p,, and p2 = p,, then the Hamiltonian can also be interpreted 
as a model for a single particle moving in two dimensions under the action of a 
force described by a potential energy function 

This potential energy function has a local minimum at the origin (x = 0, y = 0). A 
threedimensional plot of this potential energy function is shown on the left in Fig. 
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Fig. 88 On the le!? is a three-dimensional plot of the pckmtial energy function for the 
H6non-Heiles model. On the right is a contour plot of the same function. We will be 
concerned with a parhcle moving in the slight depression near the origin. If the particle's 
energy is less than 116, the particle will be trapped in the triangular region near the origin. 
For higher energies the particle can escape the local minimum of the potential energy. 

8.8. A contour plot of the same potential energy function is shown on the right of 
Fig. 8.8. 

If we start the particle near the origin with an energy value less than 116, it 
will stay in an "orbit" near the origin for all time. If the energy is greater than 116, 
the particle can escape the local minimum of the potential energy and go off to 
infinity. If the energy is very small, the particle stays close to the origin and the 
trajectories look much like the periodic motion of a particle in a two-dimensional 
simple harmonic potential. 

Hamilton's equations for this system lead to the following equations for the 
dynamics of the system: 

We see that the system lives in a four-dimensional phase space. However, since 
the system is Hamiltonian, the energy conservation constraint means that the 
trajectories must live in a three-dimensional volume in this four-dimensional space. 
Again, we will use the Poincar6 section technique to reduce the recorded trajectory 
points to a two-dimensional plane. 
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Exercise 8.6-1. Verify that Hamilton's equations lead to the results 
shown in Eq. (8.6-3). Verify explicitly that Eqs. (8.6-3) lead to no volume 
contraction in phase space. 

Let us examine in some detail how a Poincark section of the phase space 
motion of the particle can be understood. It is traditional to plot the trajectory 
location on the yp, plane when x = 0. We shall follow that tradition. In generating 
the Poincark section, we first pick an energy value E and then some initial point on 
the Poincark plane consistent with that energy value. For x = 0, the y and py values 
must satisfy 

Hence, for a fixed energy and a particular initial value for px, there is a finite range 
on the y py plane within which the Poincark section points must fall. The time 
evolution equations (8.6-3) are then integrated and successive Poincark section 
points are generated. Figure 8.9 shows one such orbit in the xy (real space) plane 
on the left. On the right is the corresponding Poincark section. The Poincark 
section points fall on two "ellipses" that are formed by the intersection of a surface 
of a three-dimensional torus with the Poincark plane. (Note that the cross section of 
the torus is distorted and the part of the torus intersecting the plane for negative 
values of y has a shape different from the part intersecting at positive values of y.) 
Thus, we conclude that this particular orbit corresponds to a periodic or quasi- 
periodic orbit. Near the middle of each of the ellipses is an elliptic point, not shown 
in Fig. 8.9. 

1 Exercise 8.6-2. Explain in detail the connection between the xy 1 
I trajectories and the Poincark section shown in Fig. 8.9. 

Fig. 8.9. On the left is the xy (real space) trajectory of a particle moving in the Hhon-Heiles 
potential with E = 0.06. The orbit started with x = 0, y = 4.1475, p, = 0.3101, and p, = 0. 
On the right is the ~clrrespondingp~y Poincad section with x = 0. The "ellipses" are formid 
by the intersection of the surface of a three-dimensional torus with the Poincad plane. 

According to the KAM Theorem, if the Hamiltonian is nonintegrable, the 
only surviving nonchaotic orbits should be quasi-periodic orbits (with irrational 
winding numbers). Hence, in the Poincark section we should see smooth curves 
where these orbits intersect the Poincark plane. However, Figs. 8.9 and 8.10 show 
intersections that appear ,to be made up of a finite number of points, which we 
might interpret as due to periodic orbits. The finite number of points is due to two 
artifacts: (1) The trajectories have been followed for only a finite amount of time. 
If the irrational winding number for a particular orbit is close to a low-order rational 
number (e.g., 1/4), it may take a long time to "fill in" the curve on the Poincark 
plane. (2) Numerical errors and round-off in the computer's numerical integration 
of trajectories may lead to apparently periodic orbits. 

Note that the trajectory shown in Fig. 8.9 is just one of many trajectories 
possible for the given energy value. To fill out the Poincark section, we need to 
choose a variety of initial conditions consistent with the same energy value. Figure 
8.10 shows another orbit (in the xy plane) and its corresponding Poincark section 
for the same energy value used in Fig. 8.9. This orbit approaches and is then 
repelled by three hyperbolic points located near the regions of apparent intersection. 
Near those hyperbolic points, the trajectory points are smeared and indicate 
(tentatively) that the behavior is chaotic. However, the chaotic behavior is confined 
to very small regions of the Poincark plane. Thus, we see that chaotic orbits and 
quasi-periodic orbits coexist for the same energy value for Hamiltonian systems. 
Some initial conditions lead to chaotic orbits, while some lead to quasi-periodic 
orbits. 

1 Exercise 8.6-3. Explain in detail the connection between the xy 1 
I trajectories and the Poincark section shown in Fig. 8.10. 

Figure 8.11 shows a more complete Poincark section with several initial 
conditions used to generate a variety of trajectories, all with E = 0.06. Note that 

Fig. 8.10. On the left is another orbit of the Hhon-Heiles potential for E = 0.06, but with 
initial conditions different from those in Fig. 8.9. On the right is the corresponding y p, 
Poind  section. 
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Fig. 811. On the lefi is an x = 0, yp, Poind  section for the HCnon-Heiles system with E = 
0.06. On the right is a magnified view of one of the regions near a hyperbolic point. The 
(slight) smear of intersection points is a symptom of a chaotic orbit. 

there is an outer boundary for the allowed intersection points in the yp, plane (with 
x = 0). Points outside this boundary correspond to trajectories associated with 
energy values different from E = 0.06. The right-hand side of Fig. 8.1 1 shows a 
magnified view of the region near the lower hyperbolic point. The chaotic behavior 
of the intersection points is more obvious. The chaotic regions associated with 
these hyperbolic points are sometimes called stochastic layers or stochastic webs. 
These layers are due to homoclinic and heteroclinic tangles that develop from the 
stable and unstable manifolds associated with the hyperbolic (saddle) points. 

The orbits that come close to the hyperbolic points are close to the 
separatrices associated with those points. For most Harniltonian systems, those 

F i  812. On the left is the xy (real space) trajectory of the Hknon-Heiles madel with E = 
0.06 and an initial point chosen to generate the Po ind  section shown on the right with 
intersedon points that lie on the outer boundary of the allowed energy region. Since this 
Po ind  sedion curve is outside the separatnces associated with the hyperbolic points (see 
Fig. 8. lo), the xy trajedory is qualitatively different from the trajedory (shown in Fig. 8.9) 
for P o i n d  curves inside the separatrices. 

Harniltonian Systems 30 1 

Fig. 813. On the lefi is the Poind section for the Hknon-Heiles model with E = 0.10. On 
the right is a magnified view of one of the archipelago island chains of e l l i ~ c  and hyperbolic 
points that f m  from a KAM torus. Surrounding this chain are other surviving KAM tori. 

separatrices segregate regions of qualitatively different behavior. In the Ht5non- 
Heiles system, trajectories associated with Poincark section "curves" that lie outside 
the separatrices correspond to motion that lies close to the y axis for the real space 
trajectories. Figure 8.12 shows the trajectory associated with the Poincark section 
curve that bounds the allowed region. The vase-shaped real space trajectory is 
qualitatively different from the trajectories associated with the inner ellipses in the 
Poincart5 section (shown in Figs. 8.9 and 8.10). Since the orbits close to the 
separatrices are on the border between the two types of behavior, they are quite 
sensitive to perturbations, and they are the first to show signs of chaotic behavior 
when the system becomes nonintegrable. 

Let us now increase the energy of the particle and see how the Poincark 
section changes. For larger values of the energy, we expect the particle to roam 
over a wider range of xy values and hence the cubic potential term that causes the 
nonintegrability should become more important. 

In Fig. 8.13, we have plotted the yp, Poincark section (again with x = 0) for E 
= 0.10. The Poincark section has the same general structure seen in Fig. 8.11: 
There are two clusters of ellipses around the two elliptic points and an intertwining 
trajectory that gets near the three hyperbolic points; however, here the orbit 
associated with the hyperbolic points is more obviously chaotic. In fact, the entire 
chaotic set of points was generated from a s&& trajectory launched near one of the 
hyperbolic points. 

A new feature, however, appears as well. On the left in Fig. 8.13, an elliptical 
band around each of the elliptic points seems to be smeared. On the right of Fig. 
8.13, a magnified view of one of these bands shows that the band is actually a 
cluster (an "archipelago") of five elliptical curves interlaced with an orbit that gets 
near to five hyperbolic points. You should note that the five elliptical curves were 
generated by a s&& trajectory; therefore, these curves should be thought of as 
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Fig. 8.14. On the left is the P o i n d  section (for x = 0) yp, plane for the Hknon-Heiles 
model with E = 0.14. On the right we have E = 0.16. In both cases the scattered points were 
all produced by launching a single trajectory that wandem chadcally through the allowed 
region of phase space. 

cross sections of a "snake" tube that wraps around the main "inner" elliptical tube 
five times. Similarly, the "necklace" associated with the hyperbolic points is the 
trace of a single trajectory. 

This archipelago and necklace formation is just the structure expected from 
the Poincar&Birkoff Theorem. As the energy of the system has increased, the 
nonintegrable part of the Hamiltonian becomes more important, and the KAM tori 
corresponding to irrational winding numbers begin to dissolve. Each one dissolves 
by breaking up into a series of elliptical islands interlaced with a (chaotic) trajectory 
associated with the hyperbolic points that are "born" when the islands form. 

The chaotic trajectory associated with one archipelago, however, is not 
connected to the chaotic trajectories associated with other clusters of hyperbolic 
points. In a sense, the remaining KAM tori act as bamers and keep the chaotic 
trajectories, which would like to roam throughout phase space, confined to certain 
regions. (Again, we should remind ourselves that this is a feature unique to systems 
with two degrees of freedom.) 

However, if the energy is increased further, the KAM tori continue to dissolve 
and a single chaotic trajectory eventually wanders throughout almost the entire 
allowed region of the Poincark section (consistent with the conservation of energy). 
Figure 8.14 shows Poincard sections with E = 0.14 (on the left) and E = 0.16 (on 
the right). The scattered dots were all produced from one trajectory that now 
wanders considerably through the phase space. Some vestiges of KAM tori can 
still be seen, but they occupy a considerably smaller region of phase space. 
Calculation of the Lyapunov exponents for the chaotic trajectory shows that one 
exponent is positive, two are 0, and one is negative, as expected. 

Let us summarize what we have seen with the Hdnon-Heiles model. For low 
values of the energy, most of the trajectories are associated with quasi-periodic 
trajectories (KAM tori). Chaotic behavior is present, but it is barely noticeable 

Fig. 815. A P o i n d  s d o n  (x = 0) yp, 
plane for the Hhon-Heiles model with 
E = 0.16666. All of the KAM tori have 
dissolved and a single chaotic trajectory 
wanders throughout almost all the 
allowed region of phase space. 

because it is confined to very small regions of phase space. As the energy 
increases, the KAM tori begin to dissolve via archipelago formation. The chaotic 
regions begin to expand. However, for a two-degree-of-freedom system, the 
remaining KAM tori prevent a given chaotic trajectory from wandering over the 
entire allowed region of phase space. After the last KAM torus (associated with the 
Golden Mean winding number) has disappeared, a single chaotic trajectory covers 
almost the entire allowed region of phase space as shown in Fig. 8.15. 

Exercise 8.6-4. Using the methods illustrated in this section, explore the 
dynamics of trajectories of a particle subject to the following potential 

I Explore similarities and differences with the HCnon-Heiles model. 

8.7 The Chirikov Standard Map 

Many of the theoretical results for universal behavior of nonintegrable Hamiltonian 
systems have come from the study of area-preserving iterated map functions. 
These map functions have been developed to model the behavior of PoincarC 
section points for Harniltonian systems. In this section we will discuss one such 
map, first introduced by B. V. Chirikov (CHI79). That map has become so widely 
used that it is called the Standard Map. For our purposes, we can view the 
Standard Map as a two-dimensional generalization of the circle maps studied in 
Chapter 6. We might expect such a map to be relevant for Hamiltonian systems 
because we expect the trajectories associated with periodic and quasi-periodic 
motion to reside on the surfaces of tori whose intersection with a Poincard plane 
give rise to elliptical "curves." The phase-space-volume conservation property of 
Hamiltonian systems becomes an area-preserving property of the corresponding 
two-dimensional maps. In a later section, we will add a dissipative term to the 
Standard Map to examine the connection between Hamiltonian (conservative) 
systems and dissipative systems. 
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The Chirikov Standard Map function is usually written as a function of two 
variables, r and 8, which can be interpreted as the polar coordinates of a trajectory 
intersection point on a two-dimensional Poincark plane: 

K 
r,,, = r, --sin 27~8, mod [I] 

27r 

For the Standard Map, the angle 8 and the variable r are defined to be in the range 
[0,1], just as for circle maps. K  is a positive nonlinearity parameter. 

In the literature on nonlinear dynamics, the Standard Map is often defined 
with a plus sign in place of the minus sign in Eq. (8.7-1). This is equivalent to 
shifting the value of 8 by 0.5 (n in radian units) and has no fundamental 
significance. We will use the minus sign to make more obvious the connection to 
the sine-circle map. 

If we fix r and require that the angle variable satisfy 

then the Standard Map reduces to what is called the Moser Twist Map [Moser, 
19731. If g(r) is a rational number, then the trajectories of the twist map are 
periodic. If g(r) is irrational, then the trajectories are circles (tori) in the xy plane 
with radius r. If we set g(r) = r = SZ , then the twist map reduces to the K  = 0 sine- 
circle map of Chapter 6. 

It is also common to replace the variable r, with the variable J, to use the 
action-angle notation of Section 8.4. Then a plot of trajectory points of the 
Standard Map corresponds to the Poincark section of a Hamiltonian system plotted 
in action-angle variables. 

Exercise 8.7-1. Verify that the Standard Map corresponds to a 
nondissipative (area-preserving) map function. Hint: Refer to Section 4.6. 
-- 

First let us find the fixed points of the Standard Map. Substituting J = r in Eq. 
(8.7-l), we see that these occur for 8 = 0 and 0.5 and J = 0 or 1. (Recall that J = 0 
and J = 1 are equivalent under the mod [I] operation.) Using the results of Section 
4.6, it is easy to see that the fixed point at the origin is a stable fixed point for K c  4, 
but the one at 8 = 0.5 is unstable for any K  > 0. 

Exercise 8.7-2. Consider the Standard Map with the nonlinearity 
parameter K = 0. (a) Show that the iterates of this K  = 0 Standard Map 
are just horizontal lines in the &J plane. Explain the connection between 
this diagram and the behavior of an integrable Hamiltonian system in 
action-angle space. (b) Show that the trajectoiies correspond to quasi- 
periodic behavior if J is an irrational number (between 0 and 1) and 
periodic behavior if J is a rational number (between 0 and 1). - 

plane with J = 112 is a period-2 fixed point. (d) Find the period3 fixed 
points when K = 0. N.B. Understanding the K = 0 behavior of the 
Standard Map will guide our thinking about the behavior when K  is not 

Exercise 8.7-3. Show that the fixed points of the Standard Map have the 
stability properties stated in the previous paragraph. 

Exercise 8.7-4. Show that for a two-dimensional area-preserving map, 
the stability condition for a fixed point can be expressed as lTr~l c 2, 
where TrJ is the trace of the Jacobian (or Floauet) matrix of derivatives. 

To illustrate the behavior of the trajectories of the Standard Map, we have 
plotted in Fig. 8.16 the trajectory points generated with K = 0.2 by taking 50 initial 
conditions with 8 = 0 and J ranging between 0 and 1 in 50 equal steps. For each 
initial point, the Standard Map has been iterated 500 times and each of the resulting 
trajectory points (taken to fall in the interval [O,l]) has been plotted in the &J 
plane. 

Let us look at the details of Fig. 8.16. Surrounding the stable fixed point at J 
= 0 and 8 = 0 are a series of elliptic orbits. (Recall that the variables are taken mod 
[I]; therefore, the portions of the ellipses seen near J = 0 and 1 and 8 = 0 and 1 are 
all part of the same orbits.) Near 8 = 0.5 and J = 0 and 1 are hyperbolic (saddle) 
points. Threading horizontally across the plot are some dotted curves that 
correspond to quasi-periodic orbits (the apparently continuous lines) and some that 
appear to correspond to periodic orbits (the ones made up of a few points). Recall 
that in action-angle space, the surfaces of phase space tori show up as more or less 
horizontal curves. Approaching and leaving the unstable fixed point at J = 0 (or 1) 
and 0 = 0.5 are parts of a hyperbolic orbit. 

The full complexity of the behavior of the trajectories is not so obvious in Fig. 
8.16. Looked at in finer detail, the map shows small islands interlaced with 
trajectories associated with hyperbolic points. (The lesson here is that you can be 
misled easily by the finite resolution of your computations.) Figure 8.17 shows a 
magnified view of the middle region of Fig. 8.16. Near the center of the plot is a 
single point that corresponds to a fixed point of the second-iterate of the map 
function. (The other second-iterate fixed point occurs at 8 = 0 near J = 0.5.) 
Around the second-iterate fixed points are elliptical orbits which are part of period- 
2 trajectories in the sense that trajectory points alternate between an ellipse near J = 
0.5 and 8 = 0.5 and the ellipse near 8 = 0 (or 1). 

Exercise 8.7-5. Use your knowledge of the K  = 0 Standard Map to locate 
approximately the period-3 points and ellipses in Fig. 8.16. 
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Fig. 8.16. Trajectories for the Standard Map with K = 0.2. Fifty trajectories, each consisting 
of 500 points, were plotted starting with 0 = 0 and J, ranging in 50 equal steps between 0 and 
1. 

If we now increase the parameter K, the chaotic behavior becomes more 
obvious. Figure 8.18 shows iterates of the Standard Map with K = 0.26 on the left 
and K = 0.28 on the right. Near the center of the plot on the right is a series of 
"islands" surrounding period-two points. (There are still stable period-two points at 
J = 0.5 and 8 = 0 and 0.5.) Between the period-2 islands are period-2 hyperbolic 
points and a thin stochastic band associated with the orbits that come close to those 
hyperbolic points. By comparing these two figures, we see that the island structure 
seems to form when the bands corresponding to the separatrices for different 
periodicities touch. 

What is happening is that KAM tori are disappearing as the nonlinearity 
becomes stronger. Hence, the chaotic regions associated with hyperbolic pg,,mts can 

i expand and be seen more easily on a particular scale of presentation. The Chirikov 
resonance overlap criterion (CHI79) can be used to estimate the value of K for 
which the resonance structures will overlap to destroy the KAM tori that lay 
between them. 

In summary, we note that the Standard Map exhibits many of the same 
features as the Henon-Heiles system as the amount of nonlinearity increases. 
Initially, for small values of K we see mostly simple elliptic orbits around stable 
fixed points and approximately horizontal tori in action-angle space. As the 
amount of nonlinearity increases, island structures begin to form around various 

0.45 
0.45 8 0.55 

Fig. 8.17. A magnified view of the Standard Map iterates with K = 0.2. A period-2 fixed 
point occurs near the center at about J = 0.5 and 8 = 0.5. Period-2 elliptical orbits surround 
the fixed point. The scattered appearance of the diagram is due to the finite number of points 
used to plot the diagram Some chaotic behavior is also present, however, but on a small 
scale. 

periodic points and some of the tori are destroyed. As the nonlinearity increases 
further, resonance structures begin to overlap and "kill off' the KAM tori that lay 
between them. All the tori are eventually destroyed and a single trajectory will 
wander over nearly the entire allowed region of phase space. 

o e 1 o e I 
Fig. 8.18. On the left are shown trajectory points for the standard map for K = 0.26. On the 
right K = 0.28. We see that the island structures form when separatrix trajectories touch. 
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8.8 The Arnold Cat Map 

Hamiltonian Systems 

( n )  ZnrOq. +@.) p(q..p..n) = Z A , , . e  

A second example of an area-preserving map is the so-called Arnold Cat Map. 
This intriguing name comes from the picture of a cat used by Arnold [Arnold and 
Avez, 19681 to help visualize the properties of this map function. The cat map is a 
two-dimensional map (with phase space variables p and q) defined as 

We choose an initial pair of coordinates, qo and po, that lie between 0 and 1 and 
iterate the map according to Eq. (8.8-1). Note that taking the variables mod [ l ]  
keeps the values restricted to a unit square in phase space. 

Exercise 8.8-1. (a) Calculate the Jacobian (Floquet) determinant of the 
map function in Eq. (8.8-1) and show that the map function is area- 
preserving. (b) Find the characteristic values (eigenvalues of the Jacobian 
determinant) associated with the map function Eq. (8.8-1) and show that 
one of them is greater than 1. (c) Show that the point (0,O) is a fixed point 
of the first iterate of the cat map and that the points (215, 115) and (315, 
415) are fixed points of the second iterate of the Cat Map. (d) Show that 
the fixed points are unstable fixed points. 

As Exercise 8.8-1 hints, the fixed points of the cat map are associated with 
initial points whose coordinates are rational fractions. Initial points whose 
coordinates are irrational numbers (between 0 and 1) lead t~ chaotic trajectories. 
Thus, we see that "most" initial conditions (in the sense that there are mainly 
irrational numbers, rather than rational numbers in the interval between 0 and 1) 
lead to chaotic orbits. Thus, the cat map, like the tent map of Chapter 5, provides a 
model system for which most of the trajectories are chaotic. With the cat map, 
however, the phase space area of a cluster of initial conditions is conserved. 

The cat map can be used to illustrate relatively easily the evolution of 
probability distributions in chaotic Harniltonian systems (FOR88). Suppose we 
specify some initial probability distribution p(qo, po ,t = 0) for the cat map. Since 
the cat map is area-preserving, this distribution is simply "dragged along" with the 
trajectory points. More formally, we write 

For an iterated map system, we think of time as moving along in steps, so we hale 
used t = n on the left-hand side of Eq. (8.8-2). 

To describe the detailed spatial behavior of the evolution of the probability 
distribution, we will make use of a Fourier spatial analysis (see Appendix A). We 
can do this because the mod [ l]  function means we can treat the distribution p as a 
periodic function of p and q with a spatial period equal to unity. The Fourier spatial 
expansion for t = n and t = n+ 1 takes the form 

The Fourier coefficients A;:,' generally depend on the time value n. The positive 
integer subscripts j and k label the various Fourier modes. They are sometimes 
called the "mode numbers." 

Since the phase space distribution must also satisfy Eq. (8.8-2), we can equate 
the two sums in Eq. (8.8-3). If we then use the map function given in Eq. (8.8-1) to 
relate the qs and ps, we find that the equality of the phase space distributions 
requires that the coefficients satisfy the following relationship 

This last equation actually tells us a great deal about the evolution of the 
phase space distribution. To see what is going on, let us consider a special (and not 
very realistic) case: Suppose that at t = 0, only one Fourier amplitude with nonzero 
j and k is important. Then, only one Fourier amplitude is present upon each 
iteration of the map function, but according to Eq. (8.8-4) the mode numbers (the 
subscripts) increase rapidly. Since a large mode number means that the quantity is 
oscillating rapidly with position, we see that the probability distribution for the cat 
map quickly becomes a rapidly varying function of position. If we start with a 
more realistic distribution, which would be described by a range of mode number 
values, upon iteration of the cat map, the low mode numbers quickly become 
unimportant and the distribution takes on a very complicated and rapidly varying 
spatial appearance. 

Exercise 8.8-2. Work through the algebra leading from Eqs. (8.8-3) to 
Eq. (8.8-4). 

The crucial point here is that the chaotic nature of the trajectories for the cat 
map shows up as an evolution of a relatively smooth probability distribution into a 
highly convoluted probability distribution. However, if we start with just a slightly 
different probability distribution, manifested by slightly different Fourier 
coefficients, those Fourier coefficients evolve in time according to Eq. (8.8-3) to 
values that are not much different from the values for the initial distribution. In 
short, the probability distributions do not show sensitive dependence on initial 
conditions. This point will be important in our discussion of chaos in quantum 
mechanics in Chapter 12. 

8.9 The Dissipative Standard Map 

Now that we have explored some of the behavior of Hamiltonian systems with 
chaos, we ought to look at the connection between their behavior and the behavior 
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of the dissipative systems we have studied previously. A useful vehicle for 
exploring this connection is another iterated map function called the Dissipative 
Standard Map (SCW85)(SCH88). This map function is almost like the Standard 
Map of Section 8.7, but it has built in an adjustable dissipation factor. By changing 
the dissipation factor we can interpolate smoothly between a dissipative system and 
a Hamiltonian (conservative) system. The Dissipative Standard Map is given by 
the following set of equations 

K  
rn+, = J D  r, --sin 2nOn mod [I]  

2n 

where JD is the value of the Jacobian determinant for the mapping functions. If JD = 
1, then the map functions reduce to the Standard Map. If JD = 0, then we have a 
one-dimensional iterated map system equivalent to the sine-circle map (discussed 
in Chapter 6) with B = 0. 

With JD = 0, we vary the parameter K  and observe the usual period-doubling 
sequence leading to chaos, chaotic bands that remerge as a function of K  with 
various periodic windows as discussed in Chapter 5 for the logistic map function. 
Schmidt and Wang (SCW85) have studied what happens to these features as JD 
increases toward 1. What they found is illustrated in Fig. 8.19. If we proceed up 
the extreme right-hand side of the figure, where JD = 0, we see the usual period- 
doubling cascade with period-1 followed by period-2 culminating with an infinite 
period at K  = K ,  . Beyond K  = K ,  , there are periodic bands and periodic 
windows (labeled p2' and p3' in the figure). 

As JD increases toward 1 ,  the amount of dissipation decreases, and it takes 
many more iterations for the map variables to settle onto an attractor. The basic 
features of the system remain, but their locations in the J& plane change. At JD = 
1, many of the "channels" overlap, telling us that different initial conditions lead to 
different kinds of orbits for an area-preserving map (or Hamiltonian system). We 
see the following correlations: The bifurcated orbits (those that arise as a breakup 
of lower period orbits) with period 2" for the Hamiltonian system, correlate with the 
2" stable orbits of the perioddoubling sequence for the sine-circle map. The other 
periodic orbits of the Hamiltonian system correlate with the periodic windows, 
which occur for K  > K ,  for the sine-circle map. Between the two extreme cases, 
for 0 c JD < 1, there are several coexisting attractors for a given JrK pair, each 
with its own basin of attraction. 

The 2" chaotic bands, which exist for the JD = 0 case, gradually disappear as 
J + 1 There is some evidence (SCH88) that JD values at which particular 
chaotic bands disappear are universal numbers for a wide variety of systems. 

The lesson we learn from our quick look at the Dissipative Standard Map is 
that although there are many differences between the behavior of Hamiltonian and 
dissipative systems, we can see how the different behaviors are correlated, at least 

/ in some cases. The multiplicity of behaviors that occur for a Hamiltonian system 

Fig. 8.19. A plot indicating the behavior of the dissipative standard map as a function of K, 
the nonlinearity parameter, and JD, the dissipation parameter. For JD = 1, the map function is 
area-preserving and equivalent to a Hamiltonian system. For JD = 0, the behavior 
corresponds to that of a onedimensional iterated map. pl and p2 indicate period-1 and 
period-2 orbits, respecpvely. & is the K value where the perioddoubling sequence 
culminates in chaos. p3 indicates a period3 window (Redrawn from Fig. 1 of SCH88). 

with a single set of parameter values eventually turns into a multiplicity of 
attractors for different parameter values in the onedimensional dissipative JD = 0 
extreme. Indeed there seems to be some universality in the behavior of the 
transition from strong dissipation to Hamiltonian conditions. 

8.10 Applications of Hamiltonian Dynamics 

BiUianis and Other Games 
We begin with a class of Hamiltonian models that make use of perfectly elastic 
collisions of an object with either boundary walls or with other objects. These 
models are important in the theory of Hamiltonian systems. One class of such 
models describes the motion of a ball (usually modeled as a point object) moving 
horizontally within some confined two-dimensional region, in effect, an idealized 
game of billiards. If the confining region is rectangular or circular, then it turns out 
that all the orbits are periodic or quasi-periodic. However, if the boundary is 
shaped like a stadium, with straight side walls and semi-circular ends, or if a round 
obstacle is placed inside a rectangular boundary (Sinai Billiards), then the motion 
can be chaotic, at least for some trajectories. (In almost all cases, it seems possible 
to find some periodic orbits, but they may be unstable.) 

Another model in this general category is one consisting of two balls 
constrained to move vertically under the action of gravity and interacting with the 
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"ground" and each other with perfectly elastic collisions (WGC90). Perhaps 
surprisingly, this rather simple model exhibits a full panoply of complex behavior. 

These kinds of models are piece-wise linear because the motion between the 
collisions is described by linear equations. In fact, for the case of the billiard-type 
problems, the motion is just motion with constant velocity. In a sense, the 
collisions are responsible for the nonlinearities and the possibility of chaotic 
behavior. In Chapter 12, we will discuss piece-wise linear models in more detail. 
We shall also see that billiard-type models are useful test beds for the notions of 
quantum chaos. 

Astronomical Dynamics 
The study of the motion of the planets and the question of the long-term stability of 
the solar system motivated much of the development of classical mechanics in the 
18" and 19" centuries. In fact, Poincark's interest in solar system dynamics was the 
inspiration for many of his developments in the qualitative analysis of dynamics. 
Ignoring minor tidal forces and the solar wind, we can treat the solar system as a 
conservative, Hamiltonian system. There is some evidence (WIS87, KER88) that 
the orbits of Pluto and some of the asteroids may be chaotic. 

P h l e  Accelemtor Dynamics 
In contemporary elementary particle physics, the high energy accelerator has 
become the predominant tool for the exploration of the fundamental structure of 
matter at the sub-atomic level. Accelerating particles, however, such as protons 
and electrons to energies hundreds or even thousands times larger than their rest 
mass energies in a controllable fashion is no trivial task because the orbits of the 
particles within these accelerators are subject to many perturbations leading to 
possibly unstable conditions. To a reasonable approximation, dissipation can be 
neglected in considering these orbits, and the methods of Hamiltonian dynamics 
come into play. Nonlinear dynamics provides a vocabulary for understanding the 
possible instabilities of particle orbits and gives us the tools needed to design 
accelerators that can avoid unstable orbits. 

Bulk Superconductivity 
When a superconducting material is exposed to an external magnetic field, the 
circulation of electrons is organized into vortex lattices. These vortices can move 
in a variety of ways under the action of external forces, and it has been found that 
phase-locking, Arnold tongues, Farey trees and the devil's staircase can be used to 
characterize this behavior (REN99). 

optics 
When light travels through a uniform dielectric material, the ray dynamics is the 
same as the Hamiltonian dynamics of a point mass traveling freely within a three- 
dimensional enclosure. This analogy can be used to understand the behavior of 
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light inside small dielectric spheres, which have been used to produce miniature 
'<hispering gallery" lasers. When the sphere is slightly deformed, the ray 
trajectories become chaotic (MNC95). 
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8.12 Computer Exercises 

CE8-1. Use Chaos Demonstrations Model 10, Chirikov Map, to explore the 
behavior of the Chirikov Standard Map for various values of K, the nonlinearity 
parameter. Observe island chains, the break up of tori, and the other features 
discussed in this chapter. 

CE8-2. Use Chaos Demonstrations Model 5 ,  The Three-Body Problem, to 
explore the restricted three-body problem. You can use several "planets" starting 
from nearby locations to see the exponential divergence of nearby trajectories. 

CE8-3. Use Chaotic Dynamics Workbench to study the Hknon-Heiles 
system. Look for island chains, breakup of tori, and other features of nonintegrable 
Hamiltonian systems. Try several different PoincarC sections to try to visualize the 
full phase space behavior. 

MEASURES OF CHAOS 

CE8-4. Try out some of the programming exercises given in the articles by 
Srivastava, Kaufman, and Miiller cited in Section 8.11. 



Quantifying Chaos 

Let chaos storm, Let cloud shapes swarm! I wait for form. Robert Frost, 
P e r t i k  

9.1 Introduction 

How chaotic is a system's chaotic behavior? In this chapter we shall discuss 
several ways to give a quantitative answer to that question. Before we get 
immersed in the details of these answers, we should ask why we might want to 
quantify chaos. One answer lies in a desire to be able to specify quantitatively 
whether or not a system's apparently erratic behavior is indeed chaotic. As we 
have seen chaotic behavior generates a kind of randomness and loss of information 
about initial conditions, which might explain complex behavior (or at least some of 
the complex behavior) in real systems. We would like to have some definitive, 
quantitative way of recognizing chaos and sorting out ''true" chaos from just noisy 
behavior or erratic behavior due to complexity (that is, due to a large number of 
degrees of freedom). Second, as we shall see in the next chapter, some of these 
quantifiers can give us an estimate of the number of (active) degrees of freedom for 
the system. A third reason for quantifying chaotic behavior is that we might 
anticipate, based on our experience with the universality of the scenarios 
co~ect ing  regular behavior to chaotic behavior, that there are analogous universal 
features, perhaps both qualitative and quantitative, that describe a system's 
behavior and changes of its behavior within its chaotic regime as parameters of the 
system are changed. We will see that indeed some such universal features have 
been discovered and that they seem to describe accurately the behavior of actual 
systems. Finally, (although this is rarely possible today), we would hope to be able 
to correlate changes in the quantifiers of chaotic behavior with changes in the 
physical behavior of a system. For example, is there some quantifier whose 
changes are linked to the onset of fibrillation in heartbeats or the beginnings of 
turbulence in a fluid or noisy behavior in a semiconductor circuit? 

In addition to calculating values for particular quantifiers for chaotic systems, 
we need to be able to estimate uncertainties associated with those quantifiers. 
Without those uncertainties, it is impossible to make meaningful comparisons 
between experimentally measured and theoretically calculated values or to compare 
results from different experiments. We will suggest several ways of estimating 
these uncertainties in our discussion. 

To summarize, here are some reasons for quantifying chaotic behavior: 
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1. The quantifiers may help distinguish chaotic behavior from 
noisy behavior. 

2. The quantifiers may help us determine how many variables 
are needed to model the dynamics of the system. 

3. The quantifiers may help us sort systems into universality 
classes. 

4. Changes in the quantifiers may be linked to important 
changes in the dynamical behavior of the system. 

9.2 Ti -Ser ies  of Dynamid Variables 

The key theoretical tool used for quantifying chaotic behavior is the notion of a 
time-series of data for the system. We met up with this idea in Chapter 1 in the 
form of a stroboscopic portrait of the current in the semiconductor diode circuit and 
later in the more general form of Poincark sections in state space. In this chapter 
we will focus on using a time-sequence of values of a single system variable, say 
x(t), to determine the quantitative measures of the system's (possibly) chaotic 
behavior. We will assume that we have recorded a sequence of values x(to), x(t,), 
x(t2), . . . with to < tl < t2 , and so on, as illustrated in Fig. 9.1. This could be a series 
of time-sampled values of some variable, where the time values are fairly close 
together, or it could be a series of Poincark section values for some variable at fairly 
widely separated time values. 

It is not obvious that such a set of sampled values of just one variable should 
be sufficient to capture the features we want to describe. In fact, as we shall argue 
in the next chapter, if the sampling is carried out at appropriate time intervals 
(which we shall need to specify) and if the sequence is used cleverly, then we can 
indeed "reconstruct" the essential features of the dynamics in state space. We will 
show in Chapter 10 that we can often determine the number of state variables 
needed to specify the state of the system from the time record of just one variable. 

Of course, we need to say what we mean by essential. Sampled values of one 
variable will clearly not (or, in general, cannot) tell us what the other variables are 
doing (unless we happen to have a complete theory for the system). If we limit our 
goals, however, to recognizing bifurcations in the system's behavior and 
determining if the behavior is chaotic and if so, how chaotic, then it turns out that 
this single variable sequence is sufficient (with some qualifications, of course). 

One further comment on measuring a single variable is in order. In almost all 
measurements, our instruments measure the dynamical variables indirectly. For 
example, if we are interested in temperature, we may actually measure the voltage 
produced by a thermocouple in contact with our system. We generally assume that 
our "measurement function" provides a fairly straightforward representation of the 
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Fig. 9.1. A sketch of the sampling of a dynamical variable. The recorded values form the 
time series for data analysis. Here the sampling is done at t = 0, 1,2, . . . and so on. 

actual quantity we want to monitor. Strictly spealung, however, we are monitoring 
the dynamics of our measurement function, not the system directly. 

It might be tempting to base our analysis of the system's behavior on 
continuous time trajectories, given symbolically as Z(t), where the vector quantity 
represents a complete set of dynamical variables for the system. (A complete set is 
the minimum number of variables needed to specify uniquely the state of the 
system.) In this kind of analysis, the value of i is available for any value of the 
time parameter. However, real experiments always involve discrete time sampling 
of the variables, and numerical calculations, which we must use for most nonlinear 
systems, always have discrete time steps. Since both real experiments and actual 
computer calculations always give the variable values in discrete time steps, we 
make a virtue of necessity and base our entire discussion on these discrete time 
sequences. 

The problem of choosing the appropriate time between samples (that is, 
choosing t, - to, t2 - t,, etc.) is a delicate one. If an infinite amount of noise-free 
data is available, then almost any set of time intervals will do. However, for more 
realistic situations, with a finite amount of data contaminated by some noise, we 
must proceed very cautiously. In the next chapter, we shall develop some "rules of 
thumb" for selecting time sample intervals and other features of the data. The 
reader who wants to undertake this kind of analysis for her or his data should 
consult Chapter 10 and the references at the end of this chapter for more details on 
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sampling time intervals and related matters. For now, we will assume that we have 
adopted some "reasonable" time-sampling scheme. 

In characterizing chaos quantitatively, we will make use of two different, but 
related, types of description. The first type emphasizes the dynamics (time 
dependence) of chaotic behavior. The now familiar Lyapunov exponent is an 
example of this type of descriptor. We will also introduce various kinds of 
"entropy," which play a similar role. These quantifiers tell us how the system 
evolves in time and what happens to nearby trajectories as time goes on. The 
seco,nd type of quantifier emphasizes the geometric nature of the trajectories in state 
space. We allow the system to evolve for a (reasonably) long time, and then we 
examine the geometry of the resulting trajectories in state space. Are the 
trajectories confined to a surface in state space? If so, do they cover that surface 
completely, and so on? Within this geometric approach we will meet the important 
and intriguing concept of fractals. 

These two types of description are complementary. In the first, we emphasize 
the actual time dependence of diverging trajectories, for example. In the second we 
look at the "footprints" left by these trajectories. Intuitively, we expect these two 
descriptions to be related. At present, however, the theoretical links are weak and 
mostly conjectural. While numerical and experimental evidence in most cases 
seems to support these conjectures, there remains much work to be done on the 
theory linking the dynarnical and geometric descriptions. 

In the next few sections, we shall introduce four quantifiers of chaos: (1) 
Lyapunov exponents, (2) Kolmogorov entropy, (3) fractal dimension, and (4) 
correlation dimension. In the following chapter, we shall discuss ways these 
notions can be generalized to give more detailed information about the system's 
behavior. Throughout this chapter, we shall assume, in the spirit of Chapter 5, that 
we are dealing with an effectively "one-dimensional" system. In the next chapter, 
we shall show that it is easy, in principle, to relax that restriction to treat 
multidimensional systems and that, in fact, we can get multidimensional 
information from the time series of a single variable by a clever "embedding" or 
"reconstruction" scheme. 

We will be limiting our attention to dissipative systems (i.e., to systems for 
which the effects of transients associated with initial conditions die away and the 
long-term behavior is restricted to some attracting region or regions in state space). 
As we proceed with our quantification of the behavior, we shall deal only with 
trajectories that are assumed to be on attractors. For nondissipative systems (the 
Hamiltonian systems of Chapter 8), there are no attractors, and we must live with 
the complication that some trajectories may be periodic and some may be chaotic 
for the same set of parameter values. Some of the quantifiers discussed in this 
chapter can be applied to a description of trajectories of Hamiltonian system, but 
nearby trajectories in state space may have a completely different character. Of 
course, dissipative systems with more than one attractor (for a given set of 
parameter values) have the same complication. 
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In principle, transients (trajectories starting away from an attractor but 
evolving toward it), can give useful information about the dynamics of the system. 
Since transients are often difficult to handle both experimentally and 
computationally, we shall confine the discussion to long-term behavior, which for a 
dissipative system, means looking only at trajectories confined to an attractor in 
state space. A method for applying time-series analysis to chaotic transients is 
given in J4T94. 

9 3  Lyapunov Exponents 

~n Chapter 4, we introduced the (average) Lyapunov exponent as a measure of the 
divergence of nearby trajectories. We argued that a system's behavior is chaotic if 
its average Lyapunov exponent is a positive number. In Chapter 5, we showed how 
to calculate the Lyapunov exponent for a one-dimensional iterated map function. 
In this section, we will describe the calculation of the Lyapunov exponent from a 
one-dimensional time-series of data. We shall label the series x(to), x(t, ), x(t2), . . . 
as %, xl, xz, . . .. For the sake of simplicity, we will assume, as is usually the case, 
that the time intervals between samples are all equal; therefore, we can write 

where zis the time interval between samples. 
If the system is behaving chaotically, the divergence of nearby trajectories 

will manifest itself in the following way: if we select some value from the 
sequences of ns, say xi, and then search the sequence for another x value, say xj, that 
is close to xi, then the sequence of differences 

dn = Ixj+. -xi+. 1 
is assumed to increase ex~onentiallv, at least on the average, as n increases. More 
formally, we assume that 

d,, = doeAn (9.3-3) 

or, after taking logarithms 
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In practice, we take Eq. (9.3-4) as the definition of the Lyapunov exponent A .  If 
A is positive, the behavior is chaotic. In this method of finding A,  we are 
essentially locating two nearby trajectory points in state space and then following 
the differences between the two trajectories that follow each of these "initial" 
points. 

Some Technical Detuiks 

In principle, the determination of the Lyapunov exponent from the time-series data 
is straightforward. Several comments, however, are in order: 

1. We have assumed an exponential rate of separation of the two trajectories. 
For a given time-series, we need to examine the validity of that assumption 
carefully. This can be done by plotting the (natural) logarithm of the difference dm 
as a function of the index m. If the divergence is exponential, the points will fall on 
(or close to) a straight line, the slope of which is the Lyapunov exponent. A least- 
squares straight-line fit to that data will give a measure of the goodness of that fit. 
If the data do not fall close to a straight line on a semi-log plot, then the quoted 
Lyapunov exponent is meaningless. 

2. The value of A may (and, in general, does) depend on the value of xi 
chosen as the initial value. Hence, we really should write A(x,) . To characterize 
the attractor, we usually want an average value for A. We find an average value by 
calculating A(xi) for a large number N (say, 30 or 40 in practice) of initial values 
distributed over the attractor. The average Lyapunov exponent for the attractor is 
then found from 

From this set of A(xi) we can also calculate a standard deviation, which can be used 
to provide an estimate of the uncertainty to be associated with the average value. In 
the next chapter, we shall see that there may be some interesting universal features 
associated with the fluctuations of the As about the average value. 

N.B.: We want the value of A to reflect the fact that some xi values occur 
more frequently than others: trajectories visit some parts of state space more 
frequently than others. The easiest way to implement this requirement is to choose 
a large number of initial points according to their subscript indices i. Then those 
ranges of x values that occur more frequently in the time-series will show up more 
frequently as initial points. 

3. For the bounded systems with which we are concerned, the number of time 
steps n used in Eq. (9.3-2) for the determination of A cannot be too large. Since the 
xs are limited in size for a bounded system, the differences di cannot be larger than 
the difference between the largest and smallest values of x. Hence, the exponential 
growth in d cannot go on forever, and we must limit n. To some extent, we must 
look at the sequence of dis for a given system to see how large n can be (see Fig. 
9.2). The size of n also depends on the value of A and on do. If do is made smaller 
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by requiring that x, be closer in value to x,, then the exponential divergence will 
continue for larger values of n. 

4. If the sequence of x values corresponds to periodic behavior, the d values 
ought to be very small or 0 because the trajectory returns to exactly the same set of 
values. Hence, this trajectory method would give A =  0 reflecting the fact that the 

' ds neither increase nor decrease in size. This result tells us that trajectory points on 
a periodic orbit neither converge or diverge (on the average). For the state space 
direction transverse to a stable periodic trajectory, the Lyapunov exponent ought to 
be negative, indicating that nearby trajectories are attracted to the stable orbit. 
However, the time-series of values from the trajectory itself cannot tell us how 
nearby trajectories approach the attractor. More general methods, such as those 
described in Chapter 5 or in the references at the end of this chapter must be used to 
determine the Lyapunov exponent when it is negative. 

5. There are restrictions on the value of j that we should use for a given xi. If 
the time-series results from a closely spaced sampling of some smoothly varying 
quantity, say the current in the diode circuit in Chapter 1, then we should not 
choose j too close to i because those two values occur close in time. If the two 
values are close in time, we expect the behavior to remain close, and we would end 
up with an anomalously small value for %xi). We can avoid this problem by 
insisting that xi not follow xi too closely in time in the sequence. Various criteria 
have been proposed for choosing a minimum time separation, some using concepts 
such as "correlation times," which involve technical details we want to avoid here. 
Generally, a plot of the xis as a function of time will allow you to determine, at least 
approximately, what the minimum time delay should be. Of course, if the data are 
Poincark section records, which are already widely separated in time, then no such 
problem arises. 

6. A comment on units: Some authors prefer to define A using 

d,, = do 2 4  

and then interpret as a divergence rate in "bits per unit time." By using 2 as the 
base for the exponential function, we have an exponent that gives the rate of 
divergence of the sequence of x values written in binary number form (a sequence 
of bits, 0s or 1s) in analogy with the Bernoulli shift map of Chapter 5. 4 is a 
measure of the rate (in bits per unit time) at which we lose information contained in 
the initial value of x (expressed in binary form). 

I Exercise 9.3-1. Show that 4 = Alln 2 . 
7. There are practical limits on how small do can be. Since the xs have been 

either computed with a finite number of decimal places or recorded from an 
experiment with a finite precision, the number of decimal places produces a lower 
limit on how small a meaningful difference can be. For example, if the data were 
recorded with only three decimal places, then it would be meaningless to ask for a 
difference smaller than 0.001. Of course, if we have taken enough data, eventually, 
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Fig. 9.2 A plot of the logarithm of the trajectory differences for the logistic map as a 
function of iteration number with A = 3.99 and xi = 0.1. The value of 4 was 0.0001. On the 
left the trajectory differences are followed for 15 iterations. On the right for 25 iterations. 
We expect a straight line for exponential divergence of nearby trajectories. The slope of the 
fitted straight-line on the left gives the Lyapunov exponent. The value for the data on the left 
is close to the value In 2 expected for the logistic map with A = 4. The data on the right show 
a saturation and folding when the trajectory differences become close to the overall size of 
the attractor. 
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routines may be used to find an approximate analytic representation of that curve. 
Given that analytic approximation, we may usz the derivative method, Eq. (5.4-12), 
to find the average Lyapunov exponent. The references at the end of the chapter 
provide details on other procedures for finding Lyapunov exponents. 

even if the system is chaotic, it will have some repeating values, simply due to the 
finite digitization accuracy. We could then find two values that a& exactly the 
same. These coincidences will be rare, however, and for a chaotic system, they are 
an artifact of the finite precision. 

~ 
~ 

I 

- 
Exercise 9.3-2. Use the data in Table 1.2 to plot the natural logarithm of 
the trajectory differences as a function of iteration number (which is 
analogous to time). Draw a straight line through those plotted points and 
from its slope determine the Lyapunov exponent. Compare your value 
with the value shown in Fig. 9.2. Alternatively, write a computer program 
to generate the data and to find the Lyapunov exponent. 

Example 

To illustrate the time-series method of finding Lyapunov exponents, we have 
worked out an example. Figure 9.2 shows the trajectory differences as a function of 
iteration number from the logistic map for two different numbers of iterations each 
starting from the same x,. Several features are important in this example: There is a 
scatter of points about the straight lines in the semilog plots. Thus, we can say that 
on the average the divergence of nearby trajectories is exponential but there may be 
considerable fluctuations about that average. Also, for sufficiently long times, the 

I l l  

divergence is no longer exponential. This "saturation" occurs whenever the size of 
the difference between the two trajectories increases to about the size of the 
attractor. Since the system is bounded, the difference between the trajectories 
cannot exceed this size, and the semi-log plot of the differences levels off. (The 

9.4 Universal Scaling of the Lyapunov Exponent 

difference may in fact decrease.) Thus, in practice, we must limit the range of time 
(or equivalently, the range of iteration numbers) for the straight-line fit. 

We should also mention an alternative method of computing the Lyapunov 
exponent from time-series data. If the data are effectively one-dimensional, as 
explained in Chapter 5, then a plot of x,,, versus x, should give a sequence of 
points, which could be connected by a smooth curve. Various "curve-fitting" 

While a determination of the Lyapunov exponent as described in the previous 
section can tell us whether or not a system is behaving chaotically, we can go 
further. If a dissipative system becomes chaotic via the period-doubling route, then 
we can predict how the Lyapunov exponent will change as the control parameter is 
varied, driving the system further into the chaotic regime. Figure 9.3 shows the 
average Lyapunov exponent for the logistic map plotted as a function of the 
parameter A. For A c 3.5699 . . . = A_,  the Lyapunov exponent is negative except 
at the bifurcation points, where period-doubling occurs. At those points the 
Lyapunov exponent is equal to 0. For A > A,, the Lyapunov exponent is positive 
but with occasional dips below 0 whenever a periodic window occurs. If we ignore 
the dips due to the periodic windows, then we see that the Lyapunov exponent 
grows smoothly as A increases beyond A_. We say the system becomes more 
chaotic as A increases, where the "degree of chaoticity" (as measured by the 
divergence of nearby trajectories) increases with A. 

In 1980, Huberman and Rudnick (HUR80) argued that there should be a 
universal expression for the parameter dependence of the Lyapunov exponent as 
the system becomes more chaotic following a sequence of period-doubling 
bifurcations. Their prediction can be written in the following form for A > A,, 
where A, is the parameter value for the accumulation point of the period-doubling 
sequence: 

In the previous equation il, is a constant, whose value we shall find later, and 6 is 
once again (!) the Feigenbaum 6 = 4.669.. .. (As we saw before, other values of 6 
apply if the map function has other than quadratic dependence near its maximum 
value.) 
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3.4 A 4.0 

Fig. 93. The top figure shows the Lyapunov exponent (calculated using the derivative 
method in Eq. 5.4-12) for the logistic map function plotted as a function of the control 
parameter A. The bottom figure shows the corresponding bifurcation diagram When A is 
negative, the behavior is periodic. When the exponent is 0, a bifurcation occurs. When the 
exponent is positive, the behavior is chaotic. 

Eq. (9.4-1) gives us important predictive capabilities: If we see a system 
become chaotic through a sequence of period-doublings, then we can predict how 
chaotic it will be (in terms of the average Lyapunov exponent) as a function of the 
control parameter. Experiments on the semiconductor diode circuit described in 
Chapter 1 have shown that this scaling law works quite well in describing the 
behavior of the Lyapunov exponent calculated from actual experimental data 
(JOH88) for parameter values close to the period-doubling accumulation point. 

We should also point out that the scaling law expressed in Eq. (9.4-1) has the 
same form as scaling laws describing the behavior of physical properties near a 
second-order phase transition in thermal physics, such as the onset of magnetization 
in a ferromagnet. The Lyapunov exponent plays the role of the so-called order 
parameter, while A - A_ is analogous to the difference between the actual 
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rature and the critical temperature at which the phase transition occurs. The 
rature dependence of these order parameters is described by the same sort of 

law with universal classes of scaling exponents. Some other analogies 
n statistical mechanics and dynamics are explored in Chapter 10. 

* D ~ ~ v a t i o n  of the Universal Scaling Law for the Lyapunov Exponent 
'q The scaling law in Eq.(9.4-1) can be derived from the following facts: (1) The 

muence of chaotic bands, which exist for A > A_ (see Fig. 9.3, Fig. 2.1, and Fig. 
5.9, for example), merge in a sequence of bifurcations as the control parameter A 
continues to increase. The bands merge in a kind of "period-undoubling": Eight 
bands merge to give four; the four merge to give two, and finally the two bands 
merge to form a single band, as A increases. (2) The chaotic-band-merging 
sequence is described for A values near A,,, by a convergence ratio that has the 
same numerical value as the Feigenbaum convergence ratio 6 for the period- 
doubling sequence leading up to chaos. Hence, there is a relationship between the 
number of chaotic bands present for a particular parameter value and how far the 
parameter is from the period-doubling accumulation point value. To be specific, 
we shall denote the parameter value where 2" bands merge to give 2"' bands as &. 
For example, at the value & four bands merge to give two bands as A increases. 
(The underline reminds us that these A values are analogous to, but different from, 
the A values for the period-doubling sequence.) 

If we start two trajectories separated by the distance & within one of the 
chaotic bands, the trajectory separation increases exponentially. Since the behavior 
is supposed to be chaotic, we have 

where n is the number of iterations. Let us consider the case of the trajectory's 
cycling among 2" bands. If the two trajectories start off in one band, after 2" 
iterations they will be back in the original band. Then they will be separated by the 
amount 

NOW comes the crucial step: We could view this divergence as due to one iteration 
of the function f',"' with an effective Lyapunov exponent &, which, in some 
sense, is a characteristic of a single chaotic band. Thus, we could write 

d , ,  = doen2" =doe& (9.4-4) 

If we assume that & is a constant (that is, the same for all the chaotic bands), we 
can write from Eq. (9.4-4) 
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A- means we have an A value that gives rise to 2'" chaotic bands. 
The index m can be used to tell us how far we are from %, . We use the result 

of Exercise 2.4- 1 in the form 

I where 

a ' 
&=- a - I  (A, -42) (9.4-7) 

Essentially, we are assuming that the Feigenbaum scaling for the period- 
undoublings extends all the way to the single chaotic band. We now solve Eq. (9.4- 
6) for m 

m = - In [(A, - A, I MI 
In S 

I 

Using this result in Eq. (9.4-5) yields 

with 

Eq. (9.4-9) is equivalent to the scaling law stated in Eq. (9.4-1). 

Exercise 9.4-1. Show that Eq. (9.4-9) is equivalent to Eq. (9.4-1). Hint: 
Take the natural logarithm of both equations. 

The important point here is that the universal scaling law for the Lyapunov 
exponent follows from the scaling of the chaotic band mergings and the assumed 
constancy of the effective Lyapunov exponent & for each chaotic band. 

1 9.5 Invariant Measure 

~I Another important method of characterizing an attractor makes use of a probability 
distribution function. This notion becomes particularly important as the number of 
state space dimensions increases. As we have seen, for a larger number of state 
space dimensions, we have more and more geometric possibilities for attractors. 
For higherdimensional state spaces, we need more abstract and less geometric 
methods of characterizing the attractor. Various kinds of probability distributions 

I are useful in this case. In general terms, we ask what is the probability that a given 

33 1 

trajectory point of the dynamical system falls within some particular region of state 

De@ti0n of Probability 

We need to be careful about what we mean by probability. We will use the term to 
, man  the reWve frequency of actual occurrences given a large number of 

rmtitions.~f the "experiment." That is, if we have an experiment with N possible 
results (outcomes), and we run the experiment M times (M is usually a large 
"umber) and of the M "trials" we find m, give the ith result (where the index i runs 
from i = 1 to i = N), then we define the probability of getting the ith result as 

pi is just the relative fraction of the total number of events that give the ith result. 
Of course, we must account for all the trials, so we have 

In addition, if M, the number of trials, is large enough, we expect that the pi will be 
reasonably good predictors of the relative number of events in any large sample of 
future trials carried out under the same conditions. 

When we talk about probabilities in state space, we cannot generally ask for 
the probability that a trajectory lands precisely on some point in state space. Why 
not? If we use the relative frequency definition of probability, then the number of 
possible outcomes is infinite if we ask for precise points (assuming that we can 
specify the coordinates to an arbitrarily large degree of precision). Thus, the 
probability of getting any one precise numerical value is some finite number (the 
number of trials that have yielded that result) divided by infinity: All the 
probabilities are 0. 

In practice we avoid this problem by dividing the numerical range of 
outcomes into some finite (but usually large) number of intervals (or "bins" as the 
statisticians would call them) and asking for the probability of finding a result 
within a particular interval. This method has the virtue of automatically 
recognizing the limited precision of any actual measurement or calculation. 

hvariant Measure 
For our state space probabilities, we divide the state space region occupied by the 
attractor into a set of intervals (in one dimension) or cells or "boxes" (in two or 
more dimensions) and ask for the probability that a trajectory visits a particular 
interval or cell. If we use M intervals and find that the trajectory visits the ith 
interval mi times, then we associate the probability pi = m{M with the ith interval. 

A graph of pi as a function of i gives us the probability distribution for that 
attractor. In many chaotic systems, the calculated pis do not depend on where we 
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density function p(x) defined so that p(x)a!x is equal to the mass of the attractor that 
lies between x and x + a!x. Then we say that mi = pi M is the mass associated with 
the ith cell, and pi is the fraction of the attractor's mass found in cell i. 

In Fig. 9.4, we have plotted a histogram of trajectory values for the logistic 
map with A = 4.0. The data values have been sorted into 20 "bins" of equal size f lying between x = 0 and x = 1. As you can see the histogram is relatively smooth at 

' this level of resolution, with the probability tending to be larger for x values near 0 
and 1. 

For most dynamical systems, we must find the probability distribution 
numerically by computing the actual trajectories. But for the special case of the 
logistic map with A = 4, we can calculate the invariant probability distribution 
exactly. To do this, we make use of the connection, introduced in Section 5.8, 
between the logistic map with A = 4 and the Bernoulli shift map. By general 
arguments for probability distributions, we must have the following relationship 
between the distributions p(x) for the logistic map (again for A = 4) and P(8) , 
the distribution given as a function of the variable 8 introduced in Eq. (5.8-3): 

Fig. 9.4 A plot of the invariant distribution for the logistic map with A = 4.0. 'Ihe vertical 
bars are histogram values for 1024 trajectory points sorted into 20 bins that divide the x axis 
equally. The solid line is the theoretical probability distribution based on Eq. (9.5-5). 

start the trajectory on the attractor as long as we let the trajectory run long enough. 
In those cases we call the set of pis a nuturn1 probability measure. (There are 
obvious exceptions: If the trajectory starts on an unstable periodic orbit, the 
measure will be different fiom that obtained by an initial point that leads to a 
chaotic trajectory.) The term measure is used in the sense of weight or emphasis. 
The more often a cell is visited, the larger its measure or weight. 

For a one-dimensional system, we express the probability measure as Mx). If 
the dynamics of the system is given by a map functionAx) and if p(x) = p (  f (x)) , 
we say that Mx) is an invariant probability measure. Here the term invariant 
means that the resulting distribution is unchanged under the dynamics of the 
system. 

We can sometimes introduce a continuous function to characterize the 
probabilities. If we think of dividing state space, which so far is just the x axis, into 
small intervals or cells, then we can say that the probability of finding the trajectory 
in the ith cell is given by the integral of some continuous probability distribution 
function p(x) over that cell: 

where xi labels the location of the ith cell. We interpret p(x)a!x as the probability 
that the trajectory visits the interval between x and x + dr. 

Another way of visualizing the meaning of pi is the following: Suppose we 
assign a mass M to the attractor in state space. We assume that there is a mass 

The previous equation tells us that the probability of finding x between x and x 
+ & for the logistic map must be the same as finding 8 between 8 and 8 + dB for 
the corresponding value of 8 for the Bernoulli map. For the Bernoulli shift map, 
the trajectory values are distributed uniformly over the range 0 5 8 I 1 . Thus, we 
must have P(@ = 1. Using Eq. (5.8-3), we can relate a!x to d 8  to find 

The solid curve in Fig. 9.4 shows this distribution (appropriately normalized). The 
actual histogram values fall quite close to this curve. (Of course, we expect some 
deviation between the two since the histogram was generated from only 1024 data 
points grouped into 20 bins.) 

Exercise 9.5-1. Follow through the details of the calculation to obtain the 
result stated in Eq. (9.5-5). 

Ergodic Behavior 
One of the reasons for focusing attention on the invariant distribution, if it exists, is 
that it gives an alternative (and often simpler) way of calculating average properties 
of a system. For example, if we consider some property B of the system, which 
depends on the value of the state space variable x, we can define the time average 
value of B as 
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Eq. (9.5-6) gives the time average in two forms. The integral form is useful if we 
have solved for x(t) as a continuous function of time (an analytic result). The sum 
form is useful for a discrete time-series of values. In the latter case, ti = TIN and t, 
= T. We follow B in both cases as a function of time for a time interval T and 
compute the average value of B over that interval. Of course, we usually want the 
time.interval T to be long enough for us to sample the full range of behavior of the 
system. Thus, we often add the limit T + m . 

Alternatively, we could evaluate the average of B by finding B as a function 
of x and multiplying that value by the probability that the system visits the interval 
[x, X + &I 

In the integral form, we assume that we have evaluated the (continuous) probability 
distribution p(x) . In the sum form, we sum over the M intervals (or boxes) that 
divide up the attractor region in state space. (The continuous probability 
distribution may not exist mathematically in some cases. See [Ott, 1993, pp. 51- 
551.) 

If the average in Eq. (9.5-6) equals the average in Eq. (9.5-7), then we say that 
the system is ergodic (i.e., time averages are the same as state space averages, 
where the state space average is weighted by the probability that a trajectory visits a 
particular portion of state space). In traditional statistical mechanics, one often 
assumes this equivalence in the so-called ergodic hypothesis. (You may recall that 
the issue of ergodicity also appeared in Chapter 8 in connection with Hamiltonian 
systems.) 

As an example of this kind of calculation, let us compute the average 
Lyapunov exponent for the logistic map function for the parameter value A = 4. For 
this value of A, the probability density is given by Eq. (9.5-5) for x values between 
0 and 1. According to Eq. (5.4-1 l), the "local" value of the Lyapunov exponent is 
given by 

We can compute the average Lyapunov exponent by making use of the probability 
distribution 

f we now make the (not-so-obvious) substitution x = sin2(n y/2), we find 

A =  l ln l4cos(n y)l dy (9.5-10) 

= In2 

The definite integral in Eq. (9.5-10) can be found in standard integral tables. The 
main point here is that the Lyapunov exponent is positive, and, in fact, equal to In 2, J me same value obtained for the Bernoulli shift map and for the tent map, Eq. (5.9- 

Finding the same Lyapunov exponent value for the logistic map with A = 
4, for the Bernoulli shift map and for the tent map with r = 1 may seem 

r quite remarkable. This result tells us that the Lyapunov exponent is 
independent of a change in variables for the map function. (Any one of 
these three map functions can be transformed into one of the others by a 
change of variable.) Why is that independence important? When we 
characterize actual experimental systems, the signal we record is often one 
that is not directly the dynamical variable being characterized. For 
example, if we are monitoring the temperature in a fluid for a Lorenz-type 
system, then we might record the electrical signal from a temperature 
probe such as a thermistor or a thermocouple. We can use the recorded 
values of the electrical signal directly to compute the Lyapunov exponent 
for the system because that exponent is independent of the change in 
variables (as long as it is one-to-one) in converting from temperature to 
electrical voltage. 

Exercise 9.5-2. Starting from the definition of Lyapunov exponent in Eq. 
(9.3-4), show explicitly that a linear transformation of variables u = ax + b 
does not change the Lyapunov exponent. More challenging: what general 
classes of variable transformations lead to no change in A ? 

9.6 Kolmogorov-Sinai Entropy 

In this section we will introduce several related ways of describing chaotic behavior 
based on notions that are (at least formally) related to the concept of entropy from 
thermodynamics and statistical mechanics. As we shall see in Chapter 10, these 
entropy measures can be generalized to give a very powerful formalism for 
describing dynamical systems. 

A Brief Review of Entropy 
We will first review the concept of entropy from the point of view of statistical 
mechanics. From this perspective, the most fundamental definition of entropy is 
given by counting the number of "accessible states" for the system under 
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consideration. The crucial idea is that statistical mechanics is concerned with 
relating macroscopic (large-scale) properties of a system, such as pressure, volume 
occupied, and temperature for a gas, to the microscopic description in terms of 
positions and velocities of the atoms or molecules that make up that gas. In almost 
all cases, there is a vast number of microscopic states (for each of which we specify 
the positions and velocities of the individual atoms or molecules as functions of 
time) that correspond to the same macroscopic state (e.g., a state of the gas with a 

I 
particular temperature and pressure). We assume that an isolated system of atoms 
and molecules in thermal equilibrium visits equally all of these microstates 
compatible with this set of properties "microstate democratic egalitarianism"). 

I 
Then we define the entropy S of the system as 

where N is the number of microstates compatible with the assumed macroscopic 
conditions; k is called Boltzmann's constant and determines the units in which 
entropy is measured (in the SI system k = 1.38. . . x lo-= JouleK). 

The Second Law of Thermodynamics, one of the most fundamental laws in 
all of physics, states that in a spontaneous thermal process the entropy of an isolated 
system will either stay the same or increase. From our microscopic point of view, 
the Second Law tells us that a system will tend to evolve toward that set of 
conditions that has the largest number of accessible states compatible with the 
prescribed macroscopic conditions. 

You may have noted that we dodged the difficult question of how we actually 
count the number of accessible states. In the application of entropy to nonlinear 
dynamics, we will give one possible scheme for doing this. In quantum statistical 
mechanics, in which we apply quantum mechanics to describe the microscopic 
system, the counting procedure is well defined since quantum mechanics 
automatically leads to a set of discrete states for a system occupying a bounded 
region of space. In the meantime, we will simply assume that we have adopted 
some counting procedure. 

If the system is not isolated or if it is not in thermal equilibrium, not all the 
accessible states are equally likely to be occupied. We can generalize the entropy 
definition to cover this case as well. To see how this comes about let us first 
rewrite the equally likely case Eq. (9.6-1) in terms of the probability p, that the 
system is in the ith of the accessible states. For the equally-likely case p, = p = 1IN 
for all the accessible states. Strictly speaking, we should be thinking of an 
ensemble of systems (i.e., of a mentally constructed large collection of identical 
systems), each with the same values for the macroscopic properties. We then ask 
what is the probability that a member of the ensemble is in one particular 
microstate. Written in terms of these probabilities, the entropy expression becomes 

Note that S is still a nonnegative quantity since p I 1 . 

Fig. 95. A twodimensional state 
region has been divided up into 
cells, each side of which has length 
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space 
small 
L. 

If the probabilities are all the same, then the "obvious" generalization of 
Eq. (9.6-2) is 

where p, is the probability (in the ensemble sense described earlier) for the system 
to be in the rth microstate. (For a more formal justification of Eq. (9.6-3) see, for 
example, [Chandler, 19871.) The sum can be taken over all the states of the system 
(assuming that there is a finite number of states). If a state is not accessible, then p, 
= 0, and the state makes no contribution to the entropy. 

Exercise 9.6-1. (a) Show that p, In p, 4 0 as p, + 0 .  (b) Show that 
Eq. (9.6-3) reduces to Eq. (9.6-2) when p, = 1IN for the N accessible states 
and p, = 0 for any inaccessible state. 

Entropy for State Space Dynamics 
We shall now apply these entropy ideas to a description of the state space behavior 
of a dynamical system. First, we need to decide what "counting states" means in 
this context. We do this counting by dividing the state space of the system into 
cells, usually all of the same size. For a dissipative system (for which an attractor 
exists) we need divide up only the region containing the attractor. (For a 
conservative system, we divide up the entire range through which the trajectories 
may wander.) Figure 9.5 shows this division for a two-dimensional state space. 

We then start the time evolution of the system with an ensemble (collection) 
of initial conditions, usually all located within one cell. As the system evolves in 
time, the trajectories will generally spread out over a larger number of cells in the 
state space. After n units of time (each of length z ) have gone by, we calculate the 
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relative frequency (probability) p, with which the system visits each of the cells. 
We then define the entropy S, to be 

Note that p, is the probability that a trajectory starting from our initial cell, is in the 
rth cell after n units of time. (In what follows, we will set the constant k = 1 to 
simplify notation.) 

We again need to be careful about what probability means. Specifically, if we 
start with M trajectory points in the initial cell and if after n units of time, we have 
M, trajectory points in the rth cell, then we define the probability asp, = MjM, that 
is, p, is the fraction of trajectory points that end up in the rth cell at that time. 

Before introducing further refinements of these ideas, let us try out a few 
simple cases to see how this entropy definition works. First, suppose that all the 
trajectories move together from cell to cell as time goes on. Then p, = 1 for the 
occupied cell and is 0 for the unoccupied cells. In that case S,, = 0 for all n. Thus, 
we see that constant entropy corresponds to what we would interpret as regular 
motion (say, along a limit cycle). For a second example, suppose that the number 
Nn of occupied cells increases with time and that (for our idealized example) all the 
occupied cells have the same probability, namely, l/N,,. Then the entropy is 

S,, = +In N, (9.6-5) 

t is, K,, is the rate of change of the entropy in going 
ually want is the average of this 
to characterize the attractor as a 

1 N-l 

K = lim-Z(S,+, -S, 
N+- Nz 

1 

from 
K S  
who1 

,) 

t = nrto t = (n+l )~ .  
entropy over the entire 
e. Thus we define the 

= lim L [ S ,  -So] 
N+- Nz 

Letting N get very large corresponds to allowing the trajectories to evolve for a long 
time, hence covering (presumably) all of the attractor. 

r We will now introduce two further limits: One limit takes the cell size to 0; 
therefore we use finer and finer divisions of state space. This procedure should 
make K independent of the details of how we divide up the state space. The second 
limit takes the time interval z to 0; therefore, we use smaller time increments and 
hence a finer description of the dynamics. Putting all of these limits together (and 
probably pushing the limits of the reader's patience as well), we have the complete 
definition of the K-S entropy: 

We see that the entropy increases as the natural logarithm of the number of 
occupied cells. 

For a completely random system, each of the M trajectory points would jump 
to its own cell (assuming that the cells are small enough to distinguish the different 
trajectory points). In that case, S,, = In M. The important point is that this number 
grows without limit as M becomes very large. On the other hand, for a regular or a 
chaotic deterministic system with a small number of state space variables (i.e., 
systems that are not completely random), the entropy becomes independent of M 
for large M. 

One important notion should emerge from these examples: We are really 
concerned with changes in entropy, not in the entropy value itself. For example, if 
we choose a set of initial conditions in two cells and if the motion is regular, then 
the entropy value would not be 0, but it would remain constant as the system 
evolves. The change in entropy is characterized by the Kolmogorov-Sinai entropy 
rate (sometimes called the K-S entropy), which describes the rate of change of 
entropy as the system evolves. First we shall give a rough definition of the K-S 
entropy (rate); then we shall refine it. The K S  entropy K,, after n units of time is 
defined to be 

When the K-S entropy is applied to Poincark sections and to iterated maps, we set z 
= 1 and drop the limit z + 0 .  

Let us try another example. Suppose that the number of occupied cells N,, 
grows exponentially with time 

N,, = (9.6-9) 

and that all the occupied cells have the same probability p, = IIN,,. The K-S 
entropy is then equal to A, the parameter characterizing the exponential growth of 
the number of occupied cells. The number of occupied cells, however, is 
proportional to the distance between the trajectories that all initially occupied one 
cell. Thus, we see that A is just the (average) Lyapunov exponent for the system. 
For exponential growth of the number of occupied cells and for equal probabilities 
for the occupied cells, the K S  entropy and the Lyapunov exponent are the same. 
When there is more than one Lyapunov exponent, the K-S entropy turns out to be 
equal to sum of the positive Lyapunov exponents, a result known as the Pesin 
Identity (PES77)(PPV86)(GER90). 

Exercise 9.6-1. Show that K,, = A for the conditions stated in the previous 
paragraph. 
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Alternative Definition of K-S entropy 

In the literature on nonlinear dynamics, a slightly different definition of the K-S 
entropy is sometimes used (see, for example, [Schuster, 19951. This definition will 
turn out to be useful in Chapter 10. In this alternative definition, we let a single 
trajectory run for a long time to map out an attractor. We then cover the attractor 
region of state space with cells. Next we start a trajectory in one of the cells and 
label that cell b(0). At a time zlater, the trajectory point will be in cell b(1). At t = 
22,  the trajectory is in cell b(2), and so on, up to time t =Ng thereby recording a 
particular sequence of cell labels: b(O), b(l), . . ., b(N). 

We then start off a second trajectory from the same initial cell. Because the 
exact initial conditions are slightly different, however, we will generally get a 
different sequence of cell labels for the second sequence. We repeat this process 
many times, thereby generating a large number of sequences. 

Next, we calculate the relative number of times a particular sequence of N cell 
labels occurs. Let us call that relative number p(i) for the ith sequence. We then 
define the entropy SN to be 

S,, =< -z p(i) In p(i) > (9.6-10) 
i 

where the sum is taken over all sequences of N cell labels that start with b(0). The 
brackets c > mean that we average the sum over all starting cells on the attractor. 

Finally, we define the K-S entropy to be the average rate of increase of the 
entropy with respect to sequence length: 

1 
K = lim -(SN -So) 

N+- N (9.6-1 1) 

To gain some familiarity with this definition, let us try it out for some special 
cases. First, let us assume that all the sequences starting from the same initial cell 
are the same; that is, that we have regular motion: All the trajectories starting from 
the same cell track each other as time goes on. Then SN = 0 for all N and K = 0 
since S does not change. At the other extreme, let us assume that each of the M 
sequences occurs only once (i.e., the system is "purely random"). In that case p(i) 
= 1IM and SN = In M and grows without limit as M increases. Thus, we see that the 
K-S entropy increases as the number of sample trajectories increases. 

Let us now assume that the number of distinct trajectory cell sequences Mseq 
increases exponentially (on the average) with the length N of the sequences: As the 
sequences become longer, they split apart due to the distinct behavior of trajectories 
with (slightly) different initial conditions. In more formal terms, we assume that 

M = e*N 
seq (9.6-12) 

Obviously, A is the Lyapunov exponent for the system. If we further assume that 
each distinct trajectory sequence occurs with the same probability p(j) = l/Mseq, 

34 1 

is easy to see that the K-S entropy is just K = A. So, once again, we get an 
between the K-S entropy and the (positive) Lyapunov exponent. 

The relationships among the K-S entropy, the Lyapunov exponent, and the 
thermodynamic entropy have been explored for a variety of 

amic systems. The conclusion is that under many circumstances, they 
all proportional to one another. See, for example, BLR95, DAV98, and 

We~shall postpone actual calculations of the K S  entropy to Chapter 10, 
, where we shall see how to find the K-S entropy as a special case of a much more 

general and powerful calculational scheme. 

g 9.7 Fractal Dimension(s) 
'r 

The two methods of quantifying chaos described in the previous sections both 
emphasize the dynamical (time-dependent) aspects of the trajectories. A second 
category of quantifiers focuses on the geometric aspects of the attractors. In 
practice, we let the trajectories run for a long time and collect a long time series of 
data. We can then ask geometric questions about how this series of points is 
distributed in state space. Perhaps unexpectedly, this geometry provides important 
clues about the nature of the trajectory dynamics. 

A common question is: What is the (effective) dimensionality of the 
attractor? For example, if the attractor is a fixed point, we say that the 
dimensionality is equal to 0 because a point is a 0-dimensional object in geometry. 
If the attractor is a line or a simple closed curve, we say that the dimensionality is 
equal to 1 because a line or a curve is a one-dimensional object. Similarly, a 
surface has a dimensionality of 2, a solid volume a dimensionality of 3. 
Furthermore, we can talk about "hypervolumes" of yet higher dimensions if we 
wish. 

Why is dimensionality important? As we saw in Chapters 3, 4, and 8, the 
dimensionality of the state space is closely related to dynamics. The dimensionality 
is important in determining the range of possible dynamical behavior. Similarly, 
the dimensionality of an attractor tells about the actual long-term dynamics. For 
example, the dimensionality of an attractor gives us an estimate of the number of 
active degrees of freedom for the system. 

Two points to note: (1) For a dissipative dynamical system (the type of 
system we are considering here), the dimensionality, D, of the attractor must be less 
than the dimensionality, call it d, of the full state space because we know that a d- 
dimensional state space volume of initial conditions must collapse to 0. (You 
should recall that the dimensionality d of the state space is determined by the 
minimum number of variables needed to describe the state of the system.) The 
-tor might be a "surface" of dimension d -1 or some other lower- 
dimensionality object. All we require is that the attractor occupy 0 volume in state 
Space. (2) If we are examining Poincare section data, the dimensionality D* of the 
Poincar6 section of the attractor will be one less than the dimensionality D of the 
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full state space attractor (D = D* + 1) since the Poincark section technique takes out 
one of the state space dimensions. 

For a Hamiltonian system, the dimensionality of the set of points generated by 
a trajectory must be no larger than d - 1, since, as we discussed in Chapter 8, the 
trajectories are confined to a constant energy "surface" in the state space. If we use 
a Poincare section, then the largest possible dimensionality is further reduced. In 
systems, with additional constants of the motion, the dimensionality is yet smaller. 

As an example of the power of dimensionality arguments, let us consider a 
three-dimensional state space. Let f represent the set of time evolution functions 
for the system (see Section 4.4). If div f < 0 for all points in the state space, then 
the attractor must shrink to a point or a curve. For such a system, the long-term 
behavior cannot be quasi-periodic because quasi-periodic trajectories "live" on the 
surface of a torus. Why does this follow? If we consider a set of initial points 
distributed through a volume of the torus and if div f < 0 everywhere, then the 
volume occupied by the initial points inside the torus must shrink to 0, and the torus 
must disappear. This argument tells us that the Lorenz model described in Chapter 
1 cannot have quasi-periodic solutions since the model has div f < 0 for all state 
space points. 

What has come as a surprise to most scientists and mathematicians is that 
geometric objects with dimensionalities that are not integers play a fundamental 
role in the dynamics of chaotic systems. These geometric objects have been named 
fmctals [Mandlebrot, 19821 because their dimensionality is not an integer. To be 
able to talk about such fractional dimensions, we need to establish a general means 
of determining quantitatively the dimensionality. 

Unfortunately for the novice in nonlinear dynamics, many apparently 
different definitions of dimensionality are currently in use. In general these may all 
give different numerical values for the dimensionality, although in some cases the 
numbers are close. To exacerbate the difficulties, the namefrectal dimension is 
used rather indiscriminately. It is best to recognize that there is a host of fractal 
dimension measures, none of which can legitimately claim to be fractal 
dimension. We will confine our discussion to those measures of dimension that are 
relatively straightforward to implement for the kind of data generated from the 
study of a dynamical system. A thorough discussion of the definitions of the 
various measures of dimension can be found in FOY83. Several examples that 
yield different values for different dimension methods are treated in ESN90. 

We will begin our discussion with a measure called the box-counting 
dimension (often called the capacity dimension) because a set of boxes (or cells) is 
used in the calculation. This particular measure is relatively easy to understand, but 
it turns out not to be so useful for dimension determinations in higher- 
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dimensionality state spaces. It was first applied to dynamics by Kolmogorov 
(KOL5 8). 

The box-counting dimension Db of a geometric object is determined by the 
following: Construct "boxes" of side length R to cover the space occupied by the 
geometric object under consideration. For a one-dimensional set (such as the string 
of x values for a one-dimensional state space trajectory), the boxes are actually line 
segments of length R. In two-dimensions, they would be two-dimensional squares. 
In three dimensions they would be cubes, and so on. We then count the minimum 
number of boxes, N(R), needed to contain all the points of the geometric object. As 
we let the size of each box get smaller, we expect N(R) to increase as R decreases 

1 
because we will need a larger number of the smaller boxes to cover all the points of 
the object. The box-counting dimension Db is defined to be the number that 
satisfies 

where k is a proportionality constant. In practice, we find Db by taking the 
logarithm of both sides of Eq. (9.7-1) (before taking the limit) to find 

As R becomes very small, the last term in Eq. (9.7-2) goes to 0, and we may define 

To gain some confidence that Eq. (9.7-3) gives a reasonable definition of 
dimension, let us apply it to some simple examples. First, consider a two- 
dimensional space and let the geometric object be a point. In this case, the box is 
just a square of side R. Only one box is needed to contain the point; therefore, we 
have N(R) = 1 for all values of R. Using this result in Eq. (9.7-3) gives Db = 0, just 
as we would expect for a point. 

What happens if the object consists of a number of isolated points? The 
answer is that Db is still equal to 0. To see how this comes about, let N be the 
number of isolated points. When R is small enough (smaller than the smallest 
distance between neighboring points), we will have one box around each point. 
When R gets smaller than this value, the numerator in Eq. (9.7-3) stays fixed while 
the denominator grows (more negative) without limit. So again we have Db = 0. 

Exercise 9.7-1. You might worry that Eq. (9.7-3) involves the logarithm 
of a length, which carries some units, such as meters or furlongs. Show 
that the choice of units for R makes no difference in the numerical value 
of Db 
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As a second example, let us use a line segment of length L as the geometric 
object. In this case we need N(R) = L I R boxes to cover the segment. [When N is 
sufficiently large, we can safely ignore any fraction of a box in counting N(R).] We 
now use this value in Eq. (9.7-3) to find 

log(L/R) log L - log R 
D, = -1im = - lim = 1 (9.7-4) 

K+O logR R - 1 0  IogR 

As we expect, the box-counting dimension of a line segment is equal to 1. 

Exercise 9.7-2. Show that D6 = 1 for an object consisting of a finite 
number of isolated line segments. 

I Exercise 9.7-3. Show that D,, = 2 if the geometric object is a surface. I i 
Now that we are convinced that Eq. (9.7-3) gives a reasonable definition of 

dimension, let us apply it to a case that gives a noninteger result. As a first 
example, we will discuss the construction of the famous Cantor set. [The German 
mathematician Georg Cantor (1845-1918) introduced this set long before the term 
fractal was invented.] The Cantor Set is constructed in stages by starting with a 
line segment of length 1. For the first stage of the construction, we delete the 
middle third of that segment. This leaves two segments, each of length 113. For the 
second stage, we delete the middle third of each of those segments, resulting in four r 
segments, each of length 119. For the Mth stage, we remove the middle third of 
each of remaining segments to produce 2M segments, each of length (113)~. If we 
continue this process as M + w , the Cantor set is left. This process is illustrated 
in Fig. 9.6. 

Let us now calculate the box-counting dimension of this set. We need to 
proceed cautiously. If we stop at any finite state of deletion, we are left with just a 
series of 2M line segments whose D6 = 1. But if we let M + a , then we seem to 
be left with just a series of points, and we might expect to find D6 = 0. Therefore, 
we must let M + m and R + 0 simultaneously. We do this by making N(R) the 
minimum number of boxes required to cover the object at a given stage of 
construction. We then determine how N(R) and R depend on M. Then, as M gets 
very large, R will get very small, and we can take both limits simultaneously. 

For the Cantor set construction, at the Mth stage of construction, we need a 
minimum of 2M boxes with R = (113)~. If we use those values in Eq. (9.7-3), we 
find (leaving off the limit notation) 

16 8 4 2 1 
Number of segments 

Fig. 9.6. An illustration of the first four construction stages of the Cantor set by the removal 
of middle thirds. At the Mth stage of construction, there are 2M segments each of length 
(I  1 3 ) ~ .  

We see that D,, for the Cantor set is a noninteger number between 0 and 1. In rough 
terms, the Cantor set is more than a collection of points but less than a line segment. 
It is a fractal object. 

Exercise 9.7-4. Find D6 for a Cantor set constructed by removing the 
middle lln of a line segment (with n > 1). 

How much of the line segment is left after the Cantor construction process as 
M + a ? This length is called the measure of the Cantor set. We can compute 
that measure by noting that at the Mth stage of construction, the length of the line 
segments remaining is given by 

In the limit, the amount left is 

The sum in the previous equation is a simple geometric series whose value is 3. 
Thus, we see that the measure of the Cantor set is 0. 
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Exercise 9.7-5. Construct a fractal set by removing, at the Mth stage of 
construction, the middle ( 1 / 3 ) ~  of the remaining line segments. (M is, of 
course, a positive integer.) What is the box-counting dimension of the set 
so generated? What is the length of the remaining segments? This set is 
called a fat fractal since its measure is greater than 0. The notion of fat 
fractals is important in characterizing the chaotic bands which occur in 
many dynamical systems (see UMF85 and EYU86). 

Let us now look at a fractal whose (box-counting) dimension is greater than 1. 
This fractal is called the Koch curve (introduced by the Swedish mathematician 
Helge von Koch in 1904) and is an example of a continuous, but nowhere 
differentiable curve of infinite length! The construction proceeds as follows: We 
start with a line segment of unit length. Then we remove the middle 113 of the 
segment and replace it with two segments, each of length 113 to form a "tent" (see 
Fig. 9.7). For the second stage, we remove the middle 113 of each of the smaller 
segments and replace those with two more segments to form more tents. At the 
Mth stage of construction, we will have 4M segments, each of length (113)~. 

If we use Eq. (9.7-3) to find the D6 for the Koch curve, we find that Do = 
log 41 log 3 = 1.26.. . We see, therefore, that the Koch curve is more than a curve 
(whose dimension would be equal to 1) but less than a surface, whose dimension 
would equal 2. By using reasoning analogous to that which led to Eq. (9.7-7), it is 
easy to show that the length of the Koch curve is infinite. Since the Koch curve has 
an infinity of abrupt changes in slope, it is nowhere differentiable. 

Stage Number of 
Segments 

Fig. 9.7. The first few stages of construction of the Koch curve. At each stage the middle 
113 of each straight segment is removed and replaced with two other segments to form a tent. 

Exercise 9.7-6. Work through the details of the calculations that show 
that Db = 1.26.. . for the Koch curve. Show that the Koch curve has 
infinite length. 

Exercise 9.7-7. Start with an equilateral triangle and construct a Koch 
curve on each side of the triangle. The result is called the Koch 
Snowflake. Show that the boundary has infinite length but that it encloses 
a finite area. 

The fractal objects defined earlier all have the property called self-similarity 
(i.e., a small section of the object, suitably magnifi is identical to the original 
object). These self-similar objects form a particular simple class of fractals, but 

i 
3 

not all fractals are self-similar. Another class of fractals is called self-~ffine 
(MAN85). Their "self-similarity" is apparent only if different magnification factors 
are used for different directions. Finally, we distinguish fractals such as the Cantor 
set generated by a deterministic rule from mndom f~yu:tals [Mandlebrot, 19821 

I 

generated by stochastic processes. The self-similarity of random fractals requires a 
statistical description. We shall meet several random fractals in Chapter 11. 
Random fractals are useful in understanding some aspects of noise, music and 

j various shapes found in nature (VOS89). 

Fmctal Dimensions of State Space Attractors 
I Let us now turn our attention to the geometric characterization of attractors of 

dynamical systems. If we apply the box-counting procedure to the trajectory data 
from some dynarnical system, either experimental or theoretical, we can determine 
the box-counting dimension for the system's attractor. If the attractor's dimension 
is not an integer, we say that we have a strange attractor for the system. However, 
the determination of the dimension is not as straightforward as you might imagine. 
For example, in practice, you cannot take the R + 0 limit because of the finite 
precision of the data. In Section 9.8, we shall introduce another dimension, which 
is usually easier to compute from actual data. There we will discuss the 
computation problems in more detail. 

The box-counting dimension has been computed (GRA81) for the logistic 
map at the period-doubling accumulation point %, by means of renormalization 
arguments like those given in Chapter 5. The numerical value of the box-counting 
dimension is 0.5388.. ., which, according to the renormalization calculation, should 
be a universal number for any one-dimension unimodal iterated map function with 
a quadratic maximum. 

We can make a rough calculation of the box-counting dimension for the 
logistic map function by considering the splitting chaotic bands that occur as 
A + %, from above (see Figs. 2.1 and 9.3, for example). For a given parameter 
value, we can think of these bands as constituting line segments (that is, the - probability distribution of points within each band is approximately uniform and 
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continuous). When a set of bands splits into twice as many bands, as A decreases 
toward A,, we can think of this as a Cantor set construction that removes some 
interior piece of each of the chaotic bands. The size of the bands is described by 
the same Feigenbaum size scaling that holds for the period-doubling sequence for 
A < A, (see Fig. 2.3), where one section is a factor of lla smaller than the 
previous section and the other section is a factor of (lla)' smaller. 

Suppose we need 2" segments of minimum length R to cover the 2" bands for 
a particular parameter value. Then, we need 2"" segments of length Rla to cover 
the segments constructed in the next stage. We can estimate Do with 

D,, = - 
l0~(2"/2"+~) 

= 0.4498.. 
log a 

which result is somewhat smaller than the result (GRA81) quoted above. 
We get a better estimate of Db by generating a somewhat more complicated 

Cantor set, which more closely resembles the pattern of band splittings of the 
logistic map. In this new procedure we start with two segments of lengths 1 and 
l l a  and remove a segment of length l l a  from one and ( l ~ a ) ~  from the other. At the 
nth stage of construction, we need 2" segments of length Rn to cover the bands. 
Then at the (n+l)th stage, we will need 2"" segments of average length 

for the next stage. Db is found by using this average length (in an admittedly ad hoc 
manner) in Eq. (9.7-3) to give 

log 2 
D,, = - = 0.543 (9.7-10) 

log(+[l/a + 1/a2])  

closer to the value cited earlier. 
The lesson to be learned here is that when the fractal set does not have a 

simple self-similar structure, then the value of the box-counting dimension depends 
on the box covering procedure used. We suspect that for these more general 
objects we need more than one measure of dimensionality to characterize them. In 
Chapter 10, we will learn about an infinity of dimensional measures needed to 
characterize these more complex objects. 

* The Similarity Dimension for Nonuniform Fractals 
As we saw in the example in the previous subsection, when the fractal set in 
question does not have a uniform structure, the box-counting dimension value 
depends upon the covering used for the set. In this section we explore how to 
generalize the box-counting dimension for this kind of situation. We shall call the 
new dimension the similady dimension D.,. We shall see that the generalization 
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gives us a useful dimension for the logistic map attractor at the period-doubling 
accumulation point and for quasi-periodic behavior in the sine-circle map. 

For a nonuniform fractal, we are concerned with covering the object with 
boxes of different sizes r,. Suppose at a certain stage of construction of the fractal 
set, we use M, boxes of size ri with N, points in each box. In this method of 
bookkeeping, different boxes of the same size r that have differing numbers of 
points in them will be given different indices. Let pi = NJN be the relative number 
of points in one of the boxes labeled by i. Then we have 

, 
As we go from one stage of construction to the next, we assume that there is a 

scaling factor si which sets the size ri of the ith set of boxes relative to some length 
1 scale R. That is, r; = R 1 si , where si > 1. If this construction is being carried out in 

a d-dimensional state space, then the volume of each of the ith set of boxes is ( ~ 1 s ~ ) ~  
and the total volume of the boxes used must satisfy 

- 

or equivalently 

since the volume of the fractal set we are trying to describe is 0 in the full d- 
dimensional space. The similarity dimension D, is defined to be the number that 
satisfies 

We can see from Eq. (9.7-14) that we must have D, < d. This dimension is 
related to the Hausdorff dimension (see later), which uses boxes of varying sizes 
and asks for the greatest lower bound D that gives a sum greater than 0. Here, 
however, we are assuming that the fractal satisfies similarity scaling; therefore, we 
have a definite relationship between the scale factors and the number of boxes of a 
particular size. This assumption, then, leads to the implicit expression Eq. (9.7-14) 
for the similarity dimension D,. 

Exercise 9.7-8. Show that if there is only one scale factor, say s,, and that 
if we require MI boxes to cover the fractal, then the similarity dimension 
as given by Eq. (9.7-14) is the same as the box-counting dimension Db. 

Before applying this result to some attractors, let us see how this definition of 
D, can be developed by using arguments analogous to those used for the box- 
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counting dimension. Suppose that the entire fractal object fits inside a box of 
volume p, where, again, d is the dimensionality of the full space. Suppose we 
cover the object with boxes of size r. Each box has a volume /. Then the number 
of boxes nb of size r required to cover the attractor at a particular stage of 
construction depends on the scaling factors s ,  the overall size of the attractor R and 
the box size r; therefore, we write 

I Now we invoke two important scaling relations. First, because of the 

I assumed self-similarity of the fractal object, we must have 

Second, for self-similar fractals, the box-counting dimension satisfies 

n, (R ,  r )  = n, (R)r-" (9.7-17) 

The primary assertion is that it is meaningful to use the same D, which we then call 
D,,, for all the scale factors. Now we use Eqs. (9.7-16) and (9.7-17) in Eq. (9.7-15) 
to obtain 

Cancellation of n,(R)r-'.'. from both sides of the previous equation yields Eq. (9.7- 
14). 

Let us now apply Eq. (9.7-14) to the logistic map attractor at the period- 
doubling accumulation point. First, we need to find the appropriate scaling factors. 
For the logistic map near the period-doubling accumulation point, we have argued 
that there are two scaling factors. We can find these factors using the universal 
function g O  introduced in Chapter 5 and Appendix F. Let us follow several 
successive iterations of g b )  starting with y = 0. [Recall that the maximum of the 
function g o  occurs at y = 0.1 Then, as we saw in Section 5.5, these trajectory 
points mark the boundaries of the regions within which all the attractor points 
reside. For the universal function gCy), we have 

Y ,  = d o )  = 1 

Yz = g(g(0))  = - l /a  

Y3 = g(-llff) 
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Thus, the lengths of the two intervals in which the attractor resides 
y3 = 1 - g( - l /a )  and y4 - yz = l / a 2  + l/a . The overall size ( 

given by yl - y~ = 1 + l / a  . Hence, the two scaling factors are 

1 + l /a  
s, = = a  =2.503 ... 

l / a z  + l / a  

1 + l / a  
s2 = =5.805 ... 

l - g ( - l / a )  

are gi 
~f the 
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wen by y, - 
attractor is 

(9.7-20) 

We then determine the dimension D by numerically finding the value that 
satisfies 

r (2.503.. .)-I1' + (5.805.. .)-'I* = 1 (9.7-21) 
I 

which yields D, = 0.537. We should point out that the Feigenbaum attractor does 
not exhibit exactly the rescaling properties required by our calculation of D,. 
However, the deviations from rescaling are small, and the method gives a value in 

i close agreement with that calculated by much more complex methods (GRA81). 
From this argument, we see that the two scaling factors are a and a number 

that is almost, but not quite, equal to 2. Note that our ad hoc use of an average 
I length in the previous calculation of D for the logistic map gives a result for the 

dimension numerically close to the more rigorous value, but we must admit that the 
agreement is accidental. There is no theoretical justification for the use of an 
average length in the dimension calculation. 

I 

Exercise 9.7-9. Using the polynomial form of the universal function 
given in Eq. (F.l-21) of Appendix F, carry out the first four iterations of 
g o  starting with yo = 0. Then verify the numerical values of the scaling 
factors used in the text. Finally, check the numerical value of D., 
determined from Eq. (9.7-2 1) .  I 
We can also use Eq. (9.7-14) to get an approximate value of the similarity 

dimension associated with the sine-circle map. As described in Chapter 6, at the 
critical value of the nonlinearity parameter K = 1, the frequency-locking intervals 
supposedly fill (in a rough sense) the entire P axis. However, quasi-periodicity 
still occurs; therefore, we can ask for the value of the similarity dimension of the 
quasi-periodic intervals. This dimension can be computed to surprising accuracy 
by using Eq. (9.7-14) with only two scaling numbers based on the sizes of the gaps 
between related frequency-locking tongues. In particular, we use the gaps between 
the p:q, p': q' , and ( p  + p') : (q + q') tongues as shown in Fig. 6.14. For 
example, we can use the distance between the 0:l tongue at 1/(2n) and the left-edge 
of the 1:2 tongue at 0.464 to set the overall size scale. We then use the edges of the 
1:3 tongue, which extends from 52 = 0.337 to 0.367 (with an uncertainty of + 
0.0005), to find s, = 1.71 and s2 = 3.14. With these results Eq. (9.7-14) gives D, = 
0.857 f 0.001. This result, even though it uses only two tongues to compute the 
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dimension, is in fairly good agreement with the value 0.87 determined by Jensen, 
Bak, and Bohr (JBB83). 

Exercise 9.7-10. Use the numerical values cited in the previous paragraph 
to check the values of D, for the sine-circle map. 

The dimension D, of the frequency-locking intervals has been found from 
experimental data for systems that can be modeled by the sine-circle map. If a 
tunnel diode circuit is driven sinusoidally, competition occurs between the driving 
frequency and the natural oscillation frequency of the tunnel diode. Frequency- 
locking and quasi-periodic behavior can occur. The similarity dimension has been 

I determined (TES85) for such a system with a value in good agreement with the 
value stated above. However, an experiment with a driven relaxation oscillator 
(CUL87) set at the apparent critical value of its control parameter gave a value for 
the similarity dimension of about 0.795 f 0.005, not in agreement with the value 
0.87. This disagreement was explained by the use of an "integrate-and-fire" model 
(ACL88) for the relaxation oscillator, which showed that the dimension value 
found in the experiment was not expected to be universal. The important lesson 
here is that there are different classes of quasi-periodic systems. Not all quasi- 
periodic systems belong to the sine-circle map class. 

111 Fractal Dimensions and Basin Boundaries 
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'I Fractal dimensions show up in yet another aspect of nonlinear dynamics. As we '1 have mentioned earlier, many nonlinear systems show a sensitivity to initial 
conditions in the sense that trajectories that are initially nearby in state space may 
evolve, for dissipative systems, to very different attractors. In some cases these 
attractors correspond to fixed points or limit cycles. In other cases the attractors 
may be chaotic attractors. As we have learned, the set of initial conditions that 
gives rise to trajectories ending on a particular attractor constitutes the basin of 
attraction for that attractor. For many nonlinear systems the boundaries of these 
basins of attraction are rather complex geometric objects, best characterized with 
fractal dimensions. It is the highly convoluted nature of these basin boundaries that 
leads to the sensitivity to initial conditions: A slight change in initial conditions 
could shift the trajectory in an essentially unpredictable way from one basin of 
attraction to another. 

We will give just two brief examples of fractal basin boundaries. The first 
, example is the now familiar driven, damped pendulum. For large enough driving 

torques, the two predominant modes of motion of the pendulum are rotations that 

-1.5 

t -1.5 Real z +1.5 
Fig. 9.8. The Julia set for the value of C = 0 + i 1.0. The central "dendritic" points 
correspond to initial conditions that give rise to trajectories that remain bounded. All other 
points correspond to orbits that escape to infinity. 

are either clockwise or counterclockwise (on the average). We can ask a very 
simple question: Which initial conditions lead to clockwise rotations and which to 
counterclockwise? The answer to this simple question turns out to be very 
complicated because the boundary between the two basins of attraction is a fractal 

? 

The second example of a fractal basin boundary is the famous Julia set, 
named after the French mathematician Gaston Julia. The Julia set constitutes the 
boundary between initial conditions of a two-dimensional iterated map function 
leading to trajectories that escape to infinity and the set of conditions leading to 
trajectories that remain bounded within some finite state space region. The usual 
Julia set is based on the iterated map function of a complex variable z: 

where C is a complex control parameter. Figure 9.8 shows the Julia set for the case 
C=O+i  1.0. 

The related and equally famous Mandlebrot set gives a similar boundary, but 
in parameter space: The values of C (a complex number) that give rise to bounded 
orbits starting from z = 0. For more information on Julia and Mandlebrot sets, the 
reader is referred to the list of books and articles at the end of this chapter. 

In addition to basin boundaries being fractal, we can have situations in which 
the basins associated with different attractors are intermingled. These so-called 
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riddled basins are such that for (at least) one of the basins of attraction, any 
neighborhood about each point in that basin contains points belonging to another 
basin of attraction. In that case, the basin of attraction (in contrast to the attractor 
itself) can have a fractal structure. See, for example, (S0093a) and (LAW94). 

Summary and Comments on Fractal Dimensions 
We will make a crucial point about terminology to conclude this section on fractal 
dimensions. We should make a distinction between the apparent geometric 
properties of an attractor and the geometric properties of a finite data set generated 
from a trajectory running on the attractor. For example, for the logistic map with A 
= 3.58, the attractor consists of four chaotic bands occupying four distinct intervals 
of the x axis. Within each band, almost all the points are attractor points (with the 
exception of unstable periodic points). Thus, we are tempted to say that the 
attractor has a dimension of 1, which is the dimension of a line interval. On the 
other hand, if we determine the dimension of a set of data points generated by 
letting a trajectory run with A = 3.58, we find a dimension value (as shown in 
Section 9.8) that is not an integer. Unless we specifically state otherwise, we will 
always mean the geometry determined from the data set when talking about the 
"dimension of an attractor." 

All of the definitions of fractal dimension discussed previously should be 
contrasted with the so-called topological dimension. The topological dimension is 
always an integer and is 0 for a point or set of points, 1 for a line or curve, and so 
on. The topological dimension is always less than or equal to the box-counting (or 
other) fractal dimension. For example, the topological dimension of the Koch 
curve is 1 because it is a curve (or a group of line segments). On the other hand, we 
have seen that the box-counting dimension for the Koch curve is greater than 1. 
The box-counting dimension reflects the folded and twisted nature of the Koch 
curve that makes it, in a sense, more than a curve but less than a surface area. 

As an aside, we should point out that another dimension, the Hausdorff 
dimension DH, is defined in a fashion quite similar to that for the similarity 
dimension. The Hausdorff dimension, however, allows us to use variable size 
boxes to cover the set without the restriction on scaling imposed for the similarity 
dimension. The length size R in the dimension calculation is the largest size box 
used to cover the set. We raise the lengths to the power D and sum over all the 
lengths to find the "measure" of the set. DH is then defined to be the greatest lower 
bound on the power D that yields a measure of 0 as R + 0 .  For details, see 
FOY83 and ESN90. 

9.8 Correlation Dimension and a Computational Case History 

Although the box-counting procedure developed in the previous section is 
conceptually straight-forward, its application to actual data, particularly for higher- 
dimensional state spaces, is fraught with difficulties. The number of computations 
required for the box-counting procedure increases exponentially with the state 
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I space dimension. Moreover, the box-counting scheme requires us to partition the 
I state space with boxes and then to locate the trajectory points within the boxes, a 

time-consuming process. To provide a computationally simpler dimension for an 
attractor, Grassberger and Procaccia (GRP83a) introduced a dimension based on 
the behavior of a so-called correWn sum (or correldbn integral). This 
dimension is called the correWn dimension D, and has been widely used to 
characterize chaotic attractors. It has a computational advantage because it uses the 
trajectory points directly and does not require a separate partitioning of the state 
space. 

In this section we shall introduce the correlation dimension for one- 
dimensional data. (In Chapter 10, we shall show how to extend the definition to 
higher-dimensional systems.) We shall then provide a computational case history 
bycalculating the correlation dimension for various data sets. As we have tried to 
emphasize throughout this chapter, it is important to have some intuition for the 
reliability of the numerical results for any quantitative measure of chaotic behavior. 
We need an estimate of reliability (or uncertainty) both to compare our results with 
those from other experiments or computations and to monitor the behavior of the 
system. We have chosen to look at the correlation dimension as a detailed example 

! 
1 because it is relatively straightforward to compute and the difficulties it presents are 

similar to those encountered in the computation of any of the other quantifiers. 

I To define the correlation dimension, we first let a trajectory (on an attractor) 
evolve for a long time, and we collect as data the values of N trajectory points. 
Then for each point i on the trajectory, we ask for the number of trajectory points 

1 lying within the distance R of the point i, excluding the point i itself. Call this 
number NLR). Next, we define p,(R) to be the relative number of points within the 
distance R of the ith point: p,(R) = NJ(N-I). (We divide by N-1 because there are 
at most N-1 other points in the neighborhood besides the point i.) Finally, we 1 compute the correlation sum C(R): 

1 
C(R) = - pi (R) 

N i=, 

Note that C(R) is defined such that C(R) = 1 if all the data points fall within the 
distance R of each other. If R is smaller than the smallest distance between 

i trajectory points, then pi = 0 for all i, and C(R) = 0. 

The smallest nonzero value for C(R) would be U[N(N-I)] if only two 
points are within the distance R of each other. If some of the data points 

I happen to have the same numerical value (due to computer round-off, for 
example), then the smallest value of C(R) is N*(N*-I)I[N(N-I)], where N* 
is the number of trajectory points that have that value (assuming all other 

1 trajectory points are distinct). 
4 

*& As an aside, we point out that if one were to include the ith point itself in 
counting points within the distance R of point i, then the correlation sum 
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C(R) would be equal to 1IN for sufficiently small R. As we shall see, 
there is a numerical advantage to excluding the ith point. 

1 The relative number p, itself can be written in more formal terms by 
introducing the Heaviside step function O : 

Using this function, we can write 

In Eq. (9.8-3), the Heaviside function contributes 1 to the sum for each xj 
within the distance R of the point xi (excluding j = i); otherwise, it contributes 0. In 
terms of the Heaviside function the correlation sum can be written 

Often the limit N + m is added to assure that we characterize the entire attractor. 
The correlation dimension D, is then defined to be the number that satisfies 

C(R) = lim k ~ " ~  
R-10 

(9.8-5) 
i 

or after taking logarithms 

D, = lim 1% C(R) (9.8-6) 
R-to logR 

For convenience of interpretation, we shall use logarithms to the base 10, though 
some other workers prefer to use base 2 logarithms. 

If the terminology were being defined from scratch, we would prefer to 
call D, the correlation scaling index (rather than the correlation 
dimension) because it is the number that tells us how C(R) scales with R. 
However, the name correlation dimension seems to be firmly entrenched 
in the literature. The relationship between D, and other "dimensions" will 
be discussed in Chapter 10. 

There is one obvious difficulty in using Eq. (9.8-6) to determine the 
correlation dimension: it is not possible to take the limit R + 0 . Any real data set 
consists of a finite number of points. Hence, there is some minimum distance 
between trajectory points. When R is less than that minimum distance, the 
correlation sum is equal to 0 and no longer scales with R as Eq. (9.8-5) requires. 
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Fig. 9.9. A plot of log C(R) as a function of log R for the logistic map trajectories with A = 
3.56995. One hundred data points were used in the analysis. For large values of R the finite 
size of the attractor makes C(R) "saturate" at 1. For small values of R, the finite number of 
data points causes in C(R) to become very negative, which occurs at an R value given 
roughly by the size of the attractor (given by the range of x values) divided by the nuz$ber of 
data points. The intermediate region, in which the curve is approximately a strai* line 
(bounded in the figure by the circled points), is called the scaling region. The slope in the 
scaling region gives the correlation dimension D,. 

What is done in practice is to compute C(R) for some range of R values and then to 
plot log C(R) as a function of log R as shown in Fig. 9.9. 

Let us examine the features of Fig. 9.9, which shows the results of computing 
i C(R) for trajectory data generated from the logistic map function with parameter A 
I = 3.56995, close to the period-doubling accumulation point value. For large values, 

R is larger than the size of the attractor and all points are within R of each other. 
For the logistic map data used in that figure, the data values lie between 0.90 and 

t 
1 0.33, approximately. Thus, once R is larger than 0.57, we should have C(R) = 1. 

We see this occurring in the upper right-hand portion of the graph. For R larger 
than this value, C(R) is equal to 1, independent of R. 

At the other extreme, for small values of R, the correlation sum is equal to 0, 
independent of R. (Those values are not plotted in Fig. 9.9 for obvious reasons.) 
For Fig. 9.9, only 100 data points were used. From the argument presented earlier, 
we would expect the smallest nonzero value of C(R) to be about 21104 (with a 
corresponding log value of about -3.7). If these data points were spread uniformly 
over the region of the attractor, then the average spacing would be about 0.005. 
Thus, we would expect that log C(R) = -3.7 when R is about equal to 0.005 (with a 
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Fig. 9.10. The same calculation as shown in fig. 9.9 but with 1,000 data points used for 
calculating the correlation sum The probabilities for each value of R were averaged over 40 
randomly chosen points. The effects due to the finite number of data points are pushed to 
smaller values of R. The slope is much closer to that found by GRP83. 

corresponding log value of -2.3). We see that the graph does reach this level, but 
for smaller values of R, because the points are clustered on the attractor, not spread 
uniformly. Note that there is a steeper fall-off for small values of R due to the 
sparseness of the data. 

We see that only in some intermediate R region does C(R) obey the scaling 
law expressed in Eq. (9.8-5). Hence, this region is called the scaling region, and 
the slope in that region determines the correlation dimension from Eq. (9.8-6), 
without the limit R + 0 .  For the data shown in Fig. 9.9, we find D, = 0.535 f 
0.012, which is close to, but not quite in agreement with the value found by other 
authors (GRP83a). The uncertainty was determined from a least-squares fit of a 
straight line to the scaling region data of Fig. 9.9. Note that the quoted uncertainty 
is a statistical uncertainty based on fitting a straight line in the scaling region. As 
we shall see, there are also many possible systematic effects, which can cause the 
computed dimension to differ from the "true" value. 

Unfortunately, for most sets of experimental data, the determination of the 
scaling region is rather subjective since in many cases the log C(R) versus log R 
curve is not a straight line over a very large range of R. You can estimate an 
uncertainty to be associated with D, by varying the range of R that you call the 
scaling region. In other situations, the log C(R) versus log R graph is not straight 
over any significant range of R. In those cases, the meaning of D, is at best 
dubious. 
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Figure 9.10 shows a similar graph, but 1,000 data points have now been used 
in the analysis. We see that the scaling region now extends over a larger range of R 
"slues. The resulting value for the correlation dimension is now in excellent 
greement with the results of GRP83a. 

Obviously, for ideal (noise-free) data, the scaling region can be extended to 
smaller values of R by using a larger number of data points as shown in Fig. 9.10. 
However, using a larger number of data points considerably increases the 
computational time. In fact, if Eq. (9.8-4) is used to compute the correlation sum, 
then the number of comparisons increases as N ~ .  In practice, one can use a few 

t % thousand trajectory points for N, but compute p,(R) for only a sample, say, 50, of 
those points. If the points i are chosen "at random" from the larger sample, then the 
resulting correlation sum seems to be nearly equal to the full correlation sum. This 
latter result is called thepointwise dimension (FOY83 and [Moon, 19921). 

We shall now consider several factors that affect the computation of the 
correlation dimension. 

Finite Number of DatQ Points 

The difference between the two calculations in Figs. 9.9 and 9.10 lies solely in the 
number of data points used in the analysis. The number of data points sets an 
important upper l i t  on the value of D, computed from that data set. It is easy to 
understand why (RUE90), and this lesson provides our first cautionary tale. (We 
suggest that this limit be called the Ruelle limit.) To see how an upper limit arises, 
let us imagine calculating the slope of the log C(R) versus log R plot by taking "rise 
over run": 

D, = 
log C(R2 ) - log C(R, ) 

log R, - log R, 

As we have seen, the largest C(R) is 1. The smallest non-0 value of C(R) is 
2/N(N-l), where N is the number of data points. Let us suppose we have data that 
stretch over q decades of R values so that the denominator of Eq. (9.8-7) is just q. 
Thus, the largest value that we could obtain for D, for this data set is 

2 log N 
D <- 

C - 
4 

where we have assumed that N >> 1. 
The crucial point here is that the calculated value of D, has an upper bound 

limited by the number of data points. If we have too few data points and a 
Potentially large value of D,, then our value calculated from the data set may be too 
small. For the case of Fig. 9.9, we have 2 log N = 4 and q = 4 , and our upper limit 

t 
is 1. We are fortunate in this case that the actual correlation dimension is near 0.5; 
so, the upper limit is not very stringent. The "bottom line," however, is that we 
need to be very skeptical of correlation dimension values calculated from small data 
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Fig. 9.11. A plot of log C(R) versus log R for logistic map data with artificial noise added. A 
= 3.56995. The slope is distinctly larger in the noise dominated region below log R = -3. 
The noise was chosen to be a random number between +0.001 and -0.001. One thousand 
data points were used in the analysis. 

sets. This upper limit will become more critical in Chapter 10, where we turn out 
attention to higher-dimensional systems. 

If we use the "pointwise" method of selective averaging to estimate the 
correlation dimension, then the upper limit on the correlation dimension is given 
approximately by 

log N + log N, 
Dc 5 

9 

where Np is the number of points used in computing the average of p(R). We see 
that the upper limit is smaller in this case because Np < N. 

Effects of Noise 

The correlation dimension calculation can also be affected by the presence of 
noise-either "real" noise in experimental data or round-off noise in a numerical 
computation. If the average "size" of the noise is R,,, then we expect the noise to 
dominate the structure of the attractor for R < R,,. Since noise is supposedly 
random, the noise-dominated data will tend to be spread out uniformly in the state 
space, and we would expect to find D, = d, the state space dimension for small 
values of R. Fig. 9.11 shows a log C(R) versus log R plot for data generated from 
the logistic map with artificial noise added (from the computer's random number 
generator) with R,, = 0.001. The change in the slope of the curve near log R = -3, 
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the presence of noise. The slope in the noise region is 0.997 f 0.040 in 
t with the value of 1 expected for a one-dimensional system such as the 

Since the determination of C(R) is affected by noise and choice of scaling 
region, it is important tq test any computational scheme with data sets whose 
p)perties are known. Note that noise tends to make the slope of log C(R) versus 
log R larger for small values of R while the finite number of data points tends to 
make the slope smaller. Some fortuitous cancellation might occur and produce an -- 

, artificial scaling region. For test data, you might use the logistic map at A = 
3.56995 with various amounts of noise added, as we have done here. You might 
also use a periodic signal with noise added. By seeing how your computational 
sheme is affected by noise and by investigating its behavior as a function of the 
number of trajectory points used in calculating C(R), you can put better confidence 
limits on the correlation dimension (or any other dimension) computed from actual 
data. 

Finite Digitbztbn Precision 
Most experimental data sets and essentially all numerical calculations presently 
result in numerical data stored in a digital computer. Since the computer represents 
the numbers with only a finite number of bits, we ought to worry about the possible 
effects of this digitization on computed quantities such as the correlation 
dimension. 

As a concrete example let us consider the data from the semiconductor diode 
circuit introduced in Chapter 1. These data were logged with a so-called 12-bit 
analog-to-digital converter. This device samples a signal in the circuit and converts 
the result into an integer number lying between 0 and 4095 (4096 = 2"). 
Obviously any two circuit readings whose difference is less than 1 in these units 
will result in the same data number, even though the actual voltages may be 
different. What effect does this digitization round-off have on the computation of 
the correlation dimension? 

If two circuit readings lie within 1 of each other, then the computer thinks th t L they are identical values. In essence, having a trajectory separation value R less 
than 1 gives us no new information about the scaling of the correlation sum for 
small R. Hence, the main effects of the digitization are to put a lower limit on the 
range of R that we can use in determining scaling and to set a lower limit on the 
numerical value of the correlation sum. Alternatively (THE90), if we plot log C(R) 
as a function of log (R + s/2), where s is the discretization step size, then most of the 
effects of the step size are removed. 

Periodic D& 

% i t  is the correlation dimension of a time-series of periodic data points? To 
illustrate this case, we have plotted in Fig. 9.12 log C(R) versus log R for the 
logistic map data forA = 3.5, a value for which the behavior is period-4. As you can 
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Fig. 9.12. A plot of mlat ion sum data 
for a periodic signal from the logistic 
map with A = 3.5 for which the behavior 
is period4 The plot shows six distinct 
steps due to the distinct spacings between 
the period4 data values. 

see, the plot shows a series of steps. The explanation is fairly straightforward. If R 
is smaller than the smallest spacing between the four periodic points, then log C(R) 
= log (114) = -0.602.. . since one-fourth of the data points lie on top of one another. 
As R increases, it will eventually be large enough so that two of the four periodic 
points lie within R of each other. (For the logistic map data, the four periodic points 
are not equally spaced.) For that value of R, we should have log C(R) = log (112). 
As R increases further, we will have further step-wise increases in C(R) until R is 
large enough to encompass all four numerical values. We will then have log C(R) 
= 0. For the logistic map with A = 3.5, there are six distinct interpoint distances 
resulting in the six steps seen in Fig. 9.12. 

Exercise 9.8-1. Use the numerical data given in Section 1.4 (or compute 
your own data for A = 3.5) for the period4 behavior of the logistic map 
function to verify that the steps in Fig. 9.12 occur at the approximately 
correct values of R. 

Data with Gaps 
In many situations the string of data values used in the analysis is broken up into 
distinct ranges. For example, if the data were trajectory data from the logistic map 
with A near 3.6 (see Fig. 9.3), then the data fall into two ranges corresponding to 
the two chaotic bands. Hence, there are gaps in the data values. What effects do 
these gaps have on the determination of D,? For small values of R, we will be 
sampling data points all of which lie within the same band. If the two bands each 
have the same correlation dimension, then the correlation sum should scale as usual 
with R. (If the correlation dimension is different for the two bands, then the 
standard correlation dimension procedure yields an average correlation dimension.) 
Once R is large enough to encompass both bands, there may be a sudden change in 
the slope of log C(R) versus log R. The details of the changes depend on the size of 
the gaps compared to the size of the bands. See Fig. 9.13. 

Exercise 9.8-2. Compute the correlation sum for the logistic map with A 
= 3.6 as a function of R as shown in Fig. 9.13. Can you observe effects 
due to the two-band structure of the trajectories? 

-4 , 
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Fig. 9.13. A plot of the correlation sum for logistic map trajectory data with A = 3.6 in the 
region of two chaotic bands. For large values of R the correlation sum plot changes slope 
when R is big enough to encompass the two bands. One thousand data points were used in 
the analpis. 

Random Data 
What is the correlation dimension for purely "random" data? In Fig. 9.14, we have 
plotted log C(R) versus log R for a data set generated by the random number 
generator of the computer language QuickBASIC. The data values ranged in size 
from -0.1 to +O. 1 with a uniform distribution between those values. 

The plot looks qualitatively like that for the logistic map data. We recognize 
a saturation effect at the large R end when all of the data points are within R of each 
other. At the small R end, C(R) goes to 0 when R is less than the range of the data 
divided by the number of data points. Between these extremes, we see a region that 

! appears to be a scaling region. For purely random data, we would expect the 
1 correlation dimension to be equal to the dimension of the state space, which is 1 in 
L the case at hand. 

A least-squares fit to the data in the scaling region of Fig. 9.14 gives a 
correlation dimension value of 0.914 + 0.033, which is less than 1 within the 
statisticai uncertainty of the fit. Larger data sets give dimension values closer to 1 
(see Fig. 9.15, where the same analysis was done with 1,000 trajectory points). 
Thus, it seems clear that the correlation dimension does not discriminate between 
M o m  data sets and chaotic data sets whose correlation dimension is close to the 
dimensionality of the state space unless a very large data set is used. In the 
example given here, the Ruelle limit for the analysis used in Fig. 9.14 is just less 
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slope = 0.915 +I- 0.033 1 

Fig. 9.14. A plot of correlation sum data for a set of random data values lying between -0.1 
and 0.1. One hundred trajectory points were used in the data sample. Twenty points were 
chosen at random to calculate the correlation sum. The plot is qualitatively like that for the 
logistic map data, but the correlation dimension, given by the slope of the plot in the scaling 
region, is somewhat less than 1, the dimensionality of the state space. 

than 1, and our computed value for the correlation dimension is limited from above 
by that value. For the data shown in Fig. 9.15, the Ruelle limit is just larger than 1, 
and the computed correlation dimension agrees with the expected value of 1. 

Continuous Data 
As a final set of examples, let us apply the correlation dimension calculation to data 
generated from some continuous (nonchaotic) functions. In Fig. 9.16, we have 
plotted the correlation sum as a function of R for a data set generated by recording 
values of 0.5 sin(2nnlN) + 0.5 , where N is the number of data points and n = 1, 
2,. . .h'). 

There is an apparent scaling region with a slope of 0.876 f 0.021, 
significantly less than the value of 1 expected for a purely continuous signal. 
However, we must remember that we are using a finite data set representation of 
that continuous signal. For the sine function, the values of the independent variable 
are uniformly distributed, but the resulting computed values of the function, of 
course, are not uniformly distributed; they tend to clump near 0 and 1 for the 
function used. If more data points are used, then the slope of the scaling region 
becomes closer to 1. 

If we use a linear function y = kx with k equal to the reciprocal of the number 
of data points, we find that the slope of the correlation sum data in the scaling 
region is closer to 1 as seen in Fig. 9.17. 

log R 

Fig. 9.15. The correlation sum was calculated with the same random noise signal used in 
Fig. 9.14, but here 1,000 data points were used in the analysis. Forty randomly chosen points 
were used to calculate the correlation sum The slope is now, within the computed 
uncertainty, equal to the expected value of 1. 

I Efects of Filtering 
As a final word of warning, we need to point out that many experimental signals 
are recorded with some kind of filtering process. For example, many electrical 
measurements are made with devices called "low-pass filters" to reduce the amount 
of electrical noise in the signal. These filters are electrical devices that attenuate or 
enhance selected ranges of frequencies, acting much like the "equalizer" controls 
on an audio system. If you have what you believe is a slowly varying signal from 
the system under study, for example, then any rapidly changing signal can be 
attributed to noise. Filters are used to remove (or at least decrease) the contribution 
of the rapidly changing noise to the recorded signal. What is the effect of the 
filtering process on the numerical results for fractal dimensions or scaling 
exponents? Does filtering artificially raise or lower the calculated dimension 
value? This problem has only recently been studied; therefore, a definitive 
statement is impossible to make. Some types of filtering seem to raise the 
computed dimension value; others tend to lower the value. The general trend 
seems to be that most filtering processes lower the numerical value of the fractal 
dimension. This result is consistent with our previous observation that the presence 
of noise increases the dimension value. If filtering reduces the amount of noise in 
the signal, it should therefore lower the effective dimension value. 
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Fig. 9.16. Correlation sum data for a set of points generated from a continuous function, in 
this case, the sine function 0.5 sin(2 n x) + 0.5 for x from 11200 to 1. Only 200 data points 
were used in the analysis. Forty randomly chosen points were used to compute the 
correlation sum The computed slope is significantly less than the value of 1 expected for 
continuous data 

One model of filtering (BBD88) adds another degree of freedom to the 
dynamical system to account for the filter. For a low-pass filter, as long as the 
range of frequencies passed is large compared to the system's inherent frequencies, 
as given by the Lyapunov exponents, for example, then the filtered signal is a 
faithful reproduction of the original signal and there is no effect on the dimension 
calculation. However, if the range of frequencies passed is made smaller, then the 
dynamics of the filter itself become part of the dynamical system and the presence 
of an extra degree of freedom tends to raise the effective dimension value. In rough 
terms, the presence of the filter slows the signal response; therefore, the effective 
signal does not collapse as quickly to the attractor and thus occupies a higher 
dimensional region in state space (ROC94). 

To complicate matters further, it is easy to demonstrate that low-pass filtering 
can make a "signal" consisting purely of a sequence of random numbers look like a 
signal from a lowdimensional dynamical system. One clearly has to proceed 
cautiously here. Again, the best advice is to vary, if possible, the parameters of the 
filtering process to investigate the effect on the computation of fractal dimension or 
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Fig. 9.17. The axrelation sum data for a linear function. Just 200 data points were used in 
the analysis. In this case, the slope in the scaling region is close to the expected value of 1. 

E Summary 
What have we learned from this cautionary tale? The general lesson is that we 
must be careful in interpreting the numerical value of the correlation dimension (or 
any other quantifier) when it is computed from actual data. There are important 
effects due both to the limited number of data points and to the finite resolution and 
filtering processes used to acquire real data. Furthermore, the presence of noise 
tends to increase the calculated size of the correlation dimension. Altogether, these 
processes may influence significantly the actual value of the dimension. Before 
drawing important conclusions from the numerical value of the correlation 
dimension, you should carefully investigate how the value depends on the number 
of data points used, the amount of noise in the data, the arithmetic precision of the 
data, the data acquisition filtering, and the averaging process used in evaluating the 
Correlation sum. 

You should also test the significance of your results by redoing the 
calculations with surrogate data (TGL91). Surrogate data is data generated by 
taking your recorded signal and reprocessing it so that it has the same Fourier 
Power spectrum but has lost all of its deterministic character. This method should 
help you decide whether a model of deterministic chaos or a model of purely 
stochastic processes best represents your data. 

As a "consumer" of results of other scientists' determination of dimensions 
and exponents, you should be skeptical of results from studies that have not 
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explored all of these possible systematic effects. See ASV88, THE90, CGM90, 
and TGL9 1 for useful computational suggestions for the correlation dimension. 

9.9 Comments and Conclusions 

In this chapter, we have looked at several ways of quantitatively characterizing a 
chaotic system, in essence, looking for some quantitative way of specifying how 
chaotic a system is. Lyapunov exponents and the Kolmogorov-Sinai entropy focus 
on the behavior of the system as a function of time. Various fractal dimensions 
focus on the geometric structure of attractors in state space. If the system has at 
least one positive Lyapunov exponent, we say that the system's behavior is chaotic. 
If the attractor exhibits scaling with (in general) a noninteger dimension (scaling 
index), then we say the attractor is strange. 

Do these characteristics go hand in hand? That is, if a system's behavior is 
chaotic, is the corresponding attractor (for a dissipative system) strange? 
Conversely, if we determine that an attractor is strange, is the behavior of 
trajectories on the attractor chaotic? Your newly emerging nonlinear intuition 
might lead you to conjecture that they are linked. For example, the stretching and 
folding of trajectories, characteristic of chaotic trajectories, would lead you to 
expect an attractor with strange geometry. Conversely, the complicated geometry 
of a strange attractor would seem to force the dynamics to be chaotic. However, 
there are exceptions to this link. For example, at the period-doubling accumulation 
point of the logistic map function (or any other unimodal map function with a 
quadratic maximum), the attractor is strange (with D, = 0.501 f 0.007 as we have 
seen in Section 9.8), but the behavior is not chaotic: At the period-doubling 
accumulation point, the Lyapunov exponent is equal to 0. 

In the case of strange attractors that are not chaotic, you might argue that this 
behavior occurs only for one parameter value (i.e., the period-doubling 
accumulation point value). Are there attractors that are strange but not chaotic over 
some range of parameter values? Grebogi, Ott, Pelikan, and Yorke (GOP86) have 
shown that nonlinear oscillators that are driven externally at two incommensurate 
frequencies can have attractors that are strange but not chaotic over some finite 
range of parameter values. They also argue that in general, continuous time 
systems (that is, systems modeled by differential equations rather than iterated 
maps) that are not driven with two incommensurate frequencies should not have 
strange attractors that are not chaotic. Unraveling all the "nots," we would say that 
for most continuous time systems the attractors are chaotic if they are strange. 

We conclude this chapter by pointing out that no single quantifier has 
emerged as the "best" way to characterize a nonlinear system. All of the quantifiers 
proposed to date require considerable computational effort to extract their 
numerical values from the data. All of them require some personal attention to 
avoid artifacts in their evaluation. A slight preference might be given to Lyapunov 
exponents, since in a sense, a positive Lyapunov exponent captures the essence of 
chaotic dynamics: the rapid divergence of nearby trajectories. As we shall see in 
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next chapter, the Lyapunov exponents, for a multidimensional state space, can 
linked to the fractal dimension. However, for higher-dimensional state spaces, 

e computation of the Lyapunov exponents becomes rather difficult, and most 
entists have used some kind of fractal dimension (most commonly the 

lation dimension and its generalizations to be discussed in Chapter 10). 
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9.1 1 Computer Exercises 

CE9-1. Compute the average Lyapunov exponent for the logistic map data 
for A = 4 and show that it is equal to In 2 as calculated analytically in Section 9.5. 

CE9-2. Use Chaos Demonstrations to plot the Lyapunov exponent for the ' logistic map as a function of the control parameter L. (Use the Lyapunov "view" in 
the Logistic Map section.) Check, as best you can, whether the Lyapunov exponent 
obeys the scaling law given in Section 9.4. 

CE9-3. (Challenging, but not too difficult.) Write a computer program to 
calculate the correlation sum for a time series of data. Have the program plot log 
C(R) as a function of log R and verify the results given in Section 9.8. 

CE9-4. Use the correlation dimension program you wrote for CE9-3 to 
investigate the conjecture (ABB86) that the dimension D as function of the 
parameter A (say, for the logistic map) increases as A increases beyond the period- 
doubling accumulation point: 

D ( A ) - ~ ( 4 )  = ~ I A - A , I  
where k is a constant. 

CE9-5. A shareware program FRACTINT provides a wealth of fractal 
generating programs including those for the famous Mandlebrot set, Julia sets, and 
many more. A very versatile and sophisticated program. Information on the 
program is available through FRACTINT Copyright (C) 1990-97 The Stone Soup 
Group. Primary Authors: Bert Tyler (73477.433@compuserve.com), Timothy 
Wegner (twegner@phoenix.net), Jonathan Osuch (73277.1432@compuserve.com), 
Wesley Loewer (loewer@tenet.edu), Mark Peterson (Past Primary Author) or on 
the FRACTINT homepage (http://spanky.h-iumf.ca~www/fractint/fractint.html). 

11111~ CE9-6. Use Chaos Demonstrations to explore the Julia and Mandlebrot sets, 
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Fate shall yield to fickle Chance, and Chaos judge 
Paradise Lost, ii. 232. 

I 10.1 General Comments and Introduction 

the strife. Milton, 

In this chapter we shall describe several generalizations of the methods of 
quantifying chaos that were introduced in Chapter 9. First, we shall show how to 
extract a multidimensional description of state space dynamics from the time series 
data of a single dynamical variable. The so-called embedding (or reconstruction) 
scheme, which enables this process, is certainly one of the most important technical 
contributions to the study of nonlinear dynamics in the last decade; it has become 
the tool of choice in analyzing nonlinear systems. 

With the embedding (reconstruction) method at hand, we shall show how we 
can generalize in various ways the quantitative measures of chaotic behavior. We 
will focus on the correlation dimension and its generalizations and on extensions of 
the concept of Kolmogorov entropy. This presentation should bring the reader very 
close to the research literature on quantifying chaos. 

In the final sections of the chapter we shall describe three powerful, but rather 
abstract, ways of characterizing dynamics. One method looks at the spectrum or 
spread of fractal dimensions and Lyapunov exponents across the state space. The 
second classifies attractors according to the topological properties of the unstable 
Periodic orbits embedded in those attractors. The third uses a formalism much like 
statistical mechanics to capture the dynamical behavior of the system in one 
Powerful mathematical function. 

The reader who is less enamored of mathematical formalism should certainly 
read Section 10.2 on the embedding technique, but could well skip the remainder of 
the chapter. On the other hand, for anyone interested in actually applying the 
analysis of chaos to real data, the material on generalized dimensions and entropies 
is Worth studying in detail. 
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10.2 Embedding (Reconstruction) Spaces 

In Chapter 9, our discussion of Lyapunov exponents, dimensions, and entropies 
used data consisting of a single variable, say x, which we had sampled at successive 
times {ti) to generate a set of sampled values {xi). (We use the braces { ) to denote 
the set or collection of values.) We assumed that the dynamics of the system was 
well described by this single set of numbers. In essence we took for granted, at 
least implicitly, a one-dimensional model for the dynamics. 

We now want to lift that one-dimensional restriction. Of course, one way to 
proceed would be to record simultaneously values of all the dynamical variables for 
the system. For a three-dimensional system, such as the Lorenz model of Chapter 
1, we would need to record three values, say X(t), Y(t), and Z(t). As the number of 
state space dimensions increases, the number of values to be recorded increases. At 
first sight, this procedure seems straightforward. One problem, however, should be 
immediately apparent: For many systems, such as a fluid system or a multimode 
laser, we may not know how many degrees of freedom are active. We do not know 
in advance the required number of variables. Moreover, in practical terms, some 
variables are much easier to measure accurately than others. We would prefer to 
build our analysis on data of accurately measured variables if we can. 

Both of these difficulties are circumvented by a technique, which is turning 
out to be one of the major technical contributions of chaos theory. This technique 
is based on the notion that even for a multidimensional dynamical system, the time 
series record of a sinde variable is often sufficient to determine many of the 
properties of the full dynamics of the system. We do not need to record values of 
all of the dynamical variables. Just one will do. In particular we can use this single 
time series to "reconstruct" the dimensions, entropies, and Lyapunov exponents of 
the dynamics of the system. 

The basic idea is very simple. We use the time series data of a single variable 
to create a multidimensional embedding space. (As we shall see, a better name 
would be reconstruction space, but the term embedding space is more commonly 
used in nonlinear dynamics.) If the embedding space is generated properly, the 
behavior of trajectories in this embedding space will have the same geometric and 
dynamical properties that characterize the actual trajectories in the full multi- 
dimensional state space for the system. The evolution of the trajectories in the 
embedding space, in a sense, mimics the behavior of the actual trajectories in the 
full state space. 

The use of a single time series to generate a reconstruction space to 
characterize nonlinear dynamical systems was suggested in 1980 by Packard, 
Crutchfield, Farmer and Shaw (PCF80) and was put on a firm theoretical basis by 
F. Takens (TAK8 1). 

To see how the embedding procedure works, let us suppose that we have 
recorded a series of X values for some dynamical system. We then want to use the 
series of values XI, X2, X3,. . . to reconstruct the full dynamics of the system. We do 
this by grouping the values to form "vectors." For example, suppose we decide to 
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Fig. 10.1. A schematic representation of 
the use of a single time series to form a 
thre+dimensional embedding space. 
The tip of each vector marks a trajectory 
point in the embedding space. The 
vectors are labeled Vl, V2, and V3 to 
distingush them firom the sampled 
values. 

a d-dimensional reconstruction. We could then group together d values, for 
example, (XI, Xz, ..., Xd). Each number in the vector gives the value of the 
"component" of the vector along one of the axes in this d-dimensional space. 
Together, the d values give the coordinates of a single point in the d-dimensional 
space. Thus we say we are embedding the dynamics in a space. (Alternatively, we 
could say that we are reconstructing the d-dimensional behavior from that of a 

The time evolution of the system is followed by seeing how successive 
vectors (X,,, Xn+2, . . . XnA, where n labels the successive vectors, move in the d- 
dimensional space. (As we shall see shortly, the time spacing between the vector 
components and between successive vectors need not be the same.) Our basic 
assumption is that the geometry and dynamics of the vectors constructed in this 
way are the same as the geometry and dynamics of the trajectories in the full state 
space of the system. Figure 10.1 gives a schematic representation of the embedding 
construction for d = 3. 

Why does this embedding procedure work? One rough answer is that the 
character of the overall dynamics of the system must be reflected in the behavior of 
any one dynamical variable. For example, if the overall behavior is periodic, we 
would expect the behavior of any one variable to be periodic also. If the overall 
behavior is chaotic, the accompanying divergence of nearby trajectories should, in 
general, also show up in the behavior of a single variable. Another way of seeing 
why this method works is to reverse the procedures we used in Section 3.3 to 
reduce the dynamical equations to a set of first-order differential equations. If we 

the procedure in the opposite way, we may write the dynamics in terms of a 
higher-order differential equation for one variable. We can then use the time series 
data of the single variable to calculate approximately the various derivatives 
rWired to express that differential equation. 

Several questions immediately arise: 

1. How many dimensions should we use in the embedding space? 
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2. How should we choose the time interval between sampled values? 

3. How do we choose the time lag n between successive vectors? 

4. Which variable should we record? 

5.  How many sampled values do we need? 

6. How do we use the embedded trajectories to get quantitative 
information about the dynamics of the system? 

Unfortunately, it is difficult to answer any of these questions definitively, 
partly because the theoretical underpinnings of the embedding technique are not 
fully developed at present and partly because the answers depend to some extent on 
the system being studied, the accuracy of the data, the amount of noise present and 
so on. In practice, we need to explore how the results for a specific system depend 
on the embedding dimension, the time between samples, the number of samples, 
and so on. In all cases, we need to use some scientific judgment to decide what 
values or range of values give "reasonable" results. We will give some guidelines 
for choosing these numbers based on commonsense augmented by experience with 
analyzing actual systems later. At the end of the chapter, you will find references in 
which more detailed information can be found. 

Takens (TAK8 1) has shown that if the underlying state space of a system has 
d, dimensions, and if the embedding space has 2 4  + 1 dimensions, then we can 
capture completely the dynamics of the system with the embedding space vectors. 
Otherwise, the "projection" of the attractor onto a smaller dimensional space might 
reduce the apparent dimensionality of the attractor. We can understand this result 
in a simple way: If the state space has d, dimensions, then we can express the 
dynamics in terms of a d,T-order differential equation for some variable. To 
calculate those derivatives numerically, we need two time samples for each 
derivative. In addition, we need the current value of the variable. Hence, we need 
a total of 2 d, + 1 values. 

In practice, however, as we have seen, for dissipative systems the efective 
dimensionality for the long-term behavior is that of the system's attractor (or 
attractors). This dimensionality may be considerably smaller than that of the 
original state space. Thus, we may be able to use embeddings whose dimension is 
about twice the (possibly fractal) dimension of the attractor to mimic the dynamics 
on the attractor. 

Most recent work in characterizing dynamical systems by the embedding 
technique has focused on the evaluation of fractal dimensions by calculating the 
Grassberger-Procaccia correlation sum, introduced in Chapter 9. We shall use the 
correlation sum to illustrate how to implement the embedding technique. Let us 
begin the discussion by writing the correlation sum in the following form: 
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c(~)(R) = 2 .[.-Izi -i,l] (10.2-1) 
N(N - 1) isj=1,i+j 

You should note that Eq. (10.2-1) is almost identical to Eq. (9.8-4), but we have 
added a superscript to C.indicating that the correlation sum may depend on d, the 
"umber of embedding dimensions. We have used arrows to indicate that the x 
values are now considered to be vectors in the embedding space. If we think of the 
vectors 'as giving the coordinates of a point in the embedding space (as shown in 
Fig. 10.1), then the correlation sum tells us the relative number of pairs of points 
that are located within the distance R of each other in this space. 

The labeling of the vectors is a bit messy, but let us see what is involved. A 
imensional vector is the collection of d components 

' i  = ( ~ i  9 Xi+rL ,Xi+2lL ,....Xi+(d-l)IL ) (10.2-2) 

where t ,  is called the time lag and represents the time interval between the 

P successively sampled values that we use to construct the vector . Later we shall 
discuss how to choose t ,  . 

The "length" of th;;? difference between two vectors is usually taken to be the 
"Euclidean length": 

However, some authors have advocated the use of the "maximum coordinate 
difference" as a measure of the length (to save computation time): 

In other words, we find the largest difference between corresponding components 
and use that difference as a measure of the difference between two vectors. The 
correlation dimension (scaling exponent) does not seem to depend sensitively on 
the measure used for calculating the vector differences. The maximum coordinate 
difference (sometimes called the maximum norm) has the advantage that the 
largest difference will be the same for all embedding dimensions, thus making the 
comparison of results for different embedding dimensions easier. 

We are now ready to find the correlation dimension (scaling exponent) for the 
system just as we did in the previous chapter. We define D,(d) to be the number 
that satisfies 

: for some range of R values, which we again call the scaling region. Here we have 
hAuIed a parenthetical d to indicate that the value of D, may (and in general does) 
depend upon the dimension of the embedding space. 
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F i  10.2 A schematic graph of the correlation dimension plotted as a function of the 
embedding dimension. When the embedding dimension is equal to or greater than about 
twice the dimension of the state space attractor (the value labeled as dm) the axrelation 
dimension Ddd) becomes independent of d. The correlation dimension of the attractor in this 
case is about 2.1. 

What we do in practice is compute D,(d) for d = 1,2,3, . . . and plot the values 
of D, as a function of d. We expect D, to vary with d until d is equal to or becomes 
greater than about twice the dimension of the state space attractor for the system. 
For d > d,  (a "saturation" value), D, becomes independent of the embedding 
dimension d. Hence, we expect to see a graph something like that shown in Fig. 
10.2. For the data shown in Fig. 10.2, we see that the correlation dimension of the 
attractor is about 2.1. 

From this example, we see the power of the embedding technique. From the 
data for a single variable, we can find the correlation dimension of the state space 
attractor. This information can then guide us in constructing mathematical models 
of the dynamics of the system. 

Some caveats, however, are in order. When we set out to find the correlation 
dimension as a function of embedding dimension, we often find that the size and 
location of the scaling region (as a function of R) also depends on the embedding 
dimension. Thus, in many cases, we need to examine the In C(R) versus In R graph 
"by hand" for each value of the embedding dimension in order to find the scaling 
region and the value of the correlation dimension. (In this chapter we shall use 
natural logarithms, which have some formal advantages as we shall see.) 

As an example of this scaling region problem, let us look at Fig. 10.3, which 
shows a plot of the In C(R) versus In R calculated from data based on the logistic 
map function (with A = 3.99) for various values of the embedding dimension. We 
would expect the correlation dimension (as determined by the slope of the graphs in 
the scaling region) to be the same for any embedding dimension because the system 
is one-dimensional. This seems to be the case, but we also see that the length of the 
scaling region depends on the embedding dimension. Hence, we must be cautious 
in selecting the range of R values chosen to determine the slope. A detailed 

Many 

0 

-1 

-2 

-3 

-4 

-5 

-6 

-7 

Dimensions and Multifractals 

Fig. 103. A plot of the natural logarithm of the correlation sum as a function of In R for 
various embedding dimensions for data computed from the logistic map function with A = 
3.99. Two thousand data points were used in the analysis. Note that the slope of the graphs 
are nearly the same in the scaling regions, but the scaling region length changes with 
embedding dimension. 
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detailed analysis of how the estimate of D, varies with embedding dimension is 
found in DG093a and DG093b. It turns out that one can estimate in advance what 
the "best" embedding dimension will be (DIH96), but in practice examining the 
results with the equivalent of Figures 10.2 and 10.3 is very important. 

There is yet another method for determining when you have chosen the 
appropriate embedding dimension. The idea is called "false nearest neighbors" 
[Abarbanel, 19961. The basic notion is the following: If you use too small an 
embedding dimension, then in projecting the state space trajectories onto a lower 
dimensional "surface," two trajectory points that might be far apart in the full state 
space end up near each other in the smaller dimensional surface. (As an analogy, 
think about projecting points on a basketball downward to the floor under the ball. 
The projection of a point near the top of the ball might end up close to the 
projection of a point near the bottom of the ball.) As the embedding dimension 
increases, the number of nearest neighbors to a particular point in the embedding 
space should decrease until the embedding dimension is sufficiently large to reflect 
accurately the geometry of the attractor. 

We can, however, get yet more information from d 4 ( ~ ) .  As d increases, we 
expect @(R) to decrease for a fixed value of R. Why? When we compute d " ( ~ ) ,  

j we are asking for the probability that trajectory points in the embedding space stay 
within the distance R of each other. As d increases, we are increasing the length of 
the trajectory segments being compared. If you recall the discussion of K-S 
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Fig. 10.4 A plot of -In dd)(R) as a function of embedding dimension from the data shown in 
Fig. 10.3. The circles indicate points that are averages over the scaling region indicated in 
that figure. The slope of the line gives the K-S entropy for the system The value obtained 
here is close to the value of In 2 expected for the logistic map with A = 4. 

entropy in Chapter 9, you will remember that the K-S entropy measures the rate of 
change of this probability. Thus, we might expect (we will provide further 
arguments along this line in a later section of this chapter) 

where K is the Kolmogorov (K-S) entropy and tL is the time lag between 
successive components of an embedding space vector. Hence, from our plot of In 
d & ( ~ )  versus In R, we can determine the K-S entropy by seeing how In d & ( ~ )  
changes with d for a fixed value of R. (Of course, we choose a value of R in the 
scaling regions for all values of d.) These results are illustrated in Fig. 10.4 for the 
data shown in Fig. 10.3. The value of the slope is close to In 2, the value expected 
for the K-S entropy for the logistic map with A = 4, where we use tL = 1. 

To summarize, we see that the correlation sum calculated by the embedding 
technique allows us to determine both the correlation dimension of the attractor and 
the K-S entropy of the dynamics. Let us now turn to a conjecture relating a fractal 
dimension and the Lyapunov exponents. 

The Kaplan-Yorke Conjecture: The Lyapunov Dimension 
Kaplan and Yorke (KAY79) have suggested that the dimension of an attractor in a 
multidimensional state space (or multidimensional reconstruction space) can be 
defined in terms of the average Lyapunov exponents in that space. Recall that there 
are as many Lyapunov exponents as there are state space dimensions. Let us rank 
the Lyapunov exponents from the largest A, to the smallest A,, for a d-dimensional 
space producing a spectrum of Lyapunov exponents: A, >;I, > . . . > il, . Let j be 
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largest integer such that A, + 4 + . . . + 4 > 0 . (Recall that the sum of all the 
v exponents is negative for a dissipative system and 0 for a Hamiltonian 

e Lyapunov dimension DL is then defined to be 

2 'i 
D, = j + L  (10.2-7) 

-A. 
1+1 

[Jackson, 1992, Vol 2, pp. 217-2221 provides a simple argument for the result 
given in Eq. (10.2-7). There is some numerical evidence (see, for example, 
~ H 0 8 0 )  that DL is numerically close to the box-counting dimension and the 
co~elation dimension. Constantin and Foias (COF85) have proved that in general 
D, 2 D, , the Hausdorff dimension. The references at the end of the chapter 
discuss methods for determining the spectrum of Lyapunov exponents from the 
time-series data. One word of caution: the time-delay embedding technique can 
lead to "spurious" Lyapunov exponents that are artifacts of the method. 

10.3 Practical Considerations for Embedding Calculations 

In this section we will discuss in a rather general way some of the practical details 
of implementing the embedding calculations described in the previous section. We 
shall try to justify some "rules of thumb" for choosing the number of data points, 
the time lag between "components" for the embedding vectors, and the time jumps 
between successive vectors. If we had available extremely fast computers, lots of 
data, and plenty of time, then we could be profligate and simply use millions of 
data points and repeat calculations dozens of times with variations in time lags and 
time jumps. In practice, we need to make a compromise between computation time 
and the accuracy of our results. We want to do just enough work, but no more, to 
achieve a specified level of accuracy. Many readers may wish to skip this section 
until they need to use the embedding scheme to analyze data. 

We assume that we are dealing with the time record of a single dynamical 
variable for the system. To be completely general, let us also assume that the time 
between successive samples, call it t,, is a parameter under our control. (If we are 
using a Poincark section sampling technique, then t, is determined by the dynamics. 
In that case, we ought to use several Poincarb sections for the system to see if our 
results depend on the "location" of the Poincark section in state space.) 

A fundamental time scale for the system's behavior is a time interval called 
the autocon-elution time, which can be defined in terms of the autocon-elution 

c ~ k X k + ,  

g(n) = 
k  (10.3-1) 

z I x k r  k  
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g(n) compares a data point in the series with a data point located n units of time 
away. If, on the average, they are uncorrelated, then we have g(n) = 0 . If they are 
nearly the same, then we find g(n) = 1. For data sets from stochastic or chaotic 
systems, the autocorrelation function is expected to fall off exponentially with time: 
g(n) = ae-" , where z is called the autocorrelation time. This time will set the 
scale of our choice of several embedding scheme parameters. 

When we compute the autocorrelation function, it is traditional first to 
subtract the mean of the data values from each of the data points. This 
procedure means that g(n) goes to zero for uncorrelated data. One further 
practical matter: for real data sets we have to be sure that the index k + n 
in Eq. (10.3-1) stays within the range of actual data indices. 

A second time period under our control is the time period between successive 
"components" of each of the embedding space vectors. We need not take 
successive samples, say (x4, x5, x6, . . .). We could use, if we choose, (x4, 3, x14, . . .), 
where the successive components are separated by five sample periods. Let us call 
the time period between successive components tL, the time lag. The time lag can 
be written as a multiple of the sampling time: tL = L ts, with L = 1,2, . . . . 

Experience with embedding calculations has shown that what seems to be 
I crucial is the overall time span (or "time window") covered by the vector (AMS88 

and references cited therein). This time span is given by the product (d-l)lt,. If 
the time span is too short or if the time span is too long, the scaling region for the 
correlation sum seems to get very small. It has been suggested (AMS88) that using 
a time span about two or three times the autocorrelation time gives the broadest 
scaling region for the correlation sum. 

We can also choose the time interval between successive vectors, which we 
shall call tJ, the jump time. We want tJ small enough so that we can map out most 
of the details of the attractor geometry. We often choose tJ so that the vectors used 
are distributed uniformly (in time) throughout the data set. 

A fourth time interval we can choose is a minimum time separation between 
vectors for comparison in the correlation sum. That is, we might choose to 
compare i, and i, only if the corresponding components are separated in time by 
some minimum amount, which we shall call the comparison time t,. This 
minimum separation would avoid "excessive" correlation due solely to the fact the 
samples occur close in time. (This problem is almost always automatically avoided 
if we are using Poincark section data.) (THE86 discusses the problems that arise 
when the comparison time is too small for data sets with "autocorrelated" data, that 
is, data points that are nearly the same for some significant stretch of time.) We can 
avoid these problems by choosing the comparison time to be greater than the 
autocorrelation time. 

Finally, we need to choose N the total number of data points to be used in the 
analysis. Usually, more is better, but the computation time increases rapidly with 
N, and we may need to compromise. 
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TO illustrate how we organize the data, we write out a set of d-dimensional 
vectors, which we now call f (to avoid confusion with the data points 
themselves). The lag time tL is given as a multiple of the time interval between 
successive samples: tL = L t,. The jump time tJ between successive vectors is also 
given as a multiple of t,:, tJ = J ts. Both L and J are taken to be positive integers. 
As before x,, is the variable value recorded at time t = nt,. The set of vectors is 

To analyze our choices oft,, tL, tJ, and N, we need at least rough estimates of 
the characteristics of the attractor. In most cases, these can be estimated (guessed 
at) from the time series we have recorded. First, we need to know the time interval 
required for a trajectory to go around the attractor. Since this is roughly equivalent 
to the time interval between successive Poincark section crossings if we had used a 
Poincark section sampling, let us call this time t, (the "Poincark time"). (If the 
actual data are Poincark section samples, then we already have ts = t,). Next, we 
need an estimate of the "size" of the attractor. From the record of the single 
variable x, we can find the range of x values visited by the data. Let us use A to 
denote the size of the attractor. Then in a d-dimensional embedding, the "volume" 
occupied by the attractor will be approximately for d < D,, the correlation 
dimension of the attractor. (For d > D,, the actual volume of the attractor is 
determined by D,.) Finally, we need an estimate of the autocorrelation time and the 
divergence rate of nearby trajectory points. This rate can be estimated by finding 
the Lyapunov exponent for the one-dimensional data set {q} using the methods 
discussed in Chapter 9. 

In addition to the estimate of the attractor characteristics given earlier, we 
need to take into account the precision with which the data are recorded. We 
usually specify this precision as the number of binary bits used to represent the 
data. In an experiment, this number might be determined by a computer-driven 
sampling device (usually an "analog-to-digital converter"). If we are dealing with 
data generated by a computer's numerical solution of some equations, then the 
number of bits is determined by the software. (For typical experiments, data are 
often recorded with at least 8-bit resolution. Sometimes 14-bit or 16-bit resolution 
is used for high precision measurements. For computations, "single-precision" on a 
PC-type computer uses seven decimal digits, while "double precision" uses 15 or 
16 decimal digits.) 

The fundamental considerations in applying the embedding technique are to 
use enough data to characterize the attractor reasonably while choosing the time lag 
and the jump time to avoid spurious correlations. To be more specific, we want to 
have enough data so that in the neighborhood of each vector in a d-dimensional 
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Fig. 105. A schematic representation of 
vectors in a Mrnensional embedding 
space. If the tirne lag between successive 
components is too small, the vectors all 
tend to cluster around a 45" line passing 
through the origin. 

embedding space, there will be a sufficient number of vectors to get an accurate 
estimate of the correlation sum. We want those vectors, however, to consist of data 
points reasonably separated in time so that we are comparing trajectory points that 
have passed through a particular section of state space at quite different times. 

Let us consider the sampling time question fust. Generally, we want to have 
the time between successive samples be much less than t,,, the time to go around the 
attractor. We will then have samples over nearly the complete range of the 
attractor. (Obviously, this point is moot if we are using a Poincare sampling 
scheme.) However, in many cases, the sampling time has been fixed by some 
experimental or computational criterion, and we must simply work with what data 
we have. 

What about the choice of time lag tL between successive components of a 
vector? We would like to choose the time lag to be large enough so that the 
successive components are "independent." The time required for independence is 
given roughly by the reciprocal of the (positive) Lyapunov exponent A for the 
data. As a rough rule of thumb, we choose the lag time to be such that the total 
time span represented by a given d-dimensional vector (d - 1) tL is greater than say 
3A-' . (For at least some systems, the autocorrelation time z is roughly the same as 
A-' .) If we choose (d-1) tL c A-' (or less than the autocorrelation time), then the 
embedding vectors will tend to cluster around a "45" line" passing through the 
origin of the embedding space, as shown in Fig. 10.5, because all the components 
will tend to have nearly the same numerical value. In this case, the vectors do not 
give a very good representation of the geometry of the attractor in the original state 
space. (If we had, unrealistically, a large amount of extremely high precision data, 
we could still extract correlation dimensions from these vectors. In practice, 
however, experimental noise or computer round-off can mask fine details.) A 
detailed analysis of time lag considerations is given in RCD94. 

Let us now think about choosing t ~ ,  the minimum jump time between 
successive embedding vectors. We want to have tJ small enough so that we map 
out the trajectory as it proceeds around the attractor. If we make tJ too small, 
however, then, as we shall see, the total number of data points required becomes 
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very large. Furthermore, as we argued earlier, if the vectors used are closer in time 
than roughly the autocorrelation time, then we learn nothing new by comparing the 
vectors because they are nearly identical. Thus, we generally choose tJ to be 
several times larger than the autocorrelation time. 

How do we choose the total number of data points needed? As we mentioned 
earlier we want enough vectors in the neighborhood of each individual vector to 
give a reasonable characterization of the attractor. We can estimate the number of 
data points as follows. For a d-dimensional embedding, the attractor volume is 
approximately A ~ ,  where A, as before, is an estimate of the "radius" of the attractor. 
If we use a total of M vectors, then we will have m =  MIA^ vectors (or trajectory 
points) per unit volume of embedding space. In a sphere of radius R (used in the 
calculation of the correlation sum) around a given trajectory point, we expect, on 
the average m R~ = (RIA)~M trajectory points. If we have collected data with b bit 
resolution, then the smallest R we want to use in the correlation sum is R,, = 
A 12b . (In practice, we may use a somewhat larger R-, say Rmi, = A I (2b-2) to 
avoid effects due to digital round-off.) Now suppose for R- we want to have at 
least N points in the neighborhood to get a reasonable estimate of the correlation 
sum. We must therefore choose M to satisfy 

To get a feeling for what is required, let us find M for the minimal case with N 
= 2 (only two points in the neighborhood), b = 8 (8 bit resolution), and d = 3. We 
find we need M = 524,288. Thus, even for this modest case, we find that we need 
many data points. What is worse, the required number of data points goes up 
exponentially with the embedding dimension. 

Another possible consideration in the choice of the number of data points is to 
make M large enough so that there are nearly as many trajectory points "transverse" 
to a given trajectory as there are points along the trajectory. This assures us that 
there will be enough trajectory points in the neighborhood of a given trajectory 
point so that we can calculate the geometric properties of the attractor reasonably 
well (see AMS88 for details). 

Generally speaking, we would like to have as many data points as possible to 
compute dimensions, entropies, and so on. In practice, the number of data points 
may be limited either by the data-taking capabilities of our equipment (some digital 
oscilloscopes, for example, can record only 1,000 or 2,000 successive samples) or 
by the computation time required to calculate the quantities of interest. If we need 
to do the computation only once, then the computation time would not be so 
important. In many cases, however, we want to see how the correlation dimension, 
for example, changes as a control parameter is changed, or in a clinical setting, we 
may want to use some quantitative characteristic of an EKG signal to monitor in 
more or less real time the status of a patient. In those cases, we must strike some 
compromise between accuracy (requiring a large number of data points) and 
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computation time (which limits the number of data points we can use). In practice, 
data sets of a few thousand data points seem to be sufficient for "reasonable" 
estimates of the correlation dimension (AAD86) for systems exhibiting low- 
dimensional dynamics. If you anticipate a high dimensional system (many active 
degrees of freedom), normalizing the correlation sum in terms of the sum for a 
"random" distribution of points on the attractor seems to help produce results that 
are useful in discriminating between deterministic chaos and random noise 
(BHM93). 

When the system is driven by an external periodic force, the period of the 
external drive establishes a natural period for sampling the dynamics of the system. 
In that case, as we have mentioned several times before, we sample some variable 
of the system at a particular phase of the external force to form a Poincark section. 
In this case the sampling time t, is the period of the external force and is equal to 
the Poincark time. It is then reasonable to use a time lag for vector components and 
a time jump between successive vectors both equal to t, since the variable samples 
are already reasonably separated in time. In such a situation, we need assure only 
that we have a sufficient number of data points and we need not worry about 
choosing the time lag and the time jump. However, the analysis should be repeated 
for different phases of the sampling to see if the results depend on the phase. 
Different phases put the Poincark section in different parts of the attractor and there 
is no general reason to believe that the correlation dimension, for example, should 
be exactly the same everywhere on the attractor. 

Summary of the use of the Embedding Technique 
1. From the time series data of a single variable, estimate the values of A 

(the attractor size), A (the largest positive Lyapunov exponent), z (the 
autocorrelation time), and tp (the Poincark time, the time to cycle 
around the attractor). 

2. Choose the sample time t, cc t,. (For Poincark section data, we have 
t, = t,. See item 6.) 

3. Choose tL (the time lag between successive components of the 
embedding space vector) such that the time span of a vector (d-l)tL is 
about three times A-' or about three times r, the autocorrelation time. 

4. Choose the jump time tJ (the time between successive vectors) 
sufficiently small compared to the Poincark time tp so the vectors 
cover the attractor with small enough spacing to pick out details of 
the attractor. (For Poincark section data, we usually choose tJ = t,.) 

5. Choose the total number of data points to satisfy Eq. (10.3-3). 
6. Test your results for dependence on t,, tJ, tL, and the total number of 

data points. If you are using Poincark section data, repeat the 
calculations for other positions of the Poincark section in state space. 
This is obviously a time-consuming process, but it is needed to be 
able to provide estimates of the uncertainties to be associated with the 
results. 
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7. Test your results by running the analysis on a data set modified to 
remove any deterministic evolution. This technique uses surrogate 
data (TEL92, PRT94, SCS96, [Abarbanel, 19961, CAR97) generated, 
as mentioned at the end of Chapter 9, by taking the Fourier transform 
of your original data, randomizing the phases, and then regenerating 
the surrogate data with an inverse Fourier transform. 

Thereferences at the end of the chapter include several experiments analyzed 
by the embedding dimension technique. Before embarking on an analysis of your 
own data, you should read several case histories of embedding analysis. A 
cautionary tale is provided in JBT94. 

10.4 Generalized Dimensions and General i i  Correlation Sums 

In Chapter 9, we introduced several different measures of the "dimension" of a state 
space attractor. All of these measures were averages over the attractor. However, 
as you might expect, the local contributions from different parts of the state space 
are, in general, different; stating just an average value does not acknowledge all of 
the complexity of the attractor's geometry. In this section we will introduce a set of 
so-called generalized dimensions, the purpose of which is to provide more detailed 
information about the geometry of the attractor. 

We can understand the motivation behind these generalized dimensions by 
considering two statistical distributions of some quantity (family income, for 
example). Two different communities might have the same average income but 
nevertheless have very different distributions of income as illustrated in Fig. 10.6. 

What kind of measures can be used to distinguish the two distributions? 
Obviously, if we know the two distributions in detail, we can simply display the 
distributions and note the differences. However, it is common in statistics to 
distinguish the distributions quantitatively by calculating the so-called moments of 
the distribution, which are defined as the average difference between the individual 
data values and the mean value, with the difference raised to some power. More 
formally, we define the 9th moment of the distribution to be 

where, as usual, cr> is the mean (average) of the x values. The various moments 
give a way of quantitatively specifying the difference between two distributions. 
M2 is the square of the well-known standard deviation. For the data shown in Fig. 
10.6, the standard deviation for the Figville data is smaller than that for Tree City. 

A similar scheme can be applied to characterize the geometry of an attractor. 
Let us begin by following a procedure similar to that used for the box-counting 
definition in Chapter 9. Suppose we have N trajectory points on an attractor. As 
before, we divide the attractor region of state space into cells of size R labeled i = 1, 
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Income in Thousands 

Fig. 10.6. Two graphs of the hypothetical distribution of family income in two communities. 
The average income is the same, but the distributions differ in detail. 

2, 3, . . ., N(R). In general, N # N(R) . (Recall that in general the number of cells 
depends on R.) For a Hamiltonian system, we use the full region of state space 
visited by the trajectory. 

The number of trajectory points in the ith cell is denoted Ni. We define the 
probability pi to be the relative number of trajectory points in the ith cell: pi = NIN. 
The generalized (box-counting) dimension D,, is then defined as 

Note that the generalized dimension D, involves the probabilities raised to the 9th 
power. You might expect that we use only q = 0, 1,2, and so on, but the definition 
of D, can be extended to apply to any (real) value of q. (As we mentioned in 
Chapter 9, we cannot in practice take the R + 0 limit. Instead, we look for the 
slope of the graph of the numerator of Eq. (10.4-2) plotted as a function of In R.) 

The factor of q - 1 has been included in the denominator so that for q = 0, we 
have 
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Let US now look at some general properties of these dimensions. As q + m , 
the largest probability value, call it p-, will dominate the sum, and we have 

In Pm, D, = lim- 
H+O 1nR 

At the other extreme, as q + -.. , the smallest probability value, p,,, will 
dominate the sum, and we find 

In P,, D, = lim- 
K-10 ln R 

Hence, we see that D, is associated with the most densely occupied region of the 
attractor while D- is associated with the most rarefied (least populated) region of 

f the attractor. 
We also see that D- 2 D, and that in general D, 2 D,. for q < q'. For a 

self-similar fractal with equal probabilities for all the cells, p, = lIN(R), and we have 

I D,, = Do for all q. 

Exercise 10.4-1. Starting with Eq. (10.4-2), verify that D, = Do for all q 
for a self-similar fractal. 

Let us turn to the q = 1 case. This requires some special mathematical 
attention because q - 1 = 0 in this case, and it may appear that we are dividing by 0 
in Eq. (10.4-2). However, if we allow q to approach 1, then we can avoid this 
problem. The gimmick is to introduce a new function y(q): 

Now we write a Taylor-series expansion of y(q) near q = 1: 

We note that y(1) = 0 since the probabilities must add up to 1. We then evaluate the 
first-derivative term: 

where we used the elementary derivative formula 

the right-hand side of which we recognize as Eq. (9.7-3); therefore, Do is the same 
as the box-counting dimension. 
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The last equality in Eq. (10.4-8) follows from setting q = 1. Assembling all these 
results in the expression for Dl gives us as q -+ 1 

C pi In pi 2 pi in P, 
9-1 i Dl = lim lim- = lim 

H-o q + ~  (10.4-10) 9-1 InR H-0 1nR 

Dl is called the information dimension because it makes use of the p In p 
form associated with the usual definition of "information" for a probability 
distribution. 

Next, we will show that D2 is just the correlation dimension. (This argument 
is based on [Schuster, 19951.) To see this connection, let us look at the probability 
sum 

We should remind ourselves that the sum in Eq. (10.4-11) is over N(R) cells 
uniformly distributed over the attractor region of state space. We want to write this 
sum in terms of cells centered on trajectory points. (Recall that we use such cells in 
the calculation of the correlation sum.) First, we rewrite the probability sum in the 
following way: 

Note that the probability p, is 0 if the trajectory does not actually visit cell i. 
The sum over i, therefore, can be written as a sum over cells actually visited by the 
trajectory. Furthermore, we write the first factor pi for the visited cells as 1/N, 
where N is the number of trajectory points. This essentially says that we will let the 
sum run over the trajectory points (labeled by the indices j and k) and each 
trajectory point contributes 1/N to the probability. We will not, however, use 1/N 
for the other probability factor, the one raised to the 9-1 power. (This is obviously 
a bit of a dodge, but it makes the connection we want to make. One way of 
justifying this procedure is to say that the probabilities are almost all equal to 1IN. 
As we raise the probabilities to various powers, the differences will become more 
noticeable.) Finally, and this is the crucial step, we replace the probability p,!'-' in 
Eq. (10.4-12) with the Heaviside step-function sum (used in the correlation sum) 
raised to the q-1 power: 

which then gives us for the probability sum 
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We then define the genemlized correlation sum C,(R): 

Note that for q = 1, C1 = 1 and that for q = 2, C2(R) is the same as the 
(unsubscripted) correlation sum introduced in Eq. (9.8-4). 

From here on, we will use the generalized correlation sum C, and the sum of 
the probabilities S, more or less interchangeably. In general, they are different 
because S, is based on the probability that a cell is occupied, while C, is based on 
the correlation between trajectory points. These are not necessarily the same, but in 
what follows, we require only that their dependence on R be the same. A general 
and rigorous proof that they have the same R dependence is lacking. 

Putting Eq. (10.4-14) into Eq. (10.4-2) yields the generalized dimension D, in 
terms of the generalized correlation sum 

Hence, we see that D2 = D,. [As an aside, if we wish to find Dl, it is best to go back 
to Eq.(10.4-lo).] 

Exercise 10.4-2. Verify that Cl = 1 and that C2 is the same as the 
correlation sum of Chapter 9. 

There are three important points to note. First, in practice, almost all 
calculations of D, from experimental data use the generalized correlation sum 
rather than the box-counting method. Hence, we should view Eq. (10.4-16) as 
defining D,. Second, to find D,, we usually plot ll(q-1) In C,(R) as a function of In 
R and look for a scaling region as we did for D, in Chapter 9. Third, D, can be 
applied to higher-dimensional state space data by using the embedding technique 
introduced in Section 10.2. Formally, we replace xi and xk in Eq. (10.4-15) with 
their ddimensional vector equivalents. This extension will be discussed in Section 
10.6. 

10.5 Multifractals and the Spectrum of Scaling Indicesf( a ) 

As we mentioned in the previous section, we generally expect that different parts of 
an attractor may be characterized by different values of the fractal dimensions. In 
such a situation, a single value of some fractal dimension is not sufficient to 
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characterize the attractor adequately. Two quite different attractors might have the 
same correlation dimension, for example, but still differ widely in their 
"appearance." An object with a multiplicity of fractal dimensions is called a 
muh@zctul. We can visualize this object as a collection of overlapping fractal 
objects, each with its own fractal dimension. In fact, the multifractal description 
seems to be the appropriate description for many objects in nature (not just for 
attractors in state space). To some extent it has been the extension of the notion of 
fractals to multifractals that has led to the wide range of applications of fractals in 
almost all areas of science. Some of these applications will be described in Chapter 
11. 

A natural question to ask is how many "regions" have a particular value or 
range of values of the fractal dimension. A very powerful, but somewhat abstract, 
scheme has been developed to answer that question. That scheme provides a 
distribution function, usually called ffa), which gives the distribution of "scaling 
exponents," labeled by a (not to be confused with the Feigenbaum number a). 

These notions can be understood by considering, once again, the partition of 
the attractor region of state space into a group of cells of size R labeled by an index 
i, with i = 1, 2.. ., N(R). As before, we let a trajectory run for a long time and ask 
for the probability that the trajectory points fall in the ith cell. That probability is 
defined as pXR) = NJN, where Ni is the number of trajectory points in the ith cell 
and N is the total number of trajectory points. Alternatively, if we are considering 
an actual geometric object, we "cover" the object with cells of size R and ask what 
fraction of the mass of the object (call that fraction pi) falls within cell i. 

We now assume that PAR,.) satisfies a scaling relation 

where k is some (unimportant) proportionality constant and Ri is the size of the ith 
cell. & is called the scaling index for cell i. As we make R smaller, we increase the 
number of cells N(R), and we ask: What is the number of cells that have a scaling 
index in the range between a and a + dd! We call that number n(a)da. 

The crucial assumption is that we expect the number of cells with a in the 
range a to a + d a  to scale with the size of the cells with a characteristic exponent, 
which we shall callffa). This characteristic exponent is formally defined by 

Recalling our discussion in Chapter 9, we see that ffa) plays the role of a fractal 
dimension. We may interpretffa) as the fractal dimension of the set of points with 
scaling index a. 

If we plotffa) as a function of a, we get, for a multifractal, a graph like that 
shown in Fig. 10.7. The maximum value offfa) corresponds to the (average) box- 
counting dimension of the object. For a truly onedimensional attractor, such as the 
attractor for the logistic map at the period-doubling accumulation point, we would 
expectAa) to be less than 1 since we know that the attractor is a fractal. For data 
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Fig. 10.7. A plot offla) as a function of a for a two-scale Cantor (multifractal) set. (See Fig. 
10.8 and the text following Exercise 10.54.) The maximum value offfa) is equal to the 
(average) box-counting dimension for the set. Here. pl = 0.7. L1 = 0.2. pz = 0.3. and L2 = 
0.35. 

from a two-dimensional mapping such as the Henon map, we might expectAa) to 
be less than 2. We will treat the particular example illustrated in Fig. 10.7 in more 
detail after introducing a few more formalities. 

Both the generalized dimensions introduced in the previous section and ffa) 
describe properties of the multifractal. We might reasonably expect that those 
quantities are related. We will now show what that relationship is. In fact, in some 
cases, we compute ffa) by first finding the generalized dimensions and then 
following the procedure to be presented shortly. 

The connection betweenffa) and Dq is most easily established by looking at 
the probability sum, repeated from Eq. (10.4-1 1): 

1 
where the sum is over cells labeled by the index i. Sq(R) is sometimes called the 
qth-order partition function, in analogy with partition functions used in statistical 
mechanics. (In Section 10.8, we will exploit this similarity more formally.) 

In order to make the connection toffa), we write the probabilities in terms of 
a and then integrate over the distribution of a values to get the partition function 

S, (R) = c J ~ ~ R - ~ ( " R ~  

where C is an unimportant proportionality constant. The first factor in the 
integrand in Eq. (10.5-4) tells us how many cells have scaling index a while the 
second factor is the 4th power of the probability associated with the index a: 

We now use the following argument to evaluate the integral: Since R is 
supposed to be small, the numerical value of the integrand is largest when the 
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exponent of R, namely, q a  - f (a)  , is smallest. That is, for each value of q, there 
is a corresponding value of a, which we shall call a*(q) for which 

From the first of Eqs. (10.5-5), it follows that 

which tells us that the slope of the fla) curve is equal to 1 for the a value 
corresponding to q = 1. We also see that 

which tells us that thefla) curve must be concave downward. 
Returning to the evaluation of the integral, we note that the integral value 

must be approximately the value of the integrand where it is a maximum multiplied 
by some proportionality constant. Thus, we write 

sq (R) = c'R(I~. -/(a. ) (10.5-8) 

If we now recall the definition of D,, in Eq. (10.4-2) and compare it to Eqs. 
(10.5-3) and (10.5-8), we see that 

where we have dropped the subscript * on the variable a .  

Exercise 10.5-1. Provide the details of the argument leading to Eq. (10.5- 
9). 

In practice, for data generated by the trajectory of some model dynamical 
system or for data from some experiment, we often find D, by the methods 
described in Section 10.4. Then we carry out various manipulations to find for each 
q the corresponding values of a and &a). To see how this works out, we first 
differentiate Eq. (10.5-9) with respect to q: 

d d a  df d a  
-[(q-l)Dq] =a+q---- 
dq dq d a d q  

which, together with Eq. (10.5-6), yields 

thus giving us a value of a. We then solve Eq. (10.5-9) forAa): 

To summarize, we see that once we have found D, as a function of q, we can 
compute Aa) and a from Eq. (10.5-1 1) and (10.5-12). This change from the 
variables q and D, to a and Aa) is an example of a Legendre transformation, 
commonly used in the formalism of thermodynamics. See, for example, [Morse, 
19641 or [Chandler, 19871. 

Since Aa) and a are based on the D,s, why should we go to the extra 
computational trouble? The answer is twofold: First, there is a relatively simple 
interpretation of various aspects of theAa) curve, as we shall see later. Second, this 
curve displays in a straightforward fashion some expected universal features. 

To get some feeling for Aa), let us first compute this quantity for a simple 
probability distribution. We can do this by using Eq. (10.5-1) with a specified 
distribution function. Specifically, let us assume that the probability distribution 
function for x between 0 and 1 is given by 

where k is a proportionality constant. The probability of finding the particle in 
segment of length R (R cc 1) is given by the integral 

which gives 

p( R) = kR? for x, = 0 

p(R) = kR for x,, > 0 

Since only one point (q, = 0) has the scaling index a = 112, the corresponding 
fractal dimension f ( a  = l/2) = 0 .  On the other hand, a continuous one- 
dimensional segment of x values has the scaling index a = 1 with the corresponding 
fractal dimensionxa) = 1. 

Genemlized Partition Functions and fla) for Weighted and Asymmetric Cantor 
Sets 
For a variety of interesting examples involving various fractals generated by 
recursive procedures, it is useful to define a generalized partition function that 
allows for the possibility of cells of variable size. By evaluating this function for 



398 Chapter 10 

several simple examples, we shall gain considerable insight into the workings of the 
A a )  curve. This generalized partition function is defined to be 

The parameter z is chosen so that for a fixed value of q, T(q,z) = 1. The meaning 
of the parameter z becomes apparent if we evaluate r for the special case of equal 
cell sizes Ri = R . Then taking the logarithm of both sides of Eq. (10.5-16) yields 

Comparing this last equation with Eq. (10.4-16) tells us that 

Thus, we see that the generalized dimension D,, (or, more specifically, (q-l)D,,) is 
that number which, for a given value of q, makes the generalized partition function 
equal to 1. [The actual numerical value of the partition function is not so important; 
for z not equal to (q-l)D,, the partition function diverges to fa .] 

To see how this generalized partition function allows us to find A a )  for a 
recursively generated fractal, let us look at the case of a "weighted" Cantor set. 
You will recall from Chapter 9 that the canonical "middle-thirds" Cantor set is 
generated by starting with a line segment of length 1 and eliminating the middle 
one-third, leaving two segments each of length 113. We can generalize this Cantor 
set by allowing the two newly generated line segments to have different "weights," 
say p,  and p2, with pl + p2 = 1. This weighting means that when we assign points to 
the two segments, a fraction pl of the points go to the segment on the left and p2 go 
to the segment on the right at the first level of generation. At the second level, we 
have four segments: one with weight pI2; one with pZ2, and two with p g 2 .  Figure 
10.8 shows the first few levels of recursion for this set. A moment's consideration 
should convince you that the generalized partition function for the nth generation 
can be written as 

where R = 113 for the standard Cantor set. Again, for a specified value of q, the 
parameter zis chosen so that the generalized partition function is equal to 1. 

To evaluate the generalized partition function, we follow an argument similar 
to that used by HJK86. The binomial expression in Eq. (10.5-19) can be expressed 
in the standard way as a sum of products of p, and p2 raised to various powers: 
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- - - - - - - - n = 3  
p 1 3  p12 p2 P~~ 

Fig. 10.8. A sketch of the first few generations of the construction of a weighted Cantor set. 
For the n = 3 generation, only a few of the probabilities (weighting) have been indicated 
explicit1 y. 

where n!  (read "n factorial") = 1 x 2 x 3 x.. . x n . The factorial combination in the 
previous equation tells us how many line segments have the weight corresponding 
to a particular value of w. 

Now comes the crucial part of the argument: For large n, there is one term in 
the sum in Eq. (10.5-20) that is largest and in fact dominates the sum. We can find 
the corresponding value of w (call it w*) by differentiating the natural logarithm of 
the summand with respect to w and setting the resulting derivative equal to 0. (We 
use the natural logarithm because we can then make use of the Stirling 
approximation: In n! = n In n - n. If the logarithm has a maximum, so does the 
original function.) When we carry out that differentiation, we find that w. satisfies 

As an aside, we can find the value of z by requiring that the associated term in the 
sum satisfy I I 
This last expression can readily be solved for z = (q - 1)D, . 

Figure 10.9 shows a plot of D,, as a function of q for the weighted Cantor set 
with p,  = 0.7 and p2 = 0.3. We shall return to a discussion of the numerical details 
of that plot in a moment. 

We make connection withfla) by requiring that a be the exponent for the R 
dependence of our dominant probability (weighting): 

=p,w.p;-W.) =R,a 
w. (10.5-23) 
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Fig. 10.9. A plot of the generalized dimension D, as a hnction of q for the weighted Cantor 
set with pl = 0.7 andp2 = 0.3. The numerical values are discussed in the text. 

where R,, = (R = 113)" is the length of the segments constructed at the nth 
generation. Hence, we find 

w. lnp, +(n-w.)lnp, a =  (10.5-24) 
nln R 

Note that a depends only on the ratio nlw*. Similarly, we findffa) by asking for 
the length dependence of the number of segments corresponding to the value we: 

Using the Stirling approximation for the factorials and solving forffa) yields, after 
a bit of algebra, 

which, like a, depends only on the ratio nlw*. 
To determine the entireffa) curve, for prescribed values of p l  and p2, we pick 

values of q (usually ranging from about -40 to + 40) and then find nlw* from Eq. 
(10.5-21). We then compute a andffa) from Eqs. (10.5-24) and (10.5-26). The 
results for p l  = 0.7 and p2 = 0.3 are shown in Fig. 10.10. Let us now try to 
understand the results shown in Figs. 10.7, 10.9, and 10.10. 

When the parameter q + m we see from Eq. (10.5-21) that w. + n . From 
Eq. (10.5-26), we see in this situation that f ( a )  -+ 0 and we get the smallest value 
for a ,  namely a,, = (In p,)/(ln R) = 0.324.. . for the case shown in Fig. 10.10. 
On the other hand, for q + -m , we see that f (a)  + 0 , but we have the largest 
value for a, namely a,, = (In p, )/(ln R) = 1.095.. . . The largest value of ffa) 
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Fig. 10.10. A plot offia) for the weighted Cantor set with pl = 0.7, p2 = 0.3 and R = 113. 
The various features of the curve are interpreted in the text. 

occurs for q = 0 for which we have nlw* = 2. From Eq. (10.5-26), we find f,, = In 
2/ln 3, which is just the box-counting dimension Do for the Cantor set with R = 113. 

As we can see from Eq.(10.5-9), the largest value of a is equal to D, and 
the smallest value of a is equal to D,. Figure 10.9 shows how Dq approaches 
these values. 

Since q -+ m emphasizes the largest probability in the generalized partition 
function, we see that Q&, corresponds to the most densely populated part of the 
fractal (the part with the largest probability or weighting). At the other extreme, 
a- corresponds to q + -m and emphasizes that part of the fractal with the 
smallest probability, the least densely populated part. This interpretation carries 
over to allffa) curves. 

Exercise 10.5-2. Work through the algebraic details for the expressions 
for the weighted Cantor set. Verify the numerical relations for the case 
given in the text. 

probability sum and then using the Legendre transformation relations in 
Eqs. (10.5-11) and (10.5-12). Follow through this calculation and 

Let us now return to the example illustrated in Fig. 10.7. These results were 
computed for a so-called two-scale Cantor set, which is a combination of the 
asymmetric and weighted Cantor sets introduced earlier. At each stage of 
construction, we have two different segment lengths R, and R2 and two different 
weights p l  and p2. Using a method similar to that used earlier for the weighted 
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Cantor set, HJK86 show that it is relatively straightforward to find a and Aa) for 
this set. They also show, as we might guess from the example given above, that 

is given by the larger of {In pll In R, ] or {In p21 In R2] and that c&, is given by 
the smaller of those two ratios. 

Exercise 10.5-4. An "asymmetric" Cantor set can be generated by using 
two different lengths, say RI and R2, for the two segments created at each 
generation. For simplicity's sake, assume that the weights given to the 
two segments are the same: p, = p2 = 112. Following procedures similar to 
those used above, find approximate expressions for the generalized 
partition function and for a andAa). Graph thefia) curve for the case R I  
= 0.2 and R2 = 0.4. 

For the two-scale Cantor set models, once we have the two lengths and the 
two probabilities, we can sketch the complete Aa) curve at least approximately: 
The two lengths and the two probabilities give us the a values for whichfla) goes 
to 0. We can estimate the peak value of Aa) from the value of the similarity 
dimension as described in Section 9.7. We also know that theAa) curve must be 
concave downward. This information is sufficient to give us at least a rough 
picture of the entire curve. 

Exercise 10.5-5. Using the numerical values listed in the caption of Fig. 
10.7, verify the results stated in the previous paragraph. 

Let us now look at another example, theffa) distribution for the logistic map 
at the period-doubling accumulation point. The results are shown in Fig. 10.11. 

The logistic map data illustrate again the basic features of theAa) distribution. 
The a values for which Aa) is not 0 lie between 0 and 1. We expect this for the 
logistic map because, as we argued in Section 9.7, we can treat the attractor at the 
period-doubling accumulation point approximately as a Cantor set with two length 
scales ( l/a, and l/a:. ), where a~ is the Feigenbaum a = 2.502.. . . The 
numerical value offla) at its peak is just the box-counting dimension about equal to 

Exercise 10.5-6. Use the method suggested in the previous paragraph to 
calculate the values of D- and Dm for the logistic map. Compare your 
values with the results plotted in Fig. 10.11. 

As our final example of multifractal distributions, let us look at the Aa) 
distribution for data calculated from the sine-circle map [Eq. (6.7-6)] with 
parameter K = 1 and with winding number SZ equal to the golden mean, G = 
(& - 1)/2 = 0.6180.. . . As we saw in Chapter 6, this set of conditions 
corresponds to the onset of chaotic behavior. The distribution is plotted in Fig. 
10.12. 

The general behavior of the distribution is similar to that for the logistic map. 
The largest value of a can be expressed analytically as 
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Fig. 10.11. A plot off(a) distribution for the logistic map attractor at the perioddoubling 
accumulation point. The numerical value off(a) at the peak of the function corresponds to 
the box-counting dimension of the attractor. 

where p = 1.2885, the scaling factor in the neighborhood of 8 = 0 for the sine-circle 
map (HJK86). At the other extreme, the smallest value for a is given by 

The peak of the distribution occurs atAa) = 1, which is to be expected because the 
iterates of the sine-circle map completely cover the interval 8 = [O, 2n] thus giving 
a box-counting exponent of 1. 

A variety of experiments have been analyzed using the &a) formalism. 
(Several references are given at the end of the chapter.) The usefulness of this 
approach is in its ability to recognize universality classes among a diversity of 
dynamical systems even though the attractors look different to the eye. For 
example, JKL85 analyzed data from a Rayleigh-Benard convection experiment and 
found that its Aa) distribution matched, within experimental uncertainty, the 
distribution shown in Fig. 10.12 for the sine-circle map. A similar analysis was 
carried out (SRH87) for a system of coupled semiconductor diode oscillators. In 
practice, as we have mentioned before, the correlation sum is used to compute the 
generalized dimensions D, and the fla) function is then found by using the 
Legendre transformations Eqs. (10.5-1 1) and (10.5-12). 
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Fig. 10.12. A plot of theffa) distribution for data from the sine-circle map with K = 1 and 
the winding number equal to the Golden Mean. The ch, and values can be estimated 
analfieally as described in the text. The 45" lineffa) = ais  shown for reference. 

10.6 Generalized Entropy and the g(A) Spectrum 

In Section 10.4 we saw how to generalize the notion of dimension to create an 
entire spectrum of dimensions. Similarly, we can generalize the Kolmogorov 
entropy to create a series of entropy functions, which, at least in principle, give us 
more detailed quantitative information about the dynamics of the system. 

The easiest starting point is Eq. (9.6-ll), the definition of K S  entropy in 
terms of the sequence probability sum. Let's for the moment restrict ourselves to a 
one-dimensional system and write the probabilities of the cell sequences in the 
expanded form p(i, , i2 , . . . ,id ) so that N in Eq. (9.6-1 1 )  is replaced by d. (Later we 
will identify d with an embedding space dimension. For now it is just a measure of 
the length of the cell sequence.) We also set So = 0 since all the trajectories start in 

Fig. 10.13. A graph of the tilted tent 
map function with b = 0.2. 
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the same cell. Then with Dl in Eq. (10.4-10) in mind, we call the K-S entropy Kl 
with 

We now reverse the argument connecting Eq. (10.4-2) for D, to Eq. (10.4-10) for 
Dl and define a generalized entropy K, as 

To get a feeling for the K,s and what the probabilities p(4, i2 , . . . ,id ) mean, 
let us look at a simple one-dimensional iterated map scheme, called the tilted tent 
map, with the mapping function 

X 
fb(x)=- for O<x<b 

b (10.6-2) 
1-x 

fb (4 = - for b c x < l  
1-6 

The map function is plotted in Fig. 10.13. 
To evaluate the probabilities, we recall that the probability associated with a 

trajectory point x landing in a cell can be expressed in terms of the Lyapunov 
exponent associated with that value of x: 

that is, if the Lyapunov exponent is large and positive, then the probability will be 
small since trajectories are repelled rapidly from that region of state space. Thus, 
for the tilted tent map, we argue that the probability associated with trajectory 
segments with just one step is p(il) = b if x is in the interval [O,b] and p(il) = 1-b if 
x is in the interval [b,l]. For the sake of simplicity and to develop expressions that 
are analogous to those used in Section 10.5, let us use p, = b and p2 = 1-b. We then 
have 

where the middle equality defines the probability sum S; . 
For trajectory segments whose length is two steps, we have four possibilities: 

( 1 )  Both points are in the interval [O,b]; (2) both points are in [b,l]; (3) the frrst 
point is in [O,b] and the second is in [b,l]; (4) the first point is in [b,l] and the 
second is in [O,b]. The associated probabilities are p f ,  plp2, and p2 pl , 
respectively. Then the probability sum is 
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p(i, ,i,)' = S: = (p: + p;)' (10.6-5) 
i, .i2 

With a quick generalization, we write 

CP(i,,...id)q =,SS,d =(p: (10.6-6 
i ' s  

Using Eq. (10.6-6) in Eq. (10.6-l), the definition of K,, yields 

With the use of the techniques leading to Eq. (10.4-lo), we can show that 

If we calculate the average Lyapunov exponent for the tilted tent map using the first 
equality in Eq. (9.5-9) with p(x) = 1 for the tilted tent map, we see that KI is just 
the average Lyapunov exponent for the system. 

Exercise 10.6-1. Use the first equality in Eq. (9.5-9) with p(x) = 1 for 
the tilted tent map to verify that KI is indeed the average Lyapunov 
exponent for the system. 

Exercise 10.6-2. Show that K, = KI = In 2 for all q if p l  = p2. In general 
if all the local Lyapunov exponents for the system are the same then K, = 
KI for all q. 

Let us look at a few more special cases. From Eq. (10.6-7), we find that KO = 
In 2. KO is called the topological entropy because it is given by the natural 

1.6 

K9 
1.2 

Fig. 10.14. A plot of K, for the tilted tent map model with b = 0.2. 
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logarithm of the number of fixed points of the system, a topological property. 
When q + w , the larger of pl and p2 dominates in Eq. (10.6-7) and we have 
K, = - ln p, . Similarly, when q + - , the smaller of the two probabilities 
dominates, and we find K, =-In p,, . Figure 10.14 shows a plot of Kq as a 
function of q for the tilted tent map with b = 0.2. 

W~xercise 10.6-3. Verify the numerical asuects of Fig. 10.14. I 

Generalized Entropies and Generalized CorreWn Sums 

Trying to find the entropies by calculating probabilities is nearly a hopeless task for 
all but the simplest systems. However, the entropies Kq can be related to the 
generalized correlation sums C, whose computation is more straightforward. Let 
us see how this works for q = 2, and then we will generalize the result to other 
values of q. 

K2 is used because it is particularly easy to compute. Using Eq. (10.6-l), we 
have 

For the case of d = 1, following Grassberger and Procaccia (GRA83), we argue that 
the sum of p(il)2 can be expressed as the correlation sum C2(R) (except for some 
overall numerical factor that is unimportant when we take logarithms) defined in 
Eq. (10.4-15). That is, the correlation sum basically involves the probability that 
two trajectory points fall within a cell of size R. This probability is given 
approximately by the square of the probability that a single trajectory point falls in 
that cell (assuming that the "events" are independent). 

For d > 1, the cell sequence of trajectory points is equivalent to a vector in a 
d-dimensional embedding space. We relate p(i,,. . . , id)2 to a generalized 
correlation sum c ~ ' ( R ) ,  which can be thought of as a (yet further) generalization 
of Eq.(10.2-1) and Eq. (10.4-15): 

z p (  (,...,id)' = C i d ' ( ~ )  (10.6- 10) 
i ' s  

We see that when d = 1, Eq. (10.6-10) reduces to our previous definition of the 
correlation sum in Eq. (10.4- 15). 

In practice, K2 can be computed from the correlation sum C ~ ' ( R )  by finding 
how C?'(R) depends on the embedding dimension. Why does this work? 
Increasing the embedding dimension means that we increase the number of 
elements of the time-series "vector"; that is, we increase the time length of the 
sequence of sampled values used in the computation. If the system is behaving 
chaotically, then we would expect the corresponding trajectory elements to diverge 
(on the average) as the length of the time sequence increases. The generalized 
entropy, just like the K-S entropy, measures the at which this divergence 
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occurs. Thus, if we determine how the correlation sum decreases with increasing 
embedding dimension, we can determine the corresponding K2. 

From Eq. (10.6-l), we see that 

C p (  (,...,id)' = P K 2  

i ' s  

To complete the connections, we recall that the generalized correlation sum is 
related to the correlation dimension D2: cid' (R) - R& . Putting all of this together 
yields 

Taking the natural logarithm of both sides of the previous equation gives us 

where we have dropped the unimportant In A term. From Eq. (10.6-13), we see 
how to find K2: With R fixed we plot In c ~ ~ ' ( R )  as a function of d, the embedding 
dimension; the slope of that curve should be -K2. In practice, we need to be sure to 
use a value of R that puts the In cid' (R) versus In R curve in the "scaling region." 

We are now ready for the final generalization. Following Pawelzik and 
Schuster (PAS87), we may define a new correlation sum. To simplify the 
formalism, let us first introduce a notation for a difference between two of our 
embedding space "vectors": 

(As mentioned before, we could also use the maximum component difference as a 
measure of the difference between two vectors.) In terms of this Rii, we can define 
a generalized correlation sum for a d-dimensional embedding space as 

Recalling the connection between the generalized dimension Dq and the generalized 
correlation sum Cq, we have in analogy with Eq. (10.6-13) 

Thus, if we plot In cid' as a function of d, we see that the slope (in the scaling 
region) should be -(q - 1) K, . 
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Let us now look at a few special cases to see what the Cs and the K,s tell us. 
For q = 0, the entropy KO, the topological entropy, simply counts the topological 
properties of the attractor. As we see from the second equality in Eq. (10.6-13, 
cid' is a sum over all sequences of state space cells for which the probability of 
visitation is not 0. Thus, KO tells us how the logarithm of the number of such 
sequences grows with embedding dimension d, a topological property of the 
attractor. We will see later that this number can be related to how the number of 
(unstable) periodic trajectories increases with the length of the period. 

We need a special treatment for q = 1. K1 is sometimes called the 
information entropy in analogy with the information dimension Dl. Using 
arguments identical to those we used for looking at Dl, we first define a special 
correlation sum 

If we use Eq. (10.6-1) and the procedures leading to Eq. (10.4-10) we find that K I  
can be written as 

so that we have 

If we plot c:~'(R) as a function of d, the slope should be -KI. 

Exercise 10.6-4. Show that Eq. (10.6-18) follows from Eq. (10.6-1) in the 
limit q -+ 1. 

Dynumical Spectrum g(A) 
The generalized entropies suggest that there might be a set of scaling relations that 
are the analogues of theAa) spectrum for the generalized dimensions. To see how 
this comes about, let us recall the definition of the generalized entropies Eq. (10.6- 
1) and rewrite it using T = e-d to obtain 

This form is exactly like that of Eq. (10.4-2) for the generalized dimensions. 
Based on the arguments in Section 10.5, we might expect there to be a scaling 

exponent, usually called A((, . . . , id ) , defined in such a way that the probabilities 
p(il, ..., id) aregiven by 
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(10.6-21) 

Then the number of times we find a value of A(i, , . . .,id ) lying between A and 
A + dA is given by 

n(A)dA = T - ~ ' ~ ' ~ A  (10.6-22) 

which defines the spectrum g(A) of the scaling exponents. 
Now the argument proceeds exactly as in Section 10.5 withfia) replaced by 

g(A). In analogy with Eq. (10.5-9), we end up with the relationship 

In practice, g(A) is computed by fust finding the generalized correlation sum and 
the generalized entropy. Next, we compute the auxiliary quantity 

~ ( 9 )  = (9 - OKq = A9 - g(A) (10.6-24) 

Finally, we construct [in analogy to Eqs. (10.5-11) and (10.5-12)] the Legendre 
transformation relations 

Before examining the results of some computations of g(A), let us connect A 
to something more familiar, namely, Lyapunov exponents. For a one-dimensional 
system described by an iterated map functionfix), a cluster of trajectories starting 
inside a cell of size R located at xl will spread to I f '(x,) I cells after one iteration 

Fig. 10.15. A plot of the g(A) distribution for the tilted tent map with b = 0.2. 
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step. Thus, the probability of a certain sequence of cells being visited can be 
expressed as 

where p(1) is the probability of being in the first cell. Hence, we find for the 
logarithm of the probability 

d-l 

In ~ ( ~ , . . . , i ~ ) = l n ~ ( l ) - ~ l n ~  j = l  f1(x,)l 

For large values of d, we can neglect the p(1) term in comparison to the other term 
on the right of Eq. (10.6-27), and we find that 

We immediately (?) recognize the sum of the logarithms of the absolute 
values of the derivatives of the mapping function as defining the (local) Lyapunov 
exponent for the particular trajectory segment leading through the sequence of cells 
il ,. . . ,id . Thus, the individual Ail ,,,,, , is the Lyapunov exponent for that particular 
sequence. Hence, we see that the g(A) function describes the distribution of 
Lyapunov exponents over the attractor. 

The actual computation of the g(A) distribution proceeds in analogy with the 
fTa) calculations described in Section 10.5. For the tilted tent map, Eq. (10.6-7) 
gives us an explicit expression for K,. Using that expression, we invoke the 
Legendre transformations in Eq. (10.6-25) to find 

Figure 10.15 shows the g(A) distribution for the tilted tent map with b = 0.2. 
Note that the largest value of g(A) corresponds to KO and that the end points of the 
distribution correspond to K ,  and K ,  in direct analogy to thefTa) plots. 

Exercise 10.6-5. Verify the calculations leading to Eq. (10.6-29) and the 
numerical values shown in Fig. 10.15. 

As another example, Fig. 10.16 displays the results of finding K, and the 
resulting g(A) distribution for data taken from the semiconductor diode circuit 
described in Chapter 1. Conditions were set so that the trajectories are chaotic with 
an average Lyapunov exponent of about 0.5 (per cycle of the driving signal). We 
see that there is a distribution of A values. The largest value corresponds to 
regions of the attractor with the most rapid divergence of nearby trajectories, while 
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the smallest value of A corresponds to that region of the attractor with the least 
rapid divergence, which for a system modeled by a quadratic maximum map 
should be close to 0. Other examples of g o )  distributions can be found in PAS87 
and [Schuster, 19951. 

Exercise 10.6-6. By using a partition function defined in analogy to Eq. 
(10.5-16) 

with T = e-d , use the method outlined in Section 10.5 for the weighted 
Cantor set to find &A) for the tilted tent map. Compare your results with 
those computed using the Legendre transformation method. 

Fig. 10.16. Computed values of& and &A) f a  data datam the semiconductor diode circuit of 
Chapter 1. (Data courtesy of Ryan wall ad^) 
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10.7 Characterizing Chaos via Periodic Orbits 

In this section we shall describe yet another method of providing a quantitative 
description of chaotic behavior. Although this method is fairly new and not as 
widely tested as some of the methods described earlier, we believe that it provides 
many insights lacking in the statistical methods. This new analysis may eventually 
turn out to be more useful. 

To introduce this new method, we first recall that the attracting region of state 
space for chaotic behavior contains, in addition to the chaotic orbit points, a vast 
number of periodic trajectory points. For example, for the logistic map function for , 
parameter A > A_ there is an infinity of periodic points, which developed as a- / 
result of the period-doubling bifurcations. However, these periodic trajectory 
points are generally (except within the periodic windows) unstable: A trajectory in 
the neighborhood of one of those points is repelled by it. In a sense, a chaotic 
trajectory is chaotic because it must weave in and around all of these unstable 
periodic points yet remain in a bounded region of state space. The basic idea of this 
new method is to characterize the chaotic attractor by means of the properties (for 
example, the characteristic exponents) of the unstable periodic points. 

This idea is not new. For example, the Lorenz model attractor's positive 
Lyapunov exponent could be estimated from the positive characteristic exponent 
associated with the unstable fixed points of the Lorenz model. In other words, the 
exponential divergence of trajectories is dominated, at least for some situations, by 
the positive characteristic exponent associated with the out-set of the system's 
saddle points. Also, Poincark realized the importance of periodic orbits [Poincark, 
1892](translation from DHB92): "What renders these periodic trajectories so 
precious to us is that they are, so to speak, the only breach through which we might 
try to penetrate into a stronghold hitherto reputed unassailable." 

What is new is the realization that the unstable periodic points, at least for low 
order periodicities, can be found directly from a time-series record of chaotic 
trajectories. There is no need to know the underlying differential equations or map 
function. Furthermore, once the periodic points are found, their characteristic 
values can be estimated (often fairly accurately) directly from the chaotic trajectory 
time-series data. (See the references at the end of this chapter.) There are also 
powerful methods for finding periodic points when the time evolution equations are 
known (DHB92). 

A further advantage of this periodic orbit analysis is that it gives a hierarchical 
method of characterizing chaotic attractors. Much of our success in understanding 
in detail the attractors at the period-doubling accumulation point or at the onset of 
chaotic behavior for quasi-periodicity with the golden-mean winding number is due 
to our ability to describe these attractors as the limit of a sequence of periodic 
attractors. The renormalization formalism described in Chapters 5 and 6 allows the 
determination of the quantitative properties of the attractor. In an analogous 
fashion, the analysis of a chaotic attractor (perhaps deep within the chaotic regime) 
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can be described in terms of a hierarchy of (unstable) periodic orbits of increasing 
length. 

How do we find those periodic points if we have available only data from a 
chaotic trajectory, which by definition, is not periodic? The basic idea can be 
understood for one-dimensional data by considering the Poincark map generated 
directly from experimental data. For example, we saw in Chapter 5, Fig. 5.3, that a 
plot of as a function of In for the semiconductor diode circuit of Chapter 1 gives 
a onedimensional curve (if the dissipation is sufficiently high). The intersection of 
that curve with the = In line gives the location of a period-1 trajectory point. 
However, that periodic point is unstable. If we plot In+2 as a function of In, then the 
intersection of that curve with the In+2 = In line gives the location of unstable period- 
2 points. In principle, we can continue in this way to locate periodic points of 
higher and higher order. Furthermore, from the slopes of the curves at the periodic 
points, we can determine the Lyapunov exponents for those points. Obviously, in 
practice, we are limited by the precision of the data to finding periodic points of 
low order. 

For higher-dimensional systems, we can proceed in essentially the same way. 
From a time-series record of a single variable we can construct an embedding 
(reconstruction) space as described earlier in this chapter. We can then scan 
through this record to find trajectory points that are within some specified distance 
of one another after n time units. This is sometimes called the "method of close 
returns." These points are assumed to be in the neighborhood of the unstable 
period-n points in the embedding space. Since there is generally more than one 
period-n cycle for a given set of parameter values, the period-n points are then 
sorted into the individual period-n cycles. Once the period-n cycles are found, the 
characteristic values for the cycle points can be estimated by finding how nearby 
trajectories diverge from the cycle points. We will not go into the details here; the 
reader is referred to ACE87, CVI88a, and MHS90 for more information. 
Numerical experiments indicate (ACE87) that finding orbits up to n = 10 is 
sufficient for determining the topological entropy KO and the box-counting 
dimension Do of the attractor to within a few percent accuracy. 

As an example of this kind of treatment, we quote the relationship between 
the number of periodic points and the topological entropy KO (BIW89): 

where N(n) is the number of points belonging to periodic orbits of order n and its 
divisors (including 1 and n). 

In addition to providing an alternative method of determining some of the 
statistical properties of a chaotic attractor, the periodic orbit analysis provides a way 
of classifying chaotic attractors and of distinguishing among attractors that may 
have the same statistical description (MHS90). In the statistical characterization of 
chaotic attractors, we have focused on so-called metric properties such as 
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Lyapunov exponents and fractal dimensions that do not depend on the coordinates 
used to describe the system. However, the metric properties do change, as we have 
seen, with parameter values. Hence, it is difficult to use them as definitive tests of 
the validity of any particular model. Another type of description emphasizes the 
topological properties of the periodic orbits (SOG88, CGP88, GLV89). In simple 
terms, the topological properties specify how the periodic orbits weave in and 
around each other in the chaotic attracting region of state space. This topological 
information tells us about the "organization" of the attractor in a way that is 
independent of both the coordinates used to describe state space and the control 
parameter values. As control parameters are changed, the periodic orbits may 
appear or disappear, but the evidence is that the topological properties of the 
remaining orbits are not affected by this appearance or disappearance. 

The topological classification is carried out (MHS90) by finding the relative 
rotation rates for the periodic orbits. The relative rotation rate specifies how many 
times one orbit rotates around the other orbit during one period. This rotation rate 
can be determined by using a PoincarC section of the two periodic orbits: One 
draws a vector from the intersection point of one orbit with the Poincark plane to an 
intersection point of the other orbit with the plane. As the trajectories evolve 
(between PoincarC section crossings), this vector will rotate. If one orbit has period 
nA (that is, its period is n~ times the time between PoincarC section crossings) and 
the other orbit has period n6, then the vector will return to its original position after 
nA x n6 periods. The relative rotation rate is the number of full rotations of the 
vector that occur during nA x n6 periods divided by the number of periods. 

10.8 *Statistical Mechanical and Thermodynamic Formalism 

All of the formalism introduced in this chapter can be brought together in formal 
structures that resemble the relationships of statistical mechanics and 
thermodynamics. This connection is perhaps not too surprising since the goal of 
the generalized dimensions and generalized entropies is to give a detailed statistical 
description of attractors and trajectories. First, we give a brief summary of the 
formalism of statistical mechanics and thermodynamics. We will then describe 
how an analogous formalism can be constructed that embodies all of the results of 
this chapter. Readers who are not familiar with statistical mechanics may skip this 
section. 

In statistical mechanics, the primary computational tool for a system in 
thermal equilibrium is the so-called partition finetion, which is generated by 
summing a Boltzmann-type factor over all the energy states of the system (which, 
for the sake of simplicity, we take to be a discrete set): 

where gn is the degeneracy factor for the nth energy; that is, gn specifies how many 
states have the energy En. As usual, P is proportional to the reciprocal of the 
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absolute (Kelvin) temperature for the system. The crucial point is that all the 
thermodynamic properties of the system can be computed from the partition 
function. 

Let us illustrate how we use the partition function to compute various 
thermodynamic quantities. For example, the internal energy of the system is 
obtained from 

~ and the Helmholtz free energy (the energy that can be extracted from the system at 
constant temperature) is given by 

I 
Finally, the dimensionless entropy for the system is 

For dynamical systems, two partition functions, Z, and T(q,@, can be defined. 
The first is given in terms of the local Lyapunov exponent associated with all the 
periodic points of order m; that is, points belonging to a period-m trajectory. (This 
analogy between energy states and trajectories associated with periodic points will 
appear again in Chapter 12 for our discussion of the relationship between quantum 
mechanics and chaotic dynamical systems.) We call this first partition function the 
dynumical partition function since it emphasizes the temporal dynamics of the 
system as embodied in the Lyapunov exponents. The second type of partition 
function involves the spatial scaling exponents, and we call it the "structural 
partition function." 

Dynamical Partition Function 
Let us begin with the dynamical partition function defined as 

In this expression, /3 is a parameter that plays the role of inverse temperature. x,,, is 
a trajectory point on a periodic cycle of length m. The sum is over all such points. 
In this formalism, we are using the (unstable) periodic points to characterize the 
system. If the system has a multidimensional state space, then A(x,) is the largest 
(positive) Lyapunov exponent at the trajectory point x,. 

If the dynamical system can be modeled by a one-dimensional iterated map, 
we can write the partition function Z, as follows 
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where f '""(x,,,) is the derivative of the mth iterate of the map function evaluated 
at the point xm, one of the fixed points of the mth iterate. 

Let us see how this formalism works by applying it to the tilted tent map (see 
Fig. 10.13), an iterated map system with the mapping function repeated here 

X 
fp(x)=-  b for O < x < b  

I-x 
,fp (x) = - for b < x < l  

1-b 

To evaluate the partition functions we need to know the slope of the function 
(and its iterates) at its fixed points. From Fig. 10.13 we see that the function itself 
has two fixed points, one at x = 0 with slope 116 = llpl and the other between b and 
1 with slope -ll(l-pl) = -Up2 (using the notation introduced in Section 10.6). The 
second iterate has four fixed points, one with slope (llp1)2, one with slope -(llpz)2 
and two with slopes +l/(p, p,) . 

Let us now evaluate the partition functions ZI and Z2. From Eq. (10.8-6), we 
write Z1 directly: 

Some straightforward algebra allows us to write the partition function as 

We evaluate Z2 by first noting that f '*I has four fixed points. Hence, we have 

which, again after a little algebra gives us 

We then see that the obvious generalization for Zm is 

(You should note the similarity between this result and the results for the 
generalized partition function for the Cantor sets discussed in Section 10.5.) 

Exercise 10.8-1. Check Eq. (10.8-12) explicitly for the case m = 3 by 
writing out the partition function term by term. 
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Once we have the partition functions in hand, we can then calculate other 
thermodynamic properties. The (average) internal energy of the system is given by 

Of particular interest is E(P = 0) : 

Hence, we see that E(0) is just the average (unweighted) Lyapunov exponent for 
the system. This result should not be too surprising since our construction of the 
partition function started with the Lyapunov exponent in the argument of the 
exponential in the partition function. That observation suggests that we should 
view 

as a probability associated with the fixed point x,, . The larger the (positive) 
Lyapunov exponent, the smaller is the probability that a trajectory finds itself near 
that fixed point. Next, we note that the usual (weighted) average Lyapunov 
exponent is given by E(1) = -pl In p l  - p2 In p2. 

Let us now find the Helmholtz free energy for the system: 

Of somewhat more interest are the various dimensionless entropies, which we find 
according to the standard procedures by taking the derivative of the free energy 
with respect to p , the inverse temperature parameter: 

which for the tilted tent map gives 
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We can unravel the meaning of this rather complicated looking expression by 
evaluating the entropy for specific value;of P . For example, setting P = 0 gives 

S(0) = In 2 (10.8-19) 

which is the map's topological entropy (i.e., the natural logarithm of the number of 
fixed points for the first iterate of the map function). 

For /3 = 1 ,  we get fromEq. (10.8-18) 

which we recognize as the K-S entropy K,  for the system. For the tilted tent map, 
this is also the average Lyapunov exponent. 

Let us summarize what we have learned from this example. For a system 
such as the tilted tent map for which we can write down explicitly the sum over 
fixed points in Eq. (10.8-5), we can calculate the generalized partition function Z,. 
From that partition function we can then calculate the generalized entropies for the 
system. What is somewhat surprising is the role played by P ,  the inverse 
temperature parameter: p picks out the order q of the generalized entropy. 

Exercise 10.8-2. Discuss the relationship between the definition of 
topological entropy in Eq. (10.8-19) and the one given after Eq. (10.6-7). 

Structural Partition Function 
The second type of partition function emphasizes the spatial structure of the 
dynarnical system's attractor. Let us call it the structuml partition function. It 
was defined in Eq. (10.5-16), but we repeat it here: 

where pi is the probability that a trajectory lands in cell i. Recall that the parameter 
zfq) is chosen so that the right-hand equality holds, and we established that 
z = (4-l)Dq. 

To make a connection to a thermodynamic formalism, we note that zfq) is 
proportional to the logarithm of a partition function. Hence, it plays the role of a 
free energy. From Eq. (10.5-9), we see that z(q) is related to the scaling spectrum 

Aa) by 

If we compare this result with the usual thermodynamic relation among internal 
energy E, free energy F and entropy S, namely F = E - SIP, we see that we can 
identifyAa) with entropy and a with internal energy. 
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At this point it is worth asking: Why bother with this thermodynamic formal 
analogy? The answer is that once this identification has been made, we can use the 
accumulated experience of thermodynamics to help us think about and organize our 
experiences with dynamical systems characterized either by the dynamical 
spectrum g(A) or by the scaling spectrum Aa). For example, some dynamical 
systems show a discontinuity in theirfla) versus a curves. A discontinuous jump 
inJla) is then called a phase transition in analogy with first-order phase transitions 
in thermodynamics, which have a discontinuous change in entropy. In rough terms, 
if thefia) curve shows a jump, we can think of the attractor as being a mixture of 
two (or sometimes more) distinct phases with different densities, much like a 
mixture of water droplets and water vapor. Moreover, the many methods for 
characterizing thermodynamic systems may suggest novel ways of studying 
dynamical systems. Conversely, we might expect that our knowledge of dynamical 
systems will enrich our understanding of thermodynamics and statistical 
mechanics. For a recent review, see ZAS99. 

10.9 Wavelet Analysis, q-Calculus and Related Topics 

In this section, we mention briefly several other (related) techniques for the analysis 
of time series data from nonlinear systems. All share the feature of looking at how 
the properties of the system change under a rescaling of the coordinates, much in 
the spirit of the multifractal analysis of Section 10.5. 

The first of these techniques makes use of a mathematical technique known as 
wavelet analysk. Wavelet analysis can be thought of as a generalization of Fourier 
analysis. As Appendix A discusses, Fourier analysis tells us how much our data 
look like sine and cosine functions of different periodicities. Analogously, the 
wavelet analysis tells us how much our data look like various "wavelets," which are 
functions peaked at various (spatial or temporal) locations with various "widths" or 
spreads in space or time. The references at the end of the chapter give a sampling 
of wavelet analysis applied to nonlinear data. See BON98 in particular. 

Another mathematical technique called q-calculus or q-analysis can be 
thought of as a generalization of ordinary calculus. Instead of having just first 
derivatives, second derivatives, and so on, we can define a "fractional" q- 
derivative: 

The q-derivative tells us how the function f changes when the x coordinate, for 
example, is stretched by the factor q. (Recall that the ordinary derivative tells us 
how the function changes when the x coordinate is shifted by a small amount.) In 
the limit q + 1, the q-derivative is the same as the ordinary derivative. It turns out 
that q calculus can be used to characterize multifractal sets (ERE97). 
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Recently, Tsallis (TSA88) has introduced a new version of thermodynamics, 
called nonextensive thermodynamics, in which entropy, free energy and so on are 
not proportional to the size of the system (as they are in ordinary thermodynamics). - 
This model then provides a further generalization of the entropy ideas and 
multifractal distributions discussed in this chapter. Such generalizations may prove 
useful in characterizing nonlinear systems (CLP97, LYT98, ANT98). 

10.10 Summary 

Let us summarize what we have seen in this chapter. There have been many so 
many trees that it may be easy to lose sight of the forest. In brief, we would say 
that there are now available many different ways of quantitatively describing 
chaotic systems. Some of these methods emphasize the spatial characteristics of 
the state space region visited by trajectories in terms of generalized (fractal) 
dimensions. Other methods, such as the generalized entropies, emphasize the 
temporal dynamics of the system. Both the generalized dimensions and entropies 
can be computed from the data from the time series samples of a single dynamical 
variable by combining the embedding space techniques with the generalized 
correlation sums. 

All of these methods are descriptive. They allow us to provide numerical 
values of quantities that describe the dynamics of the system. In a few cases there 
are predictions of universality. For example, for systems that follow the quasi- 
periodic route to chaos and have dynamics in the same class as the sine-circle map, 
the Aa) spectrum at the critical point at the onset of chaos is supposed to be 
universal. Unfortunately, these methods do not generally provide us with any 
predictive power. Moreover, although much progress has been made in simplifying 
and speeding up the computation of dimensions and entropies, these calculations 
still consume an enormous amount of computer time for even relatively small data 
sets. If we simply want to have some quantitative measure to monitor a chaotic 
dynamical system, then perhaps finding just the largest Lyapunov exponent or the 
box-counting or correlation dimension is sufficient. In any case, the goal of 
computing any of these quantitative measures for a dynamical system should be an 
understanding of the dynamics of that system. The computation is not a goal in 
itself. 

The topological classification of dynamics in terms of periodic orbits seems to 
hold great promise in developing our understanding of dynamical systems. 
However, this field is just in its infancy, and we must wait to see if this young tree 
will bear useful fruit. 

To conclude, we also point out that all of the analysis given in Chapters 9 and 
10 has assumed that the system's parameters remained constant. For actual 
experimental or "real world" systems, you must worry about the validity of this 
assumption. For the laboratory realization of many chemical and physical systems, 
this assumption does not pose a significant problem. However, for living biological 
systems or uncontrolled systems such as variable stars or the stock market, the 
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validity of this assumption must be questioned. We are then faced with a difficult 
question: What is the significance of some quantifier, such as a correlation 
dimension, if it is computed from a time-series of data recorded over a period of 
time during which the system's parameters were changing? Here we are on rather 
mushy ground. At best, in this kind of situation, any calculated quantity represents 
an average over parameter values. At worst, they may have no meaning at all 
because the system has not settled into an attracting region of state space and the 
computed quantities are some kind of (rather ill-defined) characteristic of the 
transient behavior of the system. In some cases, however, there is interest in 
analyzing the transient behavior itself. Time-series methods can be helpful there 
(JAT94). 

Several methods have been proposed for recognizing and dealing with "non- 
stationary" systems-systems whose parameters are changing with time-since in 
many cases these are in fact quite interesting systems and in other cases they are 
unavoidable. These methods have generally focused on identifying recurrence 
times, which serve to measure how often a trajectory revisits a particular 
neighborhood in the state space. The statistics of these times can help identify non- 
stationary conditions. For a recent survey, see GA099. 
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10.12 Computer Exercises 

CE10-1. Write a computer program that computes and plots fia) for the 
weighted Cantor set as described in Section 10.6. 

CE10-2. Write a computer program that computes and plots fia) for the 
asymmetric Cantor set of Exercise 10.5-4. Hint: Use Newton's Method to solve the 
resulting implicit equation for nlw*. 

CE10-3. Read the article HJK86 and implement their analysis to plotfia) for 
the two-scale Cantor set. Verify that the results reduce to the special cases, the 
weighted Cantor set and the asymmetric Cantor set, in the appropriate limits. 

CE10-4. Read the article by H. Gould and J. Tobochnik, "More on Fractals 
and Chaos: Multifractals," Computers in Physics 4 (2), 202-7 (MarchJApril 1990) 
and try some of the program suggestions in that article. 
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11 

Pattern Formation 

and 

Spatiotemporal Chaos 

The next great awakening of human intellect may well produce a method of 
understanding the qualitative content of equations. Today we cannot. 
Today we cannot see that the water flow equations contain such things as 
the barber pole structure of turbulence that one sees between rotating 
cylinders. Today we cannot see whether Schriidinger's equation contains 
frogs, musical composers, or morality-r whether it does not. We cannot 
say whether something beyond it like God is needed, or not. And so we can 
all hold strong opinions either way. R. P. Feynman in [Feynman, Leighton, 
Sands, 19641, Vol. 11, p. 41-12. 

11.1 Introduction 

Intricate, lacy ice crystals form from swirling mists; clouds take on regular, periodic 
patterns that stretch for hundreds of kilometers; a warm pan of tomato soup 
develops a regular pattern of hexagons on its surface. Order arises from (apparent) 
disorder. Complexity emerges from uniformity. Nature seems to generate order 
and spatial patterns, even where we least expect to find them. How does this 
happen? 

All of these questions concern systems with significant spatial variation of 
their properties. So, we must now consider the spatial dependence of the dynamics 
of the system, as well as the temporal dynamics, which so far has been our prime 
concern in this book. 

From the fundamental physics point of view, there is a real puzzle here. At 
the microscopic atomic and molecular level, we know that the significant 
interactions (or forces) among atoms and molecules extend over rather short 
distances, something on the order of 10 A (roughly 5 to 10 atom diameters). 
Beyond those distances the interactions between atoms become insignificant 
compared to the random thermal agitation of the environment at all but the lowest 
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temperatures. Given that fact, the puzzle is to explain the emergence of molecular 
order which extends over very large distances, perhaps a few millimeters in the case 
of ice crystals or even kilometers in the case of clouds. How do short range 
interactions conspire to give us long range order? 

One possible explanation is to say that there are long-range interactions (not 
accounted for by the fundamental atomic and molecular forces) that allow the 
molecules to "communicate" with each other; therefore, a particular water 
molecule, for example, "knows" where to place itself to form the correct shape for 
the tip of a snowflake. This long-range communication, however, seems too much 
like magic and, in any case, is ad hoc. We do not expect new kinds of forces to 
emerge in this way. 

As scientists, we would like to explain the emergence of order on the basis of 
known forces and the appropriate dynamics. That is, we hope that we can explain 
the production of long-range order "simply" by applying the known laws of physics 
to the appropriate dynamics for the system. Within the past twenty years or so, we 
have made some progress in understanding what these appropriate dynamics are. 
What may be surprising is that many of the concepts that help us understand 
temporal chaotic behavior seem to be useful in understanding the emergence of 
order and complexity. 

What do these order-producing systems have in common? First, and most 
importantly, they are systems that are driven away from thermal equilibrium. A 
system at thermal equilibrium, by definition, has a uniform temperature and no 
energy flows among its "parts" (assuming that it has distinguishable parts). Energy 
flows and nonequilibrium conditions are necessary for the emergence of order. 
Second, dissipation is important in allowing nonequilibrium systems to settle into 
definite structures, in analogy with the importance of dissipation in allowing a 
system's dynamical trajectories to settle onto an attractor in state space. The 
distinguished physicist and Nobel Prize winner Ilya Prigogine has coined the term 
"dissipative structures" for the ordered spatial patterns that emerge in 
nonequilibrium dissipative systems. 

The third commonality among these pattern-producing systems is our old 
friend nonlinearity. Without nonlinearity, no patterns are produced. 
Nonequilibrium, however, is important, too, because for most systems at, or very 
close to, thermal equilibrium the nonlinearities are "hidden." The effects of 
nonlinearities become noticeable only when the system is driven sufficiently far 
from equilibrium. 

These statements about nonlinearity are perhaps too strong. Many linear 
systems such as rays of light passing through slits or gratings or water drops, for 
example, produce many intriguing patterns. These patterns, however, are 
determined by the geometry of the slits, gratings, or water drops. The kinds of 
patterns we will treat in this chapter, generated by nonlinearities in the system, 
often have geometric shapes that are independent of the shape of their boundaries. 
In addition, nonlinear patterns often become time-dependent even when all the 
system parameters and boundaries are time independent. Both of these features- 
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patterns independent of the geometry of boundaries and inherent time 
dependence-are signals of what we call nonlinearpaltern formation. 

Another characteristic feature of nonlinear pattern formation is the production 
of coherent sbuctures. These structures can be a pattern of stripes, a localized 
pulse, a vortex of fluid flow and so on that persist through time and often move 
around within the medium in which the pattern has formed. These structures are 
formed by a variety of physical, chemical or biological mechanisms. SH093 and 
RTV99 give some flavor of the methods used to attempt to provide a general 
understanding of these structures. 

Although much has been learned about the emergence of spatial patterns, the 
story of this vast, complex, and important field is far from complete. In this 
chapter, we shall introduce some of the basic aspects of what is now being called 
pattern formation and spatiotemporal chaos. (Of course, chaotic behavior is just 
one feature of the broader landscape of nonlinear dynamics in systems with 
significant spatial structure, but the same nonlinearities that give rise to the pattern 
formation can produce chaotic time behavior.) In the subsequent sections we 
provide a potpoum of examples to give some sense of the wide range of concerns 
in spatiotemporal nonlinear dynamics. These by no means exhaust the list of 
fascinating phenomena under active investigation, but they should give you some 
notion of the basic issues, the concepts and formalism in current use, and the range 
of application of these phenomena. Wherever possible, we try to show how the 
concepts we have learned in the study of nonlinear temporal dynamics can cany 
over to those systems with interesting spatial structure. In fact, we shall see that 
fractal dimensions, applied here to actual spatial structures, play an important role 
in characterizing many of these systems. 

As we proceed through these sections, we shall introduce some of the basic 
physics and formalism for the description of fluid flow and transport phenomena. 
For better or worse, these topics have disappeared from most introductory physics 
courses, producing an unfortunate lacuna in physicists' educations. Our goal is to 
provide just enough introduction to these topics so that we can see the connections 
among the formalisms used to describe the phenomena. 

Spatiotemporal patterns are examples of how simple order can arise from 
complex behavior. Chaos, as we have mentioned before, can be viewed as 
complex behavior arising from (often) simple systems. Is there a theory (or at least 
a point-of-view) that links these together and provides an understanding of the 
dynamics of complex systems, including biological systems, social systems, as well 
as systems in the physical sciences? As yet there is no simple answer to that 
question. The references at the end of the chapter give some flavor of what some 
scientists and mathematicians think a "theory of complexity" would be like. What 
follows in this chapter are several examples of the kinds of problems a theory of 
complexity would try to solve. 
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11.2 Two-Dimensional Fluid Flow 

As a first example of spatially dependent dynamics, we describe some aspects of 
two-dimensional fluid flow. The first obvious question is what do we mean by 
two-dimensional fluid flow? Aren't fluids inherently three dimensional? Two- 
dimensional fluid flow occurs when the fluid conditions remain uniform in one 
direction as the fluid (perhaps) swirls and twists in the other two (usually mutually 
perpendicular) directions. An example is probably helpful. Imagine a fluid 
contained in a rectangular chamber, as illustrated in Fig. 11.1, whose right and left 
sides can slide up and down. The sliding will induce fluid flow in the x and y 
directions (in the plane of the page), but the flow will be the same at any value of z, 
the coordinate direction perpendicular to the page (except perhaps in a very thin 
layer immediately at the front and back surfaces). Hence, we say that the fluid 
motion is (essentially) two-dimensional. 

This type of fluid system has been used extensively in recent years to study 
the conditions for fluid mixing. (See [Ottino, 19891 and other references at the end 
of this chapter.) Fluid mixing is important in a variety of industrial and natural 
settings. How can a paint manufacturer assure that pigments are mixed thoroughly 
into the paint medium? How are gases, such as COz, which are dissolved in the 
surface layers of the ocean, mixed with deeper lying layers? In fact, the question of 
how to characterize mixing appropriately and its relation to chaos is still unresolved 
(RKZOO). For our purposes, mixing occurs when a small blob of colored fluid, for 
example, injected at some point into the main body of fluid, eventually becomes 
stretched and twisted sufficiently to extend essentially throughout the entire fluid 
region. (We will ignore the contribution of molecular diffusion to the mixing. We 
will be concerned only with the mixing induced by the bulk motion of the fluid.) 
This mixing occurs, as we all know from stirring our morning coffee, when the 
fluid motion involves some kind of twisting and folding. If the fluid flows 
"smoothly," then little mixing occurs. 

The dynamical analogy to the mixing of fluids is the stretching and folding of 
a cluster of initial conditions associated with chaotic motion in state space, which 
causes the cluster to be spread throughout a significant region of state space. As we 

F i  11.1. A schematic diagram of a fluid system in 
which the flow is essentially two-dimensional. The 
right and left sides of the fluid cell can move up and 
down vertically, thereby inducing fluid motion in 
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shall see, this analogy can be formulated mathematically; in fact, the equivalent of 
the average Lyapunov exponent for the divergence of nearby trajectories can be 
used to provide a quantitative measure of the amount of mixing [Ottino, 1989, p. 
1171. 

The hydrodynamic theory of two-dimensional fluid motion shows that the 
velocity of the fluid at a particular location (x,y) can be specified in terms of a so- 
called streamfunction Y(x, y,t) [Ottino, 19891 for what is called isochoric flow. 
From the streamfunction, we compute the velocity components by taking partial 
derivatives 

At a fixed time t, the lines of constant Y(x, y,t) map out the so-called streamlines 
of the fluid motion. The streamlines are curves tangent to the fluid velocity vector 
at that particular point in space. 

The crucial point here is that Eqs. (1 1.2-1) for the velocity components of the 
fluid flow have the same mathematical structure as Hamilton's equations, 
introduced in Chapter 8. By comparing Eqs. (1 1.2-1) with Eq. (8.2-I), we see that 
the fluid streamfunction plays the role of the Hamiltonian function for Hamiltonian 
systems (-83, -84). This realization tells us that the trajectory of a fluid 
particle in real xy space for two-dimensional fluid flow [that is the solution of the 
differential equations embodied in Eqs. (1 1.2-l)] is the same as the state space (pq 
space) trajectory in the corresponding Hamiltonian system. (Recall that the state 
space trajectories are the solutions of the Hamiltonian differential equations.) If the 
streamfunction is independent of time, then a particle of the fluid moves along the 
curve determined by Y(x, y) = a constant. This behavior has a direct analogy in 
Hamiltonian dynamics: A point in state space for a Hamiltonian system moves 
along a state space curve for which H(qg) = a constant if the Hamiltonian is 
independent of time. 

In most of traditional fluid dynamics, finding the streamfunction and 
streamlines for a given set of conditions is the goal of most calculations. However, 
for the study of mixing we must go further: We need to find the actual paths 
followed by particles of the fluid. As we mentioned earlier, mixing is associated 
with the exponential divergence of two nearby particle paths. Two different (but 
related) methods are used to characterize particle paths. In the first method, we find 
the so-calledpathlines, the actual particle paths. In more formal terms, we want to 
find the position vector of a particle as a function of time. We write this position 
vector as 
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where & is the initial position vector of the particle whose path we are following. 
If we know the streamfunction for a particular situation, then, in principle, we can 
find the pathline by solving the differential equation 

In experiments, we can map out pathlines by injecting a tracer particle or small blob 
of dye at the position Z0 at time t = 0 and following its path as a function of time. 

The second method of following motion in the fluid is to inject, usually at a 
fixed spatial location, a stream of tracer particles or dye and to trace the path laid 
out by this stream. Such a path is called a streakline. If a flow is steady in the 
sense that the fluid velocity at a fixed spatial location is independent of time, then 
streaklines and pathlines coincide. In the more general and more interesting case of 
nonsteady flows, streaklines and pathlines are not the same because the velocity at 
the tracer injection point changes in time. 

Let us now return to the analogy between two-dimensional fluid flow and 
Hamiltonian state space dynamics. Two important results follow from this 
analogy. First, we may use the actual fluid paths to visualize the analogous state 
space trajectories in the corresponding Hamiltonian system. By watching the fluid 
motion, we can develop more intuition about the meaning of folding and stretching 
in state space dynamics. (This visualization was suggested early in this century by 
the physicist J. W. Gibbs. See [Gibbs, 19481, Vol. 11, pt. 1, pp. 141-156. Second, 
we can use what we have learned about Hamiltonian dynamics to guide us in our 
understanding of two-dimensional fluid flow. 

As an example of the latter claim, we make the following argument: If the 
streamfunction is independent of time, and the fluid flow is steady, then the fluid 
system, as mentioned earlier, is equivalent to a Hamiltonian system with one degree 
of freedom. Hence, as we saw in Chapter 8, there is no possibility of chaotic 
behavior. In fluid flow language, we can say that the fluid will not exhibit mixing 
behavior. The folding and exponential stretching required for mixing cannot occur 
in a steady two-dimensional flow system. On the other hand, if the streamfunction 
is periodic in time, the fluid flow system is equivalent to a Hamiltonian system with 
''one-and-a-half degrees of freedom," and chaotic (mixing) behavior is possible. 
Even in the latter case, however, as we saw in Chapter 8 for chaotic behavior in 
state space, the mixing behavior, for some range of parameter values, may not 
extend throughout the fluid; some parts may be mixed, but other parts may show 
smooth, nonmixing flow. 

Figure 11.2 shows some pathlines for fluid flow in the system illustrated in 
Fig. 11.1. The pathlines are made visible by the injection of a small, colored blob 
of fluid. For the case shown in Fig. 11.2, the flow was caused by a steady motion 
of the right and left plates in opposite directions. The fluid pathlines look much like 
the phase space trajectories of a Hamiltonian system. In fact, elliptic points and 
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hyperbolic points, analogous to those for a Hamiltonian system organize the fluid 
flow. 

If a blob of fluid is located near an elliptic point, it either remains fixed in 

STREAMLINE 

Fig. 113. The pathlines produced by following the motion of a colored blob of fluid in 
the type of system illustrated in Fig. 11.1. In this case the right and left sides were moved 
in opposite directions with constant speed The locations of elliptic points and a 
hyperbolic (saddle) point are indicated. Photograph used by permission from J. Ottino. 
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Fig. 113. The pathlines produced by following the motion of a colored blob of fluid for 
periodic motion of the moving sides of the apparatus, but rotated 90' from that shown in Fig. 
11.1. In the vicinity of the hyperbolic point, the fluid shows the stretching and folding 
behavior characteristic of mixing. (From [Ottino, 19891, p. 210.) 

location or circulates in a smooth (laminar) fashion about the elliptic point. For a 
blob injected near a hyperbolic point, the fluid is stretched and pushed away from 
the hyperbolic point along the direction associated with the point's unstable 
manifold, while the blob is pulled toward the point along the stable manifold. The 
flow can develop mixing characteristics if the equivalent Hamiltonian system has 
developed homoclinic or heteroclinic trajectories, as discussed in Chapter 8. These 
trajectories are possible if the right and left sides of the cavity are moved back and 
forth periodically (see Fig. 11.3). Then the blob of tracer dye will undergo folding 
and stretching that mimics the homoclinic or heteroclinic tangles of the 
corresponding phase space trajectories (see Fig. 11.4). 

As one further illustration of the use of the Hamiltonian analogy to fluid flow, 
let us recall the important role played by KAM surfaces in Hamiltonian dynamics. 
As we saw in Chapter 8, KAM surfaces form barriers in state space for trajectories 
of the dynamical system. Trajectories may wander chaotically in some parts of 
state space, but KAM surfaces, at least for some range of parameter values, prevent 
a trajectory from visiting all of the allowed region of state space. 

Do analogous KAM surfaces restrict fluid mixing? Alternatively, can we use 
the notion of KAM surfaces to understand why mixing does not occur in some 
regions of a fluid flow while efficient mixing seems to occur in other regions of the 
same flow? Experiments (KUS92) (KU092) (OMT92) seem to indicate that the 
answer to both questions is yes. Figure 11.5 shows the streaklines of dye injected 
into the fluid flow through a chamber called a partitioned-pipe mixer. The fluid 
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fig. 11.4. An illustration of how fluid pathlines mimic a homoclinic tangle in a Harniltonian 
system The paths were calculated for a model system called the Tendril-Whorl flow model. 
(a) For lower flow strength, the homoclinic behavior near the saddle point at the center is 
hidden. (b) For higher flow strength, the homoclinic tangle becomes obvious. (From [Ottino, 
19891 p. d ( C d a  illustrations). 

enters near the top and is removed at the bottom. As you can see, dye injected at 
one point travels a fairly regular path through the tube and does not mix with its 
surroundings. That dye is injected in a region inside a KAM surface, a region in 
which the motion is fairly regular. On the other hand, dye injected near the edge of 
the tube follows a tortuous path, and the trajectory appears to be chaotic. We see 
that our knowledge of the behavior of trajectories in state space for a Hamiltonian 
system can guide us in understanding the complex fluid flows in actual three- 
dimensional space. This method can also be extended to visualize three- 
dimensional chaos (FK098). 

Gmnulur Flows 
There is yet another type of "fluid" flow whose study has benefited from the 

ideas of nonlinear dynamics. This is the flow of so-called granular materials such 
as sand, small beads, and even a mix of cocktail nuts. These materials can flow 
under appropriate conditions (think of sand pouring out of a child's bucket at the 
beach) bat with properties quite different from ordinary fluids like water or air. Try 
shaking a container of mixed nuts with cashews, peanuts, and Brazil nuts, for 
example. You find that, perhaps to your surprise, that the large nuts rise to the top 
and the small nuts go toward the bottom of the container. The flow and mixing of 
these granular materials is important in pharmaceuticals, food processing, and the 
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chemical, ceramic, and metallurgical industries. The references given at the end of 
this chapter provide an introduction to this newly emerging field. 

11.3 Coupled-Oscillator Models, Cellular Automata, and Networks 

The spatiotemporal dynamics of real systems are often very complicated and 
difficult to handle both experimentally and theoretically. To develop some 
understanding of spatiotemporal nonlinearities, we often use a variety of simple 
models whose behavior is relatively easy to follow with a computer. Although the 
models may not, in most cases, have any direct connection to actual physical or 
biological systems, we expect (or hope) that the general kind of behavior exhibited 
by our model systems will at least guide us in thinking about the spatiotemporal 
dynamics of more complex and realistic systems. 

In this section we describe three such model systems. The three examples 
involve the dynamics of discrete units. But the behavior of one unit influences the 
behavior of another unit. The first model is a generalization of the now familiar 
notion of iterated map functions. The second is a class of iterated computations 
called cellular automata. Both of these systems involve iterative schemes that lead 
to the generation of interesting and complex spatial patterns starting from random 
initial conditions. The third example is a network of units that process an input and 
provide an output. 

Coupled Iterated Map Functions 
Let us make a model system consisting of a collection of identical dynamical 
systems (such as the logistic map function). Each member of the collection is to be 
associated with a different spatial location. With each spatial location, we also 
associate a number determined by the dynamical rule that defines the chosen 
dynamical system. We are interested in how the numbers at different spatial 
locations get correlated or uncorrelated. In the simplest situation these locations 
might be along a straight line, so we need worry about only one spatial direction. 

Of course, if each member of the overall system simply acts independently, 
nothing interesting would occur. We need some coupling or interaction among the 
different spatial locations. We find that as the swength of the coupling between 
different spatial locations increases the system can spontaneously generate spatial 
order, that is spatial patterns of correlated changes of the numbers occur. Although 
this model is not directly related to any real physical system, we might anticipate 
that real systems with coupling between spatially separated "oscillators" might 
show some of the same dynamical and spatial features. 

Let us consider a specific example: a one (spatial) dimensional model. 
Suppose we have N dynamical systems at locations labeled by t = 1,2,3, . . ., N. At 
each location we assign a number x(i) by the following iterative procedure: 

1 
x,,, (i) = -[ f (x, (i)) + E f (x, (i - 1)) + E f (x, (i + I))] (1 1.3-1) 

1 + 2E 

Pattern Formation 

Fig. 115. Streaklines of dye i~jected into the flow through a parhtioned-pipe mixer. (The 
mixer itself is illustrated in the diagram on the left.) On the right, fluid enters at the top of the 
pipe and is removed at the bottom The dye injected inside a KAM surface near the top left 
does not mix with its s u m d i n g .  The dye injected at the top right of the tube shows 
'chaotic trajectories and good mixing behavior. (From KU092) 
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is determined by the value at i at the nth time step and by the values at the 
neighboring sites i-1 and i+l. The parameter E determines the strength of the 
coupling to the neighbors. The function f might be any function like the logistic 
map function. The factor 1/(1+2~ ) assures that the x values stay between 0 and 1, 
for example, if the function f maps the range [0,1] onto itself. To avoid ambiguities 
at the end points 1 and N, we often identify x(1) = x(N). In general we could use 
many different map functions, and we might also allow for coupling among more 
than just the nearest neighbors. For now, let us stay with this simple model. 

To explore the dynamics of this kind of system, we "seed" the system with a 
random selection of x values (usually, between 0 and 1) and then implement the 
dynamics by applying Eq. (11.3-1) to the x values at all the locations 
simultaneously. We now have two parameters to vary. One is the parameter 
associated with the map function (e.g., the parameter A in the logistic map 
function). The other is E, the parameter that determines the coupling between 
neighbors. 

The behavior of such a coupled system is quite complex and by no means 
fully explored. The most interesting effects occur when the A values, assumed to 
be the same at all spatial locations, are in the region for which each individual map 
function behaves chaotically in the absence of coupling with its neighbors. As the 
coupling strength is increased, the overall system develops spatial organization with 
groups or clusters of numerical values all changing together. The system has 
essentially generated spatial order from a random initial state. 

K. Kaneko (KAN89a,b, KAN90, KAN92) studied a one-dimensional coupled 
iterated map system in which all the spatial locations are coupled together: 

To further simplify the analysis, we can divide the range of x values into two 
segments, as we did in Chapter 5, and label one range R (right) and the other L 
(left). Then we look for correlations in the values of R and L at different spatial 
locations. Kaneko found that the system quite commonly settled into completely 
coherent oscillations of the entire system: All locations would switch back and 
forth together between R and L. For some values of E and the map parameter (say, 
A for the logistic map), the system would break up into two interlaced groups (that 
is, the members of one group are not necessarily spatial neighbors) that oscillate 
between R and L out of phase. The general conclusion is that these coupled map 
systems seem to generate interesting spatial order as a result of the competition 
between the chaotic behavior of an individual element and the tendency for 
uniformity due to the coupling among neighbors. This kind of competition will be 
seen to be a common feature of many pattern generating systems. 

These coupled iterated map models have many surprising features. 
Additional noise can cause them to become more ordered (SCK99). If the 
dynamics becomes high-dimensional, the shadowing theorem (Chapter 2) may fail 
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and no mathematical model can produce reasonably long solutions that match those 
of the system (LAG99). Chaotic coupled maps can also be configured to perform 
simple computations (SID98). Recently, Egolf (EG000) has argued that studies of 
coupled chaotic map models indicate that the tools of equilibrium statistical 
mechanics can be used to understand far-from-equilibrium, spatially-extended 
chaotic systems. Such systems have heretofore been difficult, if not impossible, to 
understand using standard analytic methods developed for equilibrium situations. 

Cellular Automatu 
Cellular automata are simple discrete systems manifesting interesting 
spatiotemporal patterns. The name comes from the procedure for implementing 
this kind of system. We divide up some spatial region into discrete cells. A 
numerical value (or a color or some other attribute) is associated with each cell. 
The attribute is allowed to evolve in discrete time steps according to a set of rules. 
In most cases the rules are based on "local" interactions: A given cell changes its 
attribute depending on its own value and the values possessed by its neighbors. 
Hence, the evolution is "automatic." A one-dimensional array of coupled iterated 
maps forms a simple cellular automaton with the evolution rules specified by 
something like Eq. (1 1.3-1) or Eq. (1 1.3-2). However, most cellular automata use 
two or more spatial dimensions and have attributes with a limited (and usually 
fairly small) number of values. Often the rules for evolution can be stated in simple 
verbal form. Most cellular automata are implemented on computers, and their 
history, in fact, begins with some of the early electronic computers in the 1940s 
[Toffoli and Margolus, 19871. 

Let us make a simple one-dimensional automaton by dividing a one- 
dimensional region (which might be infinitely long) into cells. We assign a number 
(usually an integer) to each cell in some initial pattern. Then, in discrete time steps, 
we change the numerical values in the cells all at the same time (that is, 
synchronously) to new values based on a set of rules. For example, we might 
assign a 1 (meaning "alive," to give the model a more interesting flavor) or a 0 
(meaning "dead"). The evolution rules might be the following: 

1. If a live cell (that is, a cell with a 1 associated with it) has live 
neighbors on both sides, it dies (the number changes to 0) (because of 
"overcrowding"). 

2. If a dead cell (with a 0) has a live neighbor on each side, then the cell 
becomes alive ("1") on the next time step. (The couple gives birth to 
a child.) 

3. If a live cell has no live neighbors, it dies (changes to 0) (due to 
"loneliness"). 

4. If a cell (dead or alive) has one live neighbor and one dead neighbor, 
it remains unchanged. 

5. If a dead cell has two dead neighbors, it remains dead. 
If we have a spatial region of finite length, then we must also give rules for what 
happens at the ends. For now, we will assume we have an infinitely long region. 
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Next, we assign an initial pattern of 1s and 0s to the cells and let the system 
evolve according to the rules. For example, we might start with . . .O, 1,0,. . . , that 
is, all 0s and an isolated 1. According to rule (3), this isolated live cell dies on the 
next time step and the system evolves to all 0s and remains there forever. 

Let us try a second initial pattern, say . . .0,1,1,0,. . . (i.e., almost all 0s with an 
isolated live pair). Since each 1 has a neighboring 1 and 0, it remains unchanged 
according to rule (4). Thus, this pattern remains unchanged forever. As a third 
example, let us consider . . .O, 1,1,1,0,. . . where again the ellipsis means all 0s except 
for the 1s shown. This pattern evolves to . . .,1,0,1,0,. . . on the first time step and 
then to all 0s. Thus, we see that at least two different initial patterns end up 
evolving to the same final state. 

From these simple examples, we see that we should ask the following 
questions about the evolution of cellular automata: 

1. What initial patterns (if any) are unchanged under the rules of 
evolution? 

2. What set of initial patterns leads to complete extinction (all Os)? 
3. What set of initial patterns leads to other patterns that are then 

unchanged under the rules of evolution? 
4. What set of patterns have cyclical (periodic) behavior for the 

evolution? 
5 .  What kinds of patterns (if any) evolve from "random" initial patterns? 
6. Are recurring patterns (or cycles) stable with respect to 

"perturbations" such as changing the value of one of the cells? 
7. What happens to the patterns if we change the rules for evolution? 

The similarity between these questions for cellular automata and the questions 
we have been asking about the temporal dynamics of systems should be obvious. 
In fact, we can use almost exactly the same language here. For example, a pattern 
that remains unchanged is af i ed  point of the evolution. A sequence of repeating 
patterns constitutes a limit cycle. We can consider a pattern (or periodic cycle of 
patterns) to which a set of other patterns evolve as an attractor for the evolution of 
the system. The set of all patterns that evolve to a particular final pattern (or cycle 
of patterns) constitutes the basin of attraction for that pattern. If two almost 
identical patterns evolve to very different final patterns (suitably defined), then we 
can say that the evolution displays sensitive dependence on initial conditions. A 
pattern is said to be stable if a small perturbation of that pattern (for example, 
changing the numerical value of one cell) evolves back to the original pattern. 
Otherwise, the pattern is unstable. 

Exercise 113-1. Try various initial patterns for the one-dimensional 
automaton example given earlier. Find at least one other recurring 
pattern. Can you find a periodic cycle of patterns? Are these recurring 
patterns stable? 
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Exercise 113-2. Change one of the rules for the evolution of the one- 
dimensional automaton. Can you find recurring patterns and cycles? 
Explore the stability of these patterns. 

Exercise 113-3, Construct a one-dimensional automaton with a finite 
number of cells. Set the boundary conditions so that x(1) = x(N), where N 

I is the number of cells. Using the rules given in the text, explore the I 
I attractors, basins of attraction, and so on, for this automaton. 

Two-dimensional cellular automata show even more complex possibilities. 
We shall discuss two examples to give some taste of what can happen. The "Game 
of Life," introduced by the mathematician John Conway, divides a two- 
dimensional region into a square array of cells. A "1" ("alive") or "0" ("dead") is 
assigned to each cell. Each cell has eight neighbors whose states influence that 
particular cell's evolution. Conway's original rules (GAR70) of evolution were the 
following: 

1. A live cell ("1") stays alive only if it is surrounded by two or three 
live neighbors. 

2. A live cell dies if it has more than 3 live neighbors (overcrowding) or 
fewer than two live neighbors (loneliness). 

3. A dead cell ("'0") changes to a 1 if it has exactly three live neighbors. 
(Obviously, rather complicated social arrangements exist in this 
make-believe world.) 

We can again pose the set of questions listed earlier. Figure 11.6 shows a 
stable pattern and a periodic pattem for the Game of Life. 

Figure 11.7 shows the pattern that emerged from a set of random initial 
values. Obviously, we have a very rich set of possibilities: We can change the set 
of evolution rules, and we can extend the automata construction to three or more 
dimensions. See the readings at the end of this chapter for a taste of this rich and 
only incompletely mapped out smorgasbord. 

A second example of a two-dimensional cellular automaton uses a hexagonal 

Period l Period 2 
F i  11.6. Some recurring patterns for the Game of Life. On the left is a pattern that remains 
unchanged under the evdution rules. On the right is a pattern that recurs periodically (with 
period-2) under the rules. 
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Fig. 11.7. A pattern that evolved for the 
Game of Life starting with a set of 
random initial conditions in a rectangular 
grid. The pattern has not yet reached a 
steady state, but the emergence of 
"structures" on all length scales seems 
apparent. The fractal (box-counting) 
dimension of the pattern is about 1.7. 
(See Section 11.6 for other patterns with 
similar dimensions.) 

array of cells (vertices) and assigns a vector (which may point along one of the lines 
connecting the vertices) to a "particle" that can move through the lattice from one 
vertex to another. Figure 11.8 illustrates a typical array. (This type of model is 
often called a "lattice gas model" because the motion of the particles from vertex to 
vertex is something like the motion of gas particles in a container.) With an 
appropriate choice of the rules for the behavior of the particles on the lattice, the 
particles' motion can mimic the flow of a fluid in two-dimensions. See the 
readings at the end of this chapter for details of this kind of application. Cellular 
automata models have also been used to study aspects of the human immune 
system (ZOB98). 

Networks 
For the last example of discrete spatial systems, we discuss a class of systems with 
a somewhat different structure from the first two in this section: networks 
(sometimes called neural networks because of their similarity to networks of nerve 
cells in an organism). Networks are arrays (more often conceptual than real) of 
cells. Each cell is assigned an attribute, usually one of two possible values. A 
given cell in the network may have one or more connections to other cells in the 
network. These connections serve as input signals to that cell. The time evolution 
rules are often given by binary operations, such as those of Boolean algebra, on the 
inputs to a given cell. The output of that cell then becomes an input for another cell 
(or cells) in the network. The difference between a cellular automaton and a 
network is in the connections. In a cellular automaton local neighbors and the 
current state of a cell determine that cell's state in the next time step. That cell 

Fig. 11.8. A diagram of a hexagonal 
two-dimensional lattice gas cellular 
automaton. A vector is assigned to each 
vertex indicating the direction of motion 
of a particle at that site. In some models, 
more than one W c l e  can reside at a 
vertex at any one mornent. 
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Fig. 11.9. A diagram of a network. The 
input units or cells are connected to 
various output units and also, in this case, 
a layer of hidden units. The weights of 
the outputs to the various layers can be 
varied. 

affects its neighbors. In a network, say with two input connections per cell, the two 
cells that provide the input to a particular cell need not be the cells to which the 
output connection goes. Figure 11.9 shows a simple neural network. 

Stuart A. Kaufman (KAU91) has studied Boolean networks extensively. The 
behavior of such a network depends both on the number of connections that 
provide input to a particular cell and on the rules that govern how the cell processes 
the input connections to give an output. Kaufman has shown that in a Boolean 
network for which the number of cells and the number of inputs per cell are the 
same, the network behaves chaotically with sensitive dependence on initial 
conditions. However, the number of possible state cycles and the number of basins 
of attraction are relatively small. Hence, these networks show a surprising amount 
of order. In fact, these properties seem to hold even when the number of inputs is 
reduced to three (KAU91). Networks with only two inputs per cell tend to have 
quite stable collective behavior; small perturbations will not remove the system 
from its attracting state. Kaufman and others have suggested that a network 
residing on the border between order and chaos is a good model for an adaptable 
system, one that can respond favorably and quickly to changes in its environment. 

Although these network models are highly suggestive, whether or not they 
capture the actual logic of adaptation and evolution remains an open question. See 
[Kaufman, 19931 and [Kaufman, 19951 for a wider discussion of these issues. On a 
different note many "naturally occurring" networks such as the World Wide Web, 
electrical power grids, and groups of actors seem to have dynamics that lead to 
interesting scaling behavior (BAA99). The common features of these networks are 
that the networks expand by adding new vertices (or connection points) and that 
new vertices attach preferentially to other vertices that are already well connected. 
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Summary 
What do we learn from the study of these discrete models? We quickly appreciate 
that interesting spatial patterns can emerge from initially random conditions even 
for very simple time evolution rules. This result gives us encouragement to seek 
simple rules for pattern formation in actual physical and biological systems. We 
also lean that even very minor changes in a set of rules can lead to dramatically 
different patterns for some systems and to only minor or no changes for other 
systems. Some spatial patterns in some systems are quite unstable against 
perturbations; others are quite stable. It is possible that we can learn from these 
models what features of pattern formation are important for stability in actual 
physical, chemical, and biological systems. 

11.4 Transport Models 

Many examples of spatiotemporal pattern formation occur in systems in which one 
or more substances are transported from one spatial region to another. In this 
section we will provide a brief introduction to the basic phenomenology and formal 
description of transprt. We shall, in the following sections, apply these 
descriptions to a sample of pattern formation problems. These transport models use 
a differential equations approach, which may be more comfortable and certainly 
more familiar to most scientists and engineers. We shall eventually see that these 
models, like the discrete models of the previous section, can lead to interesting 
pattern formation. 

In these transport models, the spatial and time variables are assumed to be 
continuous. By way of contrast, the discrete models discussed in the previous 
section use discrete spatial (and sometimes temporal) variables. We met with this 
distinction between discreteness and continuity in our discussion of temporal 
dynamics: Ordinary differential equations describe the dynamics of systems with a 
continuous time variable; iterated maps use discrete time steps. The relationship 
between spatiotemporal models with discrete variables and those with continuous 
variables is often not very clear. Rigorous proofs are generally lacking, and we 
must rely on some mixture of experience and commonsense to guide us in the 
comparison and applications of these distinct categories of models. 

Molecular Diffusion 

As a prototype of transport, we examine the spatial transport of molecules via the 
process of diffusion. At the microscopic level, diffusion is due simply to the 
random motion of the molecules. As the molecules collide with each other and 
with the other molecules that make up the medium in which the molecules "live," 
in their endless dance of random thermal motion, the molecules will tend to spread 
out from regions of high concentration to regions of low concentration. At the 
macroscopic level (to which we will confine our discussion), we focus our attention 
on the net outcome of these microscopic collisions and random motion: The 
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Fig. 11.10. A sketch illustrating the 
meaning of the aurent density jx. The 

area current density multiplied by the cross- 
sectional area (perpendicular to the flow 
direction) through which the molecules 
pass gives the number of molecules 
passing through that area per unit time. 

molecules tend to diffuse from a region of high concentration toward a region of 
low concentration. 

You should ponder, at least for a moment, the jump in level of description: 
From the microscopic point of view, each molecule is just as likely to move to the 
left, for example, as it is to move to the right. It is the preponderance of molecules 
in the high-concentration region, not any inherent property of the molecules 
themselves, that leads to the "flow" from regions of high concentration to regions 
of low concentration. If we imagine a thin, but permeable barrier dividing a high- 
concentration region from a low-concentration region, then we can see that even if 
there is equal probability for an individual molecule near the barrier to move left or 
right across the barrier, there can still be a net flow from high concentration to low 
concentration simply because there are more molecules present on the high- 
concentration side. At the macroscopic level, we describe this behavior as a flow of 
a continuous variable, the concentration of molecules. 

Let us now turn to a more formal description of diffusion. The flow of the 
molecules is usually expressed in terms of a molecular current density, the number 
of molecules per unit area passing a point in space per unit time (see Fig. 11.10). 
The current density in the x direction, for example, jx is proportional to the rate of 
change of concentration with position as expressed in Fick's Law of Diffusion: 

where D is called the diffuswn coeff~ient and C(x,y,z) is the concentration of 
molecules (the number per unit volume) under consideration. The partial derivative 
gives us the so-called gradient of the concentration in the x direction. The minus 
sign in Eq. (1 1.4-1) tells us that the flow is from high-concentration regions to low- 
concentration regions. (By definition, the gradient is positive in going from low 
concentration to high concentration.) The diffusion coefficient D depends on the 
type of molecule and on the conditions of the environment such as viscosity. A 
large value of D means that the molecules diffuse relatively rapidly through their 
environment. 

If the concentration of molecules also varies along they and z directions, then 
we need to write a vector equation 
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7 = -D grad C(x, y, z) (1 1.4-2) 

The symbol grad C(x,y~) is the (vector) gradient of the concentration, a short- 
hand notation for the following vector 

-ac A a ~  -ac 
grad C(x,y,z) =i-+ j - + k -  ax ay az 

which yields a vector pointing in the direction in which C is changing most rapidly 
with position. Note that in writing Eq. (11.4-2), we have assumed that D is the 
same for all directions in the medium; we say the medium is "isotropic." We 
would otherwise have different Ds for different directions. 

If the molecules being transported are neither created nor destroyed (due to 
chemical reactions), we say that the behavior of the molecules is described by a 
conservation law. In such a situation, if there is a net flow of molecules out of 
some region, then the concentration of the molecules in that region must decrease. 
As we saw in Chapter 3, the net flow out of a region is described mathematically by 
the so-called divergence of the current density vector. Thus, the conservation law 
(sometimes called the continuity equation) can be written 

This conservation law tells us that if there is a net flow out of some spatial region, 
as indicated by a positive value of the divergence of the current density vector, then 
the concentration in that region will decrease (its time derivative will be negative). 

We are now ready to establish our most important equation describing 
transport by diffusion by combining Eqs. (1 1.4-4) and (1 1.4-2): 

" '*') = div[D grad C(x, y, z,t)] 
at 

In many cases, the diffusion coefficient is independent of position, so we may write 
(dropping the arguments of the concentration function to simplify notation) 

ac - = D div grad C 
at 

where the last equality defines v', called the Luplaciun after the French 
mathematician J. P. Laplace, whom we met in Chapter 1. In Cartesian (x,y,z) 
coordinates, the Laplacian is simply the sum of three second derivatives: 

AS we shall see, ~ q .  (11.4-6) and its 
generalizations can be used to describe many other transport phenomena in addition 
to diffusion. 
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We can use Eq. (11.4-6) to define some quantities that will help us get a 
feeling for various transport phenomena. First, we define a distance d over which 
the concentration of molecules varies significantly. We also define a characteristic 
diffusion time Z, . Specifically, the definitions are 

Roughly speaking, we say that zD is the time required for the concentration to 
change a substantial amount due to diffusion. The inverse of this characteristic 
diffusion time is called the "diffusion rate." Using these definitions in Eq. (1 1.4-6) 
yields the following relationship: 

which relates the diffusion coefficient D to the characteristic concentration distance 
d and the characteristic diffusion time ZD. Note that for small values of D, we have 
a large value for zD (for a given value of 4. In that case the molecules diffuse 
slowly, and it takes a long time for the concentration to change significantly. 

Some Refinements 

We have focused our attention so far on the concentration of molecules in a single 
(small) spatial region and we have described how the concentration changes due to 
diffusion of molecules in and out of that region. In other situations, we may be 
concerned with the concentration in some region that is moving. The concentration 
can change both through diffusion and because our region of interest moves, with 
the fluid flow, into a spatial region where the concentration is different. We take 
this "bulk flow" (as compared to diffusive flow) of the material medium into 
account by adding a 6 .grad C term to the left-hand side of Eq. (1 1.4-6): 

Mathematically, we can say that the left-hand-side gives the total time 
derivative of the concentration. The first term tells us how C changes at a fixed 
spatial location while the second term tells us how C changes due to fluid flow into 
a region of different concentration. The first term expresses the time derivative 
from the point of view of an observer at a fixed spatial location. In fluid 
mechanics, this is called the Eulerian point of view. The two terms together give 
us the Lagmngiun point of view: the time dependence seen by an observer moving 
with a volume element of the fluid. 
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00000 Fig. 11.11. An illustration of the use of 
the averaging property of the Laplacian 
to solve (approximately) Laplace's 
equation. The value of the function at 

I O O @ O O  point P is taken as the average of the 
I values at the neighboring points V(P) = 

114 ( V(A) + V(B) + V(C) + V(D) ). 

Exercise 11.4-1. Use the chain rule for partial differentiation to show that 
the left-hand side of Eq. (1 1.4-9) is indeed the total time derivative for the 
concentration. 

For our second refinement of the diffusion equation, we can allow for 
chemical reactions that change the concentration. We take the reactions into 
account by adding a term f,,, to the right-hand side of Eq. (11.4-9). (If the 
reactions remove the molecules of interest, we make j&u,e negative.) Assembling 
all of these possibilities yields our most general diffusion transport expression 

- + c.  grad C = D V ~ C  + fsourre (1 1.4-10) 

As we shall see, the Laplacian V 2  appears in a wide variety of transport 
phenomena. Although we will not do much with the formal mathematical 
properties of the Laplacian, we do want to point out an important feature: The 
Laplacian expresses a kind of averaging effect. It shows up in the description of 
phenomena, such as diffusion, which tend to have a smoothing effect. That is, 
diffusion tends to decrease (smooth out) concentration differences. On the other 
hand, spatially concentrated chemical reactions tend to produce concentration 
differences. It is this competition between smoothing due to diffusion and the 
production of differences due to chemical reactions (or other mechanisms) that 
leads to interesting spatial patterns. 

Because a detailed mathematical proof of the averaging nature of the 
Laplacian would take us too far afield, we shall refer the interested reader to two 
books that treat this property in the context of the theory of electrostatic fields 
[Griffiths, 19811 and [Purcell, 19851. The essential statement is: If a function, say 
C(x,yz), satisfies the equation V'C = 0 in some region, then the value of C at 
some point P in that region is equal to the average value of C taken over a sphere 
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(contained in that region) centered on the point P. This averaging property is often 
used in numerical solutions of Laplace's Equation V 2 c  = 0 .  Figure 11.11 
illustrates the method in two-dimensions. 

Exercise 11.4-2. We can illustrate the averaging property of the 
Laplacian with a simple onedimensional example. Suppose we are 
concerned with some functionfix) and its average over the interval 1 4 2 ,  
U2]. The average offix) over that interval is defined as 

1 42 
< f ( 4  >= - j f (x)& 

L -yz 
(a) Use a Taylor series expansion about x = 0 to show that 

-- d 2 f  (x) -El< f (x) > - f (O)] 
dx2 L~ 

if we neglect all derivatives higher than the second. 

(b) Show that if the second derivative is equal to 0 (i.e., f satisfies a one- 
dimensional version of Laplace's equation), thenfi0) = <fix)>; that is, the 
value of the function at the center of the interval is equal to the average 
value over the interval. 

(c) Extend the argument to three dimensions. 

Conductive Thermal Energy Flow and Other Transport Phenomena 

Transport equations for many other phenomena take the same form as the equations 
describing diffusion. We illustrate this point with several examples. 

The transport of thermal energy ("heat") due to conduction is driven by a 
temperature gradient. Thus, we can define a thermal energy current density (so 
many watts per unit area) jT that is proportional to the temperature gradient: 

yT = -0, grad T(x, y ,  z )  (1 1.4-1 1) 

where T is the temperature of the material and CTT is called the thermal conductivity 
of the material. This equation tells us that thermal energy flows from regions of 
high temperature to regions of low temperature. The equivalent conservation law 
says that if there are no energy sources or sinks in a region, then as thermal energy 
leaves that region, there must be a change in the thermal energy density pr 
associated with that region. The conservation law takes the form 
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A change in thermal energy density, however, means that the temperature of 
that region will change. The specz@ heat capacity CT is the quantity that relates a 
change in thermal energy density to a change in temperature of that region: 

Using Eq. (1 1.4-13) and Eq. (1 1.4-12) allows us to write 

where the last equality defines DT, the thermal diffusivity of the material, in 
analogy with the diffusion coefficient D for molecular diffusion. By comparing Eq. 
(1 1.4-14) with Eq. (1 1.4-6), we see that changes in temperature due to thermal 
conduction (thermal energy diffusion) are described by an equation identical in 
form to the equation describing concentration changes due to molecular diffusion. 

Charged Particle Motion in a Resktive Medium 
If electrically charged particles move through a resistive medium, the electric 
current density ye is proportional to the gradient of the electric potential function 
V(x,y,z). (This statement is equivalent to the well-known Ohm's Law.) In 
mathematical terms, we write 

where a is the electrical conductivity of the medium. (The negative gradient of the 
electric potential function is equal to the electric field.) The corresponding 
conservation law relates the time derivative of the electric charge density p, to the 
(negative) divergence of the electric current density: 

Combining Eqs. (1 1.4- 15) and (1 1.4- 16) yields 

This equation has some of the same structure as the previous transport equations, 
but there are important differences. For charged particles, we do not have a simple 
relationship between the charge density p, and the electric potential V. Equation 
(1 1.4-17), however, will be sufficient for establishing analogies in a later section. 

Eq. (11.4-17) may look rather strange to the experienced students of 
electrostatics. We should point out that the usual Poisson equation for the electric 
potential function 
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relates the Laplacian of the electrical potential function to the charge density that is 
responsible for the electrical potential (i.e., the sources of the fields). In Eq. (1 1.4- 
17), we are relating the change in charge density of charges moving under the 
influence of a potential function produced by (usually fixed in position) 
electrical charges. 

Momentum Transport in Fluid Flow 
The motion of a fluid can be expressed in terms of the flow of momentum (mass 
times velocity) using Newton's Second Law (force equals rate of change of 
momentum). For a fluid, this law is usually expressed in terms of momentum per 
unit volume (mass per unit volume p times velocity). Conceptually, using the 
Lagrangian point of view, we follow a certain spatial region as it moves with the 
fluid flow. Then, for momentum in the x direction, for example, we write 

where F, is the x component of the force (per unit volume) acting on the packet of 
fluid in the region we are following. 

The first term on the left-hand side of Eq. (11.4-19) tells us that the 
momentum may change because the velocity at a particular spatial location may 
change with time (we shall consider only fluids for which the density is essentially 
constant). The second term tells us that the momentum may change because the 
fluid packet moves (with velocity 13 ) to a location with a new momentum value. 
(Compare the previous discussion about the Eulerian and Lagrangian points of 
view in fluids.) Note that this second term is nonlinear in the velocity-a portent 
of interesting things to come. 

The fluid also satisfies a conservation law. We assume that the fluid is neither 
created nor destroyed. If the fluid density p changes in a certain region, there must 
be a net flow into or out of that region. Hence, the conservation law takes the 
familiar form: 

-- a' - -div (pa)  (1 1.4-20) 
at 

For fluids such as water, the density is essentially constant (We say that the fluid is 
incompressible.) and the conservation law reduces to 

diva = 0 (1 1.4-21) 

which result we shall invoke in our discussion later. 
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For the fluids that we shall consider, the important forces will be due to (1) 
"body forces" (such as gravity, proportional to p), (2) pressure gradients, and (3) 
viscosity. Thus, we write 

where p is the fluid pressure at that location and p is the fluid viscosity. (A simple 
development of the viscosity force expression is given at the end of this section.) 
The body forces (per unit mass density) are represented by the symbol f, . If we 
combine Eqs. (1 1.4-22) and (1 1.4-19), we arrive at the fundamental fluid transport 
equation 

with analogous expressions for vy and v:. If the density is constant for the fluid of 
interest, then p can be removed from the derivative terms, and we obtain, after 
dividing through the last equation by p, 

where v = p / p  is called the kinematic viscosity. Eq. (1 1.4-24) is the famous 
Navier-Stokes equation for incompressible fluid flow. 

Summary 
As we have seen, the formal descriptions of many transport phenomena have nearly 
identical forms: An expression giving the temporal and spatial derivatives of the 
transported quantity is equal to various "force" terms, many of which can be written 
in terms of the Laplacian v2.  Given these similar formal expressions, we might 
expect to find similarities in the behaviors of these transport systems. 

*Simple Development of the Form of the Viscosity Force 
Here we present a simplified formal treatment of viscosity. The goal is to provide 
some justification for the pv2v, form of the viscosity force used in Eq. (1 1.4-22) 
because we will use that form to establish several analogies in sections to follow. It 
is also used in the development of the Lorenz model equations in Appendix C. 
More detailed treatments can be found in standard texts on fluid mechanics. 

We begin by considering a fluid flowing in the x direction as shown in Fig. 
11.12. Let us assume that the magnitude of the velocity increases with distance 
above the lower plate. Let us now focus our attention on a thin section of fluid. 
The fluid just above the section is traveling faster than the fluid in that section and 
tends to drag it forward in the x direction. This drag force is just what we mean by 
the viscous force acting on the fluid section. Isaac Newton was apparently the first 
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Fig. 11.12. A diagram of a &ion of 
fluid moving in the x direction (to the 
right). The velocity increases in the 
vertical O direction. A thin section of 
fluid of height Ay is shown. The fluid 
above drap the rectangular section to the 
right. The fluid below provides a force 
acting to the left. 

. 
X 

to suggest that this force is proportional to (1) the area AA of the top of the section 
and (2) the change in speed per unit distance in going across the thin section: 

where the proportionality constant is defined to be the viscosity of the fluid. The 
argument of Fx reminds us that this is just the force due to the fluid above the 
section. In the limit of Ay + 0,  the ratio in the last term in Eq. (1 1.4-25) becomes 
a partial derivative. You should note the important physical point: The force is 
proportional to a velocity (actually a change in velocity with position), a typical 
situation for a frictional force in a fluid. 

We now need to consider the force exerted on this section by the fluid below 
it, traveling with a slower speed. That viscous force tends to slow down the section 
of fluid. In fact, if the force due to the fluid below is equal in magnitude, but 
opposite in direction, compared to the force due to the fluid above, there is no net 
force on this section. (There is just a tendency to shear or distort the section.) 
However, if the gradient at the top of the section is larger than the gradient at the 
bottom of the section, then there will be a net force to the right. Thus, we can write 
the net force as 

where we have replaced the difference by the derivative multiplied by the change in 
distance over which the difference occurs. Thus, we see that the net force in the x 
direction due to the top and bottom sections is proportional to the second derivative 
of the x component of the velocity. 

Since the x component of the velocity might also vary in the x and z 
directions, we get two more contributions to the viscous force. Together, they yield 
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The force we need for the fluid flow equation is the force per unit volume, which is 
obtained from the previous expression by dividing both sides by AyAA , the 
volume of our section of fluid. With this operation, we find 

f,  = P V ~ V ,  (1 1.4-28) 

which is the desired result. 
We should point out that we have dodged some of the more intricate 

formalism needed to exclude from the viscous force expression the fluid motion 
that arises from a pure rotation of the fluid, for example, in a bucket of water 
rotating about a vertical axis through the center of the bucket. Such a pure rotation 
does not involve the shearing of one layer of water relative to another. That type of 
motion is excluded by writing the force on the top of the section, for example, as 

where the first subscript on the force term tells us that the force is in the x direction; 
the second subscript tells us that the force is acting on a plane perpendicular to they 
axis. Similar expressions give us the forces acting on the faces in the x and z 
directions. (Note that using these expressions does not change the simple argument 
used earlier because there we had velocity only in the x direction.) The calculation 
proceeds as previously, but we need to invoke the fact that div6 = 0 for an 
incompressible fluid to arrive at the desired result. 

Exercise 11.4-3. Carry through the calculation outlined in the previous 
paragraph to show that Eq. (11.4-28) is the correct expression for the 
viscous force. Hint: See [Feynman, Leighton, Sands, 19641, Vol. 11, p. 
41-4, or an introductory book on fluid mechanics. 

11.5 Reaction-Diffusion Systems: A Paradigm for Pattern Formation 

As an example of a system that can develop interesting spatial patterns from 
transport phenomena, we discuss so-called reaction-diffusion systems. In these 
systems we focus our attention on the concentrations of two or more chemical 
species, which both diffuse through the spatial region under consideration and react 
chemically. This type of system was considered by Turing (TUR52) in a classic 
paper in theoretical biology. Turing showed that reaction-diffusion systems can 
lead, via spontaneous symmetry-breaking, to interesting spatial patterns. Such 
patterns are now called Turing structures. Although the theory of these structures 
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has been thoroughly explored, unambiguous experimental evidence of their 
existence has been available only recently (CDB90) (OUS91). These reaction- 
diffusion mechanisms are thought to play an important role in pattern formation in 
biological systems [Murray, 19891. Here we shall use this model as an example of 
how a spatially extended system, described by a set of partial differential equations, 
is analyzed in terms of pattern formation. The important lesson to be learned is that 

1 by expressing the behavior of the system in terms of the time behavior of various 
1 spatial modes, we can reduce the problem of pattern formation to a problem in 

which the amplitudes for these spatial modes play the role of state space variables. 
Once that reduction has been made, we can then apply all that we have learned 
about temporal dynamics to the study of pattern formation. 

In a reaction-diffusion system, the concentrations C, of the chemical species 
are described by 

where Di is the diffusion coefficient for the ith substance. The functionJ specifies 
the reaction mechanism, which in general depends nonlinearly on all the 
concentrations. In addition, we need to specify "boundary conditions." The feed 
(or input) and removal of reactants can be concentrated in space or time or the 
reactants can diffuse in and out from boundaries. What is surprising is that these 
equations and boundary conditions can lead to spatial patterns with an intrinsic 
length scale (a "wavelength") that depends only on the concentrations or rates of 
input or removal and on the geometric size of the system. 

In order for spatial patterns to form, several requirements must be met. The 
reaction kinetics need a positive feedback mechanism for at least one of the species, 
called the activator, and an inhibitory process. Numerical evidence seems' to 
require that the inhibitor diffuse through the spatial region more rapidly than the 
activator. Otherwise, the patterns exist only over a rather narrow range of control 
parameters (rates of feed, rates of diffusion, and so on). 

As an example of a reaction-diffusion system, let us consider a two- 
component model [Murray, 1989, Chapter 141 [Nicolis and Prigogine, 1989, 
Appendix A]. We assume that the system has only two substances whose 
concentrations are given by CI and C2. The diffusion constant of substance 1 is Dl; 
it is D2 for substance 2. The equations describing this system are 

We also need to specify the boundary conditions. Since we are interested in 
pattern formation without "external forcing," we choose to specify that the flux 
(flow) of species at the boundary be 0. In addition, we need to specify the initial 
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spatial concentration C, (7,t = 0) , C2 (7,t = 0) . Let us assume that those 
specifications have been made. 

Since the governing equations are partial differential equations, we follow the 
standard solution procedure, which assumes that the resulting solutions can be 
written as (combinations of) products of functions, one depending only on time, the 
other carrying all the spatial dependence. To see how this procedure works, let us 
first ignore the spatial dependence; that is, we "turn off' diffusion. Then the time- 
dependent equations are 

These equations have exactly the same form as the general two-dimensional state 
space equations treated in detail in Chapter 3. To make use of the results developed 
earlier, we will limit our attention to small deviations from steady-state 
concentrations CI, and Ch, values that are obtained as the fixed-point values in Eq. 
(1 1.5-3). (We assume for now that there is only one fixed point.) 

In parallel with our treatment of state-space dynamics in Chapter 3, we define 
variables that express the deviation from the steady-state values 

Then, as we saw in Chapter 3, the time dependence near the steady-state is 
controlled by the characteristic values of the Jacobian matrix of derivatives of the 
functionsft andfi. Using this expansion about the steady-state values in Eq. (1 1.5- 
3), we obtain the time evolution equations 

where we have used a notation like that in Section 3.1 1. The results developed in 
Chapter 3 can be applied immediately to this case. For example, the steady-state 
will be stable if the real parts of the characteristic values of the Jacobian matrix are 
negative. 

Let us now return to the full space-time problem. We focus our attention on 
small deviations from the steady-state condition, which we take, for the sake of 
simplicity, to be a spatially uniform state. Making use of v2ci0 = 0 for the 
spatially uniform steady-state, we find that the cs are described by the following 
equations: 
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If there were no coupling between the substances (that is, iffiz andfil are both 
0), we could write cl and c2 as products of functions, one depending on time, the 
other on spatial variables. For example, cl (7,t) = @(t)U(T) . When this product 
form is inserted into Eq. (1 1.5-6), we find for cl 

with an analogous equation for c2. Rearranging the previous equation and dividing 
through by the product @U gives us 

Now comes a cmcial part of the argument: The left-hand side of Eq. (1 1.5-8) 
is a function of time alone; the right-hand side is a function of position alone. The 
only way the two sides can be equal for all combinations of time and position is for 
each to be equal to a constant (independent of space and time), which we shall call, 
with some foresight, -k2. Thus we have separated the original partial differential 
equation into two ordinary differential equations: 

40) = (A, -k2~ , )4 ( t )  

V'U (7) + k2u (7) = 0 

The first equation in Eq. (11.5-9) tells us that the time dependence can be 
written as an exponential function of time with a characteristic exponent that 
depends on both the reaction function derivatives f t  and on the constant k. The 
second equation in Eq. (1 1.5-9) and the boundary conditions imposed on the system 
determine the so-called spatial modes for the system. For a region of finite spatial 
extent, it turns out that only certain values of k lead to solutions that satisfy the 
equation and the boundary conditions. These values of k are called the eigenvalues 
(or characteristic values) for the spatial modes. 

As a simple example of spatial modes, let us consider a one-dimensional 
problem. We choose the x axis for that one dimension. Let us assume that the 
boundary conditions are that the flow of the substance is 0 at the boundaries of the 
region at x = 0 and x = L. Since the flow is proportional to the gradient (spatial 
derivative) of the concentration for diffusion problems, the physical boundary 
condition translates into the mathematical boundary condition of having the 
derivative of U(x) vanish at x = 0 and x = L. The set of functions that satisfy the 
one-dimensional equation 

and these boundary conditions is Uk(x) = A cos kx with k = nn/L  and n = 0,1,2,3, 
. . . The subscript on the function U reminds us that the function depends on k. We 
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see that only a discrete set of k values, the set of eigenvalues, leads to functions 
satisfying both the differential equation and the boundary conditions. 

Note that as a function of x, Uk(x) is periodic with spatial period 
("wavelength") 2n/k . For higher-dimensional problems, there will generally be a 
set of ks for each of the spatial dimensions. Hence, k is sometimes called the 
wavevector for the spatial modes. Note that k = 0 corresponds to the spatially 
uniform state. 

Exercise 11.5-1. Verify that Uk(x) = A cos kx with k = nn/L with n = 0, 
1,2,3, . . . satisfies Eq. (1 1.5-10) and the stated boundary conditions at x = 
0 andx = L. 

Returning to our general, but still uncoupled, problem, let us assume that we 
have found the spatial mode functions and the allowed values of k for the problem 
at hand. We then assume that the most general solution for c,, for example, can be 
written as a superposition of products of temporal functions and spatial mode 
functions: 

The coefficients a,, (t) are called the spatial mode amplitudes. The coefficients at 
t = 0, a,, (t = 0) , are determined by the initial conditions on the concentration. The 
expression for c2 can be written in a similar form. 

With these preliminaries in mind, let us get back to the problem of the 
coupled concentrations. Our basic mathematical assumption is that the solutions to 
Eqs. (11.5-6) can be written in the form of Eq. (11.5-11) even when the 
concentrations are coupled. If we insert the superposition form Eq. (1 1.5-1 1) into 
Eqs. (1 1.5-6) and replace V ~ U  with -k2u according to Eq. (1 1.5-9), we find: 

with an analogous equation for the second of Eq. (1 1.5-6). 
Now we come to another second crucial point: We claim that the functions 

aik(t)Uk(7) associated with each value of k must satisfy the equations 
independently. (In more formal terms, we say the spatial mode functions are 
"orthogonal" when integrated over the spatial region of interest. We can use that 
orthogonality to pick out a particular value of k. See the references on 
mathematical methods at the end of this chapter for more details.) Hence, we find 
the following equations for the kth spatial mode amplitudes: 
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We see that the spatial mode amplitudes depend on each other; we say we have 
coupled modes. 

-- 

original set of partial differential equations into a set of coupled ordinary 
differential equations for the spatial mode amplitudes. These equations 
are exactly of the form of the equations describing temporal dynamics in 
state space, where now the spatial mode amplitudes play the role of state 
space variables. We have one complication: since there are an infinite 
number of possible k values, the state space has, in principle, an infinite 
number of dimensions. This result tells us that systems described by 
partial differential equations are dynamical systems with an infinite 
number of degrees of freedom. What saves the day and makes some 
progress possible is that for many cases, only a few spatial modes are 
"active." For the inactive modes, the time dependence of their amplitudes 
is an exponential with a characteristic value whose real part is negative. 
Any initial "excitation" of that inactive mode dies away exponentially 
with time. An inactive mode plays no role in the long-term dynamics of 

Since Eq. (1 1.5- 13) is exactly like the set of equations treated in Section 3.1 1, 
we can, without further ado, apply all that we learned in Chapter 3 to analyze the 
dynamics of the system. In particular, we assume that the temporal behavior of 
each amplitude can be written as an exponential function of time, as we did in 
Section 3.11: 

(11.5-14) aik (t) = bit 

where b, = a, (0) is independent of time and 4 k )  is a characteristic exponent. 
(Note that A is the spatial wavelength.) Using this form in Eq. (1 1.5-13) yields 
the following coupled, linear algebraic equations 

The coupled, linear equations for the modes Eqs.(11.5-15) have "nontrivial" 
solutions only if the determinant of the coefficients of the bik is equal to 0. (The 
"trivial" solutions are bik = 0.) Evaluating that determinant then leads to an 
expression for the characteristic exponent d(k) in terms of the spatial mode 
parameter k. For our coupled equations, the resulting equation for A is 

In general, this equation yields two values of d for each value of the spatial mode 
wavevector k. The resulting function 4 k )  is often called the dispersion relation for 
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the system. (The terminology is borrowed from wave optics, where the analogous 
relation tells us how light waves may be dispersed in traveling through some 
medium due to the relationship between temporal frequency, here denoted by 4k) ,  
and wavevector. This relationship determines the speed of the waves.) 

Exercise 11.5-2. (a) Check the calculation leading from Eq. (1 1.5-15) to 
Eq. (11.5-16). (b) Check that Eq. (11.5-16) leads to the expected result 
when k = 0. (c) What conditions must hold for the J,s if the spatially 
uniform (k = 0) solution is to be a stable state? 

In order to find where interesting spatial patterns emerge from the initial 
homogeneous state, we look for the conditions for which the real part of 4 k )  
becomes positive for some value of k. Using our experience with temporal 
dynamics in state space, we see that when the real part of 4 k )  becomes positive, 
the "motion" of the system in state space becomes unstable along that 
corresponding direction. In the spatial mode case, that means that a pattern 
corresponding to the spatial mode function U , ( ? )  begins to emerge from the 
spatially uniform initial state. In other words, if we start in the spatially uniform 
initial state and if the real part of 4 k )  is positive for k # 0 ,  then any slight 
disturbance will push the system away from the unstable fixed point corresponding 
to the spatially uniform state. 

As an example of what happens, let us take the diffusion constant D2 as the 
control parameter with all the other parameters held fixed. Consulting Table 3.3, 
we see that the real part of A will be positive for some k if 

This case has been analyzed in some detail in [Murray, 1989, Chapter 141. A 
typical plot of the dispersion relation for different values of the control parameter 
D2 is shown in Fig. 11.13. For D2 < D,, a "critical value," all the As have negative 
real parts, and the spatially uniform state is stable. At D2 = D,, the spatial mode 
with k = kc begins to grow. For D2 > D, modes associated with several ks may 
begin to grow. A note of modesty is important here: Our analysis does not tell us 
what happens to these modes as their amplitudes begin to grow. Our analysis is 
valid only very close to the initial spatially uniform steady-state. 

Exercise 11.5-3. In Exercise 11.5-2, we found certain constraints on the 
A, given the assumed stability of the k = 0 state. (a) Use those results and 
Eq. (1 1.5-17) to show that no spatial mode can be unstable (and hence, no 
spatial pattern formed) if the two diffusion coefticients are the same (that 
is, if Dl = D2). (b) Assume thatfi, > 0 (substance 1 is a self-activator) and 
fi2 < 0 (substance 2 is a self-inhibitor). Show that we need D2 > Dl in 
order to have some spatial mode become unstable. Hint: See [Murray, 
19891, Chapter 14. 
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Fig. 11.13. A plot of the real part of typical dispersion relations A(k) for a twesubstance 
coupled reactiondiffusion system When the real part of A(k) becomes positive, s w a l  
modes corresponding to those values of k can begin to grow in amplitude. R = DdD1 is the 
ratio of the two diffusion coefficients. 

Figure 11.14 shows a sketch of the concentration pattern that begins to grow 
for a one-dimensional situation with kc = 8dL. 

high concentration 

low concentration 

F i  11.14. A sketch of the swa l  pattern of concentration cl that begins to emerge with kc = 
8 A .  When cl is above cl(0), the concentration of substance 1 is higher than in the spatially 
uniform state. The pattern is an alternating sequence of highconcentration and l w -  
concentration regions. (The numerical scale for cl is arbitrary.) 
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Summary of Procedures 
After this rather lengthy calculation, it might be worthwhile pausing to summarize 
the general procedure. In fact, the method used for the reaction-diffusion system is 
a prototype of the calculations used to study pattern formation in a wide variety of 
systems. The procedure is: 

1. Formulate the basic equations and boundary conditions describing the 
system. For the kinds of models considered in this section, these 
equations will be partial differential equations involving in general 
both space and time derivatives. 

2. Write the general solutions as products of two functions, one 
depending on time alone, the other on spatial variables alone. 

3. The spatial part of the solution is described by an equation that, along 
with the boundary conditions, determines the possible spatial mode 
wavevectors k and spatial mode functions U, ( r ' )  for the system. 

4. The fundamental equations are made linear (using a Taylor series 
expansion) around a steady state (fixed point) condition. A spatially 
uniform state is often taken as the steady state. 

5.  The expansion in terms of (possibly time-dependent) spatial modes is 
used in the fundamental equations leading to (in general) a set of 
coupled ordinary differential equations for the time-dependent 
amplitudes of the spatial modes. 

6. The time dependence is then determined by characteristic exponents 
in direct analogy with analysis of temporal dynamics in state space. 
The spatial mode amplitudes play the role of state space variables. In 
favorable cases, the analysis need include only a few modes if the 
interactions between the modes is sufficiently weak. 

7. We look for the emergence of spatial order as signaled by a 
bifurcation event: Spatial modes become unstable and begin to grow. 
This growth is described by having the real part of at least one of the 
temporal characteristic exponents be positive. 

8. A more complete ("global") analysis must be done to determine the 
fate of the growing modes. (In most situations this more complete 
analysis is very difficult.) 

Two-Dimensional Pattern F o d n  
When two (or more) spatial dimensions are available for pattern formation, life 
becomes much more complicated and more interesting. We will give only a brief 
discussion of what happens in two dimensions and refer the reader to the list of 
references at the end of the chapter for more information. 

To make the discussion as simple as possible, we will assume that the pattern 
is restricted to two spatial dimensions. We focus our attention on a single- 
component reactiondiffusion system as an example. In that case, Eq. (1 1.5-1) can 
be written as 
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where the reaction term is a nonlinear function of C. (We have an autocatalytic 
reaction.) We follow the general procedure outlined earlier. Let us suppose that we 
have found that only one wavevector magnitude satisfies the condition for a pattern 
to emerge out of the uniform steady-state. However, the stability conditions 
generally do not pick out a direction for the wavevector. What are the possible 
patterns? 

We assume that there is no preferred direction in our system and there is no 
preferred point. (We say that the system is isotropic and homogeneous.) If a 
pattern forms, it must consist of regular polygons that fit together to cover the plane 
surface. This regular polygon requirement severely restricts the possible patterns: 
If the polygon has n sides, then each of the interior angles is n(1- 2/n) radians. In 
order to cover the plane completely, this angle must divide 2n an integer number 
of times. Call that integer m. These two conditions can be satisfied simultaneously 
for the following (nm) pairs: (3,6), (4,4), (6,3) corresponding to equilateral 
triangles, squares, and hexagons. (The triangles and hexagons are essentially the 
same pattern.) Of course, the system may develop other, more complex patterns by 
superposing, with various amplitudes and phases, the simple polygon patterns. We 
will assume, however, that we are near the threshold of pattern formation; 
therefore, we need to consider only the simple polygon solutions. 

In many systems, we also see "roll" patterns, which are the two-dimensional 
generalization of the one-dimensional pattern shown in Fig. 11.14. In a roll pattern, 
the concentration (or other relevant physical parameter) varies periodically in one 
direction but is uniform in the orthogonal direction. 

In both the roll case and the polygon case, some asymmetry of the system or 
some random fluctuation must pick out the orientation of the pattern since we have 
assumed that the basic system is isotropic. Something must break the rotational 
symmetry of the system. 

The reaction function determines which of the possible patterns is stable once 
it begins to grow. Of course, the reaction function depends on the particular system 
under study. In most cases, we express the reaction function in terms of 
c(x, y) = C(x, y) - C, , the deviation of the concentration from a uniform steady- 
state. A commonly studied reaction term contains a linear term and a cubic term 
and leads to what is called the Ginzburg-Landau equation: 

A quadratic term is missing because we want the equation to be the same if c is 
replaced by -c; that is, deviations above and below the steady-state concentration 
are assumed to be identical. The Ginzburg-Landau equation is used to model 
pattern formation in fluids, chemical reactions, laser light intensity patterns, and in 
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F i  11.15. A schematic diagram of a 
single hexagon cell described by Eq. 
(1 1.5-20). Inside the center hexagon, we 
have c(x.y) > -1. The interim of the 
rounded triangular contours have c(x,y) < 
-1. 

many other areas with appropriate redefinition of the dependent variable. See the 
references at the end of the chapter. In principle, although it is often difficult in 
practice, we can use the explicit form of the reaction function to determine which of 
the possible patterns will be stable for a given set of parameters. 

Hexagonal patterns occur surprisingly frequently in nature (see, for example, 
[Murray, 19891 and [Chandrasekhar, 19811). A solution of the two-dimensional 
generalization of Eq(11.5-10) satisfying no-flux boundary conditions and 
describing a hexagonal pattern is given in polar coordinates by the following 
expression [Chandrasekhar, 19811: 

where k = 4n/(3L) and L is the length of a side of the hexagon. (The amplitude of 
the concentration difference is arbitrary. Here, we have c = 3 at the origin.) We see 
again that the stability conditions, not boundary geometry, determine the magnitude 
of the wavevector and the geometric size of the pattern. A diagram of one of the 
resulting hexagonal cells is shown in Fig. 11.15. 

Pattern Selection and Spatiotemporal "Turbulence" 
The process by which a spatially nonuniform pattern emerges from an initially 
spatially uniform state is called pattern selection. In the simplest cases, there is 
only one spatial mode whose amplitude will grow if the system is "bumped" away 
from the initial state (say, by a random disturbance). However, in general there 
may be several unstable modes available for a given set of conditions. Which mode 
is actually selected is determined by the exact initial conditions and the precise 
nature of the "random" disturbance. In this general case, successive repetition of 
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the experiment can lead to different patterns because the initial conditions can never 
be exactly reproduced. Thus, in such cases, even though we may not need to take 
into account noise and fluctuations in the ''final state" of the system, noise and 
fluctuations often play a critical role in the birth and evolution of these structures. 

As we have seen for reaction-diffusion systems, the possible spatial modes of 
the system determine the kinds of patterns that can emerge as the system moves 

I away from a spatially uniform state. In most realistic situations, we need additional 
help to sort out the possible modes. If the system and its boundary conditions have 
some spatial symmetry, then the mathematical theory of symmetry groups can be 
used to classify the possible patterns (see [Golubitsky, Stewart, Schaeffer, 19881 
and GMD90 for further details). 

When the emerging spatial patterns show sufficient spatial (or perhaps 
temporal) complexity, we say that the system exhibits spatiotemporal chaos, or 
rather loosely, turbulence. (Technically, this situation is called "weak turbulence." 
The connection to strong turbulence with vortices, and so on, is not yet well 
established.) Many systems that exhibit spatiotemporal chaos have spatial patterns 
that are characterized by so-called defects. For our purposes, we can think of a 
defect as boundary between two regions with different spatial structures. For 
example in one region, the pattern might be spatially periodic with one period. In 
the adjacent region the pattern might also be spatially periodic with the same 
period, but there is a phase change at the boundary. Alternatively, the second 
region might have a spatial periodicity with a different period. Again, the boundary 
between the two regions constitutes a defect. Eckmann and Procaccia (ECP91) 
have shown that the stability analysis methods outlined in this section can be 
extended to show why this defect-mediated complexity appears so commonly. 

In much of our discussion, we have assumed that the notion of attractors in a 
state space of spatial modes is a useful concept in talking about complex spatial 
patterns. This assumption is analyzed and counterexamples are given in CRK88. 

11.6 Diffusion-Cited Aggregation, Dielectric Breakdown and Viscous 
Fingering: Fractals Revisited 

In the previous section, we saw that we could understand the onset of pattern 
formation (at least for reaction-diffusion systems) by studying the stability and 
instability of spatial mode amplitudes. However, our analysis, limited to conditions 
close to steady-state, could only tell us when some spatial mode begins to grow. It 
could not tell us the final fate of the system. In fact, we know that many systems 
develop intricate spatial patterns not captured by the analysis of the previous 
section. In this section, we describe three rather different physical systems, all of 
which develop similar, intricate spatial patterns. 

Our approach will be more descriptive than analytic; to see how these patterns 
can be understood from mathematical models, we must, in a sense, solve the 
models exactly. In practice, that means solving or mimicking the system on a 
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Fig. 11.16. An example of a pattern 
formed by diffusion limited aggregation 
in a computer model. Particles diffuse in 
at random from the border until they hit 
an occupied site on the cluster, where 
they then stick. At the upper left is a 
particle approaching the cluster. 

h 
computer. We shall see that these systems are linked both by the kinds of patterns 
they produce and by the form of the mathematics used to describe them. 

Diffusion Limited Aggregation 

Diffusion Limited Aggregation (DLA) describes a process in which a substance 
diffuses rather slowly through a medium until it hits an object to which it can stick. 
Initially, this might be a piece of dirt on which a cluster of the diffusing substance 
will start to grow. Once the cluster begins to grow, other molecules of the 
substance can stick to the cluster and a kind of "crystal" begins to form. In 
-reasonably realistic situations, the diffusing molecules approach the cluster at 
random but with equal probabilities from different directions. We might expect 
that under these isotropic condition the cluster that forms would be more or less a 
sphere. In fact, the clusters that form are anything but spherical. They tend to be 
lacy, intricate structures, such as the one shown in Fig. 11.16. 

How do we describe DLA analytically? We start with the diffusion equation, 
Eq. (1 1.4-10) but assume that the diffusion is so slow that we can ignore the time 
derivative of the concentration and the 13. grad term. The diffusion equation then 
reduces to 

As usual, we must also state the boundary conditions for the system. Here we 
assume that the concentration is constant on the boundaries, both at the periphery of 
the system and on the surface of the cluster that is being formed. As a reminder, the 
transport flow equation is Eq. (1 1.4-2). 

It should not be obvious that Eq. (1 1.6- 1) with the stated boundary conditions 
can lead to the intricate patterns seen in DLA. In fact, Eq. (1 1.6-1) is the kind of 
equation solved in undergraduate physics courses to understand electrical potentials 
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Fig. 11.17. A diffusion limited 
aggregation lattice. On the left we have 
one occupied site indicated by X. The 

0.145 0.145 probability to land in one of the four 
sticking sites is 114. On the right, we 

0.21 have two neighboring occupied sites that 
constitute the beginning of a filament. 
The probability to stick at the end is 
enhanced over the probability of sticking 
on the side. 

around charged objects. In all those cases, the resulting solutions are rather smooth 
functions of position, nothing at all like the DLA clusters. After introducing the 
other two physical systems, we shall return to the mathematical question of relating 
Eq. (1 1.6- 1) to the observed patterns. 

Even without solving any equations, however, we can get some physical 
intuition about the formation of these patterns. In fact, it is rather simple to 
program a computer to mimic DLA. You instruct the computer to release a 
"molecule" at some random location at the edge of the computer terminal screen. 
The molecule then makes a random walk across the screen until it hits an object (an 
initial seed, or an occupied site of the cluster) at which point it sticks. Another 
molecule is then released and the process is repeated. You quickly discover that the 
resulting cluster shows an intricate, lacy structure similar to that shown in Fig. 
11.16. 

The basic physical reason for the tendency to grow long filaments (or 
dendrites) is easily understood. On the left Fig. 11.17 shows one occupied site (on 
the computer screen, for example) and the empty sites next to it. Consider a very 
simple model in which the incoming molecule can stick only if it lands in a site 
directly above or below or directly to the right or left of the occupied site. Since the 
molecule is diffusing isotropically, the probability of hitting one of those sites is 
114. Now suppose that two adjacent sites are occupied as shown on the right of Fig. 
11.17. Again, an incoming molecule will stick if it lands directly above or below or 
directly to the right or left of an occupied site. It is relatively easy to show that the 
probabilities are approximately 0.145 for the top and bottom sites, on the sides of 
our rather short '%lament," and 0.21 for the end sites. The important point is there 
is enhanced probability for the incoming molecule to stick to the ends and hence to 
make the filament longer. 

Exercise 11.6-1. Derive the sticking probabilities illustrated in Fig. 11.6- 
2. Hint: Use symmetry arguments. 

A second mechanism also tends to enhance the lacy structure of the cluster. If 
two filaments begin to grow near each other, they form a "fjord," the interior of 
which is difficult to reach by a diffusing particle since the particle is more likely to 
stick to one of the filaments as it diffuses around. Once the molecule sticks to the 
edge of a filament, it forms the seed of a branch filament that further shields the 
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Electrodeposition Cell 

battery 
I I 

Fig. 11.18. On the left is a sketch of a rectangular electrodeposition cell. An electrical 
current flows between the two electrodes, each about 0.1 mrn in diameter, resting on a glass 
plate. The electrodes are covered by a second glass plate (not shown) to restrict the current to 
a two-dimensional region. The space between the plates is filled with a ZnS04 aqueous 
solution. On the right is the resulting electrodeposition pattem. (From AAG88.) 

interior of the fjord. Thus we see, at least in qualitative terms, why DLA tends to 
lead to patterns with long thin filaments with many branches. 

The DLA model has been used to understand snowflake patterns, 
electrodeposition structures, and many other physical phenomena. For more 
information, see the references at the end of the chapter. 

Electrodeposition 
If electrodes are inserted into a solution containing ionic species and if an 
electrical potential difference is developed between the electrodes, then an ionic 
current will flow between the electrodes. If the ionic species is a metal ion, such as 
Zn', then the metal atoms will deposit themselves on the negatuve electrode, 
forming a metallic cluster. Figure 11.18 shows a sketch of an electrodeposition 
setup and a typical electrodeposition pattern. The similarity between the 
electrodeposition pattern and the DLA pattern shown in Fig. 11.16 should be 
obvious. 

The mathematical description of electrodeposition is quite similar to that of 
DLA. Since the flow of ions is very slow, we can describe the electric fields (or 
equivalently the electric potentials) that "drive" the ions as electrostatic fields. The 
electric potential V(x,y,z) is described by Laplace's equation 

in the region in which the ions are moving. (We are assuming that the 
concentration of the mobile ions is so small that they do not significantly affect the 
potential "seen" by one of the ions.) For boundary conditions, we take the electric 
potential V as constant over the positive electrode and over the metallic cluster 
forming on the negative electrode. The transport relation is just Ohm's Law in the 
current density form: 
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We see that the mathematical description of electrodeposition is analogous to that 
for DLA. 

We can also understand the physics behind the formation of the dendrites in 
electrodeposition. If the developing metallic cluster by chance begins to develop a 
sharp tip, then the electric field near that sharp tip will be larger (in magnitude) than 
the electric field near a smooth part of the boundary. The larger electric field will 
lead to an increased current density of incoming ions in that region and the tip will 
tend to grow. We say that the smooth surface is unstable against small, spatially 
localized perturbations. 

Vkcous Fingering 
If a less-viscous fluid is injected slowly into a more viscous fluid, then the less- 
viscous fluid will tend to penetrate the other fluid, forming long thin "fingers," 
often with branches developing out from the fingers. A typical viscous fingering 
pattern is shown in Fig. 1 1.19. 

The physical processes underlying viscous fingering are important in several 
applied areas. For example, water is often injected into oil (petroleum) fields to 
enhance the recovery of oil by using the water pressure to force the oil to flow 
toward a well site. However, the recovery attempt may be frustrated by the 
tendency of the less-viscous water to form viscous fingers through the oil. See 
WON88 for a wider discussion of applications of viscous fingering. 

Let us set up the formalism for describing this viscous fingering. We assume 
that the fluid is so slow that we can write the fluid velocity as simply proportional 
to the gradient of the pressure p in a form known as Durcy's Law: 

6 = -p grad p ( 1 1.6-6) 

where 0 is a parameter that depends on the fluid viscosity. Under the kinds of 
experimental conditions used, we can neglect the compressibility of the fluids. 
Hence, we may invoke the incompressibility condition dive = 0 to write 

Fig. 11.19. On the lkfi is a sketch of a HeleShaw cell used in the study of viscous fingering. 
A thin layer of viscous fluid lies between two flat plates. A less-viscous fluid is slowly 
injected thrcugh a small hole in the center of the cell. On the right is a typical viscous 
fingering pattern f a  water and glycerin. (From WON88.) 
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Thus, we see that the pressure p plays the role played by concentration in DLA and 
electrical potential in electrodeposition. The boundary condition on p is that the 
pressure is constant in the less-viscous fluid. We must also specify the pressure 
gradient in the viscous fluid near the boundary (BKL86). 

Again, we can make a simple physics argument to understand why fingers 
tend to form: Imagine a flat interface between the two fluids. If a small bump 
occurs due to a random fluctuation, then the fluid in the bump will tend to move 
faster than the neighboring fluid because the gradient of the pressure will be larger 
near the tip of the bump. Once again, we see that a smooth interface is unstable 
against small, spatially localized perturbations. A small bump, once started, will 
tend to grow. 

The mathematical description of DLA, electrodeposition, and viscous 
fingering may, at first sight, seem incomplete. The common equation, Laplace's 
Equation [Eq. (1 1.6-l), Eq. (1 1.6-3), and Eq. (1 1.6-7)], is a linear partial differential 
equation. How can a linear equation lead to bifurcation events and fractal patterns, 
occurrences that we now associate with nonlinear equations? The answer is that the 
nonlinearities, and hence the interesting physics, for the class of phenomena 
discussed in this section are found in the boundary conditions. With a moving 
boundary, the net effect at the boundary, as described for each of the systems, is 
nonlinear. The mathematics of this kind of somewhat unusual situation is discussed 
in PET89 and BLT9 1. 

Fractal Dimensions 
The physical pattern produced by DLA, electrodeposition, and viscous fingering 
seem to have some degree of self-similarity, the geometric feature of simple fractal 
objects discussed in Chapter 9. Box-counting algorithms can be applied in a fairly 
straightforward fashion to the two-dimensional patterns formed in most DLA, 
electrodeposition, and viscous fingering experiments. The box-counting dimension 
turns out to be close to 1.7 for many of these patterns. Further evidence for the 
universality of this number comes from computer simulations of DLA. A wide 
variety of models all lead to box-counting dimensions of about 1.7. Of course, we 
know that this self-similarity cannot occur on all length scales for these patterns. At 
the upper end, we are limited by the overall size of the system. At the lower end, 
we eventually arrive at individual atoms. To speak precisely, we ought to say that 
these systems have a fractal box-counting (scaling) dimension over such and such 
length range. 

By now we recognize that a single fractal dimension is probably not sufficient 
to characterize the geometry of these patterns. The multifractal formalism 
discussed in Chapter 10 has been used to analyze DLA patterns. See the references 
at the end of the chapter for more details. 
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Fig. 11.20. A photograph of ice crystals formed on a smooth branch when the earlier 
morning temperature suddenly dropped below freezing. The humidity was particularly high 
just before the temperature drop. The freezing vapor formed long, sharp dendrites. 
(Photograph courtesy of Daniel Krause, Jr.) 

Many other patterns arising in nature can be characterized by fractal and 
multifractal dimensions. The interested reader should consult the books on fractals 
listed at the end of Chapter 9 and the references at the end of this chapter. 

We should point out that the fractal geometry observed for many of the 
systems cited here depends crucially on the nonequilibrium nature of the systems. 
If the systems are allowed to evolve toward equilibrium, then the fractal structures 
"fill in" to form relatively smooth structures. See SFM88 for a model calculation 
of this change from fractal geometry to smooth geometry. 

on a smooth branch on a November's morning when the air temperature 
suddenly dropped below freezing. Based on the kinds of reasoning 
introduced earlier, explain why the ice crystals formed long, sharp 

11.7 Self-organized Criticality: The Physics of Fractals? 

We mentioned at the end of the previous section that patterns formed by diffusion 
limited aggregation, electrodeposition, and viscous fingering could all be 
characterized by a fractal (box-counting) dimension, whose value turns out to be 
about 1.7. This result, along with the many examples cited in any book on fractal 
geometry, shows that the notion of fractal dimension is useful in characterizing 
geometric shapes that fall, in a sense, between, the traditional points, curves, 
surfaces, and volumes. However, from the physics point of view a crucial question 
remains: Why do these objects develop a pattern characterized by a fractal 
dimension? In other words, what is the physics behind fractals? 
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A mechanism called seU-organized crtticality (BAC91) has been proposed to 
attempt to explain the physics of fractals. The name implies that the system itself 
seeks out a critical state at which the spatial structure of the system has self- 
similarity over an extended range of length scales. Another way of characterizing 
the critical state is to point out that the ideal critical state has no inherent length 
scale: When looked at on a particular length scale, the system looks just like it does 
at any other length scale. The basic premise of self-organized criticality is that 
many spatially extended nonequilibrium systems evolve naturally toward a critical 
state. By way of contrast, we should note that equilibrium systems evolve to a 
critical state (such as a phase transition) only if the system parameters are carefully 
tuned to those values associated with the critical state. For self-organized 
criticality, the critical state is reached over a range of parameter values. 

To date, self-organized criticality has been studied primarily in various model 
systems such as cellular automata, whose rules are chosen to mimic, at least 
crudely, various physical systems. A "sand-pile" model has been widely studied in 
which the cellular automata rules allow for "avalanches" if the difference in the 
numbers assigned to adjacent cells (corresponding to the height of the sand in a 
sand pile) becomes too large. It is found that these models evolve naturally to a 
critical state in which avalanches of all sizes occur. However, the time distribution 
of avalanche sizes does not seem to match the distribution of avalanches in 
experiments on sand piles. Therefore, at present self-organized criticality cannot 
claim to have explained all of the physics of fractals. 

Because the systems generally do not start out in the critical state, the obvious 
question is, How do self-organizing systems "find" the critical state? One possible 
mechanism involving singular diffusion has been suggested (CCG90). The basic 
idea is that self-organized criticality could occur in a diffusive system if the 
diffusion coefficient itself depends on the concentration of the substance under 
consideration. In that case, the transport equation for the concentration C is Eq. 
(11.4-5), which we write here with the concentration dependence of D shown 
explicitly: 

ac - = div[ D(C) grad C ]  
at 

If the diffusion coefficient becomes infinite for some value of the concentration, say 
C*, then the system will tend to evolve toward that state in which almost all parts of 
its spatial domain except for a possible boundary layer, the relative size of which 
decreases as the size of the system increases, have this critical concentration and 
exhibit the scaling behavior required for self-organized criticality. CCG90 
established this behavior for a simple model system and provided some numerical 
evidence that similar behavior occurs in more complicated systems. 

Although the study of self-organized criticality is still in its infancy, it does 
seem to offer a possible physical explanation for the ubiquity of fractal structures in 
nature. It remains to be seen if self-organized criticality will be able to explain the 
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wide variety of fractal structures found in nature, thereby giving us some 
understanding of the detailed mechanisms that lead to fractal structures. Other 
mechanisms that also lead "naturally" to scaling laws have been proposed 
(ABH98). Self-organized criticality has been suggested (RIZ99) as a dynamic 
mechanism that might explain some of the universal features of llf noise, 
mentioned in Section 7.3. 

11.8 summary 

In this chapter, we have seen how a wide variety of model systems share the 
common property of "spontaneously" generating spatial patterns under 
nonequilibrium conditions. Although the study of such pattern formation is really 
just beginning to develop, we can already see that the emergence of order in nature 
is not a rare occurrence. In fact, we might say that nature seems to prefer order and 
structure to uniformity in nonequilibrium situations. 

Although we have concentrated on the emergence of relatively simple 
patterns, we can appreciate an important consequence of the dynamical point of 
view of pattern formation: Complex patterns might evolve from the (nonlinear) 
interactions of only a few spatial modes. This realization parallels what we learned 
about complex temporal dynamics: At least in some cases, complex temporal 
dynamics, indistinguishable by eye from random behavior, can arise in systems 
with only a few degrees of freedom. Whether this program can be carried through 
to explain complex spatial patterns that emerge in strong fluid turbulence, for 
example, remains to be seen, though optimism is high (MES87, FR090). Chaotic 
(temporal) behavior and pattern formation both arise as a result of nonlinear effects 
in the evolution of some systems. 

The study of pattern formation really deserves a book in its own right; we can 
hardly do justice to this exciting area in one chapter. Several important areas have 
been neglected completely here. Two of these particularly deserve the attention of 
physicists. They are (1) chaotic scattering and (2) nonlinear wave phenomena, 
especially the soliton effect. (A soliton is a spatially localized wave disturbance 
that can propagate over long distances without changing its shape. In brief, many 
nonlinear spatial modes become synchronized to produce a stable localized 
disturbance.) To give the reader some sense of the extent of these and other 
spatiotemporal nonlinear phenomena, we have included an extensive set of 
suggested readings at the end of the chapter. 

We should also mention several ways of characterizing spatio-temporal 
patterns when they do emerge. A very powerful technique called Karhunen-Mve 
decomposition separates the time dependence from the spatial pattern and provides 
a set of mathematical functions with which to analyze the spatial structure. The 
appropriate mathematical functions can be determined directly from the spatial 
pattern. AHK93 and TRS97 provide a good introduction to this technique. 

Of course, we are a long way from providing a physical theory of the 
emergence of complex order, say, in the form of a biological cell. But at least in 
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the case of simple kinds of spatial patterns, we now see that these patterns emerge 
without the (direct) intervention of a designer's hand. And we can understand why 
they emerge. For those who want to argue that the emergence of life was a 
spontaneous event, in fact an almost inevitable event given Nature's proclivity for 
order and structure, our meager understanding at present may offer some cause for 
optimism. Even if this scientific program could be carried through and if we could 
show that the emergence of the complex structure we call life is a consequence of 
the playing out of simple physical laws, there is still much room for debate about 
the theological implications of those results. In any case, the development of a 
scientific understanding of pattern formation seems to be one of the most exciting 
aspects of nonlinear dynamics. 
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Other Spatiotemporal Effects 

Spatial and temporal behavior also become linked in the study of scattering 
problems, a subject dear to many physicists. The basic idea is that when a moving 
object collides with another object and is deflected by it, the scattering process may 
show sensitive dependence to the details of the incoming trajectory, another kind of 
sensitive dependence on initial conditions, resulting in "chaotic scattering." For 
some taste of this field see the following: 

B. Eckhardt, "Irregular Scattering," Physica D 33,89-98 (1988). 
E. Doron, U. Smilansky, and A. Frenkel, "Experimental Demonstration of 

Chaotic Scattering of Microwaves," Phys. Rev. Leu. 65,3072-75 (1990). 
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Chaotic Scattering," Phys. Rev. Lett. 66,978-81 (1991). 
E. Ott and T. TCI, "Chaotic scattering: an introduction," Chaos 3, 417426 

(1993). The lead article in an issue devoted to chaotic scattering. 
Another important class of nonlinear spatiotemporal effects involve 

(nonlinear) waves and their propagation, including the important class of soliton 
waves that propagate without changing their shape. An excellent introduction to 
nonlinear waves is: 

E. Infeld and G. Rowlands, Nonlinear Waves, Solitons and Chaos 
(Cambridge University Press, Cambridge, 1990). 

N. B. Trufillaro, "Nonlinear and Chaotic String Vibrations," Am J. Phys. 57, 
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D. hb rus t e r ,  R. Heiland, and F. Kostelich, "KLTOOL: A tool to analyze 
spatiotemporal complexity," Chaos 4, 421-24 (1994). Describes a computer 
program that implements Karhunen-Mve decomposition. 

I. Triandaf and I. B. Schwartz, "Karhunen-Loeve mode control of chaos in a 
reaction-diffusion process," Phys. Rev. E 56, 204-212 (1997). Has a nice 
introduction to Karhunen-Mve decomposition. 

1 11.10 Computer Exercises 

CE11-1. Chaos Demonstrations has several examples that are useful for 
material in this chapter. Run the examples "Diffusion," "Deterministic Fractals," 
"Random Fractals," and 'The Game of Life." 

CEll-2. Write a program to implement a directed-diffusion version of 
diffusion limited aggregation as suggested in C. A. Pickover, "Markov Aggregation 
on a Sticky Circle," Computers in Physics 3.79-80 (JulyIAugust, 1989). 

CE11-3. Some (advanced) suggestions for programming models of diffusion 
limited aggregation and viscous fingering are discussed in F. Family and T. Vicsek, 
"Simulating Fractal Aggregation," Computers in Physics 4, 44-49 
(JanuaryFebruary, 1990). Try out some of the examples suggested in this article. 

CEl l-4. Try the package of programs by M. Vicsek and T. Vicsek, Fractal 
Growth (instructors manual and diskette) (World Scientific Publishing, River Edge, 
New Jersey, 1991). 

CEll-5. Try some of the programming exercises in P. Bak, "Catastrophes 
and Self-Organized Criticality," Computers in Physics 5, 430-33 (JulyIAugust, 
1991). 

Information on cellular automata and related topics can be found at the 
following web site: h t t p : / / a l i f e . s a n t a f e . e d u / a l i f d t o p i c s / c a .  



Quantum Chaos, 

The Theory of Complexity, and Other Topics 

Chaos often breeds life, when order breeds habit. Henry Brooks Adarns, 
The Education of Henry Adams. 

12.1 Introduction 

In this chapter we discuss several broad issues that tie nonlinear dynamics and 
chaos to fundamental questions in a variety of areas of science. The first issue is 
the question of the relationship, if any, between nonlinear dynamics and physics' 
most fundamental theory: quantum mechanics. As we shall see, this relationship is 
somewhat controversial. A second issue raises the question of characterizing the 
complexity of behavior of dynamical systems (i.e., trying to find a continuous 
strand that links complete determinism and simple behavior at one end to complete 
randomness at the other). Neither of these issues is likely to have a major practical 
impact on the utility of nonlinear dynamics, but the intellectual questions are deep 
and subtle. 

We have also included brief mention of several topics in this chapter that did 
not fit in nicely elsewhere in the text: piece-wise linear models, delay-differential 
equation models, stochastic resonance, controlling and synchronizing chaos, and 
the possibility of chaotic behavior in computer networks. We close the chapter 
with some general remarks about a vision of where the study of chaos and 
nonlinear dynamics is going. 

12.2 Quantum Mechanics and Chaos 

When the definitive history of twentieth-century science is written, that century will 
be known as the age of the quantum. During the twentieth century, physicists 
invented a theory of the microscopic world: the quantum theory. This theory, 
formally known as quantum mechanics, has been wildly successful, far beyond the 
hopes and expectations of its founders, in describing and predicting phenomena in 
the microscopic world of elementary particles, nuclei, atoms, and molecules. In 
essence modem chemistry and molecular biology are based on quantum mechanics. 
Quantum mechanics has played a crucial role in the development of condensed- 
matter physics and its critical applications in solid-state electronics and computers. 
This is not to say that we need all of the formal machinery of quantum mechanics 

Quantum Chaos and Other Topics 49 1 

to do science today, but the understanding gained from that theory about the 
structure and stability of matter, the nature of fundamental forces, the interaction of 
light and matter, and so on, forms the background against which the theater of 
twentieth century science was played out. There is no sign that the twenty-first 
century will be any different. 

4 

It is widely believed, however, that quantum mechanics presents us with li many conceptual and philosophical problems along with its successes. The theory 
tells us that the microscopic world cannot adequately be described with the words 
and concepts we have developed to talk about the large-scale world around us. For 

! example, quantum mechanics tells us that it is not possible (i.e., it is not physically 
meaningful) to assign a well-defined position and momentum to an electron (or any 
other particle); therefore, it is not possible to talk about a well-defined trajectory in 

I state space for that particle. In fact, quantum mechanics forces us to abandon, or at 
least to modify substantially, all of our ideas about initial conditions, forces, and 
trajectories. 

From the point of view of quantum mechanics, all of the physics used in this 
book (and all other treatments not based on quantum mechanics) is wrong, at least 
in principle. Before we throw away all of our work in despair, however, we should 
point out that quantum mechanics also tells us that in the limit of everyday-size 

I objects, the theories we have built up with the use of Newtonian classical (that is, 
pre-quantum) mechanics are exceedingly good in the sense that we make only 
numerically insignificant errors in using those theories in place of quantum 
mechanics. We shall explore this notion more quantitatively later. 

The crucial aspect of quantum theory that forces us to abandon traditional 
modes of description is quantum mechanics' use of probabilities. Unlike classical 
Newtonian mechanics in which, in principle, we can calculate the future behavior 

I ("trajectory") of a system if we know its force laws and its initial conditions, 
quantum mechanics tells us that the best we can do in general is to predict the 
probability of various future behaviors for the system. In fact, according to 
quantum mechanics, the crucial problem is that we cannot in principle (as well as in 
practice) prepare a system (e.g., an electron) with precisely defined initial position 
and velocity (or momentum). There is always some minimum "fuzziness" 
associated with these initial conditions. In the language of state space, all we can 
say is that the system's trajectories start within some fuzzy region of state space. 
The best we can do is predict the probabilities of the evolution of this fuzzy blob. 
The size of this minimum area in state space is set by Planck's constant, h = 
6.626.. . x Joule-sec. Note that Planck's constant has units of classical action 
(recall Chapter 8). In fact, many quantum states can be characterized by the 
amount of action associated with that state. In common cases, the amount must be 
an integer multiple of the fundamental amount h. 

Given this inherent fuzziness associated with quantum state space, the most 
we can do is predict the probability that the electron's position will lie within some 
range of values and that its momentum will lie within some other corresponding 
range. Most quantum mechanicians argue that we should not talk about the 
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electron's trajectory at all. Here we are close to treacherous philosophical waters in 
which lurk important but distracting questions: Can we talk sensibly about the 
position and momentum of a single electron? Does quantum mechanics describe 
only ensembles of particles? Fortunately, when the system is large, like a baseball 
or an electrical current in a standard electrical circuit or the fluid in a test tube, the 
fuzziness associated with quantum mechanical uncertainty is completely negligible, 
and we may, we believe, use classical mechanics to describe the behavior of the 
system. 

We know, however, that there are many systems in which quantum 
mechanics plays a fundamental role. Given our knowledge of the new dynamical 
possibilities that chaos brings to classical mechanics, we ask: Do systems in which 
quantum mechanics is essential display (under appropriate conditions) behavior that 
is analogous to the chaotic behavior of classical systems? This question is 
surprisingly difficult to answer. The difficulties arise from the conceptual gulf 
separating quantum mechanics from classical mechanics. In some sense, the two 
theories speak different languages; therefore, we must, when talking about whether 
or not a quantum system displays chaotic behavior, be careful not to try to compare 
apples and hydrogen atoms. On the other hand, we can apply quantum mechanics 
and classical mechanics to the same model of a physical system. If classical 
mechanics predicts chaotic behavior for the system under certain conditions (that is, 
for certain ranges of control parameter values), we can ask what quantum 
mechanics predicts under those same circumstances. (Of course, we must also ask 
what the actual physical system does under those circumstances.) 

The comparison between the predictions of classical mechanics and quantum 
mechanics is not easy, particularly for systems that classical mechanics says are 
chaotic. Chaotic systems must be nonlinear and cannot have analytic solutions in 
classical mechanics. If the system is a Hamiltonian system, it is nonintegrable. In 
quantum mechanics, then, we have an extremely difficult mathematical problem to 
solve and many of the techniques that apply to integrable systems fail for 
nonintegrable ones. Finding any prediction at all using quantum mechanics is 
difficult, and we must be sure that our predictions are not an artifact of the 
approximation scheme used to carry out the computation. More fundamentally, 
however, quantum mechanics does not allow us to calculate just those features of 
the system's behavior on which our classical notions of chaos are based; namely, 
the system's trajectories in state space. Thus, we need to tnink carefully about what 
it is in quantum mechanics that we are going to look at to detect chaotic behavior. 

Unfartunately, as of this writing (2000), there is not yet agreement about what 
those features should be. Some physicists argue that there cannot be such a thing as 
"quantum chaos" because, as we shall discuss later, quantum mechanics, as it is 
usually practiced, is a linear theory. Since chaos requires nonlinearity, it might 
appear that quantum mechanics cannot lead to chaotic behavior. If this result is 
true, then we have a fundamental problem since we know that real systems do 
display chaotic behavior. 
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The general belief among quantum mechanicians is that the predictions of 
quantum mechanics ought to agree with the predictions of classical mechanics in an 
appropriate limit. This Correspondence Principle requires this agreement either 
for large values of the action or in the limit iz + 0. If quantum mechanics, 
therefore, does not describe chaotic behavior at all, it is hard to see how it would in 
the classical limit. Either quantum mechanics imitates chaotic behavior in some 
way yet to be fully understood, or, if quantum mechanics does not include such 
behavior, then quantum mechanics must be wrong! If such a heretical conclusion is 
correct, then perhaps finding out what is "wrong" with quantum mechanics will 
lead us on to a new and perhaps more fundamental theory that will encompass the 
successes of quantum mechanics, but would also include the possibility of chaos. 
Alternatively, quantum mechanics might be correct and what we have been calling 
chaos is actually an elaborate charade perpetrated by Nature. Before we come to 
such radical conclusions, we need to explore more fully what quantum mechanics 
does tell us about systems whose behavior is chaotic. 

There is another reason to be concerned about chaotic behavior in quantum 
systems. An important extension of simple quantum mechanics is the description 
of systems with large numbers of particles, so-called quantum statistical mechanics. 
In quantum statistical mechanics, we have an added layer of statistics or 
randomness, above that contributed by the inherent probability distributions of 
quantum mechanics. A fundamental question arises: Can quantum mechanics itself 
account for this added randomness or must this randomness be imposed as an ad 
hoc feature? The quantum analog of chaos could provide a fundamental 
explanation of quantum statistical mechanics (KAM85). If this explanation cannot 
come from within quantum mechanics itself, then we must once again conclude 
that quantum mechanics is incomplete in its present form. 

We first give a very brief synopsis of quantum mechanics to highlight those 
features that are important for our discussion. We then look at various approaches 
that have been taken to find what happens in quantum mechanics when the 
corresponding classical mechanics description predicts chaotic behavior. Finally 
we give a brief overview of some experiments that may show quantum chaos if it 
exists. Readers who are not familiar with quantum mechanics may wish to skip the 
remainder of this section. 

The literature on "quantum chaos" is vast, and it would require a book in itself 
to do it justice. We make no pretense of covering this rapidly developing field. 
The interested reader is encouraged to learn more from the excellent books by 
Gutzwiller [Gutzwiller, 19901 and Reichl [Reichl, 19921. 

A Synopsis of Quantum Mechanics 
In this section we give a brief introduction to the theory of quantum mechanics to 
point out those features that are important in our discussion of quantum chaos. Of 
necessity, we must simply state results without much justification, either 
mathematical or physical. Fortunately, to understand the issue of quantum chaos, it 
is not necessary to develop the full formalism of quantum mechanics. We shall 
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restrict the discussion to ordinary quantum mechanics as embodied in the 
Schriidinger equation. How the question of chaos extends to quantum field theory, 
which allows for the possibility of the creation and annihilation of particles and the 
inclusion of relativity, remains to be explored. 

The Schrodinger form of quantum mechanics makes use of an important 
mathematical intermediary to make predictions about the behavior of a system. 
This mathematical intermediary is known as the wave function for the system 
because it shares many (but not all) properties of the functions used to describe 
waves, such as electromagnetic waves or water waves, in classical mechanics. The 
wave function, usually denoted as Y(x, y,z,t) does not have a direct physical 
meaning, but is used to calculate properties of the system. For example, the square 
of the wave function (actually the absolute value squared, since in general the wave 
function is a complex function) gives the probability density for finding the system 
at a particular location. That is, for a system consisting of a single particle 
IY(x, y, z.t)12 is the probability (per unit volume) for finding the particle at time t 
at the location indicated by the coordinates x,y,z. 

The wave function is also used to calculate the average value ("expectation 
value") of other properties of the system. If we have some property of the system 
written as a function of x, y, and z, say, A(x,y,z), then the average value of the 
property represented by A is found by evaluating the integral 

where the integral is over all values of the coordinates, and Y* is the complex 
conjugate of the wave function. [In general A(x,y,z) may not be an ordinary 
function but may instead be represented by so-called operators. This important 
mathematical feature is treated in all standard books on quantum mechanics, but it 
does not need to concern us here.] According to the usual interpretation of 
quantum mechanics, these probabilities contain all the information we can have 
about the behavior of the system. 

A critical feature of quantum mechanics is the fact that the fundamental 
calculational quantity Y(x, y, z,t) is a probability amplitude. We call 
Y(x, y,z,t) an amplitude in analogy with a classical electromagnetic wave in 
which the electric field (the wave amplitude) ~ ( x ,  y, t , t)  is squared to give the 
intensity (the quantity measured by a power meter, for example). The use of a 
wave (probability) amplitude allows quantum mechanics to account for the wave 
properties (such as interference and diffraction) observed for electrons, protons, 
helium atoms, and so on. 

How do we find the wave function for the system? We do this by solving the 
Schrodinger equation for the system. The Schrodinger equation makes use of the 
Hamiltonian for the system. (Recall from Chapter 8 that the Hamiltonian, in simple 
cases, is just the sum of kinetic energy and potential energy for the system.) In the 
so-called coordinate representation, in which everything is expressed as a function 
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of the coordinates, the Hamiltonian for a single particle is written as H(x,y,z,t). The 
Schriidinger equation then has the form 

where i = f i  and h is Planck's constant, which, as mentioned earlier, has the 
units of energyxtime or equivalently, momentumxposition. (In general, H may be 
an operator, and the resulting equation is a partial differential equation for the wave 
function.) The solutions of the Schrodinger equation give us the possible Ys for the 
system. We specify the nature of the physical problem we are describing by 
choosing the appropriate Hamiltonian and choosing appropriate boundary 
conditions for Y. A good deal of the creativity in quantum mechanics goes into 
finding the "correct" Hamiltonian (e.g., for high-temperature superconductivity or 
for quarks inside a proton). 

Once a Hamiltonian has been adopted, we can proceed to find the solutions of 
Schrodinger's equation. In practice, we usually look for solutions that can be 
written in a factored form: 

If the Hamiltonian does not depend explicitly on time, then we find that g(t) and 
@(x, y, Z) are given by 

In Eq. (12.2-4), E can be identified as the energy of the system and the resulting 
@(x, y, z) is called the energy eigenfunction for that particular value of the energy. 
The crucial point for our discussion is that all of the time dependence of the wave 
function is contained in the simple exponential form for g(t) and depends only on 
the energy eigerlvalue E. 

The final step in finding the wave function is to make use of the mathematical 
fact that the most general solution of the Schrodinger equation can be written as a 
linear combination of the product solution forms given in Eq. (12.2-3): 

In the previous equation we have adorned the energy eigenvalue E and the energy 
eigenfunction @(x, y, z) with subscripts to label the possible eigenvalues and the 
eigenfunctions associated with them. The sum is over all the possible E values for 
the system. In the most general case we might need to include an integral over 
some continuous range of E values as well. The coefficients ci are parameters 
(independent of position and time) that are set by the initial conditions for the 
system. Note that the expansion in Eq. (12.2-5) is just like the Fourier analysis 
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Energy 
Fig. 12.1. A sketch of the energy eigenvalue spectrum for a bound quantum system. Each 
vertical line marks the location of one of the allowed energy eigenvalues. 

sums described in Appendix A and in Chapter 11. The energy eigenfunctions 
Qi (x, y, 2) play the role of the sine and cosine functions used there. 

To understand the possible role of chaos in quantum mechanics, we will need 
to know one crucial characteristic of the solutions to the Schrodinger equation: For 
a bounded system (i.e., for a system that is restricted to some finite region of space), 
only certain discrete values of the energy eigenvalues Ei lead to "allowed" wave 
functions. A wave function for a bounded system is allowed if the probability 
density calculated from it goes to 0 for large values of the position coordinates. 
This is just the mathematical way of saying that the system is restricted to a finite 
region of space. This property holds only for discrete values of the energy E, and 
these values are called the energy eigenvalues for the system. (This behavior is 
exactly like that of spatial modes discussed in Chapter 11.) In more physical terms, 
we say that if we measure the energy of the bounded system, we will find not any 
value of the energy but only one of the discrete set of energy eigenvalues. We say 
that the energy of the system is "quantized." To illustrate the allowed energy 
values, we often use an energy level diagram, one version of which is shown in Fig. 
12.1. 

For a classical wave, the theory of Fourier analysis (see Appendix A) says 
that any vibrational pattern can be viewed as a linear superposition of waves each 
of which is associated with a single frequency. The superposition of energy 
eigenfunctions shown in Eq. (12.2-5) expresses the same result in quantum 
mechanics: Any wave function can be expressed as a linear superposition of 
energy eigenfunctions, those associated with a single energy value. 

Time-dependent Hamiltonians are used to describe quantum systems that are 
subject to a controlled outside force, such as an oscillating electromagnetic field 
generated by a laser beam. In these models, the external fields are assumed to be 
completely under the control of the experimenter and to have a well-defined 
temporal behavior. Clearly, these models are idealizations because the external 
fields are themselves, in principle, physical systems which must obey the rules of 
quantum mechanics. However, the well-defined temporal behavior is a good 
approximation for many situations. 

For a time-dependent Hamiltonian, we usually find the so-called time 
evolution operator U(t, to) which acts on the initial wave function Y(x,t,,) and 
gives us the system's wave function at a later time: 
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,I I Fig. 12.2. Quantum mechanical systems 
must occupy an area at least as large as 
h/4n in state space. The shape of the 

minimum area = hl(4n) 

The time-dependence of the system in these cases can be more complicated than in 
the case of time-independent Hamiltonians, but as we shall see later, the evolution 
is still linear. 

Quantum Mechanics and State Space Trajectories 

In quantum mechanics, as we have mentioned, the precision with which we can 
specify the initial conditions of a system is limited. If we use a state space in which 
the axes are the x coordinate position and the x-component of the linear momentum, 
px, then quantum mechanics tells us that the initial conditions for the system must 
be spread over an area of this space that is larger than hl4n. See Fig. 12.2. It is 
impossible, according to quantum mechanics, to prepare a state that has a more 
restricted range of initial conditions. This result is usually stated in the form of the 
Hekenberg Uncertainty Relation: 

where Ax is a measure of the spread in initial x values (strictly speaking, it is the 
standard deviation in those values) and hp, is the corresponding measure of the 
spread in linear momentum values. The product form of the Uncertainty Relation 
tells us that if we try to reduce the uncertainty in the position, we must increase the 
uncertainty in the linear momentum. Thus, we must have a finite region within 
state space for our initial conditions. As the system evolves, the state space area 
occupied by those trajectories can only increase for an ideal quantum system. 

This restriction on initial conditions is a manifestation of the wave nature of 
matter. For any wave, if we try to produce a wave disturbance in a very small 
region of space (small Ax), then, according to Fourier analysis (see Appendix A), 
we necessarily include a range of wavevector values. In quantum mechanics, by 
the famous de Broglie relation the wavevector k is related to the linear momentum 
0, = hW2n = W A  ). So, a range of wavevectors implies a range of momentum 
values for the particle being described. 

Thus far the search for quantum chaos has focused on systems that, under 
appropriate conditions, display what is called semi-classical behavior. This phrase 
means that the behavior of the quantum system is beginning to mimic the behavior 
of the corresponding classical model of the system. For example, for some highly 
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excited electron states in atoms, when the electron is far from the nucleus, we can 
construct (both in theory and in experiments) "wave packets" (i.e., linear 
combinations of energy eigenfunctions, that are localized in space and have 
"trajectories" that are similar to the trajectories in the corresponding classical 

1 model). In rough terms, semi-classical behavior occurs when the initial conditions 

i in phase space occupy a region small compared to the overall "size" of the classical 
trajectory in phase space and when we look at the system for a time small compared 
to the time for significant spreading of the wave packet. Under these circumstances 
the predictions of the classical model, suitably interpreted, and the predictions of 
quantum mechanics closely agree. 

Can There Be Quantum Chaos? 
With this brief review of the essentials of quantum mechanics, we are now ready to 
talk about the notion of quantum chaos. Since we cannot identify individual 
trajectories in quantum mechanics, we cannot use the notion of exponential 
divergence of trajectories to test for chaotic behavior. Thus, we must look at other 
aspects of the dynamics. 

One of the arguments against the possibility of quantum chaos focuses on the 
time-dependence of the wave function by considering the superposition form of Eq. 
(12.2-5). For a bound system and a time-independent Hamiltonian, any wave 
function for the system can be written as the linear superposition of energy 
eigenfunctions where the time dependence of each part is just a combination of sine 
and cosine oscillations as embodied in the complex exponential factor. Since the 
energy eigenvalues take on only discrete values, the time dependence of any wave 
function can be at worst quasi-periodic in the sense defined in Chapter 4. 
Furthermore, since the time-dependence of the expectation values of the physical 
properties of the system is determined by products of wave functions, as indicated 
in Eq(12.2-l), the physical properties can be quasi-periodic at worst. Thus, it 
seems that for a bounded system there is no possibility for chaotic time behavior if 
the Hamiltonian is time-independent. (Another way of stating this result is that the 
Schrodinger equation is linear in the wave function and hence lacks the essential 
nonlinearity needed for chaos.) Ford and Ilg (FOI92) have extended this argument 
to a wide variety of quantum properties and quantum systems. 

Suppose we shift our attention to another aspect of chaotic behavior, namely, 
exponential divergence of nearby trajectories. Do wave functions show exponential 
divergence? Using the time evolution operator introduced in Eq. (12.2-6), we may 
write the solution to the Schrodinger equation in the following form (in which, for 
simplicity, we have suppressed the spatial dependence of the wave function): 

Y(to) is the initial value of the wave function for the system and specifies the 
initial conditions for the system within the limits allowed by quantum mechanics. 
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If we now start the system with slightly different initial conditions, namely 
Y(t,,) + 6 , then we find that the solution of the Schrodinger equation is 

The second term of Eq. (12.2-9) is also a solution to the Schrodinger equation; 
hence, it cannot grow exponentially in time. Two "nearby" wave functions remain 
close as time goes on. 

The lesson is that trying to extend the notion of exponentially diverging 
nearby trajectories to quantum mechanics, as a possible test for quantum chaos, will 
not work. There is no possibility for chaotic time evolution of the wave function. 

We should point out that we have met up with an analogous situation in 
Chapter 8 during the discussion of Hamiltonian systems. There we saw that the 
time evolution of the state space (or phase space) probability distribution was given 
by a linear equation, the Liouville equation. We concluded that if the Hamiltonian 
system started with a slightly different probability distribution, then the two 
probability distributions would not "diverge" exponentially from each other even if 
the system were behaving chaotically and nearby trajectories were diverging 
exponentially. The situation in quantum mechanics is similar. In fact, the Arnold 
cat map, discussed in Chapter 8, is an exact deduction from a time-dependent 
model in quantum mechanics (RIS87, FMR91). 

In quantum mechanics the role of the probability distribution in phase space is 
played by what is called the Wigner distribution function (see the references listed 
at the end of this chapter). Wishing to avoid unnecessary details, we simply state 
that this function is constructed from products of wave functions in such a way as 
to mimic the classical phase space probability distribution. One important 
difference is that the Wigner function can be negative while the classical 
probability distribution function is always positive. (The possibility of being 
negative is essential to capture the interference effects that are critical in wave 
mechanics.) The time evolution equation for the Wigner function is also linear in  
this function and hence cannot show sensitive dependence on initial conditions. 
More specifically, two "nearby" Wigner functions-nes that are only slightly 
different--cannot diverge exponentially with time. 

We believe that this argument about the lack of exponential divergence in 
quantum mechanics is correct. The conclusion we must draw is that for quantum 
mechanical models with time-independent Hamiltonians for bounded systems there 
is no possibility for chaos in the sense of chaotic time dependence for the properties 
of the system. However, we want to emphasize that this conclusion applies only to 
a certain class of models. If we extend our models to include interactions with the 
system's environment (e.g., to allow for the possibility of the emission of 
electromagnetic radiation or for interaction with a thermal "bath"), then we find that 
the discrete energy eigenvalues are replaced by a continuous distribution of energy 
values (usually the distribution of energy values is relatively sharply peaked at or 
near the discrete values for the isolated system). Thus our restriction to quasi- 
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periodic behavior is removed. Even in this case, however, the linearity of the 
Schrodinger equation remains an apparent obstacle to chaos. 

The previous arguments have been very general. What happens if we look at 
actual quantum mechanics calculations? It has proven extraordinarily difficult to 
prove general results about quantum chaos, and we must rely on analyses of 
cleverly chosen systems for which some results can be computed. An example of a 
(model) quantum system with a time-dependent Hamiltonian is the periodically- 
kicked rotator. This is a model of a rigidly rotating dumbbell, which is kicked 
periodically. The classical model of this system, which is equivalent to the standard 
map of Chapter 8 (CHI79), displays chaotic behavior for some range of parameter 
values. The chaotic behavior is manifested by a growth of the kinetic energy (or 
equivalently of the classical action) of the rotating dumbbell with time. 

One of the characteristics of classically chaotic behavior in Hamiltonian 
systems is the wandering nature of trajectories in state space: A trajectory starting 
in one region of state space wanders throughout the entire allowed region of state 
space if all the KAM tori have disintegrated. In that case we say we have fully 
chaotic behavior. In the analogous quantum systems, we see that wave functions 
that are initially localized in some region of state space (this is most obvious in the 
action-angle version of state space) start to diffuse much like their classical 
counterparts, but eventually, this diffusion ceases, and we say that the wave 
function remains localized in action-angle space even though the corresponding 
classical model continues to diffuse. 

In the quantum version of this system, studied in detail by Chirikov and others 
(CCI79), the energy grows with time only up to a certain point called the "break 
time." Thereafter, the energy is essentially constant. Thus the diffusive nature of 
trajectories in a classically chaotic Hamiltonian system seems to be highly 
constrained in the corresponding quantum system. 

Even worse for the prospects of quantum chaos is the reversibility of the 
quantum model: Chirikov found that the quantum model could be integrated 
backward in time from the break time to arrive exactly at its starting point. For 
chaotic behavior in the classical model, no such backward integration is possible 
because of the existence of a positive Lyapunov exponent. We believe (and there is 
a substantial body of information to confirm this belief) that we cannot reverse the 
time integration to recover the initial distribution for a truly chaotic classical 
system. For a classically chaotic system, the diffusion has led to a true mixing and 
loss of memory of the initial state. Apparently quantum mechanics, in spite of its 
inherent probabilities, is not random enough to satisfy the requirements of classical 
chaos. 

We can understand why quantum mechanics, even with its inherent 
probabilities, is sometimes more deterministic than classical mechanics: Quantum 
mechanical "smearing" in phase space has important dynamical implications. This 
situation occurs in systems for which KAM tori begin to break up. (We saw in 
Chapter 8 that KAM tori confine phase space trajectories to certain regions.) In 
classical mechanics, the breakup of KAM tori is signaled by the spread or diffusion 
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Fig. 12.3. Probability distribution (Husimi distribution) contours for a model of highly 
excited hydrogen atoms in a strong microwave field. The dynamics have been expressed in 
terms of action I and angle 8 variables. The distribution shows clustering (scars) associated 
with the (unstable) periodic orbits of the corresponding classical model. The in-set and out- 
set (stable and unstable manifolds) for the unstable periodic point near the center form a 
homoclinic tangle in the action-angle diagram. (From JSS89.) 

of trajectories through wide regions of state space, leading to stochastic (ergodic) 
behavior. However, in quantum mechanics, the wave function in a sense does not 
see openings in the KAM tori that are smaller in area than the fundamental 
quantum area h/4n . Hence, in quantum mechanics, probability distributions can 
remain confined by the remnants of KAM tori that in classical mechanics would 
allow trajectories to wander through phase space. In that case the quantum system 
is less stochastic than the equivalent classical system. 

This "localization" of wave functions in phase-space is directly analogous to 
the spatial localization of electrons (as described by quantum mechanical waves) in 
a medium with random potentials (Anderson localization), an important and long- 
sought effect in condensed matter physics. See, for example, E N 8 7  and 
[Gutzwiller, 19901. 

Another explanation of this limitation on "transport" in quantum systems is to 
link the quantum probability distributions and the topology of the corresponding 
classical dynamics. Apparently, the quantum probability distributions tend to 
cluster around the locations (most obvious in state space diagrams) of unstable 
periodic orbits in the corresponding classical system (see Fig. 12.3). (The Husimi 
distribution used in Fig. 12.3 is the overlap of the wave function with the so-called 
coherent states for the system. See, for example, RBW96.) These periodic orbits 
are said to leave "scars" in the quantum probability distributions. This analysis 
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(JSS89) has been used to explain the suppression (below what would be expected 
from a classical mechanics analysis) of ionization of highly excited hydrogen atoms 
by microwave fields. 
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Energy-Level Spacing Distribution 

Quantum Analogies to Chaotic Behavior 

Because chaotic time dependence in quantum mechanics seems to be ruled out by 
the arguments given in the previous paragraphs and because quantum mechanics 
does not allow us to talk about well-defined trajectories in state space, we must ask 
another kind of question. Are there any significant qualitative changes in the 
predictions of a quantum mechanical model for a system when the corresponding 
classical model predicts chaotic behavior'? Two quantities have been looked at in 
some detail over the past few years: the statistical distribution of energy eigenvalue 
spacings and spatial correlations of energy eigenfunctions. 

Distribution of Energy Eigenvalue Spacings 

One of the most widely explored possible signatures of quantum chaos has been the 
statistical distribution of energy eigenvalue spacings. Recall from our discussion of 
Hamiltonian systems that chaotic behavior may occur over significant regions of 
state space for a certain range of energies (with all other parameters of the system 
held fixed). Thus, it seems obvious to compare the distribution of energy 
eigenvalues in energy regions that correspond to regular behavior in the 
corresponding classical model with the distribution of energy eigenvalues in energy 
regions that correspond to widespread chaotic behavior in the classical model. 

First, we should point out that the energy ranges of interest are not the lowest 
energy states for the system, the ones most often calculated in beginning courses in 
quantum mechanics. For many systems, those energy levels have very regular 
spacing and provide no surprises. We need to look at highly excited states with 
energies far above the lowest possible values for the system. In those cases the 
energy eigenvalues (as illustrated in Fig. 12.1) seem to have no pattern. We then 
ask: For a given energy range, what is the distribution of energy spacings between 
neighboring energy eigenvalues? It is conjectured that the distribution will be 
significantly different in the cases of (classical) regular motion and (classical) 
chaotic motion. The consensus seems to be that in the regions corresponding to 
regular motion, the spacing of the quantum energy values will be described by a 
Poisson distribution, while in the regions corresponding to chaotic behavior, the 
distribution will be the so-called Wigner-type distribution (JOS88, IZR90). These 
two distributions are shown in Fig. 12.4. 

We can understand the difference between these two distributions by 
considering the difference between regular and chaotic behavior in the classical 
model of the system. When the classical system's behavior is regular (or quasi- 
periodic), the classical phase space behavior is dominated by the KAM surfaces as 
discussed in Chapter 8. In quantum mechanics each KAM surface is characterized 
by a set of quantum numbers associated with the quantities that remain constant 
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Fig. 12.4. Graphs of the Poisson distribution and Wigner distribution for energy level 
spacings. 

(are conserved) as the system moves over the KAM surface. Hence, the energy 
eigenvalues are given by running through the sequence of possible quantum 
numbers. The resulting sequence of eigenvalues is just a "mixture" of sequences 
resulting from changing each of the quantum numbers while leaving the others 
fixed. This mixture leads to a distribution of energy eigenvalues in which the most 
likely spacing is very small (that is, quite frequently the energy eigenvalues will lie 
almost on top of each other). 

On the other hand when the classical system becomes chaotic, the system is 
nonintegrable (in the extreme case it has no conserved quantities except the 
energy), and the trajectory wanders throughout state space. In that case all of the 
degrees of freedom start interacting, and their effects on the energy eigenvalues 
become strongly correlated. (By way of contrast, in the integrable case, we can say 
that the degrees of freedom are independent.) The net effect is that it becomes 
highly unlikely that two energy eigenvalues lie very close to each other. (We say 
we have "energy level repulsion.") (A general property of quantum states is that 
energy levels corresponding to interacting degrees of freedom tend to repel one 
another; that is, with the interaction, the energy levels are further apart than they 
would be if the interaction were turned off.) Thus, the distribution of energy level 
spacings changes to a distribution like the Wigner-type distribution. 

However, the previous arguments really only apply to the extreme cases of 
integrability and complete nonintegrability (no constants of the motion except the 
energy). Thus there may be intermediate cases that are hard to distinguish 
according to this criterion. Moreover, studies have found cases in which the 
quantum counterparts of classically integrable systems do not show a Poisson 
distribution of energy level spacings (CCG85). cases of classically nonintegrable 
systems whose quantum cousins do not have a Wigner-type distribution of energy 
level spacings (ZDD95), and finally there are cases that are classically nonchaotic 
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but whose energy level spacing distribution is (close to) a Wigner-type distribution. 
Thus, it seems apparent that looking at distributions of energy level spacings is not 
the way to look for the quantum analog of chaos. In any case, the practical 
computation of these energy levels is limited to systems with only a few degrees of 
freedom. 

Correlations in Wave Functions 
The second line of attack has been to look at spatial correlations of wave functions 
for quantum systems whose classical analog shows chaotic behavior. The basic 
notion is that when a classical system's behavior is chaotic, the state space 
probability distribution associated with that behavior becomes "spikey," reflecting, 
in many cases, the fractal geometry of the state space attractor. By analogy, we 
might expect the quantum mechanical wave functions to develop irregular spikes 
for those parameter ranges where the corresponding classical model has chaotic 
behavior. 

The degree of "randomness" in the wave function can be expressed in terms 
of a spatial correlation function, defined in analogy with the temporal 
autocorrelation functions described in Chapter 10. Figure 12.5 shows an example 
of a contour plot of a wave function for a system of quantum billiards, for an 
energy range in which the corresponding classical system is chaotic. (Recall from 
Chapter 8 that a billiard model consists of a particle Free to move in two dimensions 
inside a perfectly reflective boundary.) However, having a wave function with little 

Fig. 125. A contour plot of the quantum mechanical wave function for a quantum billiards 
system whose classical counterpart has chaotic behavior. Solid lines indicate positive vaiues 
of the wave function; dashed lines indicate nemive values. The irregular pattern is taken as 
evidence for the quantum behavior analogous to chaotic trajectories. (From SHG84.) 
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spatial correlation is necessary, but not sufficient, for what we would want to call 
chaotic behavior. So again, we are left with ocly a partial definition. 

These irregular eigenfunctions can be characterized by fractal dimensions. 
KKK97 show that the generalized dimension D2 introduced in Chapter 9 can be 
used to characterize the energy level spectrum and the energy eigenfunctions for a 
quantum system whose classical counter-part has chaotic behavior. They find that 
the ratio of the two dimensions (one for the energy level spectrum, the other for the 
energy eigenfunctions) controls how rapidly wave packets spread. 

Chaos and Semi-Classical Approaches to Quantum Mechanics 
The exploration of the possibility of quantum chaos has led to a revival of interest 
in calculational techniques that make use of a mixture of quantum mechanics and 
classical mechanics. The idea is that for many quantum systems, the calculation of 
the wave function from the Schrodinger equation is impractical. Approximate 
wave functions, however, can be calculated by borrowing some ideas from classical 
mechanics for which the problem may be more tractable. Thus, the method mixes 
classical and quantum ideas, leading to the name semi-classical method. (We might 
also call this the semi-quantal method.) 

To get some notion of this method, we outline one variant of the semi- 
classical method: In classical mechanics, one can define a function S(q), the so- 
called Hamilton's characteristic function, such that the momentum associated with 
the generalized coordinate q is given by 

(For the sake of simplicity, we will restrict the discussion to one spatial dimension.) 
Equation (12.2-10) tells us that the trajectories are perpendicular to the curves of 
constant S (since the gradient is perpendicular to curves of constant 5'). If we turn 
the procedure around, we write S(q) as an integral of the linear momentum over the 
path of the particle 

where in general S depends on both the starting point and the end point of the 
trajectory. If S is calculated for a periodic orbit, then S is proportional to the 
classical action associated with that orbit. 

In the early quantum theory (before the development of the Schriidinger 
equation), the descriptions of systems were "quantized by setting the action equal 
to an integer multiple of Planck's constant h. This method, known as the Einstein- 
Brillouin-Keller quantization method, asserted that only those actions (and hence 
only certain energies) satisfying the quantization condition led to allowed orbits. It 
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was quickly realized (EIN17) that this procedure broke down in the case of 
nonintegrable classical systems, which in general do not have closed orbits. 

Given the characteristic function, we can also find the period Tof the classical 
orbit by finding out how S(q) varies with energy E: 

We shall now show how S(q) can be used to get an approximate form of the 
quantum mechanical wave function. In quantum mechanics, the wave function for 
a particle with a definite value of the momentum p has the form 

If the particle is subject to a force, then the momentum will change. The semi- 
classical form of the wave function is then given by 

where the action S(q) is given by the integral expression in Eq. (12.2- 11). Since the 
integral is carried out over the classical trajectory, we say we have a semi-classical 
approximation to the wave function. In this approximation, the curves of constant S 
are the "wavefronts" of the quantum mechanical waves since a wavefront is the 
curve of constant phase for the wave. 

When the classical motion is regular, each individual quantum state is 
correlated with a single classical trajectory with a single value of the quantized 
action (e.g., the circular orbits or elliptical orbits in the well-known Bohr and Bohr- 
Sommerfeld models for the hydrogen atom). Nearby orbits track each other, and 
the wavefront represented by S(q) is smooth. However, when the classical motion 
is chaotic, the chaotic trajectories do not provide a vector field ( grad S(q) ) from 
which we can construct a wave function. 

What do we do in the chaotic case'? Gutzwiller (GUT71, BER89) has 
developed a method that relies on the properties of just the periodic orbits of the 
classical system to find the so-called Green's function for the corresponding 
quantum problem. (The Green's function is that mathematical function that allows 
us to find, at least in principle, the time evolution of the wave function.) The 
Gutzwiller method can be applied to systems that are classically chaotic. 

Experiments on Quantum Chaos 

Our discussion on quantum chaos has focused on theoretical models and issues. 
What do experiments have to say about the issue of quantum chaos? The short 
answer seems to be that all experiments that have been carried out on systems 
whose classical analogs show chaotic behavior have results that are in agreement 
with the predictions of quantum mechanics. That is, quantum mechanics 
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apparently does not break down when the classical analog shows chaotic behavior. 
We briefly describe a few experiments to illustrate this point. 

If an atom with a single electron is placed in a strong magnetic field, then the 
dynamics of the system as described by classical mechanics is nonintegrable and 
shows chaotic behavior for sufficiently high energies or sufficiently strong 
magnetic fields. Fortunately, this is a system for which quantum mechanics can 
provide, with a fair amount of effort, predictions for the energy level spectrum 
(DBG91), for example, and where precise experiments are possible (IWK91). 
Thus far there is good agreement between the theoretical predictions of quantum 
mechanics and the experiments, but the physical interpretation and understanding 
of the regularities observed have yet to be worked out. 

In a second category of experiments, hydrogen atoms excited to high-lying 
energy states were ionized by being exposed to an intense electric field oscillating 
at microwave frequencies. The oscillating field makes the Hamiltonian for the 
system time-dependent and provides the extra degree of freedom needed to make 
chaotic behavior (in the classical description) possible. Again, the experimental 
results seem to be in agreement with the predictions of quantum mechanics. See 
JSS91 for a review of both the theoretical and experimental results. 

Yet another confrontation between classical chaos and quantum mechanics 
occurs in the interaction of lasers and atoms. If a stream of atoms traveling through 
a vacuum is subject to a laser beam, the atoms can emit and absorb photons from 
the laser beam. When an atom absorbs a photon, it receives a small momentum 
"kick" as well as the energy from the photon. Similarly, when the atom emits a 
photon, it must recoil. With an intense laser beam, you might expect the atoms to 
gradually increase the spread in their momenta as they are kicked back and forth. 
The classical mechanics description of this process predicts a "diffusion" in 
momentum as a result of this chaotic behavior. Quantum mechanics, however, 
predicts that the momentum spread will stay limited (an effect called dynamical 
localization). Experiments (MRB94, RBM95) indicate that quantum mechanics 
gives the correct description even when the classical behavior is chaotic. However, 
LAW95 suggests that the localization can be explained solely by classical nonlinear 
dynamics and that the observed effects are not examples of dynamical localization. 
For a thorough survey of the experiments and the conclusions to be drawn from 
them see RAI99. 

Conclusions 

The story of quantum chaos, if it exists, and the connections between the 
predictions of quantum mechanics and the chaotic behavior of macroscopic 
systems now observed daily in laboratories around the world, if those connections 
can be made, is far from complete. Reputable scientists hold contradictory (and 
often strongly worded) opinions about quantum chaos. We believe that we will 
eventually understand how the predictions of quantum mechanics mimic classical 
chaos for all times of practical interest: the half-life of a graduate student or 
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perhaps even the age of the universe. In the meantime, we will learn a lot about the 
subtleties of both quantum mechanics and classical mechanics. 

12.3 Chaos and Algorithmic Complexity 

Most of us, when pressed to think about the matter, divide dynamical behavior into 
two distinct categories: (1) regular, periodic, and, hence, determinable behavior 
and (2) random (indeterminate) behavior. As we have learned in the study of 
nonlinear dynamics, there is a third kind of behavior-the type we have called 
chaotic. With chaotic behavior, we have deterministic rules of time evolution 
leading to behavior that, at first sight, looks indistinguishable from random 
behavior. As we have seen, however, there are methods of analysis that allow us to 
determine, at least approximately, the number of active degrees of freedom, and 
thus to make a distinction between chaotic behavior involving a small number of 
degrees of freedom and "true" randomness, which in a sense can be characterized 
as having an infinite (or at least very large) number of degrees of freedom. 

Finding this intermediate kind of dynamical behavior has led to some 
attempts to provide a measure of complexity of dynamical behavior that ranges 
continuously from simple periodic behavior at one extreme, through deterministic 
chaotic behavior with a few degrees of freedom as an intermediate case, to 
complete randomness at the other extreme. We shall describe one such scheme for 
quantifying complexity. 

In Chapter 5 we saw how the dynamics of iterated maps (and in some cases, 
other dynamical systems) can be reduced to symbolic dynamics: a sequence of 
usually two symbols, R and L, or 1 and 0. One measure of complexity focuses 
attention on this string of symbols and measures the algorithmic complexity of a 
sequence as the length (say, in bits) of the shortest computer program (algorithm) 
that will reproduce the sequence. For example, the algorithmic complexity of a 
periodic sequence is quite small because we need to specify only the pattern of 
symbols that repeats and the instruction to repeat that pattern. On the other hand, a 
completely random pattern requires an algorithm that is as long as the sequence 
itself; that is, for a completely random pattern, the only algorithm that can give the 
sequence is the one that states the sequence in its entirety. 

What is the algorithmic complexity of a sequence of symbols generated by a 
chaotic system (that is, one with at least one positive Lyapunov exponent)? We 
might expect that the sequence of symbols generated by a chaotic system, such as 
the logistic map function with A = A _ ,  is of intermediate algorithmic complexity: 
Only a modest computer program is needed to iterate the logistic map function. For 
the Bernoulli shift map, we need only a very short program to shift the sequence of 
bits one place to the left. 

We need to think through this procedure more carefully, however, because to 
produce a particular sequence, we also need to specify the initial value, say, %. To 
be concrete, suppose we want to reproduce the bit sequence (0s and 1s) resulting 
from 10 iterations of the logistic map function with A = 4. As we saw in Chapter 5, 
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the logistic map with A = 4 is equivalent to a Bernoulli shift map; therefore, each 
iteration of the logistic map is equivalent to shifting the sequence of bits one place 
to the left. Suppose we record the first bit to the right of the binary point for each 
iteration. Thus to produce a particular sequence of 100 bits, we would need to 
specify % to 100 bits. The exponential divergence of nearby trajectories would 
otherwise cause the final x to differ from our desired x. Thus, we need to specify 
essentially the entire sequence, and we have high algorithmic complexity. In this 
sense, a sequence of numbers produced by a chaotic system is equivalent to a 
random sequence. 

The straightforward notion of algorithmic complexity, however, seems to 
miss something. In the case of a sequence of numbers generated by a chaotic 
system, say the logistic map with A = 4, we can expose the underlying deterministic 
algorithm by plotting the (n+l)th iterate as a function of the nth to display the 
functional relationship for a one-dimensional map system. In some cases this 
procedure can be extended to systems with higher dimensionality. 

We can also test for determinism by looking at the sequence of numbers 
directly. Since the numbers are necessarily specified to some finite accuracy, the 
sequence will necessarily eventually return to any one of the specified numbers. 
Once we return to a specified number, we can ask if the next number in the 
sequence is the same as the one that followed the first occurrence of our specified 
number. If it is not, we know that we do not have a one-dimensional iterated map 
sequence. However, the sequence might be the result of a two- (or higher-) 
dimensional map function, and we would need to look for the recurrence of two (or 
more) numbers in sequence to test for determinism. As the number of possible 
dimensions rises, the difficulty of testing for determinism obviously increases 
greatly. Alternatively, the embedding schemes discussed in Chapter 10 can give 
some indication, at least for low-dimensional systems, of the number of dimensions 
and hence can separate "me" randomness from deterministic chaos. In practice, 
there may not be much difference between ''true'' randomness and high 
dimensionality deterministic chaos. 

Thus, it would be premature to claim that all randomness is due to 
deterministic chaos or to equate chaos with all forms of randomness. (But, see 
FOR89 for forceful arguments along these lines.) There would seem to be 
heuristic, if not practical, reasons for retaining a distinction between deterministic 
chaos (at least for low-dimensionality systems) and "pure" randomness, as defined 
by algorithmic complexity or some other scheme. 

J. Ford (FOR89) has argued that algorithmic complexity provides a definition 
of randomness (which he equates with chaotic behavior), which could provide a 
definitive test for the existence or nonexistence of chaos in quantum mechanics. If 
quantum mechanics fails this test, then, Ford argues, we must be prepared to 
modify (or perhaps replace) quantum mechanics because we know that there exist 
systems in nature that exhibit chaos as defined by algorithmic complexity. Of 
course, we must point out that there are yet other possibilities: We might decide 
that algorithmic complexity does not provide the appropriate definition of chaotic 
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(random) behavior or quantum mechanics might know how to mimic behavior of 
high algorithmic complexity in a way not currently understood. 

12.4 Miscellaneous Topics: Piece-Wise Linear Models, Time-Delay Models, 
Information Theory, Stochastic Resonance, Computer Networks, Controlling 
Chaos, and Synchronizing Chaos 

In this section we discuss several topics that did not fit in nicely elsewhere in this 
book. The topics, however, illuminate several interesting aspects of nonlinear 
dynamics and thus deserve some attention. 

The first two topics are two types of models that are widely used in nonlinear 
dynamics. However, their mathematical characteristics are sufficiently different 
from the models discussed elsewhere in this book that they need some special 
comments. 

Piece- Wise Linear Systems 

Throughout this book, we have emphasized the necessity of having nonlinear time 
evolution equations to see the effects of frequency-locking, chaotic behavior, and a 
host of other intriguing effects. However, there is a class of models that make use 
of linear differential equations to model nonlinear systems. How do nonlinear 
effects emerge from these apparently linear models? These models are called 
piece-wise linear models because they use a linear equation to describe the time 
evolution of the system for some time interval. At the end of the time interval, the 
model switches to a different linear equation. In a sense, it is the switching process 
that contains the nonlinear elements. 

The advantage of using a piece-wise linear model lies in our ability to find a 
closed-form solution for the system's behavior in the time between switches. Thus, 
part of the time evolution can be solved exactly. At the switching time, we match 
values of the relevant physical variables (since we do not want most physical 
observables to change discontinuously). After the switch, with the new linear 
equation, we can again solve the time evolution exactly up to the next switch. 
Piece-wise linear models are widely used in engineering for the modeling of 
nonlinear systems. 

As an example of a piece-wise linear model, let us examine a model (ROH82) 
used to describe the behavior of the semiconductor diode circuit introduced in 
Chapter 1. In that model, when the forward-bias potential across the diode reaches 
a set value Vf, the semiconductor diode is treated as a fixed voltage (emf) source V' 
When the forward-bias current passing through the diode drops to 0, the diode 
continues to conduct for a "recovery time" z that depends on the magnitude of the 
most recent maximum value of the forward current. When the recovery time is 
past, the semiconductor diode is treated as a fixed capacitor. The two circuit 
models are shown in Fig. 12.6. 

Using standard ac circuit analysis, we can solve the equations describing the 
time behavior of these models exactly for the time periods between switching. The 
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Fig. 12.6. The two circuit models used for a piece-wise linear description of the 
semiconductor diode circuit introduced in Chapter 1. The diode is treated as a fixed-value 
capacitor C unless its forward-bias potential difference reaches V' The model then switches 
to a fixed potential difference equal to VI for the diode. The circle represents the sinusoidal 
emf signal generator. 

nonlinearity is introduced via the recovery time because the exact time of switching 
depends on the history of the current flowing through the diode. 

With a slight modification of the model for the reverse-recovery time, the 
piece-wise linear model of the semiconductor diode circuit can account for higher- 
dimensional behavior observed under some conditions (HUR84). A different 
piece-wise linear model (with different fixed capacitance values for the diode when 
forward- or reverse-biased) also gives rise to chaotic effects (MCT84). 

Let us now look at piece-wise linear models in more general terms. For the 
sake of concreteness, we consider a model with two state-space dimensions and 
two state-space variables x, and x2. For a linear system, the state space evolution is 
given by our now familiar equations 

where the fs are constant parameters. A piece-wise linear model follows this 
evolution for some time and then switches to another linear set of equations 

with new values of the fs. It is these discontinuous changes in the fs that may 
induce nonlinear effects. But between switches, we can solve the time evolution 
equations exactly. In other words, we can find the mapping function that takes the 
state space variables just after one switch up to their values just before the next 
switch. 

To see how this works out, let us assume that the switch occurs when the x, 
and x2 variables take on certain values XI and X2. The time derivatives then show 
discontinuous changes at the switch. For example for x, , we have 
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with an analogous equation for x2 . This change in the derivative is equivalent to 
having an impulsive "force" act on the system at the switching time. Thus, we have 
a time-dependent system, which, as we know, requires at least one more state space 
dimension. Because the switching time generally depends on the history of the 
variables themselves, we effectively have a nonlinear system. Hence, this kind of 
piece-wise linear model, at least in principle, satisfies our requirements for chaotic 
behavior. 

Piece-wise linear systems or, more generally piece-wise smooth systems (for 
which there may be points in phase space where the derivatives of the functions 
governing the dynamics may not be defined) can exhibit novel kinds of 
bifurcations. In these bifurcations several attractors can be created simultaneously 
as a parameter of the system is varied. The creation of multiple attractors means 
the system becomes very sensitive to noise and we lose ability to predict even the 
attractor to which the system will evolve. The theory of such a bifurcation is 
discussed in DN099. 

Time-Delay Differentiul Eq&n Models 
In an interesting class of models, the time evolution equations give the derivative of 
the state space variables in terms of functions that depend not only on the current 
state of the system at time t but also on the state at an earlier time t - T, where 2 is 
called the delay time for the system. In formal terms, the time evolution equation 
for one state space variable would look like 

A well-known example of a delay-differential model is the Glass-Mackey model 
[Glass and Mackey, 19881: 

where a, b, and c are numerical parameters. Such a model can be used to describe 
time delay effects in biological systems, for example. 

In order to determine uniquely the solution of a delay-differential model, we 
must specify the initial condition of x over a time interval of length 2. In practice, 
we break up that interval into N discrete time units as an approximation. In that 
case, the delay-differential equation is equivalent to an N-dimensional state space 
evolution. In the limit N + w , we have an infinite dimensional state space. Thus, 
a delay-differential equation model is equivalent to a system with an infinite 
number of degrees of freedom. The immediate question that arises is: How do the 
dynamics of a system with an infinite number of degrees of freedom differ from the 
dynamics when we have only a finite (and usually small) number of degrees of 
freedom? Are the conceptual and quantitative tools developed for low- 
dimensionality systems applicable to a system with an infinite number of degrees of 
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freedom? Farmer (FAR82a), in a quite readable paper, has explored the behavior 
of the Glass-Mackey model, its Lyapunov exponents and the fractal dimension of 
the attractors for the system. He has found that for some range of parameter values, 
the system's behavior is well-accounted for by a finite dimensional attractor. The 
connections between the infinite number of degrees of freedom in a delay- 
differential model and the behavior of spatial systems with an infinite number of 
degrees of freedom (see Chapter 11) remain to be explored. 

Information and Chaotic Behavior 
Ever since the development of a formal theory of information and information 
transmission by Claude Shannon in the 1940s, physicists have applied information 
concepts to illuminate the physics of statistical systems. (See, for example, 
[Baierlein, 19711.) Thus, it should come as no surprise that the notions of 
information have been applied to the behavior of chaotic systems. However, two 
apparently contradictory statements can be found in the literature: (1) Chaotic 
systems create information; (2) chaotic systems destroy information. As we shall 
see, both statements are correct. 

First, we need to specify what we mean by information. The technical 
definition is akin to the definition of entropy found in Chapter 9. We focus our 
attention on the symbolic dynamics coding of the behavior of some system by 
using a string of symbols: 1s and 0s or Rs and Ls. The information content of that 
string of symbols is defined as the logarithm (usually to the base 2) of the number 
of symbols needed to define the sequence: 

I = log, N (12.4-6) 

For a repetitive sequence, for example all Os, we need specify only one 
symbol, and the information content is 0. For a purely random sequence, the 
number of symbols needed is the length of the sequence, and the information 
content is high. (We see that this technical definition equates the notion of 
unpredictability or surprise with high information. [Baierlien, 19711 urges us to 
call this quantity "missing information.") 

For a chaotic system, we can say that for short times, the chaotic behavior 
generates information. To see this, think of starting several trajectories within a 
very small region of state space. If the initial conditions are close enough, we 
cannot tell that we have distinct trajectories. Because of the exponential divergence 
of nearby trajectories, however, the trajectories eventually separate sufficiently for 
us to see that there are in fact distinct trajectories. We have gained information 
about the system. This behavior is in agreement with the notion that a chaotic 
system has positive Kolmogorov entropy as discussed in Chapter 9. 

Chaotic behavior, however, destroys information in the long run. To see this 
aspect, consider again starting several distinct trajectories, in this case, in different 
parts of state space. After letting the system run for a long time, we find that the 
trajectories will settle onto an attractor and be stretched and folded many times for 
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dissipative systems. Eventually, we will no longer be able to tell which trajectory 
came from which set of initial conditions. We have lost information about the 
system. 

If we focus our attention on the probability that a trajectory visits various cells 
(or sequences of cells) in state space, as we did in Chapters 9 and 10, then the 
(missing) information can be expressed in terms of those probabilities: 

(If the information is defined without the minus sign, it is sometimes called 
negentropy, because it is then the negative of the usual entropy function given in 
terms of the probabilities.) 

Our conclusion from this brief discussion is that using information 
terminology to talk about chaotic dynamics helps us understand some of the 
implications of information theory, but it does not appear to be useful for 
understanding dynamics. 

Stochastic Resonance 
Nonlinear dynamics challenges our intuition on many fronts. One of the most 
interesting of those challenges arises in what is called stochastic resonance. Quite 
contrary to our ordinary notions, there are circumstances under which adding noise 
to a system makes it easier to recover weak signals. This effect has been observed 
in laser systems, electrical systems, chemical reactions, and even in human 
perception. MOW95 and GHJ98 provide excellent introductions to stochastic 
resonance and its applications. 

To see stochastic resonance, we need one essential feature: the system must 
have some sort of "activation barrier" or "threshold." (That is, the system shows a 
response only if the stimulus exceeds a certain level.) Then if both a weak periodic 
signal and some noise are applied as a stimulus to the system, the response of the 
system at the frequency associated with the weak periodic signal will show a 
maximum amplitude when the noise amplitude is different from zero (a kind of 
resonance effect). In other words, for zero noise, the response will be weak; for 
large noise amplitudes, the response is lost in the noise. For some intermediate 
value of the noise amplitude, however, the response at the desired frequency is a 
maximum. In some sense, the noise helps the system get over the activation barrier 
or threshold. The references at the end of the chapter give some taste of the many 
applications of stochastic resonance. 

Chaos in Computer Networks 
As we have mentioned at several points in this book, computers and computer 
graphics in particular have been indispensable in the modern development of the 
study of nonlinear dynamics and chaos; however, computers themselves are 
complex systems. Could they exhibit chaotic behavior? Of course, most single 
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computers run programs that are in essence deterministic and carefully controlled: 
They give definite responses to definite inputs. The interesting possibility for 
complex behavior seems to arise in computer networks-systems in which many 
computers are interconnected. In some sense, computers connected together are 
like coupled oscillators: Each one by itself might act quite predictably, but the 
interconnections, like the coupling between oscillators, may make the system as a 
whole behave chaotically. However, it turns out, such behavior is not necessarily 
deleterious. The ramifications of this possibility have been explored in several 
papers listed in the references at the end of the chapter. 

Taming and Controlling Chaos 

In thinking about the occurrence of chaotic behavior in real systems such as lasers, 
electronic circuits, mechanical oscillators, and so on, we are tempted to view such 
behavior as an (intriguing) annoyance: We want the laser or electronic circuit or 
mechanical oscillator to behave predictably, and thus we tend to design the system 
to avoid those parameter ranges for which chaotic behavior might occur. 

Some recent work, however, has demonstrated that there may be some 
advantage to having a system operate in a range of parameter values for which 
chaos is possible. The essential idea is that when a system is behaving chaotically, 
it explores a relatively large region of state space. Embedded in that region of state 
space are many (unstable) periodic orbits. By providing a weak control signal, we 
can induce the system to follow an orbit that is close to almost any one of these 
periodic orbits. Thus, in a sense, chaotic behavior provides a varied landscape for 
the dynamical behavior of the system, and by changing the weak control signal, we 
can cause the system to take on a wide variety of different types of periodic 
behavior. 

This type of adaptive control does not require prior knowledge of the system's 
dynamics. In fact, we can use the system's behavior itself to learn what kind of 
small perturbation is necessary to induce it to follow a particular periodic orbit 
(OGY90). Such control schemes have been demonstrated in several experimental 
systems (BRW1, HUN91, RMM92 and other references at the end of the chapter). 
With some clever adaptations, the technique can be extended to systems with high- 
dimensional attractors (AG092) and can operate over extended parameter ranges 
(GIR92). [Kapitaniak, 19961, [Schuster, 19991, and DIS97 give good introductions 
to the various control techniques. 

Given the flexible type of response possible for a system exhibiting chaotic 
behavior, it is tempting to speculate about the biological implications of such 
behavior. Might it be advantageous in some sense for biological systems to arrange 
themselves to "live" in a chaotic regime with a wide variety of possible behaviors, 
allowing them to adapt more easily to changing conditions? By way of contrast, if 
their behavior were strictly periodic, they might have difficulty responding to a 
changed environment. On a more specific level, we might speculate (and indeed 
this speculation is far beyond any experimental evidence) about the possibility that 
the brain's behavior might be modeled as that of a chaotic system. With the help of 
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weak external perturbations (some sort of perceptual clue, for example) the pattern 
of neural firings may settle onto some periodic orbit constituting a particular 
memory. While we are trying to remember, for example, someone's name, the 
brain's "orbit" wanders chaotically through a relatively large region of "state space" 
until, induced by the clue that got us thinking about that particular person, it locks 
onto the "periodic orbit," which constitutes the memory of the person's name. 

Clearly, this is very (if not overly) speculative. The important point, however, 
is that chaotic behavior and its possible control gives us a new model to think about 
the behavior of complex systems. 

Synchronizing Chaos 
As we have emphasized throughout this book, chaotic behavior is characterized by 
sensitive dependence on initial conditions, which leads to apparently random, 
disorderly behavior. We might conclude based on that notion that it would be 
nearly impossible to get two chaotic systems to behave exactly in the same way- 
that is, it would not be possible to get the two systems synchronized so that their 
chaotic trajectories would be the same. Once again, nature challenges our intuition. 
It indeed is possible to synchronize two (or more) chaotic systems so that their 
trajectories (in state space) track each other quite closely over extended periods of 
time. In essence we make use of the sensitive dependence on initial conditions to 
gently nudge one system so that is stays synchronized with the other. 

Why would we want to have two chaotic systems synchronized? There are 
many reasons. For example, in many technological applications, it is important to 
have two "oscillators" be synchronized. Often we think of getting two motors 
synchronized or synchronizing two power generators that produce ac power. We 
can extend that notion to nonperiodic (chaotic) behavior. The healthy human heart 
and the human brain both apparently exhibit slightly chaotic behavior. In the heart 
it is important to have the various parts of the heart, which in principle can beat 
independently, remain synchronized even though there are slight variations in the 
heart rate from moment to moment. As another example, consider synchronization 
in communications systems. Chaotic signals can be used to hide the "true" 
message signal from eavesdroppers. In order to extract the message at the receiving 
end, in many cases there must be synchronization between the chaotic behavior of 
the sender and the chaotic behavior of the receiver. 

The references at the end of the chapter provide a sample of the many 
applications of synchronized chaos. 

Using Chaos to Predict the Future 
Using time-series data to develop models for the dynamics of systems and to 
predict the future has a long and venerable history. In recent years there has been 
some success in using notions based on chaotic behavior in nonlinear systems to 
improve prediction and forecasting schemes for systems displaying complex 
behavior. The same ideas can be used to reduce the effects of noise in the time- 

Quantum Chaos and Other Topics 5 17 

series data: that is, we can use these methods to say what the time-series would 
have been in the absence of noise. A detailed discussion of forecasting and noise 
reduction methods would take us far afield; therefore, the interested reader is 
directed to the references at the end of the chapter. 

12.5 Roll Your Own: Some Simple Chaos Experiments 

Throughout this book we have mentioned the application of nonlinear dynamics to 
various physical, chemical, and biological systems. In recent years, many articles 
have been written describing simple (mostly physical) experimental systems that 
can (and should) be used to demonstrate bifurcations, routes to chaos, and so on. 
We strongly encourage you to try some of these systems. Most can be set up with 
equipment readily available in every college or university physics department. 

The diode circuit described in Chapter 1 is one of the most versatile and easily 
controlled nonlinear systems. An extensive description of nonlinear behavior for 
such a system is given in BUJ85. Using this system permits precise quantitative 
measurements of many aspects of nonlinear dynamics. But it does require some 
knowledge of electronics and the use of an oscilloscope. 

Many mechanical systems can be used to see (in a literal sense) the effects of 
nonlinear dynamics, although quantitative measurements are usually more dificult. 
Among those described in the literature are experiments on a ball bouncing from a 
rigid vibrating platform (TUA86, MET87), various magnets driven by oscillating 
currents (BSS90, MES86,OMH91), and a dripping faucet (DRH91). Several other 
electronic and mechanical nonlinear systems are discussed in BRI87. In addition, 
Appendix C of [Moon, 19921 shows various "chaotic toys." Commercial versions 
of the driven damped pendulum are available from Daedalon, Inc. (Danvers, MA) 
and Tel-Atomic, (Jackson, MI) (complete with computer interface and software). 
Several readily available "executive toys" found in gift shops and science museum 
shops, for example, illustrate chaotic motion in coupled pendulums and magnetic 
pendulum systems. 

12.6 General Comments and Overview: The Future of Chaos 

Two revolutions occurred in twentieth-century physics: The development of 
Einstein's theory of relativity and the development of quantum mechanics. These 
two revolutions have forced us to acknowledge limits on physical reality and hence 
on our knowledge of the world: Relativity has taught us that there is an upper 
speed limit to the transmission of energy and information (the speed of light c) and 
forced a complete rethinking of our notions of space and time. At the quantum 
level, quantum mechanics, in its usual interpretation, tells us that there is a lower 
limit to the size of the interaction between systems, a limit determined by Planck's 
constant h. Thus, any physical interaction, and hence any measurement necessarily 
produces an effect on the system being observed, an effect that cannot be made 
negligibly small. 
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The birth and flowering of nonlinear dynamics and chaos may also constitute 
a revolution in our understanding of nature. The existence of chaos provides us 
with yet another limitation on our knowledge of the natural world: For chaotic 
systems, we are limited in our ability to predict the long-term behavior of systems, 
even ones that are deterministic in principle. In some ways this limitation is just as 
fundamental and just as important as the limitations imposed by relativity and 
quantum mechanics. 

Whether nonlinear dynamics and chaos constitute a revolution in physics as 
fundamental as those of relativity and quantum mechanics is open to debate. We 
would argue that the recent developments in nonlinear dynamics and chaos are the 
(beginnings of the) completion of the "program" of dynamics, the study of how the 
fundamental forces of nature act together to give us the complex world around us. 
This program got bogged down when Poincark, and others realized that, in general, 
nonlinear dynamics leads to problems not solvable by closed formula expressions, a 
signal that what we now call chaotic behavior, with its inherent lack of 
predictability, is possible. Moreover, Poincark, realized that nonlinearity, not 
linearity, is the paradigm for most of nature's behavior. Poincark, however, lacked a 
computer. More importantly, he lacked computer graphics to explore the geometric 
aspects of nonlinear dynamics. Although he realized that these geometric aspects 
are crucial for unraveling complex behavior, he had no way to generate the required 
pictures. 

To reinforce the importance of nonlinear dynamics in the overall scheme of 
science, we quote Nobel-Prize-winner and quintessential physicist, Richard 
Feynman: 

[Tlhere is a physical problem that is common to many fields, that is very 
old, and that has not been solved. It is not the problem of finding new 
fundamental particles, but something left over from a long time ago--over 
a hundred years. Nobody in physics has really been able to analyze it 
mathematically satisfactorily in spite of its importance to the sister 
sciences. It is the analysis of circulating or turbulent fluids . . .. We cannot 
analyze the weather. We do not know the patterns of motion that there 
should be inside the earth. [Feynman, Leighton, Sands, 19631, Vol. I, p. 
3-9. 

It is clear from the context that Feynman had the entire class of nonlinear problems 
in mind, including turbulence, pattern formation, and what we now call chaos. 

In a sense, the study of nonlinear dynamics and chaos needed to wait for the 
development of quantum mechanics and the consequent understanding of solid- 
state physics, which permitted the development of fast and readily-available 
computers. In the meantime, the efforts of mathematicians, particularly in the 
Russian school, and the progress in understanding statistical mechanics laid the 
conceptual groundwork for rapid development of nonlinear dynamics in the last 
two decades or so. 
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What does constitute at least a minor uprising in physics is the discovery of 
the universal classes of qualitative and quantitative behavior in nonlinear systems. 
We have found no hints in the early literature on nonlinear dynamics that this 
universality was anticipated at all. Even if it was anticipated, that anticipation was 
highly limited and localized. The scientific community at large was taken by 
surprise. 

Another surprising feature of the "revolution" of chaos has been its 
applicability to experiments in almost every field of science and engineering. 
Chaos and other "typical" nonlinear behavior have been found, as we have tried to 
emphasize throughout this book, in now hundreds of experiments in practically 
every field of science, engineering, and technology. The theory of nonlinear 
dynamics and chaos, as rudimentary as it is, has helped us describe, organize, and 
even quantify much complex behavior. It is this contact with experiment that leads 
us to believe that the current developments in nonlinear dynamics will make a 
lasting contribution to our scientific world view. 

Of course, there has been much speculation about the applicability of these 
concepts to phenomena outside the natural sciences and engineering. Here, we are 
on much softer ground, and the case has yet to be made convincingly that nonlinear 
dynamics will help us understand complex phenomena such as perception, 
economics, and sociology. Even analogous developments in literary theory have 
been pointed out [Hayles, 19911. In any case, nonlinear dynamics and chaos have 
enriched our vocabularies, both verbal and conceptual, and have given us new 
models to help us think about the world around us. The adventure has just begun. 
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Appendix A 

Fourier Power Spectra 

A.1 Introduction and Basic Definitions 

In this appendix we give a brief introduction to the methods of Fourier analysis and 
synthesis and the resulting Fourier power spectra. For more mathematical details, a 
good reference at this level of treatment is Mary L. Boas, Mathematical Methods 
for the Physical Sciences, 2nd ed. (Wiley, New York, 1983). 

The crucial notion of Fourier analysis is contained in Fourier's Theorem, 
which allows us to decompose any periodic function into a series of sine and cosine 
functions. 

Definition: A periodic function with period T satisfiesAt+7) =At) for all t. 

Fourier's Theorem: Any periodic function with period T can be written as 

f (t) = Q+ %a,, cos(nw0t) + 2 bn sin(noot) (A.1-1) 
2 ,,=I n=l 

where = 2dT. 
Fourier's Theorem says that we can express a periodic function as a sum 

of a constant term and a series of cosine and sine terms, where the frequencies 
associated with the sines and cosines are integer multiples ("harmonics") of the 
"fundamental frequency." (We shall see later why the 2 is included in the 
denominator of the a. term.) 

Given a periodic function At), how do we find the "Fourier amplitudes" 
(or "Fourier coefficients") a, and b,? We find the coefficients by using what is 
sometimes called "Fourier's trick": To determine the coefficient a,, we multiply 
both sides of Eq. (A.l-1) by cos(m@,t), where m is a positive integer, and then 
integrate with respect to t from t = 0 to t = T: 

I j (t) cos(mw,t)dt = jdtbcos(moot)  + %a,, j d t  cos(moot) cos(mot) 
0 0 

2 n=l  
0 (A. 1-2) 

T 

All of the integrals on the right-hand side of Eq(A.1-2) are 0 except the second 
when m = n. (We say that the sines and cosines with different m and n are 
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"orthogonal with respect to integration over the interval 0 to T.") After canying out 
a similar procedure by multiplying by sin(mw), we have 

Note that ad2 is just the average offit) over one period. 

Exercise A.1. Show that in evaluating the integrals in Eqs. (A.l-2) and 
(A.l-3), as long as we integrate over a time interval whose length is the 
~eriod T, we can msition that interval anvwhere along the t axis. 

Equations (A.l-3) give us a recipe for finding the Fourier amplitudes for 
any specifidfit). We call this process Fourier analysis because we are analyzing 
the frequency content of the "signa1"At). The reverse process, constructing anflt) 
from a series of appropriately weighted sines and cosines is called Fourier 
synthesis. In rough terms, each coefficient or amplitude tells how much of the 
original function At) is associated with each harmonic. If At) "looks" a lot like 
cos(mw) then as we integrate from 0 to T,At) and cos(mw) will stay "in phase" 
producing an integrand proportional to cos2, and we get a large contribution to the 
integral. The resulting coefficient a, will be large. On the other hand, ifAt) does 
not look at all like cos(mw), then the integrand will oscillate between positive and 
negative values as we integrate from 0 to T, and the resulting integral will be small. 
We will refine the notion of what the coefficients physically represent later. 

Mathematical Conditions 
A Fourier series representation ofAt) exists ifAt) satisfies the so-called Dirichlet 
conditions: 

1. At) has a finite number of discontinuities in the period T (it is piece-wise 
differentiable). 

2. At) has a finite average value. 
3. At) has a finite number of relative maxima and minima in the period T. 

If these conditions are met (which we would expect for any data from an 
experiment and for any reasonably realistic model), then the series converges toflt) 
at the values of t  wherefit) is continuous and converges to the mean offlt,) andfit-) 
at a finite discontinuity. 
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A.2 Exponential Series 

A great deal of algebraic simplification occurs if we rewrite the sine and cosine 
series in terms of complex exponential functions. To see how this goes, let us write 
out the first few terms of the sine and cosine series and then regroup those terms 
using the Euler formula: 

a 
f (t) = A+ a, cos(wot) + b, sin(oot) + . . . 

2 

Thus, we see that we can writefit) as a sum of complex exponentials 

with c, = %(a, - ib,) and c, = %(a, + ib,). 
The coefficients c, can be found directly by multiplying each side of Eq. 

(A.2-2) by e-'"""I and then integrating from 0 to T. The resulting integral on the 
right-hand side is equal to 0 unless m = n and in that case, the integral is equal to T. 
We thus find that 

Note: IfAt) is a real function, then we must have c, = (c,)*. 

Exercise A.2. For the function shown below, prove that for m not equal 
to 0 

-"'""-1] cnt = - [ e  
27rm 

and that co = AdT. The function At) is a periodic "rectangular wave" 
defined byAt) = A for 0 < t < %At) = 0 for z< t < T andAt) =At+T). 

fit)< 

- - A  
T y  - - 

Z t 
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A.3 Power Spectrum 

As mentioned earlier, the Fourier coefficients tell us how much (in a rough sense) 
the various frequency components contribute to the signal. Here, we will be more 
precise about this relationship. First, we compute the time-average of the square of 
the signal. We do this because in many (but not all) situations instruments respond 
to this average. For example, consider a resistor in which the average power 
dissipated is proportional to the time-average of the square of the current flowing 
through the resistor. As a second example, we recall that the average power 
transported by an electromagnetic wave is proportional to the time-average of the 
square of the electric field amplitude. This time-average is defined as 

The notation on the left of Eq. (A.3-1) reminds us that we are calculating a 
time average. The t in parentheses does not mean that the average depends on time. 
In fact, for a perfectly periodic function, the average so defined is independent of 
time. 

Now, we write ~ ( t ) ] ~  in terms of Fourier exponential sums. 

It should be fairly obvious that when we integrate the time-dependent part of the 
right-hand side of the previous equation from 0 to T to calculate the time average, 
we will get 0 unless m = - n, and in that case we get the value T. Thus, we see that 
the average of the square of the signal is given by 

where we have assumed thatflt) is real; so that c, = c,*. 
A plot of lc,,I2 as a function of harmonic number n is called the 'power 

spectrum" for the signal. The previous result tells us that the absolute-value- 
squared of the Fourier coefficient c, gives the amount of power associated with the 
nth harmonic. 

Exercise A.3. For the rectangular wave train signal illustrated in Exercise 
A.2, show that the Fourier power spectrum is given by 

2 

IcnI == [I- cos(2nnz 1 T)] 

Then plot the result as a function of n for z =  Tl2. 

Fourier Power Spectra 

A.4 Nonperiodic Functions 

Fourier analysis can be generalized to deal with nonperiodic functions. (This is 
clearly the situation of interest in discussing possibly chaotic signals.) The basic 
idea is to start with the Fourier description of a periodic waveform and then to let 
the period become infinite. For example, we could analyze a single rectangular 
pulse signal by using the result for the periodic series of rectangular pulses given 
earlier and letting the period T become infinite as illustrated in Fig. A. 1. 

To see how this works out, let us begin with the Fourier exponential series 
with the explicit form for the coefficient inserted in the sum 

For convenience, the integration range has been shifted to be symmetric around t = 
0. 

We now introduce a new variable wm = ma. Note that the difference 
between adjacent wm values is given by 

Thus, we can write Eq. (A.4-1) as 

In the limit T + =, we let Amm + dw . We may then replace the sum with 
an integral and replace wm with w, a continuous variable. In that limit, we write 

+= 

f (t) = jdoc(o)eim' 
6- 

where 

Fig. A.1. If the period of a rectangular 
pulse train becomes infinite (while the 
width of each pulse stays fixed), the 
signal becomes equivalent to a single 
isolated rectangular pulse. 
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c(w) is called the Fourier transform ofAt). At) and c(w) are said to form a Fourier 
transform pair. (We have split up the 112n symmetrically; therefore, there is a 
factor of 11 6 associated with bothflt) and its Fourier transform.) 

As an aside, we should note that the Fourier transform integral in Eq. 
(A.4-5) includes an integration over negative values of the variable w. 
These negative values are a consequence of the "repackaging" of the sine 
and cosine sums into complex exponentials, which gave rise to a sum over 
positive and negative values of the integer n in Eq. (A.2-2), and the 
subsequent switch to a continuous variable proportional to the integer 
index of those complex exponentials. There is no mystical significance to 
negative frequencies. 

In the case of a nonperiodic function, the power spectrum is given by the 
absolute-value-squared of the Fourier transform function and is now a continuous 
function of the transform variable. We interpret (c(w)I2 d o  as proportional to the 
amount of power contained in the frequency range between w and w + do. As an 
example, for the rectangular pulse example given earlier, the power spectrum is 
given by 

A 
Ic(w)12 = -[l- coswz] 

no2 

This result is plotted in the Fig. A.2. 
Note that the power spectrum falls off rapidly with o. As a rough measure of 

Fig. A.2. A plot of the Fourier power spectrum for a nonpericdic signal consisting of a single 
rectangular pulse of length r The power spectrum is now a continuous function of the 
frequency variable w. The maximum value is ( ~ @ ~ / 2 a  
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the "width" of the power spectrum (as a function of w), we can use the range 
between the first two zeroes of the spectrum, which occur at o = k2n / z  . Thus, 
we define the width to be Aw = 4n 12.  Note that the product of A o  and z is a 
constant: 

This result is, in fact, an example of a rather general relationship between the 
time duration of the nonperiodic signal and the "width" of the corresponding 
Fourier power spectrum, or, equivalently, of the range of frequencies contained in 
the signal. (This product is sometimes called the pulse-dumtion-bandwidth 
product.) If we introduce the "ordinary frequency" f = d 2 n ,  the product takes the 
form 

A more complete (and more difficult proot) shows that in general (A)z 2 1. 
[For example, see M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon 
Press, New York, 1975), pp. 5 4 M ] .  (In the literature other forms of the product 
appear depending on the precise definitions of Afand z. The important point is that 
there is some lower bound on the product. If z is made smaller, then w, the spread 
of frequencies in the signal, is necessarily made larger.) 

Exercise A.4. Compute the Fourier transform and the corresponding 
power spectrum and pulse-duration-bandwidth product for the following 
nonperiodic waveform: 

f (t) = 0 for t < 0 and t > z 
f (t) = Acos(wt) for 0 I t I z 

Compare your results to those stated in Eq. (A.4-6) and Eq. (A.4-7). 

A.5 Fourier Analysis and Nonlinear Dynamics 

What is the utility of Fourier analysis for nonlinear dynamics? As we have seen, 
Fourier analysis lets us determine the frequency content of some signal. If the 
signal is periodic or quasi-periodic, then the Fourier power spectrum will consist of 
a sequence of "spikes" at the fundamental frequencies, their harmonics, and the 
frequencies that are the sums and differences of the various frequencies. The 
crucial point is that the spectrum will consist of a discrete set of frequencies. 
However, if the signal is neither periodic or quasi-periodic (for example, if it is 
chaotic), then the Fourier power spectrum will be continuous. See Appendix H, 
Fig. H.2. Thus, the sudden appearance of a continuous power spectrum from a 
discrete spectrum, as some parameter of the system is changed, is viewed as an 
indicator of the onset of chaotic behavior. 



Appendix A 

However, a continuous Fourier power spectrum can also arise if external 
noise is present. In addition, if many degrees of freedom are active, then there may 
be so many fundamental frequencies and harmonics present that the Fourier power 
spectrum appears to be continuous for a given experimental resolution, even 
though the distinct frequencies might be resolved with higher resolution. Thus, the 
presence of a continuous power spectrum cannot necessarily be taken as conclusive 
evidence for the existence of (low-dimensional) chaos unless you can show that 
external noise is absent and the experimental resolution is sufficient to see all the 
frequencies that might be present for the expected number of degrees of freedom. 

A.6 Spatial Fourier Transforms and Comments on Numerical Methods 

We have calculated the Fourier transform (a function of a frequency variable) for a 
time-dependent function. We can play the same game for a function of position. In 
that case the Fourier transform variable is usually called k, the wavevector. (k is 
called a wavevector because we can generalize the concept to apply to functions of 
more than one spatial dimension. There is then a "component" of k for each spatial 
dimension.) For the spatial Fourier transform, the Fourier expressions are (in one 
dimension) 

The plus and minus signs in the exponentials have been chosen so that if we include 
both space and time dependence for the wave, the exponential function in the first 
part of Eq. (A.6-1) will read ei'W - k', which describes a wave traveling in the 
positive x direction. 

Numerics and Sofhvare 

Many software packages are available to compute Fourier transforms and power 
spectra via an algorithm called the Fast Fourier Transform (FFT). See, for 
example, W. H. Press, et al. Numerical Recipes, The Art of Scient~jlc Computing 
(Cambridge University Press, Cambridge, 1986). 

There are several variations on the Fourier transform technique, such as the 
Hartley transform, wavelet transform, and so on, that have advantages, both 
computational and conceptual, for various applications. A nice survey of these 
techniques is given in R. N. Bracewell, 'The Fourier Transform," Scientifc 
American 260 (6), 86-95 (June, 1989). 

Appendix B 

Bifurcation Theory 

B.l Introduction 

In this appendix, we give a brief introduction to btfurcation theory, the systematic 
treatment of sudden changes that occur for nonlinear dynamical systems. 
Bifurcation theory is a vast field, but is still incomplete today. We shall provide 
only a sketchy outline with just enough information to give you an overview of the 
theory. In studying bifurcation theory it is easy to lose sight of the forest because of 
the profusion of trees of many shapes and sizes. In this introduction, therefore, we 
shall step back to take a broad overview of this lush and complex landscape. For 
more mathematical and pictorial details, we have provided a guide to several other 
treatments at the end of the appendix. 

Bifurcation theory attempts to provide a systematic classification of the 
sudden changes in the qualitative behavior of dynamical systems. The effort is 
divided into two parts. The first part of the theory focuses attention on bifurcations 
that can be linked to the change in stability of either fixed points or limit cycles 
(which can be treated as fixed points in Poincark sections). We call these 
bifurcations local because they can be analyzed in terms of the local behavior of the 
system near the relevant fixed point or limit cycle. The other part of the theory, the 
part which is much less well-developed, deals with bifurcation events that involve 
larger scale behavior in state space and hence are called global bifurcations. These 
global events involve larger scale structures such as basins of attraction and 
homoclinic and heteroclinic orbits for saddle points. 

For both types of bifurcations, bifurcation theory attempts to classify the kinds 
of bifurcations that can occur for dynamical systems as a function of the 
dimensionality of the state space (or, more importantly, of the effective 
dimensionality associated with trajectories near the relevant fixed points or limit 
cycles). Bifurcation theory is also concerned with the parameter dependence of the 
bifurcation. In particular the number of parameters that must change to "cause" a 
bifurcation is called the co-dimension of the bifurcation. For the most part, we will 
focus our attention on bifurcations with co-dimension equal to 1 (i.e., only one 
parameter varies). 

Co-dimension can also be defined from a more geometric point of view. If 
we have a "surface" (or manifold, in more mathematical language) of dimension m 
that lives in a space of dimension n, then the codimension of the manifold is n - m. 
For example, a surface area in a three-dimensional space has a co-dimension of 1, 
while a (one-dimensional) curve in that threedimensional space has a co- 
dimension of 2. The connection between the parameter co-dimension and the 
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geometric co-dimension for a bifurcation is explored in [Guckenheimer and 
Holmes, 19901, but the essential idea is that the number of parameters must equal 
the geometric codimension in order to satisfy certain mathematical requirements to 
be discussed shortly. 

In most discussions of bifurcations, we focus our attention on bifurcations 
that satisfy a so-called transversality condition; bifurcations that satisfy the 
conditions are called generic. The idea is that the bifurcation event can be 
considered to be a crossing of curves, surfaces, and so on, in a parameter space 
(creating the now familiar bifurcation diagram). If the crossings are transverse, 
then small perturbations will not affect the nature of the crossings. However, 
nontransverse crossings will change character, in general, under the effects of 
perturbations. For example, in a three-dimensional space, two (two-dimensional) 
surfaces cross transversely to form a curve (a one-dimensional manifold). If the 
surfaces are slightly perturbed, the crossing moves but remains a one-dimensional 
manifold. On the other hand, two curves crossing at a point in three-dimensional 
space constitute a nontransverse intersection since a slight perturbation of the 
curves will cause the intersection to disappear. 

This transversality condition can be expressed in terms of the co-dimensions 
of the intersecting manifolds. If the sum of the co-dimensions of the intersecting 
manifolds is equal to the co-dimension of the manifold that constitutes the 
intersection, then the intersection is transverse. For example, with two (two- 
dimensional) surfaces in a three-dimensional space, the sum of the co-dimensions is 
2, which is the co-dimension of the curve generated by the intersection. Hence, the 
intersection is transverse. For two curves, however, the sum of the co-dimensions 
is 4, and the intersection, resulting in a point, is not transverse. As yet another 
example, we note that the intersection of a curve and a surface in a three- 
dimensional space is in general transverse. 

By imposing transversality conditions on the bifurcations, we restrict our 
attention to those that are likely to survive small perturbation effects 
[Guckenheimer and Holmes, 19901. Non-transverse bifurcations are occasionally 
important if there are other constraints on the system, such as the imposition of 
certain symmetries. 

Both the co-dimension and the effective dimensionality play an important role 
in determining the so-called structural stability of a particular type of bifurcation 
event. (Note that the notion of structural stability is usually applied to the nature of 
the solutions of the time evolution equations. At a bifurcation point, the solutions 
are structurally unstable. Here, we are extending this idea to another level: the 
stability of the bifurcation event itself.) The essential question is whether the type 
of bifurcation stays the same if the nature of the dynamical system is perturbed by 
adding small terms to the dynamical equations for the system. If the bifurcation 
stays the same, the bifurcation is said to be structurally stable. If it changes, then it 
is structurally unstable. The notion is that structurally unstable bifurcations are not 
likely to occur in actual systems because many effects such as "noise" or 
unaccounted for degrees of freedom effectively play the role of perturbations of the 
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system. It would take an unlikely conspiracy of these perturbations to allow a 
structurally unstable bifurcation to be seen. 

B.2 Local Bifurcations 

As we mentioned earlier, local bifurcations are those in which fixed points or limit 
cycles appear, disappear, or change their stability. Since we can treat limit cycles 
as fixed points of Poincarb sections, we shall use the termeedpoint bifurcation for 
both types. This change in stability is signaled by a change in the real part of one 
(or more) of the characteristic exponents associated with that fixed point: At a local 
bifurcation, the real part becomes equal to 0 as some parameter (or parameters) of 
the system is changed. (Recall that in general the characteristic exponents can be 
complex numbers.) As the real part of the characteristic exponent changes from 
negative to positive, for example, the motion associated with that characteristic 
direction goes from being stable (attracted toward the fixed point) to being unstable 
(being repelled by the fixed point). For a Poincark map fixed point, this criterion is 
equivalent to having the absolute value of the characteristic multiplier equal to 
unity. 

An important theorem, the Center-Manifold Theorem, tells us that at a local 
bifurcation, we can focus our attention on just those degrees of freedom associated 
with the characteristic exponents whose real parts go to 0. It is the number of 
characteristic exponents with real parts equal to 0 that determines the number of 
effective dimensions for the bifurcation. The Center Manifold is that "subspace" 
associated with the characteristic exponents whose real parts are 0. (It is to be 
contrasted with the stable manifold, where the real parts are negative, and the 
unstable manifold, where the real parts are positive.) 

In order to classify the types of bifurcations, it is traditional to reduce the 
dynamical equations to a standard form, the normd form [See, for example, Kahn 
and Zarmi, 19971, in which the bifurcation event occurs when a parameter value p 
reaches 0 and a fixed point, located at x = 0, has a characteristic exponent with real 
part equal to 0. More general situations can be reduced to these normal forms by 
appropriate coordinate and parameter transformations; therefore, there is no loss in 
generality in using the simplified normal forms. 

For a system whose center manifold dynamics are one-dimensional and 
described by a differential equation, we write the time evolution equation as 
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I where the subscripts on the constants A, B, C, and so on, tell us with which power 
of the control parameter ,u they are to be associated. By choosing the values of the 
constants, we can develop a systematic classification of the bifurcations. For 
systems (such as Poincark mappings of limit cycles) described by iterated map 
functions, we can write a similar expression for the iterated map dynamics near the 
bifurcation point: 

x,+~ = A,, +Box, +cox: + .. . 
+ p ( 4  + Blxn +c,x: +...) (B.2-2) 

To see how the classification scheme works, let us try out a few examples. 
For a system described by differential equations, if we set A ,  = 1, Co = -1 and all 
the other constants are 0, we arrive at the equation 

which we recognize from Section 3.17 as the equation describing the behavior at a 
repellor-node (or, in higher dimensions, saddle-node) bifurcation. 

If we use the iterated map form with Bo = -1, B,= -1 and Do = 1, the equation 

describes a period-doubling bifurcation such as those in the Feigenbaum cascade. 
By adding a second state space dimension with its own normal form equation, we 
can model Hopf bifurcations as described in Chapter 3. 

Bifurcations are also classified as subtle (or equivalently, supercritical) and 
catastrophic (or equivalently, subcritical). In a subtle bifurcation, the location of 
the (stable) fixed point changes smoothly with parameter value near the bifurcation 
point. The Hopf bifurcation of Chapter 3 is an example of a subtle bifurcation. For 
a catastrophic bifurcation, the (stable) fixed point suddenly appears (as in a saddle- 
node bifurcation) or disappears or jumps discontinuously to a new location. 

As an example of a subcritical bifurcation, consider the following normal 
form equation: 

where p is the control parameter. For p < 0, the steady-state solution x = 0 is stable. 
For p > 0, there are two stable states given by 

111 A bifurcation occurs at p = 0 and the stable state locations suddenly jump to a new 
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Listings of various normal forms and pictorial representations of the 
corresponding bifurcations can be found in [Thompson and Stewart, 19861 and 
[Abraham and Marsden, 19781. 

B.3 Global Bifurcations 

Global bzfurcations are bifurcation events that involve changes in basins of 
attraction, homoclinic or heteroclinic orbits, or other structures that extend over 
significant regions of state space. Such bifurcations include intermittency and 
crises as described in Chapter 7. Since we need to take into account behavior over 
a wide range of state space, a different means of classifying and studying such 
bifurcations is obviously needed. Unfortunately, the theory of global bifurcations is 
both more difficult and less articulated than is the theory of local bifurcations. 
Specific cases, such as homoclinic tangencies and crises, have been studied in some 
detail, but a general classification scheme is yet to be devised. A schematic 
classification of bifurcations involving chaotic attractors is given in [Thompson and 
Stewart, 1986, Chapter 131 and [Wiggins, 19881. 

B.4 Further Reading 

A Guided Tour of Bifurcation Theory 

We suggest the following "reading course" to learn more about the theory of 
bifurcations. A treatment of bifurcations roughly at the level of this book, with 
some nice illustrations of the accompanying bifurcation diagrams is given by 

[Thompson and Stewart, 19861, Chapters 7,8, and 13. 
An illustrated guide to both local and global bifurcations but without any 

mathematical support is given by [Abraham and Shaw, 19921 and [Abraham, 
Abraham, and Shaw, 19961. With the basic picture in mind you are ready for more 
sophisticated and general mathematical treatments such as those given in 

[Guckenheimer and Holmes, 19901 Chapters 3,6, and 7. 
J. D. Crawford, "Introduction to Bifurcation Theory," Rev. Mod. Phys. 63, 

991-1037 (1991). 

Other General Introductions to Bifurcations in Dynamical Systems 

R. Abraham and J. E. Marsden, Foundations of Mechanics, 2nd ed. 
(BenjaminlCummings, Reading, MA, 1978). 

G. Iooss and D. D. Joseph, Elementary Stability and Bzfurcation Theory 
(Springer-Verlag, New York, 1980). 

V. I. Arnol'd, Geometrical Methods in the Theory of Ordinary Dzfferential 
Equations (Springer, New York, 1983). 

P. Kahn and Y. Zarmi, Nonlinear Dynamics: Exploration through N o m l  
Foms (Wiley, New York, 1997). 
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Y. A. Kuznetsov, Elements of Applied Bzfurcation Theory, 2nd ed. (Springer- 
Verlag, New York, 1998). Aimed at upper-level undergraduates and beginning 
graduate students. Nice diagrams, examples, and explanations. 

I~~l Examples of Bifurcation Analysis 

C. Robert, K. T. Alligood, E. Ott, and J. A. Yorke, "Outer Tangency 
Bifurcations of Chaotic Sets," Phys. Rev. k t t .  80,4867-70 (1998). 

M. C. Eguia and G. B. Mindlin, "Semiconductor laser with optical feedback: 
From excitable to deterministic low-frequency fluctuations," Phys. Rev. E 60, 
1551-57 (1999). 

Global Bifurcations 

The following book contains an excellent first chapter, which provides an 
introduction to the more mathematically inclined treatments of dynamical systems. 
The later chapters contain a detailed discussion of what is known about global 
bifurcations. 

S. Wiggins, Global Bifurcations and Chaos, Analytical Methods (Springer- 
Verlag, New York, 1988). 

I ~ Gluing Bifurcations 

Appendix C 

The Lorenz Model 

C.l Introduction 

In this appendix we show how the Lorenz model equations introduced in Chapter 1 
are developed (derived is too strong a word) from the Navier-Stokes equation for 
fluid flow and the equation describing thermal energy diffusion. This development 
provides a prototype for the common process of finding approximate, but useful, 
model equations when we cannot solve the fundamental equations describing some 
physical situation. 

The Lorenz model has become almost totemistic in the field of nonlinear 
dynamics. Unfortunately, most derivations of the Lorenz model equations leave so 
much to the reader that they are essentially useless for all but specialists in fluid 
dynamics. In this appendix, we hope to give a sufficiently complete account that 
readers of this text come away with a good understanding of both the physics 
content and the mathematical approximations that go into this widely cited model. 

The Lorenz model describes the motion of a fluid under conditions of 
Rayleigh-BCnard flow: an incompressible fluid is contained in a cell which has a 
higher temperature Tw at the bottom and a lower temperature T, at the top. The 
temperature difference 6T = Tw - T, is taken to be the control parameter for the 
system. The geometry is shown in Fig. C. 1. 

Before launching into the formal treatment of Rayleigh-BCnard flow, we 
should develop some intuition about the conditions that cause convective flow to 
begin. In rough terms, when the temperature gradient between the top and bottom 
plates becomes sufficiently large, a small packet of fluid that happens to move up a 
bit will experience a net upward buoyant force because it has moved into a region 
of lower temperature and hence higher density: It is now less dense than its 
surroundings. If the upward force is sufficiently strong, the packet will move 
upward more quickly than its temperature can drop. (Since the packet is initially 
warmer than its surroundings, it will tend to loose thermal energy to its 

As our experience with nonlinear dynamics increases, new types of 
bifurcations are being recognized. For example, gluing bifurcations occur when 
two periodic orbits approach a saddle point and then combine to form a new 
periodic orbit with a period equal to the sum of the two original periods. For 
example, see 

E. Meron and I.Proccacia, "Gluing Bifurcations in Critical Flows: The Route 
to Chaos in Parametrically Excited Surface Waves," Phys. Rev. A 35, 4008-1 1 

Fig. C1. A diagram of the geometry for the 
Lorenz model. The system is infinite in 
extent in the horizontal direction and in the 
direction in and out of the page. 
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environment.) Then convective currents will begin to flow. On the other hand if 
the buoyant force is relatively weak, the temperature of the packet will drop before 
it can move a significant distance, and it remains stable in position. 

We can be slightly more quantitative about this behavior by using our 
knowledge (gained in Chapter 11) about thermal energy diffusion and viscous 
forces in fluids. Imagine that the fluid is originally at rest. We want to see if this 
condition is stable. We begin by considering a small packet of fluid that finds itself 
displaced upward by a small amount Az. The temperature in this new region is 
lower by the amount AT = (ST l h)Az . According to the thermal energy diffusion 
equation (Chapter 1 l), the rate of change of temperature is equal to the thermal 
diffusion coefficient DT multiplied by the Laplacian of the temperature function. 
For this small displacement, we may approximate the Laplacian by 

We then define a thermal relaxation time St, such that 

dT 
tit, - = AT = S ~ , . D , V ~ T  (C. 1-2) 

dt 

where the second equality follows from the thermal diffusion equation. Using our 
approximation for the Laplacian, we find that 

h2 
St, = - 

DT 
(C. 1-3) 

Let us now consider the effect of the buoyant force on the packet of fluid. 
This buoyant force is proportional to the difference in density between the packet 
and its surroundings. This difference itself is proportional to the thermal expansion 
coefficient a (which gives the relative change in density per unit temperature 
change) and the temperature difference AT. Thus, we find for the buoyant force 

ST 
F = ap,gAT = ap,g-Az  (C. 1 -4) 

h 

where p, is the original density of the fluid and g is the strength of the local 
gravitational field. (Near the surface of Earth, g = 9.8 N/kg = 9.8 m/s2.) 

We assume that this buoyant force just balances the fluid viscous force; 
therefore, the packet moves with a constant velocity v,. It then takes a time 
zd = &/v, for the packet to be displaced through the distance Az. As we learned 
in Chapter 11, the viscous force is equal to the viscosity of the fluid multiplied by 
the Laplacian of the velocity. Thus, we approximate the viscous force as 
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where the right-most equality states our approximation for the Laplacian of v,. 
If we now require that the buoyant force be equal in magnitude to the viscous 

force, we find that v, can be expressed as 

The displacement time is then given by 

(C. 1-7) 

The original nonconvecting state is stable if the thermal diffusion time is less 
than the corresponding displacement time. If the thermal diffusion time is longer, 
then the fluid packet will continue to feel an upward force, and convection will 
continue. The important factor is the ratio of the thermal diffusion time to the 
displacement time. This ratio is called the Rayleigh number R and takes the form 

(C. 1-8) 

As we shall see, the Rayleigh number is indeed the critical parameter for 
Rayleigh-Btnard convection, but we need a more detailed calculation to tell us the 
actual value of the Rayleigh number at which convection begins. 

C.2 The NavierStokes Equations 

Because of the geometry assumed, the fluid flow can be taken to be two- 
dimensional. Thus, we need consider only the x (horizontal) and z (vertical) 
components of the fluid velocity. The NavierStokes equations (see Chapter 11) 
for the x and z components of the fluid velocity are 

In Eq. (C.2-l), p is the mass density of the fluid; g is again the strength of the local 
gravitational field; p is the fluid pressure, and p is the fluid viscosity. Note that 
gravity appears explicitly only in the z component equation. 

The temperature T of the fluid is described by the thermal diffusion equation 
(see Chapter 1 l), which takes the form 
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where, as before, DTis the thermal diffusion coefficient. 
In the steady nonconvecting state (when the fluid is motionless) the 

temperature varies linearly from bottom to top: 

For the purposes of our calculation, we will focus our attention on a function 
z(x, z, t) that tells us how the temperature deviates from this linear behavior: 

If we use Eq. (C.2-4) in Eq. (C.2-2), we find that zsatisfies 

We now need to take into account the variation of the fluid density with 
temperature. (It is this decrease of density with temperature that leads to a buoyant 
force, which initiates fluid convection.) We do this by writing the fluid density in 
terms of a power series expansion: 

where p, is the fluid density evaluated at T,. 
Introducing the thermal expansion coefficient a, which is defined as 

and using T - Tw from Eq. (C.2-4), we may write the temperature variation of the 
density as 

The fluid density p appears in several terms in the NavierStokes equations. 
The Boussinesq approximation, widely used in fluid dynamics, says that we may 
ignore the density variation in all the terms except the one that involves the force 
due to gravity. This approximation reduces the v,equation in Eq. (C.2-1) to 
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We then recognize that when the fluid is not convecting, the first three terms 
on the right-hand side of the previous equation must add to 0. Hence, we introduce 

1 an effective pressure gradient, which has the property of being equal to 0 when no 
fluid motion is present: 

Finally, we use this effective pressure gradient in the NavierStokes equations and 
divide through by p, to obtain 

where v = p/p,  is the so-called kinematic viscosity. 

C 3  Dimensionless Variables 

Our next step in the development of the Lorenz model is to express the Navier- 
Stokes equations Eq. (C.2-11) in terms of dimensionless variables. By using 
dimensionless variables, we can see which combinations of parameters are 
important in determining the behavior of the system. In addition, we generally 
remove the dependence on specific numerical values of the height h  and 
temperature difference 6T, and so on, thereby simplifying the eventual numerical 
solution of the equations. 

First, we introduce a dimensionless time variable t' 

[You should recall from Eq. (C.l-3) (and from Chapter 11) that h ' / ~ ~  is a typical 
time for thermal diffusion over the distance h.] In a similar fashion, we introduce 
dimensionless distance variables and a dimensionless temperature variable: 

We can also define a dimensionless velocity using the dimensionless distance 
and dimensionless time variables. For example, the x component of the 
dimensionless velocity is 
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dx' D =-=T 
dt' h 

Finally, the Laplacian operator can also be expressed in terms of the new variables 
with the replacement 

If we use these new variables in the Navier-Stokes equations (C.2-11) and 
multiply through by h3/(vDT), we arrive at 

We recognize that certain dimensionless ratios of parameters appear in the 
equations. First, the Prandtl number o gives the ratio of kinematic viscosity to the 
thermal diffusion coefficient: 

The Prandtl number measures the relative importance of viscosity (dissipation of 
mechanical energy due to the shearing of the fluid flow) compared to thermal 
diffusion, the dissipation of energy by thermal energy (heat) flow. The Prandtl 
number is about equal to 7 for water at room temperature. 

The Rayleigh number R tells us the balance between the tendency for a 
packet of fluid to rise due to the buoyant force associated with thermal expansion 
relative to the dissipation of energy due to viscosity and thermal diffusion. R is 
defined as the combination 

The Rayleigh number is a dimensionless measure of the temperature difference 
between the bottom and top of the cell. In most Rayleigh-BCnard experiments, the 
Rayleigh number is the control parameter, which we adjust by changing that 
temperature difference. 

Finally, we introduce a dimensionless pressure variable II defined as 
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p'h2 n=- 
"Po OT 

We now use all these dimensionless quantities to write the Navier-Stokes 
equations and the thermal diffusion equation in the following form, in which, for 
the sake of simpler typesetting, we have dropped the primes (but we remember that 
all the variables are dimensionless): 

We should point out that in introducing the dimensionless variables and 
dimensionless parameters, we have not changed the physics content of the 
equations, nor have we introduced any mathematical approximations. 

C.4 The Strdunction 

As we discussed in Chapter 11, for two-dimensional fluid flows, we may introduce 
a streamfunction Y(x, z,t) , which carries all the information about the fluid flow. 
The actual fluid velocity components are obtained by taking partial derivatives of 
the streamfunction: 

(We are free to place the minus sign on either of the velocity components. The sign 
choice made here gives us the conventional signs in the Lorenz model equations.) 
We now use the streamfunction in the thermal diffusion equation: 

in which we have expanded the grad term explicitly in terms of components. 
(Mathematically experienced readers may recognize the middle two terms on the 
left-hand side of the previous equation as the Jacobian determinant of the functions 
Y and z with respect to the variables x and z.) 

The fluid flow equations can also be written in terms of the streamfunction. 
Unfortunately, the equations become algebraically messy before some order 
emerges. The v, equation becomes 



Appendix C 

The u, equation becomes 
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It is hard to justify this truncation a priori, but numerical solutions of a larger set of 
eauations seem to indicate (SAL62) that the truncated form captures most of the 
dynamics over at least a limited range of parameter values. 

The boundary conditions for the temperature deviation function are simple. 
3 Since z represents the deviation from the linear temperature gradient and since the 

- If we now take a/ax of Eq. (C.4-3) and subtract from it a/az of Eq. (C.4-4), 
the pressure terms drop out, and we have 

Eq. (C.4-2) and the rather formidable looking Eq. (C.4-5) contain all the 
information on the fluid flow. 

C.5 Fourier Expansion, Galerkin Truncation, and Boundary Conditions 

Obviously, we face a very difficult task in trying to solve the partial differential 
equations that describe our model system. The usual practice in solving partial 
differential equations is to seek solutions that can be written as products of 
functions, each of which depends on only one of the independent variables x, z, t. 
Since we have a rectangular geometry, we expect to be able to find a solution of the 
form 

Y(x,z,t) = ~ e O " . " ' { A , ,  cosA,,z+ B,, sinA,,,z] 
a , n  

x{C, cos A,,x + Dl, sin Anx] 

where the As are the wavelengths of the various Fourier spatial modes and w,,,,, are 
the corresponding frequencies. We would, of course, have a similar equation for r, 
the temperature variable. (Appendix A contains a concise introduction to Fourier 
analysis.) 

As we saw in Chapter 11, the standard procedure consists of using this sine 
and cosine expansion in the original partial differential equations to develop a 
corresponding set of (coupled) ordinary differential equations. This procedure will 
lead to an infinite set of ordinary differential equations. To make progress, we must 
somehow reduce this infinite set to a finite set of equations. This truncation process 
is known as the Galerkin procedure. 

For the Lorenz model, we look at the boundary conditions that must be 
satisfied by the streamfunction and the temperature deviation function and choose a 
very limited set of sine and cosine terms that will satisfy these boundary conditions. 

, 
temperatures at the upper and lower surfaces are fixed, we must have 

For the streamfunction, we look first at the boundary conditions on the 
velocity components. We assume that at the top and bottom surfaces the vertical 
component of the velocity V: must be 0. We also assume that we can neglect the 
shear forces at the top and bottom surfaces. As we saw in Chapter 11, these forces 
are proportional to the gradient of the tangential velocity component; therefore, this 
condition translates into having av,/az = 0 at z = 0 and z = 1. For the Lorenz 
model, these conditions are satisfied by the following ansatz for the strearnfunction 
and temperature deviation function: 

where the parameter a is to be determined. As we shall see, this choice of functions 
not only satisfies the boundary conditions, but it also greatly simplifies the resulting 
equations. 

The particular form of the spatial part of the strearnfunction Y models the 
convective rolls observed when the fluid begins to convect. You may easily check 
this by calculating the velocity components from Eq. (C.4-1). The form for the 
temperature deviation function has two parts. The first, TI , gives the temperature 
difference between the upward and downward moving parts of a convective cell. 
The second, T2 , gives the deviation from the linear temperature variation in the 
center of a convective cell as a function of vertical position z. (The minus sign in 
front of the T2 term is chosen so that T2 is positive: The temperature in the fluid 
must lie between T, and T,.) 

C.6 Final Form of the Lorenz Equations 

We now substitute the assumed forms for the streamfunction and the temperature 
deviation function into Eqs. (C.4-2) and (C.4-5). As we do so, we find that most 
terms simplify. For example, we have 

The net result is that some of the complicated expressions that arise from 
6 - grad v terms disappear, and we are left with 
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I The only way the previous equation can hold for all values of x and z is for the 
coefficients of the sine terms to satisfy 

dW(t) - O R  --- TI (t) - o(nZ  + a Z  )y(t) 
dt n2 + a 2  

The temperature deviation equation is a bit more complicated. It takes the form 

T, s i n n z c o s a x - ~ ~ s i n 2 n z + ( n ~  +a2)Tl sinnzcosax 

- 4 n 2 ~ ,  sin2nz -aysinnzcosax 

= -[fly cos nz sin ax][aT, sin n z  sin ax] (C.6-4) 

- [ay  sinnzcosax][nT, cosnz cosax] 

+ [W sin nz  cosax][2nT2 cos 2nz3 

We first collect all those terms which involve sin nz  cos ax. We note that the 
last of these terms in Eq. (C.6-4) is 2any/T2 sin nzcos 2nz . Using standard 
trigonometric identities, this term can be written as the following combination of 
sines and cosines: (-% sinm + 4/2 sin3m). The sin3m term has a spatial 
dependence more rapid than allowed by our ansatz; so, we drop that term. We may 
then equate the coefficients of the terms in Eq. (C.6-4) involving sinm cosax to 
obtain 

T, = a y - ( n 2  +a2)Tl -nay/T2 (C.6-5) 

All the other terms in the temperature deviation equation are multiplied by sin 2nz 
factors. Again, equating the coefficients, we find 

To arrive at the standard form of the Lorenz equations, we now make a few 
straightforward changes of variables. First, we once again change the time variable 
by introducing a new variable t" = (n2 + a2)t'. We then make the following 
substitutions: 

an  x (t) = 
(n2 + a 2 ) ~ ~ ' ~ )  

rn  
Y(t) = -TI (t) JZ ~ Z(t) = nrT2 (t) 

The Lorenz Model 

where r is the so-called reduced Rayleigh number: 

a 2  
r = R 

(aZ +n2)3 

I ? We also introduce a new parameter b defined as 

I With all these substitutions and with the replacement of o with p for the 
! Prandtl number, we finally arrive at the standard form of the Lorenz equations: 
I 
I 

At this point we should pause to note one important aspect of the relationship 
between the Lorenz model and the reality of fluid flow. The truncation of the sine- 
cosine expansion means that the Lorenz model allows for only one spatial mode in 
the x direction with "wavelength" 2da.  If the actual fluid motion takes on more a 
complex spatial structure, as it will if the temperature difference between top and 
bottom plates becomes too large, then the Lorenz equations no longer provide a 
useful model of the dynamics. 

Let us also take note of where nonlinearity enters the Lorenz model. We see 
from Eq. (C.6-10) that the product terms XZ and XY are the only nonlinear terms. 
These express a coupling between the fluid motion (represented by X, proportional 
to the s t r d n c t i o n )  and the temperature deviation (represented by Y and Z, 
proportional to TI and T2 , respectively. The Lorenz model does not include, 
because of the choice of spatial mode functions, the usual u' . gradv nonlinearity 
from the Navier-Stokes equation. 

C.7 Stability Analysis of the Nonconvective State 

The parameter a is determined by examining the conditions on the stability of the 
nonconvective state. The nonconvective state has I// = 0 and z = 0 and hence 
corresponds to X,X,Z = 0. If we let x, y, and z represent the values of X, Y, and Z 
near this fixed point, and drop all nonlinear terms from the Lorenz equations, the 
dynamics near the fixed point is modeled by the following linear differential 
equations: 
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Note that z(t) is exponentially damped since the parameter b is positive. Thus, we 
need consider only the x and y equations. Using our now familiar results from 
Section 3.1 1, we see that the nonconvective fixed point becomes unstable when r > 
1. Returning to the original Rayleigh number, we see that the condition is 

We choose the parameter a to be the value that gives the lowest Rayleigh number 
for the beginning of convection. In a sense, the system selects the wavelength 2 d a  
by setting up a convection pattern with the wavelength 2da at the lowest possible 
Rayleigh number. This condition yields a = nA2. Hence, the Rayleigh number at 
which convection begins is R = 27n414. The parameter b is then equal to 813, the 
value used in most analyses of the Lorenz model. 

C.8 Further Reading 

E. N. Lorenz, "Deterministic Nonperiodic Flow," J. Atmos. Sci. 20, 13041 
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B. Saltzman, "Finite Amplitude Free convection as an Initial Value Problem- 
I." J. Atmos. Sci. 19, 329-41 (1962). The Lorenz model was an outgrowth of an 
earlier model of atmospheric convection introduced by Saltzman. 

[Berg, Pomeau, Vidal, 19841. Appendix D, contains a slightly different 
development of the Lorenz model equations, and in addition, provides more details 
on the how the dynamics evolve as the reduced Rayleigh number r changes. 

[Sparrow, 19821. A detailed treatment of the Lorenz model and its behavior. 
S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover, New 

York, 1984). Chapter 11. A wide-ranging discussion of the physics and 
mathematics of Rayleigh-Binard convection along with many historical references. 

H. Haken, "Analogy between Higher Instabilities in Fluids and Lasers," Phys. 
Lett. A 53,77-78 (1975). Certain laser systems are modeled by equations that are 
identical in form to the Lorenz model equations. 

R. Graham, "Onset of Self-pulsing in Lasers and the Lorenz Model," Phys. 
Lett. A 58,44041 (1976). 

C. 0. Weiss and J. Brock, "Evidence for Lorenz-Type Chaos in a Laser," 
Phys. Rev. Lett. 57,2804-6 (1986). 

C. 0. Weiss, N. B. Abraham, and U. Hiibmer. "Homoclinic and Heteroclinic 
Chaos in a Single-Mode Laser," Phys. Rev. Lett. 61,1587-90 (1988). 

S. H. Strogatz, Nonlinear Dynamics and Chaos (Addison-Wesley, Reading, 
MA, 1994). Chapter 9 includes a nice discussion of the Lorenz model, including a 
detailed description of a waterwheel that can be modeled with the same equations. 

Appendix D 

The Research Literature on Chaos 

The research literature on nonlinear dynamics and chaos has spread through 
journals in almost e v G  field of science and engineering. Here we list the titles of 
journals in which we have found a large number of articles dealing both with 
specific nonlinear systems and their analysis and with fundamental problems in 
nonlinear science. These journals are available in almost all college and university 
science libraries. 

American Journal of Physics (American Association of Physics 
Teachers) 
Chaos (American Institute of Physics) 
Complexity International (an electronic journal available at 
http://www.csu.edu.au/ci/ci.html 
International Journal of Bifurcations and Chaos in Applied Sciences 
and Engineering (World Scientific) 
Nonlinear Dynamics (Kluwer) 
Physica D (North-Holland) 
Physical Review Letters (American Physical Society) 
Physical Review A (American Physical Society) 
Physical Review E (American Physical Society) 
Physics Letters A (North-Holland) 
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Computer Programs 

E.1 General Comments 

This appendix contains the listings of three simple computer programs. The first 
calculates trajectory points for the logistic map and then plots them as a function of 
iteration number. The second plots a bifurcation diagram for the logistic map. You 
may select a range of parameter values and x values. The third displays the graphic 
iteration method. Sample screen outputs from the programs are included. 

The programs have been written in the language QuickBasic, but they are 
easily adaptable to other languages. As you can see, most of the program provides 
the user with information, requests information from the user and sets up the screen 
display. The actual computations are quite simple. 

Comments are preceded by the ' symbol and are ignored by the computer. 

E2 Program to Calculate and Plot Trajectory Points for the Logistic Map 

The map function is X = A X (1 - X). 
CLS:' clear the screen 

'Set up screen mode and colors 
SCREEN 11: VGA 640x480 graphics, text has 80 columns and 30 rows 
CNUMW = 65536*63+256*63+63: 'gives bright white 
CNUMB = 0: 'gives black 
PALETTE 0, CNUMW: 'this gives a white background 
PALETTE 1, CNUMW: 'this gives black text and drawing lines 

'Alternatively SCREEN 12 allows for more colors if desired. 
'print information for the user 

PRINT "This program calculates and plots trajectory points for the logistic 
map." 

PRINT 
PRINT "The map function is X = A * X * (1 - X)" 
PRINT 
PRINT "You are asked for the value of the parameter A (0 c A c 4)" 
PRINT "and for the initial value of x (0 c x c 1)" 
PRINT "and for the number of points to be calculated and plotted." 
PRINT 
PRINT "Hit any key to proceed." 

' this is a wait loop 

Computer Programs 

chase: A$ = INKEY$: IF A$ = "" THEN GOT0 cbase 
CLS:' clear the screen 

again: ' program returns here for a repeat performance 
CLS 0: 'clear the screen of all text and graphics 

I LOCATE 1, 1: ' put the cursor back at the top left of the screen 
AIN: INPUT"VALUEOFA(O<Ac4)";A 
IFAcOORA>4THENGOTOAIN'checkrangeofA 
XIN: INPUT "Initial x value (0 < x < 1)"; xi 
IF xi c 0 OR xi > 1 THEN GOT0 XIN: ' check range of xi 
INPUT "Number of points to calculate and plot"; NP 
x = xi: ' use this as the initial x value 
INPUT "Allow transients to go away [y or n]"; T$ 
IF T$ = "y" OR T$ = "Y" THEN 
FOR I = 1 TO 200: ' get rid of transients 
x = A * x * (1 - x): 'logistic map function 
NEXT I: ' END OF TRANSIENT LOOP 
END IF 
FOR J = 1 TO NP: 'print next NP points to the screen 
x = A * x * (1 - x): ' logistic map function 
PRINT J, x 
NEXT J: ' end of print loop 

'COMMENTS: This next section uses QuickBasic graphics commands VIEW, 
WINDOW, LINE and PSET. These may need to be changed for other versions of 
Basic and for other languages. The LOCATE command assumes we are using 30 
rows and 80 columns of characters on the screen. 

'Ask the user if the points should be plotted: 
INPUT "Plot these [y or n]"; B$ 

IF B$ = "y" OR B$ = "Y" THEN CLS 0: 
' clear all text and graphics 

VIEW (1, 1)-(639,439): ' set viewport for graphics 
WINDOW (0, 0)-(NP, 1): 'set coordinates for plotting 
LINE (0, 0)-(NP, I), , B: 'draw box 

'Draw hash marks 
FORJ= 1 TONP 
LINE (J, 0)-(J, .05) 
NEXT J 
LOCATE 30,40: PRINT "Iteration number"; 
LOCATE 2,2: PRINT " x  A=";A;  
IF T$ = "Nu OR T$ = "n" THEN x = xi: 

1 'start at beginning to see transient 
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PSET (0, x): 'plot first point 
FORJ= 1 TONP 
x = A * x * ( l - x )  
LINE -(J, x): ' draw line to next point 
NEXTJ 
END IF ' Now print messages for further action by the user 
LOCATE 30, 1: PRINT "Hit r to repeat. Hit q to quit"; 

'Wait for response 
Here: A$ = INKEY$: IF A$ = "" THEN GOT0 Here 
IF A$ = "q" OR A$ = "Q" THEN GOT0 qbase 
IF A$ = "r" OR A$ = "R" THEN GOT0 again 
qbase: 'quit program 
END 

H i t r t o r t p c a t .  H i t q t o q u i t  Iteration number 
Fig. El. Typical output from the logistic map program Here A = 3.5 and % = 0.1. After an 
initial transient, the behavior is period4 

E.3 BIFUR, A Program to Plot a Bifurcation Diagram for the Logistic Map 

The map function is X = A * X * (1-X) 
' clear the screen and print messages 

CLS 0 

PRINT "This program plots a bifurcation diagram for the logistic map." 
PRINT 

Computer Programs 

PRINT "You are asked for the range of parameter values" 
PRINT "and for the range of x values (vertical section)." 
PRINT 
PRINT "Hit any key to proceed." 
abase: A$ = INKEY$: IF A$ = "" THEN GOT0 abase: 'a wait loop 

'Set up screen mode and colors 
SCREEN 11: VGA 640x480 graphics, text has 80 columns and 30 rows 
CNUMW = 65536*63+256*63+63: 'gives bright white 
CNUMB = 0: 'gives black 
PALETTE 0, CNUMW: 'this gives a white background 
PALETTE 1, CNUMW: 'this gives black text and drawing lines 

'Alternatively SCREEN 12 allows for more colors if desired. 

rbase: 'back to here to repeat program 
CLS 0: ' clear the screen 

' Ask for range of A and range of x 
INPUT "Initial value of A ( 0 < A < 4) "; AI 
INPUT "Final value of A (0 < A < 4) "; AF 
PRINT 
INPUT "Lower value of x to be plotted (0 < x < 1)"; XL 
INPUT "Lower upper of x to be plotted (0 < x < 1)";XU 
PRINT 
PRINT "Suggestion: plot NP = 50/(XU -XL) points." 
PRINT 
INPUT "Number of points to plot for each value of A ;  NP 
CLS 0: ' clear the screen 

'set view port with room for labels 

'COMMENTS: This next section uses QuickBasic graphics commands VIEW, 
WINDOW, LINE and PSET. These may need to be changed for other versions of 
Basic and for other languages. The LOCATE command assumes we are using 30 
rows and 80 columns of characters on the screen. 

'set up view area for graphics 
VIEW (50,O)-(639,479) 

'set up Window with axes between XL and XU 
WINDOW (AI, XL)-(AF, XU) 

'draw box 
LINE (AI, XL)-(AF, XU), , B 

'Print Labels for the graph 
LOCATE 5 , l :  PRINT "Xu; 
LOCATE 28,l:  PRINT XL; 
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LOCATE 1 , l :  PRINT XU; 
LOCATE 29,40: PRINT "A"; 
LOCATE 29,3: PRINT AI; 
LOCATE 29,80 - LEN(STR$(AF)): PRINT AF; 

' print information on action keys 
LOCATE 30, 1: PRINT "Hit r to repeat. Hit q to quit."; 

' Now calculate the trajectories and plot the diagram 
FOR K = 0 TO 639: ' use 640 steps across the screen 
A = A1 + (AF - AI) * K / 639: 'ACTUAL PARAMETER VALUE 
X = .2: 'initial value 
FOR I = 1 TO 200: ' get rid of transients 
X = A * X * ( l - X )  
NEXT I: ' END OF TRANSIENT LOOP 
FOR J = 1 TO NP: 'plot next NP points 
X = A * X * ( l - X )  
P Y = X  
PSET (A, PY) 
NEXT J: ' END OF PLOT LOOP 

'check for key stroke 
A$ = INKEY$ 
IF A$ = "q" OR A$ = "Q" OR A$ = "r" OR A$ = "R" THEN EXIT FOR 

' exit the loop if an action key has been hit 
NEXT K: ' END OF PARAMETER VALUES LOOP 

' decide on which action to take 
IF A$ = "q" OR A$ = "Q" THEN END 
IF A$ = "r" OR A$ = "R" THEN GOT0 rbase 
HERE: A$ = INKEY$: IF A$ = "" THEN GOT0 HERE 

'wait loop for screen capture if desired 
IF A$ = "r" OR A$ = "R" THEN GOT0 rbase 

END 

E.4 A Program to Display Graphic Iterations of Map Functions 

This program puts the iterated map function in a QuickBasic FUNCTION 
statement so that you can easily substitute other map functions. The control 
parameter is A and the iterated variable is x. 

DECLARE FUNCTION MF! (A!, x!) 
DECLARE SUB Waitsub (A$) 

' Plots map function and steps through graphical version of iteration scheme 
' The mapping function is defined in the Function MF(A,x) 

'Set up graphics screen 
'Set up screen mode and colors 

SCREEN 11: VGA 640x480 graphics, text has 80 columns and 30 rows 

Computer Programs 

0 
3.2 A 3.7 

Hit r to repeat. Hit q to quit. 
Fig. E2. Typical bifurcation diagram generated by the program BIFUR. 

CNUMW = 65536*63+256*63+63: 'gives bright white 
CNUMB = 0: 'gives black 
PALETTE 0, CNUMW: 'this gives a white background 
PALETTE 1, CNUMW: 'this gives black text and drawing lines 

'Alternatively SCREEN 12 allows for more colors if desired. 

CLS 0: 'clear the screen 
' Give first message 

PRINT "This program iterates the logistic map graphically" 
PRINT "step by step." 
PRINT 
PRINT "After each step, the program pauses. Hit any key for the next 

step." 
PRINT 
PRINT "Hit any key to proceed." 
cbase: A$ = INKEY$: IF A$ = "" THEN GOT0 cbase: 'wait loop 

rbase:' return here for repetition of the program 
CLS 0: ' clear the screen 

'Input parameter value and initial x value 
INPUT "Parameter A (0 < A < 4) ="; A 
IF A < 0 OR A > 4 THEN GOT0 rbase: 'check range of values 
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PRINT 
dbase: INPUT "Initial x (O<x<l) = "; XI 
IF x < 0 OR x > 1 THEN GOT0 dbase: 'check range of values 

CLS 0:' clear the screen 

'COMMENTS: This next section uses QuickBasic graphics commands VIEW, 
WINDOW, LINE and PSET. These may need to be changed for other versions of 
Basic and for other languages. The LOCATE command assumes we are using 25 
rows and 80 columns of characters on the screen. 

'set view port with room for labels 
VIEW (35,32)-(425,317): ' This makes a square box 

'set up Window with axes between 0 and 1 
WINDOW (0, 0)-(1, 1) 

'draw box 
LINE (0,0)-(1, I), , B 

'Print Labels 
LOCATE 3 , l :  PRINT "1"; 
LOCATE 7, 1: PRINT "f(x)"; 
LOCATE 29,28: PRINT "xu; 
LOCATE 29,2: PRINT "0"; 
LOCATE 29,55: PRINT "1"; 
LOCATE 5,lO: PRINT "A="; A; 
LOCATE 5,60: PRINT "Hit a key:"; 
LOCATE 10,70: PRINT "q =quitw; 
LOCATE 15,70: PRINT "r = restart"; 
LOCATE 20,70: PRINT "n = next step"; 

'Plot x = y line 
LINE (0,O)-(1, 1) 

'Plot function 
FOR j = 0 TO 639 
x = j / 6 3 9  
Y = MF(A, x) 
PSET (x, y) 
NEXT j 

'Draw line from XI to f(x) then to x = y line 
y = MF(A, XI) 
LINE (XI, 0)-(XI, y) 
LINE -(Y, Y) 

'go to Waitsub to pause 
CALL Waitsub(A$) 

Computer Programs 

'Now set up loop to repeat this process 
xx = y: 'transfer the y value to xx 

AGAZN: 
y = MF(A, xx) 
LINE -(xx, y) 
LINE -(Y, Y) 
CALL Waitsub(A$) 
IF A$ = "r" OR A$ = "R" THEN GOT0 rbase 
IF A$ = "q" OR A$ = "Q" THEN GOT0 qbase 
xx=y 
GOT0 AGAIN 
qbase: ' quit the program 
END 

' The FUNCTION statement defines the iterated map function being used. 
FUNCTION MF (A, x) 
M F = A * x * ( l - X )  
END FUNCTION 

SUB Waitsub (A$) 
This routine waits for the user to hit a key. 
'Screen capture can be invoked while waiting. 

DO 
FOR j = 1 TO 1000: NEXT j 
A$ = INKEY$ 
LOOP WHILE A$ = "" 
END SUB 

Hit a key: 

q = quit 

r = restart 

n = ~ x t  step 

Fi E3. Typical graphical iteration output for the logistic map. 
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Theory of the Universal Feigenbaum Numbers 

F.l The Feigenbaum a 

In Chapter 2, we saw that many one-dimensional iterated maps share common 
quantitative, as well as qualitative, features. In particular, we saw that there is a 
common convergence ratio (the Feigenbaum number 6) and scaling ratio (the 
Feigenbaum number a )  as the period-doubling sequence proceeds toward chaos. It 
was the discovery of these universal quantitative features that, at least in part, 
alerted scientists and engineers to the potential importance and usefulness of the 
new approaches to nonlinear dynamics. 

In this appendix we will give a heuristic theory of the universality of the 
Feigenbaum numbers a and 6. This theory will lead to actual (but approximate) 
numerical values for these important numbers. The ideas involved here are at once 
both simple and subtle. Although the mathematics used in this theory does not 
require more sophistication than we have introduced before, the argument is 
sufficiently complicated that some readers may wish to skip this appendix. Before 
they do, however, we would like to state briefly, using mostly words and simple 
symbols, the main ideas involved. 

The essential idea is that to find a and 6, we need concentrate our attention 
only on the behavior of the iterated function f near the value xc for which it has a 
maximum. We are going to concentrate on trajectories that involve x, (the 
supercycles). As the period-doubling sequence proceeds, we shift our attention to 
f '"' . It turns out that if we rescale our graphs by the factor a = 2.502.. . for each 
period-doubling, then f '"' near x, approaches a universal function (that is, it is the 
same for a wide class of iterated map functions), which we shall call g(x). Figure 
F. 1 shows high-order iterates of two different map functions. The regions near x, 
show the expected universal behavior. 

Furthermore, we assert that this universal function obeys a size scaling 
relation. In writing this scaling relation, it has become customary to introduce a 
new variable y = x - x,, which tells us how far we are from the value x,. (Note that 
using the variable y is equivalent to shifting the map function along the x axis so 
that its maximum occurs at x = 0.) In terms of this variable, the size-scaling 
relation takes the form, called the composition law: 

What does Eq. (F.l-1) tells us? It says that if we iterate the universal function 
gCy), what we get (as a function of y) is just what we would have obtained by 
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Fig. F.1. The upper diagram is a plot of the eighth iterate of the logistic map. The lower 
diagram is the eighth iterate of the exponential map function. Parameters are close to those 
of the perioddoubling accumulation point. Note that near xc (at the center of each plot) both 
functions have a similar appearance. xc = 0.5 for the logistic map and xc = 0 for the 
exponential map. Differences show up near f a  x values further &om xc. With appropriate 
scaling of the ordinate and abscissa, the central parts of the diagram match almost exactly. 

starting with -yla, iterating the function twice and then multiplying the result by - 
a. Figure F.2 shows the graphic representation of this equivalence. 

As we shall see, the existence of this universal function, the size scaling near 
xc, and the shape off near xc are all that we need to find the values of a and 6. This 
type of reasoning is widely used in contemporary theoretical physics, where it goes 
under the name of "renormalization theory." The term renomlizution means 
essentially the same as the size scaling in our discussion. Renormalization theory 
has been very important in the theory of phase transitions in statistical mechanics 
and in quantum field theory. In all cases the common feature linking these diverse 
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Fig. F.2. A graphical representation of 
the composition law indicated in Eq. 
(El-1). If we start with yo and iterate 
gQ once, we end up at the point 
indicated by yl. If we start with -yda 
and iterate twice and then multiply by - 
a, we should also end up at y,. This 
procedure works only if gb) is the 
special universal function. 

applications is the notion of size scaling: that appropriately magnified and 
(perhaps) shifted versions of the system look the same. 

Let us now proceed to the more detailed theory. (This treatment is based on 
the arguments presented in [Schuster, 19951 and FEI79.) First, we define a: more 
precisely. We begin by stating how far one iteration of the map function (or its 
appropriate iterate when the periodic cycle associated with that iterate is stable) 
takes us from the value of x, when x, is part of the periodic cycle. Thus, we define 
the distances 

(F. 1-2) 

In the previous equations, An is now the supercycle parameter value, for which x, is 
part of the stable cycle with period-2n (that is, the period is 2, 4, 8, 16, . . .). (In 
Chapter 2, we called these ASn, but here we will drop the superscript for the sake of 
simplicity of typesetting). d, is the difference between x, and the value of x 
obtained by repeated application of the appropriate iterate of the map function f to 
take us half-way through the cycle. Figure F.3 illustrates these definitions. From 
that figure, it should be "obvious" that by going half-way through the periodic 
cycle, we arrive at the trajectory value closest to x,. Thus, the dns measure the 
distance from x, to its nearest neighbor in the cycle. 

It will be convenient to use the variable y defined earlier, in terms of which 
the definition of dn can be written 

d, = f;2'-1' (0) (F. 1-3) 

The basic observation of size scaling for the period-doubling sequence is 
embodied in the statement that 
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dn lim- = -a 
n+- d 

n+l  

Fig. F.3. The definition of the distances 
X dl, d,, and so on, used in the definition of 

A the Feigenbaum a: Note that d, is the 

(F. 1-4) 

dl 

The minus sign is included in the previous equation to account for the fact that the 
nearest neighbor of x, is alternately above and below x, for successive supercycles 
as seen in Fig. F.3. 

If we assume that Eq. (F.l-4) holds all the way down to n = 1 (we might call 
this the "exact scaling" assumption), then we can write 

distance from x, to its nearest neighbor in 
the periodic cycle for that particular 

(-a)" d,,, = dl (F. 1-5) 

supercycle parameter value. 

(We saw in Chapter 2 that although this scaling is not exact for low values of n, for 
the logistic map, the scaling is a very good approximate description even for n = 2, 
3, and so on.) Using Eq. (F.l-3), we can write this last relation in terms of the 
iterated function: 

(F. 1-6) 

We now take the following bold step, based partly on the behavior seen in 
Fig. F.l, in which we see evidence for a universal function. We assume that at least 
in the limit of large n, Eq. (F.l-6) also holds for values of y around y = 0 in the 
sense that 

lim(-a)"A2"' (y  /(-a)") = g, (y) (F. 1-7) 
n+- 

defines a universal function of y. This important equation needs some explanation. 
Basically, it tells us that if we scale the size of the function by the factor (-a)" 
(embodying the size scaling of the distance dn) and simultaneously change the 
range of they axis by the factor ll(-a)", then these appropriately "renormalized" or 
rescaled functions approach a universal function, which we call g,(y). (The reason 
for the subscript on g will become apparent in the next paragraph.) 

Our next step may seem to be rather mysterious at first, but it is at the heart of 
the renormalization argument. We introduce a whole series of functions gi(y): 
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(F. 1-8) 

We see from the definition of g,(y) that this series of functions evaluates high-order 
iterates off at the parameter values A, corresponding to the supercycles. [It is easy 
to see that Eq. (F. 1-8) is satisfied for y = 0. The importance of Eq. (F. 1-8) lies in its 
extension to nonzero values of y.] The crucial point for our argument is that these 
g,iy)s obey a composition haw: 

(F. 1-9) g.  = -clgi [gi (-y 4 1  
1-1 

The proof of this last result proceeds simply by writing out the composition of 
functions indicated on the right-hand side and showing that they reduce to the left- 
hand side. As we work through the details, we will temporarily leave off the "lim." 
First, we use Eq. (F.l-8) to write out the right-hand side of Eq. (F.l-9): 

We now recognize (from Exercise 5.4-3) that 

We set n + 1 = m and find that the last entry of Eq. (F.l-10) reduces to 

With the restoration of the lim ( m + - ), we see that (F. 1-12) is just what we mean 
by gi-,(y). This completes our proof of the composition law. 

The final and critical step of the analysis is to assert (see FEI79 and [Collet 
and Eckrnann, 19801 for proofs) that in the limit i + w (in which case there is no 
difference between i and i - l), the functions gi(y) approach a universal function, 
which we shall call g o .  Note that taking the limit i + - is equivalent to taking 
the parameter A to the period-doubling accumulation value A_. The universal 
function satisfies the composition law 

We put a double box around the previous equation because it embodies the 
entire renormalization argument. Asserting (or better yet, proving) that such a 
function exists, is equivalent to asserting (or proving) the universality of the 
Feigenbaum numbers. 
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In order to find the numerical value of o!, we need to specify how the function 
g o  behaves near y = 0. We now see what determines the various "universality 
classes" for iterated maps: It is just the behavior of the function near y = 0 (or near 
x = xc for our original variable). We expect that many functions with a maximum at 
y = 0 will be described near y = 0 by the following quadratic form 

g(y) =b-cy2 (F. 1-14) 

where b and c are fixed parameters, whose values we shall find. 

Exercise F.1-1. Why do we expect Eq. (F.l-14) to be very common? A 
partial answer: Think of expanding g(y) in a Taylor series about y = 0. 
The first derivative term vanishes. (Why?) What would we expect for the 
first nonzero term? 

Exercise F.l-2. Show that the logistic map and the sine map of Chapter 2 
can be put in the form of Eq. (F.l-14) by evaluating a Taylor series 
expansion near xc and finding b and c. 

If we now accept Eq. (F.l-14) as an approximate representation of g(y), we 
can find a value for a by using Eq. (F. 1-14) in Eq. (F. 1-13). This substitution leads 
to the following algebraic steps: 

2 b-cy = -a[b-c{b-c$)'] 

We now need to make an additional approximation. If we let y be very small, then 
the last term in the previous equation, which involves y4, will be very small 
compared to the first two terms. We assume that it can be ignored compared to the 
other terms. Then for the equation to hold, the coefficients of the terms that are 
independent of y on the two sides of the equation must be equal and the coefficients 
multiplying y2 must be equal. Thus, we require 

Using Eq. (F. 1-17) in (F. 1-16) yields the following quadratic equation for a: 
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a 2 - 2 - 2 = 0  

which has the solutions 
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(F.1-18) 

(F. 1-19) 

If we take a positive, then we find a = 2.73 ..., which is within 10% of 
Feigenbaum's 2.502.. . [We could improve our approximation by using a more 
elaborate power series expansion for g(y) in Eq. (F.l-14) and following essentially 
the same procedures.] 

I Question: Does the negative root solution have anv significance? I 

g(y) = 1-1.36y2 (F. 1-20) 

I 

Eq. (F.l-20) looks exactly like the equation for any run-of-the-mill quadratic 
function with a maximum at y = 0, but it is important to realize that the composition 
law Eq. (F.l-13) holds only for one specific value of a and one specific value of c. 
You might try the graphic representation of the composition law as illustrated in 
Fig. F.2 to convince yourself of the uniqueness of g(y). 

Using a procedure similar to the one outlined here, Lanford (LAN82) has 
calculated a power series expansion of g(y): 

Note that in Eq. (F. 1-14), the parameter b is the value of g(y) at y = 0. We can 
set b = 1 without loss of generality since b just sets the scale of our vertical axis. 
Using this value, along with our approximate value for a in Eq. (F.l-17), we can 

(F. 1-21) 

find a value for c and hence get an approximate representation of the universal 
function g(y): 

~ which then provides a more precise representation of this universal function. 

11 ~ F.2 *Derivation of the Feigenbaum Number S 

gi-1 (Y) = *gi [gi (-Y la) ]  ~ ' g i  (Y) (F.2-1) 
I Now we want to use a similar analysis to find a value for the Feigenbaum 6. To 

carry out this analysis, we will introduce a slightly different notation for the 
composition law Eq. (F. 1-9): 
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doubling transformation operator T operates on the function g,Q) to generate 
another function g,,(y). The universal function g,Q) is then identified as that 
function which is a "fixed point" of this transformation 

g(y) = Tg(y) (F.2-2) 

I 

If you recall the definition of fixed point for some iterated map function x* =Ax*), 
you can see why g Q  is called a fixed point of the transformation. In the present 
case. we are dealing, with functions rather than numbers, but the ideas are the same. 

The last equality defines an "operator" T, which is called the doubling 
iransfonnation since it corresponds to applying g,Q) twice. We say that the 

- 
Next we note that we are concerned with parameter values near &, the 

parameter value at which the period-doubling bifurcations accumulate and beyond 
which chaotic behavior occurs. In this region repeated iterations off are supposed 
to converge, with the appropriate rescalings as described in the previous section, to 
the universal function g(y). So, we express f as a Taylor series expansion in terms 
of the control oarameter (not in terms of the variable y) about the point & , that is, 
we focus on how the function depends on the parameter A: 

Note that we use a a derivative with respect to the parameter A since the 
function f depends on both y and A. 

The next step is to observe that repeated application of the doubling operator 
to f, (y) should bring us closer and closer to g(y). Specifically, if we apply T n- 
times, we write 

for n >> 1. Thus, we rewrite Eq. (F.2-3) in the following form 

If we specialize to the case of A = A, (a supercycle value), we have (by the 
definition of the supercycle) 

Thus, we must have 
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where we have kept only the first-derivative term on the right-hand side of Eq. (F.2- 
5). If Eq. (F.2-7) is to hold for all n, then we must have (you may need to convince 
yourself of this point) 

where the Feigenbaum 6 is defined as 

6 = lim An - 4 - 1  
,+- 4+1-4, 

in terms of the control parameter values at which supercycles occur. Eq. (F.2-8) 
asserts that the parameter scaling holds for all values of n. 

To see that Eq. (F.2-8) is reasonable, recall that in Chapter 2 we established 
that 

In essence what Eq. (5.7-8) requires is that when T acts on g o ,  we must have, to 
first-order in A - A_ 

We can now employ Eq. (F.2-11) to find a value of 6 by writing a 
"linearized" form of Eq. (F.2-1) by using a Taylor series expansion about g(0): 

We invoke our choice of vertical scale to set g(0) = 1. We also note that 
g(1) = -1/a and that 

Using these results in Eq. (F.2-12) and requiring that Eq. (F.2-1 I) also be satisfied 
leads to the following relationship between the two Feigenbaum numbers: 
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If we use our previously calculated value of a, we find that 6 - 4.72, which is 
remarkably close to the more precise value 4.669.. . determined by a more refined 
version of the present calculation. 

In Chapter 2, we introduced the Feigenbaum 6 as the ratio of parameter 
value differences at which bifurcations occur because it is these bifurcations (rather 
than the supercycles) that are detectable experimentally. If we denote the 
bifurcation parameter values by a, and the supercycle values by A,, then we see that 
we must have a, < A, < a,+l < A,+I. Hence in the limit n + - , we expect the ratio 
of the parameter differences for successive bifurcations and the ratio of parameter 
differences for successive supercycles to be the same. 

Let us summarize the arguments used to calculate the Feigenbaum numbers. 
(It is tempting to call these important numbers "Feigenvalues.") We have 
essentially implemented three (related) ideas: (1) functional convergence to a 
universal function depending only on the nature of the iterated map function near 
its maximum value, (2) universal size scaling of that function as we approach the 
period-doubling accumulation point, and (3) parameter difference scaling in the 
approach to the period-doubling accumulation value. We have admittedly handled 
these notions in a nonrigorous mathematical fashion, but we want to convey the 
essence of the renormalization arguments without getting involved in the formalism 
needed to make the derivations into proofs. The net result of implementing these 
ideas, together with the specification of the nature of the iterated map function near 
its maximum value, is that the Feigenbaum a and 6 values are determined 
"automatically." These values are universal for all iterated map functions that have 
the same mathematical character near their maxima. 

We can now see why there are universality classes for iterated map functions. 
The universality classes are determined by the nature of the map function near its 
maximum value. As we have seen, map functions that have a quadratic maximum 
give rise to the universal function defined earlier and lead to the a and 6 values 
2.502 and 4.669. If the map function behaves as y4, then the equivalent 
convergence ratio and scaling ratio will be different. Applying techniques similar 
to those developed here, Hu and Satija (HUS83) have determined a and 6 values 
for iterated map functions of the form Ax) = 1 - ablz, where the exponent z 
determines the universality class. They found that the Feigenbaum numbers vary 
smoothly with z. In particular, a seems to decrease smoothly as z increases and 
approaches the value 1.27 for large z. On the other hand, 6 seems to increase 
linearly for large values of z. 



578 Appendix F 

Other Periodic Windows 
As we have seen, many iterated map functions give rise to periodic windows within 
the bands of chaos (see Fig. 5.9, for example). Each of these windows contains a 
period-doubling sequence leading to yet more chaotic bands. We might expect that 
there are Feigenbaum numbers analogous to the Feigenbaum 6 and a for each of 
these windows. These numbers have been computed for two different map 
functions in DHK85. They find that the numbers increase exponentially with the 
period of the periodic window. For example, for a period3 window, they find that 
6, = 55.26 and a, = 9.277 . To a good approximation, for all periodic windows 
the relation 36, =2ai holds for iterated map functions with a quadratic 
extremum, where N is the period of the periodic window. 

F.3 Further Reading 

M. Feigenbaum, 'The Universal Metric Properties of Nonlinear 
Transformations," J. Stat. Phys. 21, 669-706 (1979) (reprinted in [Hao, 19841). 
Provides a proof of the universality of a and 6. 

M. J. Feigenbaun?, "Universal Behavior in Nonlinear Systems," Los Alums 
Science 1, 4-27 (1980) (reprinted in [Cvitanovic, 19841). A quite readable 
introduction to the universal features of one-dimensional iterated maps. 

0. E. Lanford III, "A Computer-Assisted Proof of the Feigenbaum 
Conjectures," Bull. Am Math. Soc. 6, 427-34 (1982) (reprinted in [Cvitanovic, 
19841). A power series representation of the universal g(y) function. 

Appendix G 

The Duf'fing Double-Well Oscillator 

G.1. The Model 

Many systems in nature have several stable states separated by energy barriers. 
When the system can move among the stable states, the dynamics can become quite 
complex. A simple model that illustrates some of these features is the Duffing 
double-well oscillator. This model was first introduced to understand forced 
vibrations of industrial machinery [Duffing, 19181. In this model, a particle is 
constrained to move in one spatial dimension. An external force acts on the 
particle. The force is described by 

The name "double-well" enters because the corresponding potential energy 
function has a double well structure. Formally, the potential energy function is 
written as 

Figure G. 1 shows a plot of the potential energy function. We see that there are two 
stable equilibrium states at x = f . There is an unstable equilibrium point at x 
= 0. 

To build a simple mechanical model of the Duffing oscillator, mount a 
flexible metal strip vertically with the base rigidly clamped. Then place a movable 
mass on the flexible strip. If the mass is mounted low enough, the stable position 
will occur with the strip directly vertical. Small deviations from this position will 
result in oscillations around the vertical position. If the mass is moved further up 
the strip, eventually the vertical position becomes unstable, and the mass will ''flop" 
to one side or the other. There are now two stable positions-ne on each side of 
the vertical-with a "barrier" in between. See BEN97 for the details of setting up 
such a system. 

Exercise G.1. There are several variations on the Duffing oscillator. If 
we take k c 0, we retrieve for b = 0 the usual simple harmonic oscillator. \ 

If b # 0, we say that the oscillator is anhannonic. For b > 0, the force 
gets weaker for larger displacements from x = 0, and we say we have a 
sofrening spring situation. For b c 0, the force gets stronger for large 
displacements, and we say we have a hardening spring. For each of those 
cases, plot U(x) as a function of x and identify equilibrium points. 
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Fig. G.1. A plot of the Duffing double- 
well potential energy function with k = 1 

1.50 andb= 1. 

The equations describing the dynamics in state space are usually written with 
k = 1 and b = 1 (with no loss in generality) as 

where the y term represents damping proportional to the velocity of the particle. 
The motion of the particle in this situation is relatively simple. If started off with a 
certain amount of kinetic energy, the particle oscillates back and forth, gradually 
losing energy via damping and finally comes to rest at the bottom of one of the 
wells. What makes the oscillator interesting is that the period of the oscillations 
depends on the amplitude. A typical trajectory is illustrated in Fig. G.2. Note the 
difference in oscillation period for the initial large oscillation compared to the 
smaller amplitude oscillations. For the small oscillations, the oscillation period is 
n f i  ; that is, the natural oscillation frequency q, (for small oscillation amplitudes) 
is equal to 45. 

Fig. G.2. On the left, a plot of x as a hnction of time. On the right, a state space plot of a 
Duffing model trajectory from Eq. (G-3) starting with x = 1 and y = 1.5. The damping 
coefficient is y = 0.5. 

Exercise 6.2. Verify that the period of oscillation for small amplitude 
oscillations is n&. Hint: Set 6 = 1 + x and use that in Eq. (G-3). 
Assume 6 << 1, use a binomial expansion on the cubic term, and reduce 
the equations to those for a simple harmonic oscillator. 

The behavior becomes much more interesting if we "jiggle" the particle with 
another external force that varies, say, periodically in time. In that case, the state 
space equations become 

We might expect, based on experience with the simple harmonic oscillator, that the 
particle will respond with relatively large amplitude motion when the frequency of 
the external force matches the natural oscillation frequency of the particle. The 
complication is that the natural oscillation frequency depends on the amplitude of 
the motion. So as the particle begins to respond to the external oscillating force, its 
amplitude changes and hence its natural oscillation frequency changes. Several 
novel features can appear: 

1. The response curve of the system changes shape as the amplitude of 
the external oscillating force increases. 

2. The response curve of the system shows hysteresis: the response 
amplitude depends on whether we increase the frequency through the 
resonance region or decrease the frequency through the resonance 
region. 

3. The system can display chaotic behavior. 

The first two features are discussed in some detail, supported by analytical 
calculations, in [Strogatz, 19941, pp. 226-7 and 238-40 and [Jackson, 19911, Vol. 
1, pp. 308-314. Here, we will focus our attention on the third item, chaotic 
behavior. 

Let's begin with a relatively small value of the amplitude of the external 
oscillating force. In that case the system behaves, after initial transients die out, 
much like a simple harmonic oscillator with the oscillations confined around x = 
f 1. Fig. G.3 illustrates some possibilities. 

We see that there are two attractors: a limit cycle centered on x = 1 and a 
limit cycle centered on x = -1. Which initial conditions (in state space) lead to 
which attractor? The answer turns out to be rather complicated because the two 
basins of attractions are thoroughly intertwined and their boundaries form a fractal 
structure in state space (MOL85). The frontispiece of this book illustrates the 
complex basins of attractions for F = 0.25 and y= 0.25. 

For values of F between 0.38 and 0.84 (for y = 1 and o = 1.0). we get a 
complex mix of chaotic behavior interspersed with periodic windows. Two 



Fig. 6.3. State space trajectories for the Dutling model with F = 0.25, y = 0.5, and o = 1.0. 
On the left yo = -1.0, xo = 0.5. On the right, yo = -0.5, xo = 0.5. The two trajectories lead to 
the two dieent  limit cycles. 

examples are shown in Fig. G.4. F i e  G.5 shows a PoincarC section 
(stroboscopic portrait) of the state space taken at the phase when the driving force 
has its largest value, that is, when cos(wt) = 1. The complex structure of the chaotic 
attractor is apparent. For larger values of F, the behavior is periodic with the period 
of the driving force. 

I The D u e  oscillatur model, though relatively simple mathematically, yields 
surprisingly rich behavior. References for M e r  reading are given in the next 
section. 

Fig. 6.4. On the left, a period4 amactor with F = 0.5. On the right, a chaotic with 
F=0.7. Inbothosesy=0.5ando=l.O. 

The Duffing Double-Well Oscillator 

Fig. G.5. The P o i n d  section of the 
state space for the chaotic attractor 
shown on the right in Fig. G.4. 

6-2. Further Reading 

G. Duffing, Erzwungene Schwingungen bei veriinderlicher Eigenfrequenz 
and ihre technische Bedeutung (Friedr. Vieweg & Sohn, Braunschweig, 1918). 

F. C. Moon and G.-X. Li, "Fractal Basin Boundaries and Homoclinic Orbits 
for Periodic Motion in a Two-Well Potential," Phys. Rev. Lett. 55, 1439-42 (1985). 

[Moon, 19921. Contains a good discussion of the Duffing model. 
C. L. Olson and M. G. Olsson, "Dynamical symmetry breaking and chaos in 

Duffing's equation," Am. J. Phys. 59,907-1 1 (1991). This paper gives a detailed 
analysis of the single well, hardening spring version of the Duffing model. 

J. E. Berger and G. Nunes, Jr., "A mechanical Duffing oscillator for the 
undergraduate laboratory," Am. J.  Phys. 65,841-846 (1997). 

6-3. Computer Exercises 

CEG- 1. Use Chaotic Dynamics Workbench to explore the dynamics of the 
Duffing oscillator. For a fixed value of c and w find the range of F that leads to 
chaotic dynamics. Locate a period-doubling sequence if you can. 

CEG-2. Use Dynamics: Numerical Explorations [Nusse and Yorke, 19981 
(or, more challenging, write your own program) to explore the basin of attraction 
for the two types of limit cycles for the Duffing model as illustrated in Fig. G.3. 
Note: this computation may take a long time if you want a high resolution picture 
of the basins. 

CEG-3. Use Dynamics: Numerical Explorations [Nusse and Yorke, 19981 
(or, more challenging, write your own program) to generate a bifurcation diagram 
for the Duffing oscillator with F the variable parameter. How are you sure that you 
have got all the attractors in the bifurcation diagram? 
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Appendix H 

Other Universal Features for One-Dimensional 
Iterated Maps 

H.l Introduction 

In this appendix we describe, without any derivations or proofs, some additional 
universal quantitative features that appear for one-dimensional iterated maps, 
beyond those introduced in Chapter 5. The numerical values for these features can 
be derived by methods similar to those used in Chapter 5 and Appendix F. 
However, the details of the derivations would take us too far afield; therefore, the 
treatment will be purely descriptive. 

H.2 Power Spectrum 

We have seen that as the period-doubling bifurcations proceed, new subharmonics 
of the fundamental period of the system appear with each new bifurcation. Thus, if 
we calculate a power spectrum of the trajectories of the iterated map function, we 
would expect to see new components appear at the 2" subharmonic when period 2" 
is "born" at the nth bifurcation. However, because the system is nonlinear, we also 
expect frequency components at the frequencies corresponding to all the possible 
sum and difference frequencies for all the harmonics present. These notions are 
perhaps best understood through a simple example. 

For a parameter value below the first period-doubling bifurcation for an 
iterated map function, the trajectory has a period that we shall call T = 1. After 
transients die away, every iteration value is the same. Thus, the power spectrum 
would have just a single frequency component, namely at the frequency v = 11T = 
1. After the first period-doubling bifurcation occurs, we now have period T = 2 
behavior. Thus, the power spectrum has a component at v = 112. Because the 
system is nonlinear, however, there will also be a second harmonic component at 
v = 2x(1/2) = 1 . (We will ignore any higher frequency harmonics.) After the 
second period-doubling bifurcation, the system exhibits period T = 4 behavior, and 
hence has a component of the power spectrum at v = 114. Again, however, the 
nonlinearities produce power spectrum components at v = 112, 314, and 1. This 
evolution of the power spectrum is shown in Fig. H.1. 

Feigenbaum (FEI80) showed that the total "intensity" (the sum of the Fourier 
transform amplitudes) associated with the new frequency components (e.g. 114 and 
314 after the second period-doubling bifurcation at the supercycle parameter value 
after a period-doubling bifurcation) are smaller than those associated with the 
previous bifurcation by a universal constant factor, whose value is approximately 
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Fig. H.1. The evolution of the power spectrum for several perioddoubling bifurcations. The 
logarithm of the Fourier amplitude is plotted as a function of frequency. The frequency scale 
is chosen such that period 1 behavior has a frequency of 1 associated with it. All frequencies 
higher than v = 1 are ignored here. Top left: period-2 supercycle. Top right: period-4 
supercycle. Note the new components at v = 114 and v = 314. Bottom: period-8 supercycle. 
New components appear at v = 118, 318, 518, and 718. According to theory the sum of the 
amplitudes of the new frequency components at each perioddoubling should be 8.17 dB 
smaller than the components associated with the previously existing Frequency. On these 
diagmm, 8.17 dB corresponds to about 0.8 of a vertical division. 
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I 0.1525. [Since power spectra are often plotted on logarithmic scales, this factor 
corresponds to a logarithmic difference of 10 log10 (0.1525) = - 8.17 dB (dB = 

I decibels).] This power spectrum ratio has been observed in a few experiments 
(GMP81, TPJ82). The observations seem to agree reasonably well with this 
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power is distributed continuously as a function of frequency. Figure H.2 shows the 
power spectrum for a signal from the logistic map function with A = 3.609. This 
parameter value results in chaotic trajectories that alternate between two bands as 
shown in Fig. 5.9. The power spectrum is continuous (like that of a "noisy" signal) 
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0.00 0.20 0.40 0.60 0.80 1.00 
frequency 

Fig. H.2. The logarithm (base 10) of the power spectrum for the logistic map with A = 3.609 
corresponding to tweband chaotic behavior. Note the continuous range of firequencies 
present for chaotic behavior. The alternation between the two bands results in a broad 
maximum in the spectrum near v = 0.5. 

but shows a broad maximum near v = 0.5 corresponding to the alternation between 
the two chaotic bands. 

H.3 Effects Due to Noise 

In our discussion of nonlinear systems, we have so far completely avoided the 
question of noise, that is, of uncontrollable outside influences, usually of a random 
nature, that limit the level of precision possible in any real scientific measurement. 
For nonlinear systems, this noise has some obvious effects. For example, if the 
experimental quantity corresponding to the control parameter for a system is 
"noisy," then any effect that occurs (theoretically) at some well-defined value of the 
control parameter will be smeared out by this noise. To be concrete, let us think 
about the electrical voltage used as a control parameter in the diode circuit of 
Chapter 1. Even though we try to control this voltage rather precisely, there is 
always some small amount of electrical "noise" present. In this case, the noise 
manifests itself as small fluctuations in the control parameter voltage. Thus, when 
we say that the first period-doubling bifurcation occurs at V = 1.3345 volts, we 
really mean that the bifurcation occurs at V = 1.3345 k0.0002 volts if the noise 
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level is about 0.0002 volts. Clearly, when we proceed to higher-order bifurcations, 
the voltage difference between successive bifurcations will eventually become 
smaller than the fluctuating noise level and the bifurcations, including the transition 
to chaos, will be smeared together. 

Noise can also be present in the dependent variable being monitored. (This 
would correspond to noise in the value of x used in a one-dimensional iterated map 
function.) This kind of noise can be studied numerically for iterated maps by 
adding to the value of x,,, calculated from the map function a (usually) small 
amount of noise. This is done in practice by using a "random number generator" 
available in most computer languages. Formally, we write 

where a, is a random number, usually chosen so that the average value of the a, s 
is 0 (we choose the average value to be 0 so that positive and negative values are 
equally likely). The average of the squares of the random numbers is some fixed 
value, whose square root is denoted by o . Crutchfield, Farmer and Huberman 
(CFH82) studied the effects of such "additive noise" on the iterates of the logistic 
map. They found, as we might anticipate, that in the presence of noise, chaotic 
behavior begins apparently at lower values of the control parameter A. In fact, they 
showed that the difference between the parameter value at which chaos begins in 
the absence of noise %, and the value at which it begins in the presence of noise 
A* obeys a universal power law expression 

where y = logd/log,u and ,u = 110.1525, the reciprocal of the power spectrum 
scaling number. (6 is, of course, the Feigenvalue 4.669.. . .) This result can be 
derived by recognizing that if noise of average size a, is large enough to "hide" 
all subharmonics whose index m is greater than some value, then chaos is 
apparently present for A = A,. To hide the next lower subharmonic, that is, to push 
chaotic behavior to lower values of A, we need to increase a by an amount 
proportional to ,u , since it is ,u that gives the relative size of successive 
components in the power spectrum as discussed in the previous section. Thus, we 
can write 

where a, is the amount of noise needed to push chaos all the way to the parameter 
value A,.  We can take the logarithm of Eq. (H.3-3) to solve for m and then use that 
value in the result derived in Exercise 2.4-1 to obtain 

(H. 3-4) 
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which is the same as Eq. (H.3-2). This behavior has been verified numerically for 
the logistic map (CFH82) and in a few experiments on electronic oscillators (TPJ82 
and YEK82). 

Exercise H-1. Work through the algebraic details leading from Eq. (I-I.3- 
3) to Eq. (H.3-4) 

In practice, the situation is a bit more complicated. In some cases, noise 
can simply mask the period-doubling cascade without actually inducing chaotic 
behavior (characterized, as usual, by a positive average Lyapunov exponent) while 
in other cases, the noise can indeed induced chaotic behavior. See GHL99 for a 
nice study of these two cases in the context of the logistic map model. 

Since systems with chaotic behavior are sensitive to small changes in initial 
conditions, those systems can serve as "noise amplifiers" (FOE93). That is, the 
sensitive dependence can amplify small, microscope noise up to macroscopic 
levels. 

H.4 Further Reading 

M. J. Feigenbaum, "Universal Behavior in Nonlinear Systems," Los Alamos 
Science 1,4-27 (1980) (reprinted in [Cvitanovic, 19841). Provides a quite readable 
introduction to the universal features of one-dimensional iterated maps. 
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Appendix I 

The van der Pol Oscillator 

1.1 The van der Pol model 

Limit cycles describe the spontaneous occurrence of periodic time-dependent 
behavior in some models. Since this behavior may be at odds with our linearly 
trained intuition, we examine a two-dimensional model in some detail to 
understand at a more physical, intuitive level how the various parts of the system 
interact to produce limit cycle behavior. The less-mathematically inclined reader 
should feel free to skim this appendix. 

The model we shall describe has a venerable history in nonlinear dynamics. It 
was originally developed by van der Pol in the 1920s (VDP26) to describe the 
dynamics of a triode electronic oscillator. (A triode is an electronic vacuum tube 
with three elements.) We will not describe the details of van der Pol's derivation. 
Instead, we will try to make some plausibility arguments and then see how we can 
understand the appearance of limit cycle behavior. The rest of this appendix will be 
devoted to working through some of the analytic methods that can give us an 
approximate description of the van der Pol oscillator. 

In the van der Pol model, the electrical charge [denoted by q(t)] passing 
through the triode tube is assumed to be described by an equation that is similar to 
that for a linear, damped, simple harmonic oscillator: 

where y is the so-called damping rate (representing a damping or energy loss 
mechanism) and u is the frequency with which the charge would oscillate in the 
absence of damping. Van der Pol's insight was to model the behavior of the triode 
tube by allowing the damping parameter to depend on the amount of charge q. For 
small q the tube would tend to increase the amplitude of the oscillation due to the 
circuit's behavior as an amplifier. For large q, however, the amount of oscillating 
charge q would be limited by so-called saturation effects in the tube and the 
associated circuitry. (In rough terms, the tube elements and associated circuitry can 
supply only so much charge in a given period of time.) This behavior is modeled 
by making ydepend on q in such a way that for small q, yis less than 0. A negative 
value for "dissipation" means that the amplitude of the oscillatjons grows, rather 
than decays. For large q, however, ybecomes positive, representing a dissipation of 
energy from the oscillating charge. Van der Pol chose the simple function 
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We take yo > 0 .  Then for q < qo, the damping parameter y is negative, and for q > 
go, we have y positive. If we now use Eq. (1-2) in Eq. (1-1) and introduce the 
variables 

the van der Pol equation becomes 

We now put Eq. (1-4) into our standard first-order form by introducing the 
variable U = Q = dQldz to obtain 

Next we find the fixed points for the system by setting fi(Q,U) = 0 and 
fi(Q,U) = 0. It is obvious that the only fixed point is U = 0, Q = 0, which 
corresponds to the no oscillation condition. Is this point stable or unstable? To 
answer this question, we evaluate the Jacobian matrix for the system of Eqs. (1-5) 
and (1-6). 

Thus we see that the determinant A = 1 at Q = 0, U = 0 and that TrJ = R. Since R 
is positive by definition, we see that the no-oscillation fixed point is unstable. The 
characteristic values for this fixed point are 

Hence, for R < 2, the fixed point is a spiral repellor. For R > 2, the fixed point is a 
simple repellor. The behavior for R = 0.3 is shown in Fig. I. 1. 

The van der Pol Oscillator 
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Fig. Ll. A state space trajectory starting near U = 0.1, Q = 0.1 for the van der Pol oscillator 
with R = 0.3. The fixed point at U = 0, Q = 0 is clearly a spiral repellor. Trajectories 
approach the limit cycle as t -t oo . 

We should remind ourselves that the analysis of the fixed point's stability 
does not tell us what happens to those trajectories repelled by the fixed point. 
However, our intuition tells us that the trajectories cannot get too far from (0,O) 
because eventually the damping term becomes positive and the corresponding 
dissipation of energy will limit the size of the trajectory. 

We gain some insight into what happens by considering the time dependence 
of the energy associated with the charge oscillations. We can write this energy as a 
sum of terms that are analogous to the kinetic energy and potential energy for a 
mechanical oscillator ([Berg, Pomeau and Vidal, 19861, pp. 28-29): 

Here L represents the inductance of the oscillator circuit, and C is its capacitance. 
We can choose units such that L = 1 and C = 1. We then find that the rate of 
change of this energy is given by 

Using Eqs. (1-5) and (1-6) for the time derivatives of U and Q, we obtain 

(I- 10) 



We now average this change of energy over one oscillation period 
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(I- 12) 

The bar symbol indicates that we are taking the time average of each term. (Strictly 
speaking, we are averaging the equation over a time of about one oscillation period, 
which is assumed to be short compared to the damping time 11 yo ). The first term 
on the right-hand side of the previous equation represents the (time average) rate of 
energy generation in the circuit. Of course, this energy is provided by the ''power 
supply" in the associated circuitry. The second term with its negative sign 
represents the rate of energy dissipation. A steady-state is achieved when these 
terms balance. 

If we now assume that the circuit settles into sinusoidal oscillations (this in 
fact occurs for small values of R as we might guess from the spiral nature of the 
repellor), we may write 

Q(t) = a sinot = Q, sinz (I- 13) 

where Q, is the amplitude of the charge oscillations and o is the oscillation 
frequency. We can use this ansatz to determine how the amplitude of the 
oscillations depend on R. Fist we evaluate the time-averaged quantities: 

(I- 15) 

We set dWldt = 0 in Eq. (1-12) for a steady-state oscillation and then use Eqs. 
(1-14) and (1-15) to find 

Q, =2& (I- 16) 

Exercise 1-1. Work through the details of the calculations leading to Eq. 
(1-16). 

We see that in the limit of small R, we expect to have sinusoidal oscillations, 
represented in state space by a circle whose radius is given by 2& . For larger 
values of R, the oscillations become non-sinusoidal. Typical behavior is shown in 

The van der Pol Oscillator 593 

Fig. 1-2 Behavior of the van der Pd oscillator for R = 3.0. On the left are plotted Q(T) and 
U(z). On the right is the Q-U state space behavior. Notice the repelling nature of the fixed 
point at the origin. 

Fig. 1-2 for R = 3.0. These oscillations, which switch rapidly from one extreme 
value to another, were called "relaxation oscillations" by van der Pol. The state 
space trajectory is shown on the right-hand side of Fig. 1-2. 

We now show how to analyze the stability of the limit cycle. That is, we want 
to know if trajectories near the limit cycle are attracted toward it or are repelled 
from it. The procedure we shall use is called "the method of slowly varying 
amplitude and phase." It finds many applications in the study of nonlinear 
dynamics (see, for example, [Sanders and Verhulst, 19841). The method is also 
called the KBM averaging method after the mathematicians Krylov, Bogoliubov, 
and Mitropusky, who developed the general formalism. 

Let us begin by rewriting the differential equation (1-4): 

(I- 17) 

If the right-hand side of the previous equation were 0, then Q would oscillate 
sinusoidally in time. This observation leads us to introduce the following 
expressions for Q and its time derivative (keeping in mind the small R limitation): 

Q(z) = a(z) sin(z + #(z)) (I- 18a) 
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~ ( r )  = a(r)cos(r + @(r)) (I- 18b) 

Here a is a time-varying amplitude, and @ a time-varying phase. Note that we 
define a(r) and @(r) so that the previous equations are true. We do not calculate 
Q by taking the derivative of the first expression. However, for these definitions 
to be consistent with the usual derivative, we must have 

a sin(r +@(TI) + a(d + 1) cos(r + 4) = a cos(r + @) (I- 19) 

or 

We now compute the second derivative of Q by taking the derivative of the second 
equation in (I- 18) to obtain 

I 

1 Next, we use Eqs. (1-21) and (1-18) in Eq. (1-17) to find 

Now we want to find separate equations for ci and 4 . To do that, we first multiply 
11 Eq. (1-20) by sin(r + @) and Eq. (1-22) by cos(r + @) and add the resulting two 
1 equations. We then multiply Eq. (1-20) by cos(r + @) and Eq. (1-22) by -sin(r+@) 

and add those. After all these algebraic manipulations we finally arrive at the 
desired results: 

We should point out that Eqs. (1-23) are exactly equivalent to Eq. (1-17); we 
have just implemented a change of variables. Up to this point, no approximations 
have been made. Now we want to invoke the following crucial notion: When a 
trajectory gets near the limit cycle, its amplitude a and its phase @ vary slowly 
over the time scale of the period of oscillation. Hence, the time derivatives of these 
quantities are nearly constant over one period of oscillation. If these arguments 
indeed apply to trajectories near the limit cycle, then we can get approximate 
equations for the amplitude and phase by integrating the right-hand sides of Eqs. (I- 
23) over one period and treating in those integrations the amplitude and phase as 
constants. In carrying out those integrations, we make use of the following 
integrals: 

1 2" 1 - I d r  cos2 (r) = - 
2n 0 2 
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1 2" 1 - I d r  sin2 (r)cos2 (r) = - 
2n 0 

8 

Zn 

Idrsin2(r)s inrcosr  = 0 (I-24c) 
0 

After evaluating those integrals, we arrive at the approximate equations 

I Exercise 1-2. Verify the calculations leading to Eqs. (1-25). 

Note that the limit cycle is reached when ci = 0 ; that is, when a = 2& the 
same value we found before. The present method, however, allows us to find the 
rate at which a nearby trajectory approaches the limit cycle. To find this rate of 
approach, we expand the right-hand side of the first of Eqs. (1-25) in a Taylor series 
about the limit cycle value a* = 2& : 

a = f (a) 

where the last equality follows because the derivative off evaluated at a*  is equal 
to -R. Equation (1-26) tells us that the trajectory approaches the limit cycle 
exponentially. If we let d be the difference between the trajectory amplitude a(t) 
and the limit cycle amplitude a*  , we see that 

where do is the value of that difference at time r = 0 .  Thus, we conclude that the 
limit cycle is stable because trajectories on either side of the limit cycle approach it 
as time goes on. 

We can use what we have just learned to construct an approximate Poincari 
map function for the van der Pol oscillator. If we choose the Poincari section to be 
the positive Q axis in state space, then the amplitude a(@ gives us the location of 
the point at which the trajectory crosses that section. Since the time between 
crossings is 2n in our units for time, Eq. (1-27) tells us that the Poimart map 
function, expressed in terms of the distance from the limit cycle amplitude, must be 



Appendix I 

Fig. 1-3. Sketch of the P o i n d  map function for the van der Pol oscillator. We have 
assumed that R < 1. 

and we see that the limit cycle crossing point, for which d,, = 0, is a stable fixed 
point of the Poincart5 map function. 

Exercise 1-3. Graphical analysis of the Poincark map for the van der Pol 
oscillator with R c 1. For values of the parameter for which the origin (U 
= 0, Q = 0) is a repellor and for which Q = 2& is an attractor, we know 
that the Poincark map function F(Q) must look roughly like that shown in 
Fig. 1-3. Use the graphic technique introduced in Section 1.4 to show how 
values of Q approach the fixed point value 2& both from above and 
from below. 

Exercise 1-4. In the limit of R c 1 and for small Q oscillations (for which 
the behavior is sinusoidal), it is possible to find the Poincark map function 
for section in the Q-U state space plane. Find that map function. 

1.2 Further Reading 

B. van der Pol, "On Relaxation Oscillations," Phil. Mag.(7) 2,978-92 (1926). 
This paper describes the original van der Pol oscillator. 

1.3 Computer Exercises 

CEI- 1. Use Chaos Demonstrations to study the van der Pol equation limit 
cycles in state space. Vary the parameter h (equivalent to the parameter R used in 
the text) to see how the oscillations change from simple harmonic (for small values) 
to relaxation oscillations for larger values. 
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CEI-2. Use Chaotic Dynamics Workbench to study the Shaw-Van der Pol 
Oscillator with the force term set to 0 (to make the state space two-dimensional). 
Observe the time dependence of the dynamical variables and the state space 
diagrams as the coefficient A (corresponding to R in the text) increases. 
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Simple Laser Dynamics Models 

J.l A Simple Model 

In this appendix we apply the ideas developed in Chapter 3 to a model of the 
dynamics of a laser. We shall see that the notion of bifurcations helps us 
understand some of the physics of the laser's operation. Let us consider a very 
simple model of the light amplification processes that occur in a laser. Here we 
will focus on the time evolution of the number of photons ("particles" of light 
energy) in the laser. The intensity of the light beam emitted by the laser is 
proportional to the number of photons in the laser system. Let that number be 
denoted by N.  

In a laser, the light beam is amplified by its interaction with an "active 
medium," which we will take to be a collection of atoms. When light interacts with 
the atoms, the atoms can absorb light by making a transition from a lower energy 
state to a higher energy state. Conversely, the atoms can emit light by making the 
reverse transition, from a higher energy state to a lower energy state. The change in 
energy of the atom in making this transition is equal to the energy of the photon 
emitted or absorbed in that transition. The rate at which transitions occur is 
proportional to the number of atoms. Hence, the net amplification for the light 
beam is proportional to the population difference, that is the difference between the 
number of atoms in the higher energy level and the number in the lower energy 
level involved in the laser transition. Let us call that difference N,. 

A phenomenological model of the time behavior of N, the number of photons 
is given by 

where both N and No are given per unit volume. y is the rate at which photons 
"leak" out of the laser. G is called the "gain" or "amplification" coefficient for the 
laser. The previous equation tells us that the number of photons in the laser 
increases due to the amplification process of stimulated emission (the gain part) 
and decreases due to losses of photons from the laser (the loss part). The type of 
light emission important for lasers is called stimulated emission because the 
presence of light (photons) stimulates the ernissian of yet more light. 

The population difference for the atoms depends on the number of photons 
since stimulated emission (the probability of which is proportional to the number of 
photons) brings an atom from its excited-state to some lower energy state, while 
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absorption brings the atom from the lower state to the higher state. Thus we write 
that 

where N,  is the atom population difference produced by some "pumping" process 
(usually collisions due to an electrical current or sometimes the absorption of light 
from a flashlamp or another laser) and B is the coefficient for stimulated emission, 
which process, as we mentioned, is proportional to the number of photons present. 
(You might reasonably question the validity of Eq. (5-2). We shall give a more 
"realistic" description of the change in the population difference shortly. For now 
let us view Eq. (5-2) simply as an assumption of this particular model.) Using the 
previous equation in Eq. (J-l), we find that the time evolution of N, the number of 
photons, is described by 

where k, = G N ,  - y and k, = G B  . 
This model is a one-dimensional state space model, and the steady-state 

behavior of the laser corresponds to the fixed points of Eq. (J-3). It is easy to see 
that there are two fixed points, which we shall label as No and N*, given by 

If we view N,, the population difference produced by the pumping mechanism, as 
the control parameter, then we see from the expressions for kl and k2 that for 
N ,  < y 1 G , N I  is negative, which is not a physically relevant fixed point since the 
number of photons must be either 0 or positive. For N ,  > y l G  , we have two 
relevant fixed points No and N*. N ,  = y I G is called the "threshold" value, since 
laser amplification begins above that value. 

Let us look at the stability of these fixed points by calculating the appropriate 
derivatives and evaluating those derivatives at the two fixed points: 

We see that for N,  below the threshold value g G  (in the language of nonlinear 
dynamics, below the bifurcation value), No is a stable fixed point while N .  is 
unstable. Thus, below threshold, the number of photons tends to 0, and the laser 
does not emit its characteristic beam of light. (There still will be some light due to 
"incoherent" spontaneous emission, but there will be no amplified beam.) Above 
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this threshold value, N. becomes the stable fixed point, and the number of photons 
rises linearly with the control parameter N,. Mathematically, N* is an unstable 
fixed point below threshold (even though it is not relevant for the physical 
problem), and we say that there is an exchange of stabdzly at the bifurcation point. 

The time evolution equation for this laser model can actually be solved 
exactly because it can be transformed into a linear differential equation by changing 
to a new variable u = kll(k2N). The time evolution equation for u is 

which has the solution 

Converting back to our original variable N(t) yields 

Thus, we see that below threshold, when kl < 0, the exponential function in 
the denominator of the previous equation dominates, and N(t) + 0 as time goes 
on. Above threshold, when kl > 0, N(t) approaches the value 

which we see increases linearly with the control parameter N,, that is, the more 
energy we pump in, the more photons we get out. 

I Exercise J-1. Verifv the calculations leading to Eh. (5-8). I 
There are several important lessons to be learned from this example. First, 

not all nonlinear differential equations are insoluble. In this example, Eq. (J-3) is 
nonlinear in the variable N, but it can be transformed into a linear differential 
equation (J-6) by a change of variable. The second lesson is that solutions to linear 
differential equations can also display bifurcations. Eq. (5-6) has a fixed point at u 
= 1. For k, < 0, this is an unstable fixed point, and the solution u(t) + w (which 
corresponds to the number of photons approaching 0) as time goes on. For kl > 0, 
this fixed point is stable. Note that in the linear version, Eq. (5-6). the fixed point at 
N = 0 is no longer apparent. The third lesson is that this model is very simplified 
and does not capture the more complex dynamics of actual lasers. In particular, the 
simple connection between Na and N embodied in Eq. (J-2) is unjustified for most 
lasers. 
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5.2 An Improved Laser Model 

A better model for a laser asserts that the time rate of change of the population 
difference Na (rather than the number itself) is proportional to a pumping rate 
minus a transition rate due to the stimulated emission process. Thus, we write 

This equation tells us that in the absence of amplification (B = O), the number of 
atoms approaches a value N,, which is determined by the external pumping 
process. The parameter y, tells us the rate at which the number of excited state 
atoms "relaxes" to that value. The first term in the equation gives us the rate of 
change (a decrease) in the number of excited atoms due to the amplification 
process, which takes an atom from the excited state to some lower state. Eq. (J-1) 
and Eq. (J-10) together constitute a two-dimensional model of laser action. The 
state space variables are N, and N. Now let us use the techniques described in 
Chapter 3 to study the fixed points and bifurcations for this system. 

First, we set G = B in Eq. (J-1) since the first term refers to the same 
stimulated emission process indicated in Eq. (J-10). Next, it is useful to put the 
time evolution equations into a dimensionless form by introducing the new 
variables 

P is essentially the amplification rate of photons due to the pumped excited atoms 
relative to the leakage rate for the photons. R is the photon leakage rate relative to 
the excited state relaxation rate. z is a dimensionless time variable giving time in 
units of the inverse of the excited state relaxation rate. n and na are "normalized" 
photon numbers and the atom population difference, respectively. To get an idea of 
the sizes of these numbers, we quote the following results [Tarasov, 19831: For a 
ruby laser, P = 30, R = 16.  For a Nd-YAG laser, P = 2 and R = lo4. Using these 
variables, we write the time evolution equations as 

Exercise 5-2. Use the definitions of the dimensionless variables to verify 
that Eq. (5- 12) follows from Eqs. (J- 1) and (J- 10). 
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Next, we need to identify the fixed points for this two-dimensional system, 
whose variables are n and n,. By setting the time derivatives equal to 0 in Eq. (J- 
12), we find that there are two fixed points: 

fixed point I: n = 0, n, = P 
(5- 13) 

fixedpointI1: n = P - 1 ,  n, = I  

The fixed point 11, the lasing condition, occurs only for P > 1. The other fixed point 
corresponds to the number of photons being equal to 0, and as we shall see is the 
stable fixed point for P < I. Thus, we call P = 1 the threshold (or bifurcation) 
value. 

Now we need to examine the stability of the fixed points to determine the 
character of the solutions in the neighborhood of the fixed points. We calculate the 
Jacobian matrix of the partial derivatives: 

Proceeding as before, we evaluate the matrix at each fixed point in turn, and find 
the corresponding eigenvalues. For fixed point I, we have two eigenvalues 

Thus, we see that for P < 1, both eigenvalues are negative, and fixed point I is 
stable and is, in fact, a node. For P < 1 (below the threshold value), the system 
goes to the no-photon (n = 0) state for (almost) all initial conditions. For P > I, 
fixed point I is unstable. In fact, it is a saddle point and all state space trajectories 
(except for those that start with n = 0 exactly) move away from that fixed point. 

For fixed point I1 (with n,, = 1 and n = P - l), the two eigenvalues can be 
written as 

We have seen that for ruby and Nd-YAG lasers, 4R(P-1) >> 9. In that case, the 
argument of the square root function is negative for P > 1 and we write 

(J- 17) 

We see that for P > 1, fixed point I1 is a stable spiral node since the eigenvalues 
have negative real parts and nonzero imaginary parts. A detailed analysis of state 
space trajectories for this system can be found in [Tarasov, 19831. Figure J. 1 shows 
a typical state space trajectory for this model. The time dependence of the photon 
number is also shown. The number of photons shows a series of sharp "spikes" as 
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Fig. J.1. On the left is the time dependence of the ghoton number n and the atomic 
population difference na for our laser model with R = 10 and P = 2.0. On the right is the 
corresponding state space trajectory. The initial conditions are n = 0.1 and n, = 1. The state 
space fixed point I1 is clearly a spiral node. 

the laser approaches its stable operating point (our fixed point 11). This kind of 
behavior is actually observed in ruby and Nd-YAG lasers. 

These oscillations in photon number and in atomic population difference are 
called relaxation osciUations since the oscillations occur as the system "relaxes" to 
its steady-state conditions. The oscillations also occur whenever some disturbance, 
such as a fluctuation in the pumping rate or an additional photon from spontaneous 
emission, causes the system to move away from its steady-state behavior. 
Although these relaxation oscillations are important in many solid-state and 
semiconductor lasers, they do not occur in most gas lasers because there the ratio R 
of photon loss rate compared to population relaxation rate is small. In the small R 
case, the 9 term under the square root in Eq. (5-16) dominates and the eigenvalues 
are purely real. 

I 



604 Appendix J 

We should also point out that although our extended version of the laser 
model shows interesting dynamical effects as the control parameter passes through 
the P = 1 threshold value, the model is still highly simplified. In particular, we 
have neglected the important spatial variations in atomic population difference and 
photon number that occur in real lasers. 

5.4 Further Reading 

A nice treatment of the use of rate equations to describe laser dynamics is 
given in L. V. Tarasov, Laser Physics (Mir Publishers, Moscow, 1983). 

L. M. Narducci and N. B. Abraham, Laser Physics and Laser Instabilities 
(World Scientific, Singapore, New Jersey, Hong Kong, 1988). 

Ya. I. Khanin, "Low-frequency dynamics of lasers," Chaos 6,373-80 (1996). 

J.5 Computer Exercise 

CEJ-1. Write a computer program to integrate the Eqs. (J-12) for the simple 
laser model and verify the results stated in the text and shown in Fig. J. 1. Vary the 
initial conditions for the photon number and atomic population difference and 
explain the physics of the resulting behavior. 
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Nonextensive thermodynamics, 421 
Nonintegrable system, 273,288-92 
Nonlinear 

definition, 4-6 
system, defined, 4-6 

Nonstationary systems, 42 1-22 
Normal forms, 1 10-1 1,54345 
Number theory, 189,19 1,227-34 

llfnoise, 256,479 
One-dimensional maps. See Maps 
On-off intermittency, 260 
Orbit, 20 
Order parameter, 328 
Oscillator 

Duffing, 7 1,579-83 
harmonic, 72,104,282-84 



Index Index 

relaxation, 254,593,603 
van der Pol, 124,244,589-97 

Out-set, 9 1 

Partial differential equations, 461-65 
Particle accelerator, 3 12 
Partition function, 395,398,4 15-16, 

419 
Pathlines, 437-40 
Pattem formation, 433-35,468-71 

two-dimensional, 468-7 1 
Pattem selection, 470 
Pendulum, 41,152-53,16143,284- 

87 
Period-bubbling, 195 
Period-doubling, 11-14,47-50 

diode circuit, 1 1-13 
for Hamiltonian systems, 295-96 
intermittency, 259 
logistic map, 22-24 
Lorenz model, 35-36 
route to chaos, 48 
scaling laws, 22-24, 183-85,569- 

79 
Period-three implies chaos, 179 
Period-three crisis, 264-65 
Periodic orbit 

analysis, 41 3-15,5054 
See also Limit cycle 

Periodic windows, 14,16,25,66,577 
Pesin identity, 339 
Phase-locking. See Frequency-locking 
Phase portrait, 73-74 
Phase space, 276 

See also State space 
Piece-wise linear, 185-87,5 10-5 12 
Pitchfork bifurcation. See Period- 

doubling 
Planck's constant, 49 1 
Poincark, H. 44,62,7 1 
Poincark-Bendixson theorem, 101 
Poincark-Birkhoff theorem, 292-93 
Poincark Index Theorem, 102 
Poincark map, 103-5,158-63 

Poincark plane (section), 1024,128- 
30,158-63 

defined, 102 
Pointwise dimension, 359 
Poisson bracket, 278,281 
Poisson distribution, 503 
Pornmeau-Manneville route. See 

Intermittency 
Population growth model, 17-8 
Power spectrum, 538-39,584-86 
Prandtl number, 29,552 
Prediction, 37-39,516-17 
Prime period, 169 
Probability, 38 
Pulse-duration-bandwidth product, 

539 

q-calculus, analysis, 420 
Quadratic map, 171,261,267 
Quantum 

chaos, 498-502 
mechanics, 39,490-508 

Quasi-periodic, 122, 134-36 
Quasi-periodicity, 210-16 

in the circle map, 219-27 
definition, 134-36 
route to chaos, 122, 134-36 

Random fractal, 347 
Randomness, 3,6,7,39,508-510 
Rational number, 188,2 1 1 
Rational ratio of frequencies, 214 
Rayleigh-Bknard convection, 27-28, 

24 1 
Rayleigh number, 29,35,549,552 
Reaction-diffusion systems, 460-67 
Reconstruction space. See Embedding 

space 
Relaxation oscillations, 245,593,603 
Renormalization 

circle map, 235-36 
Feigenbaum numbers, 569-70 
intermittency, 257-58 

period-doubling accumulation, 569- 
70 

Repellor, 80-8 1,126-27 
Repellor-node bifurcation, 108-10 
Resonance overlap, 292 
Resonances, 292,3064 
Riddled basins of attraction, 38,79, 

354 
Rossler model, 156 
Rotation number, 2 19 
Routes to chaos, 39,117,121-22 

See also Period-doubling 
homoclinic intersections, 140-41 
intermittency. See Intermittency 
quasi-periodicity. See Quasi- 

Periodicity 
Ruelle limit on dimensions, 359,363 
Ruelle-Takens route. See Quasi- 

Periodicity 

Saddle cycle, 132 
Saddle-node bifurcation, 109-1 1 
Saddle point, 80-83,89-9 1, 126-28 
Sarkovskii theorem, 178-79 
Scaling behavior 

correlation sum, 356 
fractals, 343 
intermittency, 257-58 
Lyapunov exponents, 327-30 
period-doubling, 55-57 
quasi-periodicity, 234-39 

Scaling region, 358,380-81 
Scattering, chaotic, 479 
Schrijdinger equation, 494-96 
Schwarzian derivative, 177-78 
Second iterate, 167 
Self-affine, 347 
Self-organized criticality, 477-79 
Self-similar, 57, 347 
Self-similarity, 5657,347 
Semi-classical, 505-6 
Sensitive dependence on initial 

conditions. See Divergence of 
nearby trajectories 

Separatrix, 79,287 
Shadowing, 62-64 
Shift map, 188-92 
Sil'nikov chaos, 146 
Silver mean, 234,241 
Similarity dimension. See 

Dimensions, similarity 
Sinai billiards, 3 1 1 
Sine map, 48, 178 
Sine-circle map, 2 19-27 
Singer's theorem, 177-78 
Singular diffusion, 478 
Singular point. See Fixed point 
Sink. See Node 
Smale-Birkhoff theorem, 147 
Smale horseshoe map, 14647,199- 

204 
Soliton, 479 
Source. See Repellor 
Spatial modes, 46 1,463-65 
Spiral 

node, 95-96,145 
repellor, 95-96, 145 

Stable limit cycle, 132-33 
Stable manifold, 90, 139-42,440 
Standard map, 303-7 
State space, 3 1,7 1 

one-dimensional, 79-83 
two-dimensional, 87-96 
three-dimensional 1 18-20, 123-28 

Statistical mechanical formulation, 
415-20 

Stochastic layer (web), 300,313 
Stochastic resonance, 5 14 
Strange attractor, 119 

definition, 342 
Streaklines, 438,440 
Streamfunction, 437-38,553-55 
Streamlines, 437 
Stretching and folding. 436,438,440 
Stroboscopic portrait. See Poincark 

section 
Structural partition function, 419 
Structural stability, 8 1-82 
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Subcritical and supercritical 
bifurcations, 544 

Subharmonics, 584-86 
Supercycles, 49, 174-75 
Surrogate data, 367,389 
Suspended state space, 109 
Symbolic dynamics, 174, 19 1 
Symplectic structure, 275 
Synchronizing chaos, 5 16 

Tangent bifurcation, 109,25656,259 
Tangles. See Homoclinic and 

Heteroclinic 
Taylor series expansion, 83-84,92, 

149,165-66 
Tent map. See Maps 
Thermodynamic formalism, 4 15-20 
Three-frequency quasiperiodicity, 215 
Tilted tent map, 404-407 
Time delay, 383 
Time-delay differential equations, 

512-13 
Time-evolution operator, 498 
Time lag, 379,382-86 
Time series, 41,43,320-23 
Time translation symmetry, 28,35 
Topological dimension, 354 
Topological entropy, 406,409,414 
Toms, 135-36,213-15,287-89,291- 

93 
Trace, 98 
Trajectory. See Orbit 
Transient chaos. See Chaotic transient 
Transport models, 45040 
Transverse intersection, 128 
Turbulence, 44 
Turing structures, 460 
Twist map, 304 
Two-dimensional maps, 198, 199- 

204,308-9 
Turbulence. 479 

Universality, 47-49,53,58-61, 183- 
85,234-39 

classes, 578 
Lyapunov exponent scaling, 327-30 
noise scaling, 586-88 
period-doubling, 4 7 4 9  
power spectrum, 584-86 

U-sequence, 173-76 
Unstable manifold, 90, 13942,543 
Unstable periodic orbits, 413-15 

van der Pol oscillator, 124,244,589- 
96 

Viscosity, 458-60 
Viscous fingering, 475-76 

Wave function, 49696,5046 
Wavelet, 420 
Wavevector, 540 
Weighted Cantor set, 398402 
Wigner distribution, 499 
Wigner energy level distribution, 503 
Winding number, 2 19-23,226-27, 

234-36 
Windows (periodic). See Periodic 

windows 

Unimodal maps, defined, 173 
Unit circle, 134 


