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1 Introduction

Fractals are geometric shapes that contain some repetition or self-similarity at smaller scales
(Strogatz, 2015). The prevalence of fractals is widespread. From being purely mathematical
objects to describing how blood vessels are distributed in the lungs, fractals appear in many
areas of society and nature. The majority of the theory is presented in Strogatz, 2015 as part
of the course structure, but in the interest of being prudent, any relevant theory required to
understand an application or example is self-contained within its respective section.

In this report, we will first present fractals in the context of image compression and
medicine. These two topics will encompass how fractals can be applied to approach problems
in industry. Next, we will investigate fractals arising in city structures and condensed matter
physics (Hofstadter’s butterfly). These two topics will provide examples of how fractals arise
in nature and allow us to present some calculation-based information.
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2 Applications of Fractals

2.1 Fractal Image Compression

2.1.1 Introduction to Image Compression

JPEG is the most widely used image encoding format where a discrete cosine transform
(DCT) compression is applied. According to the JPEG compression process explained in
the textbook by Mazet, 2020, DCT is similar to Discrete Fourier Transform (DFT), and a
range of 2D cosine frequencies are obtained from the original image. The compression is
done through the filtering of high frequencies which the human eyes are less sensitive to. As
a result, the JPEG image obtained through the inverse DFT after the compression is defined
as lossy, due to the process being irreversible. While JPEG is an efficient image compression
format, there is a need to explore other means of image compression, in order to achieve a
large compression while retaining a high level of detail. Other means of algorithmic encoding
for images include fractals and wavelet transformations. Wavelet transformation filters out
high-detail data, while fractal compression attempts to encode information in a compact way
(Welstead, 1999).

The pioneer in the development of fractal image compression was led by Michael Barnsley
in 1984, where iteration function systems (IFS) were introduced as a means to reconstruct
fractals globally (Barnsley & Demko, 1985). Due to the limited scope of our study, the rich
theory behind Barnsley’s IFS will not be discussed nor proven here. Consider the following
example of a fern fractal binary image constructed through an iterated function system.
IFS by itself is ineffective at encoding normal pictures, due to IFS are only able to encode
globally self-similar objects.

Figure 1: Figure a) is an image of a fern constructed through IFS. Notice how each of the
leaves are similar to the branches and to the fern itself. Figure b) represents the 24 floating
point values required, together with four transformations mapping the fern onto the four
sub-images in Figure b) for the reconstruction of Fig a).(Welstead, 1999).
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2.1.2 Partitioned Iterated Function Systems

The actual image encoding applied to real images is called partitioned iterated function
systems (PIFS). Affine transformations are applied to the gray scale image where translation,
rotation, and contractions are possible. w̃i represents the spatial mapping between the
subdomain Di ⊂ I2 unit square, and the range Ri from the w̃i operation, such that w̃i(Di) =
Ri. The affine transformation w̃i has to be invertible since the encoding and decoding of the
image has to be allowed. For a gray scale image, additional information such as the contrast
and brightness of the image are included in the operation. For an example of a partition
on the range cells of the image, Fig.3 shows an example of a real image, where the size of
range cells are adaptive. Details of the image can be partitioned into smaller range cells to
preserve information.

Figure 2: This is a representation of the PIFS. The w̃i transformation maps Di to the range
Ri. While the domains may overlap, the range has to fit the unit square (Welstead, 1999).

Figure 3: An example of fractal encoding attempt in computing the contractive transforma-
tion W that maps the domain cells to the range cells(Welstead, 1999).

Next, the most important part of fractal image compression is the contraction mapping.
According to the definition in Barnsley, 1993, a function f : X → X mapping on a complete
metric space (X, d) is said to be contractive if f posses exactly one fixed point xf ∈ X, and
for any point x ∈ X, the sequence of functions {f ◦n(x) : n = 0, 1, 2, ...} converges to xf .
That is

lim
n→∞

f ◦n(x) = xf , for each x ∈ X (1)
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In other words, for a contractiveW that maps from any starting image, through iteration
of W , the transformation of the starting image will eventually converge on the fixed point
image, regardless of the initial conditions (Welstead, 1999). Fig.4 is an excellent example
in recovering the image from two different starting image. Fractal image compression is
achieved through the contractive transformation W storing all the information required to
recover the image from any starting point. When the storage space required for W is less
than the space required to store the image, image compression is a success.

Figure 4: An example of contractive transformation W applied iteratively to two different
starting images, and recovering the same image (Welstead, 1999).

Figure 5: An example of a work flow of a fractal image compression software. The most
computationally intensive step is the fitting of the domain and corresponding transformation
that best fit the range cells (Welstead, 1999).
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2.1.3 Results of Fast Fractal Image Compression

Modern day research on fractal image compression aims to shorten the computation time
required to fit the contractive transformation with the domain and range cells. In this exam-
ple, the group explored a faster method in retrieving the transformation for the range cells.
Their fractal compression quality was comparable to the traditional compression methods
such as JPEG (Commuri et al., 2020). In Fig. 6, the results from their research shows that
while traditional compression methods may out perform partition iteration function systems
at high compression ratios, the PIFS fractal compression maintains a stable and similar
PSNR compared to traditional methods at moderate compression. Traditional methods out
perform fractals compression due to the image filter being applied to each individual block
of partitioned images, in formats such as JPEG, and compression artefacts are independent
to each block.

Figure 6: The peak signal to noise ratio (PSNR) obtained through iteration of the transfor-
mation in fractal compression on the left, compared to the PSNR of traditional compression
methods(Commuri et al., 2020).

To conclude, while there are limitations to fractal image compression method in terms
of the quality and computational time, it is an interesting method for encoding information.
From the rich background in the development of iterated function systems to the application
of fractals, there is a lot left to be explored.
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2.2 Fractals and Medicine

Fractal dimension analysis has shown great potential in detecting different stages of cancer
using transmission optical microscopy. Fractal dimension is a measure of self-similarity
in a structure and is a powerful physical parameter for the characterization of structural
properties of many partially filled disordered materials. Biological tissues are fractal and
reports show a change in self-similarity associated with the progress of cancer, resulting
in changes in their fractal dimensions (Elkington et al., 2022). The fractal dimension of
the tissue structure is directly proportional to its mass density, which increases with the
rapid reproduction of cancerous cells (Elkington et al., 2022). This makes fractal dimension
analysis a potential technique for the detection of different stages of cancer using transmission
optical microscopy.

The technique involves measuring the fractal dimension of different cancer stages using
tissue micro array (TMA) samples containing pancreatic, breast, colon, and prostate can-
cers. The TMA samples are tissue cores of diameter 1.5mm and thickness 5µm. They are
enveloped in paraffin wax to increase the shelf life of the samples. The cores are aligned in
rows on a glass slide, each glass slide containing various stages of the cancer in question and a
cancer-free control sample. The technique uses transmission optical microscopy of each thin
tissue sample. This produces an intensity distribution pattern proportional to its refractive
index pattern, representing the sample’s mass density distribution. The refractive index is
a direct result of mass density, where larger mass densities correspond to a larger refractive
index. The result is a bright field image with information on the mass density. The bright
field image is converted to a binary image using the computer program J image. The fractal
dimension of each binary image is calculated using the box-counting method. The binary
image is overlaid with a grid of squares with side length ϵ. The relationship between the
N(ϵ) number of squares of side length ϵ needed to cover the fractal is:

d =
lnN(ϵ)

ln 1
ϵ

where d is the fractal dimension. The algorithm used in this study calculates the average
fractal dimension by plotting lnN(ϵ) vs. ln 1

ϵ
. The slope of this graph is the average fractal

dimension. Figures 7,8,9,10 show the results of the study.
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Figure 7: Pancreatic Cancer Fractal dimension analysis. Figures (a) and (a’) show the Bright
field and Binary image of normal pancreatic tissue. Figures (b) and (b’) show the bright
field and binary image of stage III Pancreatic cancer. The dark areas of the binary images
(a’) and (b’) represent areas of high mass density. Notice how the binary image of stage
III cancer in (b’) has a darker tone and smaller compact fractal structures compared to the
normal tissue shown in (a’). Figure c) shows the average fractal dimension of the samples in
each stage of Pancreatic cancer. The actual fractal dimensions for each sample are calculated
to be 1.5984 for the normal, 1.6673 for stage I, 1.6866 for stage II, and 1.7407 for stage III.
The percent difference between the normal and stage I sample is 4%, between normal and
stage II is 6%, and between normal and stage III is 9% (Elkington et al., 2022)

Figure 8: Breast Cancer Fractal dimension analysis. Figures (a) and (a’) show the Bright
field and Binary image of normal pancreatic tissue. Figures (b) and (b’) show the bright
field and binary image of stage III Pancreatic cancer. The dark areas of the binary images
(a’) and (b’) represent areas of high mass density. Notice how the binary image of stage
III cancer in (b’) has a darker tone and smaller compact fractal structures compared to the
normal tissue shown in (a’). Figure c) shows the average fractal dimension of the samples in
each stage of Breast cancer. The actual fractal dimensions of the breast tissue samples are
1.5448 for the normal, 1.6126 for stage I, 1.6631 for stage II, and 1.7284 for stage III cancer
The results show the fractal dimension of cancer stage I increases by 4%, stage II by 7%,
and stage III by 12% with respect to the normal (Elkington et al., 2022).
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Figure 9: Colon Cancer Fractal dimension analysis. Figures (a) and (a’) show the Bright
field and Binary image of normal Colon tissue. Figures (b) and (b’) show the bright field
and binary image of stage III Colon cancer. The dark areas of the binary images (a’) and
(b’) represent areas of high mass density. Notice how the binary image of stage III cancer in
(b’) has a darker tone and smaller compact fractal structures compared to the normal tissue
shown in (a’).Figure c) shows the average fractal dimension of the samples in each stage of
Colon cancer. The actual fractal dimension values for each sample are 1.5551 for the normal,
1.6393 for stage I, 1.6652 for stage II, and 1.7004 for stage III. The results show the fractal
dimension of cancer stage I increases by 5%, stage II by 7%, and stage III by 9% compared
to the normal fractal dimension(Elkington et al., 2022).

Figure 10: Prostate Cancer Fractal dimension analysis. Figures (a) and (a’) show the Bright
field and Binary image of normal Colon tissue. Figures (b) and (b’) show the bright field
and binary image of stage III Colon cancer. The dark areas of the binary images (a’) and
(b’) represent areas of high mass density. Notice how the binary image of stage III cancer in
(b’) has a darker tone and smaller compact fractal structures compared to the normal tissue
shown in (a’). Figure c) shows the average fractal dimension of the samples in each stage
of Prostate cancer. The actual fractal dimension values for each sample are 1.5737 for the
normal, 1.5981 for stage I, 1.6302 for stage II, and 1.6798 for stage III. The results show the
fractal dimension of cancer stage I increases by 2%, stage II increases by 4%, and stage III
by 7% with respect to the normal (Elkington et al., 2022)
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Figure 11: The average fractal dimension for the stages of Pancreatic, Breast, Colon, and
Prostate cancer is shown. All Cancers increase in fractal dimension as they progress.

The fractal dimension method correctly differentiates cancer stages in progressive cancer,
raising possibilities for a physics-based accurate diagnosis method for cancer detection. Can-
cer diagnosis has been a challenging field due to the difficulty in detecting cancers that are in
their early stages. Current methods require either expensive chemical dyes and equipment or
careful observation by a pathologist, making it time-consuming, inefficient, and susceptible
to human error. Fractal dimension analysis of microscopic tissue images could automate the
process, making cancer testing more accessible to the public and increasing the chances of
early cancer diagnosis.

In conclusion, the potential of fractal dimension analysis to differentiate the fractal di-
mensions of healthy tissue and cancerous tissue is a promising and exciting area of research
that could have a significant impact on the field of medicine. The technique has shown great
potential in detecting different stages of cancer using transmission optical microscopy and
could lead to earlier detection, better survival rates, and faster recovery times for those prone
to cancer.
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3 Examples of Fractals in Society and Nature

3.1 Fractal Cities

Fractal cities. Fractal cities are those that tend to develop over time in fractal patterns. The
pattern that emerges as a sizable fractal city absorbs its surrounding towns and villages re-
sembles a self-similar structure. Although it initially appears random, this dynamic network
may end up being more effective than contemporary ”pre-planned” cities. Figure 12 shows
a southern Ohio city’s development in the 19th century, showing fractal-like patterns.

Figure 12: The squaring of Circleville 1810-1856 (Batty & Longley, 1994).
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The following images are further examples to get a sense of Fractal City Geometry.

Figure 13: Examples of City Fractals (Whitney, 2018)
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Figure 14: Examples of City Fractals (Whitney, 2018)
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Most cities (˜95%) ”organically” display fractal features, this is the main consensus
(Batty & Longley, 1994). However, few examples do have features that have been controlled
or planned before. Exact self-similarity is also not often seen. There are instead self-affine
fractals, which indicates that scaling ratios can vary. This type of fractal would be self-
similar in that it would include copies of the object at every size, but these copies would be
somehow altered from the original initiator. Next, Figure 15 shows the three categories of
fractals often found in the city space. A comparison between (b) and (c) demonstrates that
the network is a hierarchy and vice versa.

Figure 15: Types of Spatial disaggregation: strict subdivision, hierarchy and network struc-
ture (Batty & Longley, 1994).
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Fractals consist of self-similar components that form a hierarchy. The tree is a famous
example of fractals, which are arranged hierarchically at various sizes. The tree, a literal de-
piction of hierarchy, symbolizes the most primitive fractal. There are several more instances
of hierarchy, including the organization and spacing of cities as centre sites, the arrangement
of districts and neighbourhoods, and the geographical distribution of highways and other
modes of communication. To describe a few of the clear connections that control binary or
dichotomous branching systems we use the formula

Nk = vk (2)

where v is the bifurcation ratio and is equal to 2 for binary branching, 3 for ternary branching,
and so forth, gives the number of branches of any tree that are formed at a particular level
of recursion or hierarchy k. The total of these numbers over k, expressed as

NK =
k∑
1

Nk (3)

determines the number of branches at any level of the hierarchy. The number of elementary
operations in every recursive system at any level k could be determined using both equations.
Many correlations have been found between branch lengths and widths, angles, scaling or
contraction, and symmetry in botanical trees; we will only discuss one of these links, which
was initially proposed by Leonardo da Vinci in 16th-century Italy (Batty & Longley, 1994).
This is predicated on the idea that the two stems that branch off of any given stem in a tree
between levels k - 1 and k are equal in width,

W s
k−1 = RWk

s + LWk
s (4)

where W is the branch width, R and L are the right and left branches respectively, and s is a
parameter for this relation. When the parameter s is set to 2, as proposed by Leonardo, the
tree can be considered Pythagorean since the branch stem widthWk−1 equals the hypotenuse
of a right-angled triangle with sides RWk and LWk. Some propose that Wk, the width of a
branch, should be proportional to its length, with

Wk ∝ L
3/2
k (5)

The parameter s (here) is unlikely to be as low as 2 but never higher than 3 to make
the relationship plausible. The primary factor influencing a tree’s shape is its branching
angles, but these have no bearing on how we calculate the fractal dimension, which is solely
dependent on the number of branches connected to each stem or trunk and the rate at which
the branches scale or contract.
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3.2 Hofstadter’s Butterfly

Hofstadter’s butterfly is a self-similar fractal pattern that arises when a crystal lattice is
placed in a magnetic field. We will use this as a calculation focused example of a fractal
in nature. One of the main reasons that the discovery of this fractal was intriguing is
because it involved two well-studied, yet starkly different physical phenomena: electronic
band structure and Landau levels (Satija, 2016). Electronic band structure is underpinned
by Bloch’s theorem, which states that electrons (aptly named Bloch electrons) on a periodic
lattice can be described using plane waves. These bands, which describe the possible energy
values that these Bloch electrons can take, are continuous. This is not necessarily dismissive
of band gaps that can arise in the overall electronic band structure of a crystal since we are
concerned with electrons in the conduction band. Landau levels describe the energies that
isolated electrons can take while in the presence of a magnetic field. These energy levels are
a discrete spectrum of values and have gaps between them. It is from these two energetic
phenomena that Hofstadter’s butterfly emerges.

3.2.1 Harper’s Equation

Obtaining Hofstadter’s butterfly involves finding solutions to what is known as Harper’s
equation. As such, we will begin with a description of what Harper’s equation is and how it
came to be. We will have to hand-wave some of the technical details which are likely better
left to a condensed matter physics course, but we will still encompass the main concepts in
its derivation. In short, Harper’s equation is Schrödinger’s equation for Bloch electrons on a
two-dimensional crystal lattice in the presence of a homogeneous magnetic field (Hofstadter,
1976). In order to obtain the necessary form of Schrödinger’s equation, we start by utilizing
the tight-binding approximation for a square lattice. This simply means that we assume our
electrons can only exist at a lattice site (a.k.a. an ion core) and nowhere in between. In
doing so, we can write an equation for the Bloch band (or Bloch energy function):

E(k) = 2E0(cos(akx) + cos(aky)) (6)

where k denotes the wave vector (kx, ky), E0 is a constant, and a is the lattice spacing.
Now, we must make a substitution for the wave vector such that equation (6) becomes

an operator that can act on a wavefunction. This is one of the details that we will gloss over
as it is slightly more technically involved, however, the importance of this substitution must
be underscored. First carried out by Rudolf Peierls, the substitution to make E(k) into an
operator that allows for a form of Schrödinger’s equation to be written required, in Douglas
Hofstadter’s own words, ”some true touches of genius” (Satija, 2016). Bypassing the details
and proofs, the wave vector k can be replaced by an electron’s canonical momentum in the
presence of a magnetic field and using the Landau gauge. This allows us to incorporate the
previously missing contribution of the magnetic field through the lattice. Upon substitution
and a variety of expansions and approximations, we are left with a Schrodinger’s equation
that relates the wavefunction of a Bloch electron at a given site to its nearest-neighbours
(Hofstadter, 1976):

E0[ψ(x+ a, y) + ψ(x− a, y) + e
−ieBax

h̄c ψ(x, y + a) + e
ieBax

h̄c ψ(x, y − a)] = Eψ(x, y). (7)
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There are a few further simplifications that are made to reach Harper’s equation. Firstly, in
order to do away with with x and y variables, we can denote each lattice site as an integer
multiple of the lattice spacing. This is fairly straightforward since we are working with a
square lattice: x = ma and y = na. Next, we make the substitutions α = a2Be

hc
and ϵ = E

E0

(for reasons that will soon be apparent). If we then recognize that our two-dimensional Bloch
wavefunctions can be written as ψ(m,n) = ψnψm, we can finally write Harper’s equation:

ψm+1 + ψm−1 + 2 cos(2παm− ky)ψm = ϵψm. (8)

Now, finding the quantities necessary to plot Hofstadter’s butterfly has boiled down to an
approachable eigenvalue problem. Just as we treat other many-particle Hamiltonians, we
can write Harper’s equation as a matrix equation (Satija, 2016):

C1 1 0 0 0 · e−ikx

1 C2 1 0 0 · 0
0 1 C3 1 0 · 0
0 · · · · · 0
· · · · · · ·
· · · · · · 1
eikx 0 0 0 · 1 Cq





ψ1

ψ2

ψ3

·
·
·
ψq


= ϵ



ψ1

ψ2

ψ3

·
·
·
ψq


. (9)

Here, Cm is the cosine term in our Hamiltonian: Cm = 2 cos(2παm− ky). Writing Harper’s
equation in this form now allows us to use the numerical method of exact diagonalization to
solve the eigenvalue problem.

3.2.2 Plot of Hofstadter’s Butterfly

The fractal pattern occurs when two key quantities are plotted against one another. The first
quantity, α, is plotted along the y-axis and is the ratio between the magnetic flux through
a unit cell (for a square lattice, a2B) and a quantum of magnetic flux (hc

e
). This ratio gives

rise to an interestingly dimensionless quantity whose rationality or irrationality dictates
the structure of the plot and encodes information about the strength of the magnetic field
(Hofstadter, 1976). This quantity can be simplified to α = p

q
where p and q are integers and q

is related to the periodicity of our lattice. The second quantity, ϵ, is plotted along the x-axis
and is related to the energy that electrons can take. It turns out that ϵ is also dimensionless.
(The convention for which quantity is plotted on which axis does not generally matter given
that the pattern will arise regardless, but this convention is that of Hofstadter’s original
paper.)

With all of this in mind, plotting Hofstadter’s butterfly involves iterating over values of
α = p

q
in the interval [0, 1] and solving the corresponding exact diagonalization problem for

the values of ϵ (Turhan, 2023). Having α bounded in such a way ends up restricting ϵ to
[−4, 4] (Hofstadter, 1976). Plots for q = 5, 50 are found in figure 16.
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Figure 16: Plots of Hofstadter’s butterfly using exact diagonalization method for q=5,50.
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The mathematical depth of describing Hofstadter’s butterfly through the lens of its recur-
sive structure its quite involved. However, there are a few characteristics that can be pointed
out from the original work in Hofstadter, 1976 and subsequent investigation by Ketzmerick
et al., 1998. A band corresponding to a value of α can be split into 3 sub-bands: left (L),
centre (C), and right (R). The way in which the sub-bands are clustered can be predicted
by defining a ”local variable” for a value of α, β. We shall present Hofstadter’s example
with α = 5

17
to demonstrate how one can determine the clustering of a band. Since the

fractal pattern is symmetric, determining β′ for L and R will be the same: α = (N + β′)−1.
With N = 3, β′ = 2

5
, which means that there will be 5 sub-bands (corresponding to the

denominator of β′) in L and R. For C, we instead want β′ such that α = [2 + (β′)−1]−1. In
our case, β′ = 5

7
, meaning that C will have 7 sub-bands. This same algorithm can be applied

again in order to obtain the sub-bands of the sub-bands. Doing so leaves us with an overall
band structure (not to be confused with the strict definition of electronic band structure) of
(2− 1− 2)− (2− 3− 2)− (2− 1− 2). Visually,:

(−− − −−) (−− −−− −−) (−− − −−) (10)

where the brackets would of course be omitted in an actual plot of this cluster. According
to Hofstadter, determining the number of times one must repeat this algorithm to establish
sub-bands is ”difficult to predict.” However, the case for which α is an irrational value is far
more straightforward since these values give rise to the Cantor set. Additionally, irrational α
values will correspond to sub-bands that have Hausdorff dimension that is ≤ 1

2
(Ketzmerick

et al., 1998).

3.2.3 Closing Remarks on Hofstadter’s Butterfly

The sheer breadth of investigation into Hofstadter’s butterfly and its related mathematical
and physical phenomena is immense. Some of the many areas of study include its relation
to number theory, the quantum Hall effect, and extending our knowledge of quasicrystals,
which is fairly intractable currently. The fantastic monograph by professor Indubala Satija,
Butterfly in the Quantum World: The story of the most fascinating quantum fractal, with
contributions from Douglas Hofstadter himself alongside a variety of key figures in condensed
matter physics and mathematics, compiles many of these topics into one enlightening and
entertaining read (Satija, 2016).

4 Conclusion

From the results of analyzing properties of fractals to the application in industry, and from
the recognized fractal dimension and patterns to identifying cancer cells, the theories behind
fractals have brought upon countless innovations. From small crystallized structures in
condensed matter to unintentional fractal growth in the development of cities, the self-
similar and hierarchy properties in objects are noticeable everywhere. The interdisciplinary
field of fractals continues to shine a light on the chaotic nature of the universe.
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