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Abstract

This paper studies soliton solutions of nonlinear differential equations.
Soliton solutions take the form of stable local waves capable of retain-
ing their properties even after interactions. This paper introduces the
Korteweg-de Vries equation and the non-linear Schrödinger equation. An
outline of different solution methods, such as the inverse scattering trans-
form, is given and the key results are summarized. The characteristics of
the resultant solutions are analyzed numerically by observing single and
double soliton solutions. Propagation and interaction are also analyzed nu-
merically. Finally, an overview of various soliton applications is provided
to highlight the significance of the non-linearity aspect. The study of such
equations proves to be of great theoretical and practical interest.
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1 Introduction

Solitons, or solitary waves, were a phenomenon observed in canals in the 18th
century by John Scott Russell, who recorded his discovery that the movement of
water presented a large, round, smooth, solitary pile of water. The pile of water
continued to move without appreciably changing shape or slowing down and finally
disappeared several miles away. In later water tank experiments, Russell noticed
that the ’water piles’ or waves were stable and could travel great distances. They
never merged, but the more giant waves overtook the smaller ones. Russell’s results
were different from existing wave conclusions. Scientists debated the phenomenon
discovered by Russell until Korteweg and de Vries proposed the famous KdV
equation in 1895 which bears their name.

‘Zabusky and Kruskal conducted a numerical analysis of the KdV equation in 1965
and established the meaning of solitary waves. They observed that solitary waves
maintained their shape and speed after collisions and used the term ”soliton”
to describe them (Solomon Manukure & Timesha Booker, 2021)’. Solitons are
specific solutions of a class of nonlinear partial differential equations with special
elementary solutions. These solutions, called solitons, are stable and have the
form of local waves that retain their properties even after the interaction

2 Equations with Soliton Solutions

2.1 From Linear to Non-Linear

The one-dimensional wave equation utt−c2uxx = 0 is the most fundamental linear
partial differential equation (PDE). The solution is given by u(x, t) = F (x −
ct) + G(x + ct). The general solution follows the superposition principle, which
is the sum of a right-traveling function F and a left-traveling function G, which
depend on the initial state and boundary conditions. A function that satisfies the
solution, such as u(x, t) = sech(x − ct), can be verified by substituting into the
wave equation. However, obtaining nonlinear differential equations is much more
complex. Nonlinear equations do not satisfy the superposition theorem. Consider
a fundamental equation of fluids(Inviscid Burgers’ equation): ut + uux = 0

A possible way is to use the geometric method to solve the PDE by study-
ing the characteristic curves given by the ordinary differential equation (ODE)
dx/dt = u(x, t). However, since the PDE is nonlinear, the characteristics depend
on u(x, t) itself. Each solution will have a different set of characteristics. There is
no universal solution technique for such differential equations, and so each indi-
vidual equation needs to be studied separately.
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2.2 KdV Equation

The Korteweg-de Vries (KdV) equation is a general model for many different
physical situations, an example of which is the formula derived from the shallow
water wave model in hydrodynamics. It was the first formula to analytically
confirm the existence of soliton solutions. This made it the most famous partial
differential equation in the study of soliton physics:

ut + 6uux + uxxx (1)

2.2.1 Solving by Conversion to an ODE

One way to solve the Kdv equation is by converting the PDE to and ODE and
integrating it (Strauss, W. A. 2008). Begin with an ODE of the form

−cf ′ + 6ff ′ + f ′′′ = 0

Integration is done twice, using the boundary condition that the wave is solitary
as x → ∞, yielding (f ′)2 = f 2(c− 2f). Integrating one final time, and using the
initial condition that x = x0 at t = 0, the solution is:

u(x, t) =
c

2
sech2

[√
c

2
(x− x0 − ct)

]
(2)

2.2.2 Solving using the Inverse Scattering Transform

Another way to solve this class of PDEs is using the inverse scattering transform
(IST), which was developed in 1967 by Gardner, Greene, Kruskal, and Miura
(Abel, S. 2009). The IST is a method based on highly nonlinear equations that
have a close and complex relationship with linear equations, such as the linear
Schrödinger equation:

Ψxx + uΨ = λΨ

This method gets u(x, t) from the initial value u(x, 0) with three steps: scattering,
time evolution, and inverse scattering. For the linear Schrödinger equation, begin
with initial data u(x, 0), which plays the role of the potential. It takes into account
the reflection and transmission coefficients of the equation as the initial scattering
data. After time evolution, the potential u(x, t) at time t is reconstructed by the
inverse scattering. That is, given the set of scattering data, it can reconstruct the
potential that the particles have scattered off.

Consider the V (x) = α sech2(x) in the linear Schrödinger equation.

Ψxx − k2Ψ = VΨ

The equation’s solution is associated with Legendre polynomials (Abel, S. 2009).
Then consider k2 < 0, this gives α = N(N + 1), which suggests an N -soliton
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solution with an initial value u(x, 0) = N(N + 1) sech2(x). For example N = 2
suggests u(x, 0) = 6 sech2(x) as an initial value. Another example will consider
that N = 1. In this case, after IST, 2 sech(x− 4t) will be the solution.

For more information on the inverse scattering transform and an overview of the
underlying steps, see Appendix Listing 1.

2.3 Non-Linear Schrödinger Equation

Another important equation that has spatially localized solutions is the non-linear
Schrödinger equation (NLS). It has many applications, especially in fiber optics,
where the soliton’s stability can be used to transmit data over long distances. The
equation has the form:

i
∂Ψ

∂t
+ P

∂2Ψ

∂x2
+Q|Ψ|2Ψ = 0 (3)

Where the coefficients P and Q depend on the particular problem which is being
studied. This equation is analogous to the Schrödinger equation only if the P is
positive. However, the equation can be transformed to make sure that P is positive
because if P < 0, we can change the sign of the equation and then restore the
positive sign in front of the time derivative by taking the complex conjugate. This
leads to an equation for Ψ∗ in which the coefficient of ∂2Ψ∗

∂x2 is positive. Therefore,
P can be assumed to be positive without any restrictions.

The potential term is equal to −Q|Ψ|2 which is the nonlinear term in the NLS
equation. It turns out that if Q is positive, the solutions for Ψ are localized. Fur-
thermore, it generates a potential well for −Q|Ψ|2, which is a necessary condition
for the NLS equation to have a spatially localized solution.

2.3.1 Solution Methodology

To solve the nonlinear differential equation, we look for solutions of the form

Ψ = Φ(x, t)eiθ(x,t) (4)

Where Φ and θ are real functions. The full derivation of the NLS equation is
given in Appendix Listing 2. It is quite lengthy, so for now the final solution is
presented:

Ψ(x, t) = Φ0 sech

[√
Q

2P
Φ0(x− uet)

]
ei

ue
2P

(x−upt) (5)

which can also be written in the form

Ψ(x, t) = Φ0 sech

[√
x− uet

Le

]
ei(κx−µt) (6)
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where Le, κ, µ are defined as follows:

Le =
1

Φ0

√
2P

Q
κ =

ue

2P
µ =

ueup

2P
= κup

This shows that the solution to the NLS equation is a wave packet with a width
of Le, which is inversely proportional to the amplitude Φ0. This is similar to
the solution of the KdV equation, which also has the hyperbolic secant function.
Thus, we recover a soliton-like solution which arises from the nonlinearity of the
NLS equation.

3 Numerical Analysis

3.1 Single Soliton Solution to the KdV Equation

Since the single and two soliton solutions are in one-dimensional space, we can
plot the result to obtain the behaviour. Consider an initial value of x0 = 0 when
t = 0, and the speed of the wave is 4. We can obtain a soliton solution such that
u(x, t) = 2 sech2(x− 4t), in this case, c = 4.
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Figure 1: A plot of the single soliton solution u(x, t) = 2 sech2(x − 4t) at 3
different timestamps.
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The solitary form of the hyperbolic secant function propagates at a constant speed
and in a single direction without changing shape. If c is large, the wave is tall,
thin, and fast. Conversely, if c is small. it is short, fat, and slow. Specifically, for
the KdV equation or other similar equations, the soliton wave is the single soliton
solution of the equation. When there are multiple solitons in a solution, we call
the solution a soliton solution. In most cases, the N -soliton solution of the KdV
equation has N -independent peaks, and each individual peak is called a soliton.
When a soliton is infinitely separated from any other soliton, the soliton becomes
solitary.

3.2 Two Soliton Solution to the KdV Equation

Since the Kdv equation is nonlinear, the superposition solution is not a soliton.
For two-soliton solutions, interactions between multi-solitons are more complex
because they involve interactions between different superposition solutions. An
example is the two soliton solution:

u(x, t) =
12[3 + 4 cosh(2x− 8t) + cosh(4x− 64t)]

[3 cosh(x− 28t) + cosh(3x− 36t)]2
(7)

The basic theory of the double soliton solution gives the initial state: u(x, 0) =
N(N + 1) sech2(x), when N = 2, N(N + 1) = 6. Since the soliton solution is a
special solution to the formula, it can be verified by substituting u(x, 0) into the
formula. As shown earlier, u(x, 0) = 6 sech2(x) is a soliton solution. No oscillations
are expected at infinity for such values, and the potential is then reflection-less.

The solution in Figure 2 used t ∈ (−∞,∞). The taller wave catches the shorter
one and they merge to form a single wave at t = 0. After which the taller wave
reappears to the right and moves away from the shorter wave as t increases. The
interaction of waves is non-linear. The taller wave moved forward, and the shorter
one moved backward relative to the positions they would have reached if the
interaction had been linear (Drazin and Johnson). The nonlinear interaction of
waves is characterized by phase shifts. The solitons occur as t → ±∞ and interact
in this special way.

At a large time, the difference in wave speed creates two separate waves. The
solution then consists of two waves. This suggests one solitary with wave speed 16
and the other with wave speed 4. Therefore, introduce (x−16t) and (x−4t) to find
the solution’s asymptotic behavior. As time goes to infinity, the solution suggests
a wave moving with a velocity of 16 units, an amplitude of 8 units, and a phase
shift of ln(3/2). Then, as time goes to negative infinity, a phase shift of − ln(3/2)
will be similar to the wave moving with a velocity of 4 units and an amplitude of
2 units. As the time goes to infinity, the faster wave will move forward by ln(3/2),
and the shorter wave will move backward by ln(3/2) (Munteanu, L., & Donescu,
S, pages 101-103).
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Figure 2: A plot of the propagation of two solitons with time in two-soliton
solution system.

3.3 Non Linear Schrödinger Equation

The solution of the nonlinear Schrödinger equation is a hyperbolic secant function.
First, consider the amplitude squared to extract the probability density (due to
the wave nature of the function):

|Ψ|2 = Φ2
0 sech

2

(√
x− uet

Le

)
This results in a secant squared function similar to the solutions for the KdV
equation (see Figures 1 and 2). The number of solitons depends on the parameters
P and Q. For example, in optical physics, the number of solitons N is given by

N2 =
x2
0k0n

2η/k0nn2|Am|2
=

x2
0Q

2P
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where P and Q are given by:

P =
1

2k0n
Q =

k0nn2|Am|2

2η0

Here, k0 is the wave number, n and n2 are the initial and final index of refraction
of the medium, Am is the maximum amplitude, and η0 is the impedance of free
space.

Evidently, the number of solitons is related to the properties of both the medium
and the wave used.

4 Properties and Behaviour

4.1 Stability

The stability of solitons comes from a delicate balance between nonlinearity and
dispersion in the medium through which they travel. (Steven Abe, 2006).

The theory of linear dispersive equations predicts that waves should
spread out and disperse over time. (Terence Tao, 2008)

The nonlinear term in the KdV equation is uux, which makes an important con-
tribution to the stability of solitons. When the nonlinear term is removed from
the formula, it leaves ut + uxxx = 0. The result is dispersion. Waves disperse
and spread out as time increases. If the dispersive term is removed it leaves
ut + 6uux = 0, the result is breaking, and the waves become concentrated.

4.2 Interaction and Propagation

Consider the KdV equation’s solution from IST when N = 1, which is u(x, t) =
sech(x− ct). The parameter is the speed of wave c. When it is positive, the wave
propagates to the left; converselty, when negative it propagates to the right. The
soliton propagates in a single direction as time varies.

As shown in Figure 2, two waves travel in the same direction, and when t = 0,
there is only one wave in the figure. Now consider that a solution is formed by the
superposition of two solitary solutions (this is not a soliton solution, as mentioned
earlier), where one wave has an amplitude of 8 and the other 2.

That is, u ∗ (x, t) = 2 sech2(x− 4t)+ 8 sech2(x− 16t). When two waves interact at
t = 0, a single wave with an amplitude of 10 is formed, unlike the wave with an
amplitude of 6 in the two-soliton solution.
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4.2.1 Non-Destructive Interactions

Unlike regular waves that might merge or dissipate upon colliding, solitons pass
through each other without permanent change to their shape or velocity. This
property is a hallmark of solitons and is a direct consequence of their nonlinear
nature.

4.2.2 Phase Shift

Although solitons emerge from interactions unchanged in terms of amplitude and
velocity, they can experience a phase shift. This means that their positions after
interaction are shifted relative to where they would have been if they had travelled
without interacting. The phase shift is a crucial feature in the study of solitons,
as it reflects the integral effect of the nonlinear interaction.

5 Applications

Soliton theory has been used to study many significant practical problems in fluid
dynamics, plasma, nonlinear optics, astrophysics, and molecular biology. In fibre
optics, for example, the concept of solitons has been an ongoing topic of research
for long-distance digital signal transmission.

Figure 3: Stability of regular pulses compared to soliton pulses. Soliton pulses
are much more stable and do not disperse over long distances (Research Institute
of Electrical Communications, Tohoku University, n.d.)

As described in the above sections, solitons are stable due to the nonlinearity
term in the NLS equation. On the contrary, regular pulses will spread out and
overlap each other, resulting in possible information loss as shown in Figure 4. The
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equation that models these pulses in optical fibers is the nonlinear Schrödinger
equation (3). In this specific case, the constants P and Q are proportional to the
refractive index of the medium and other important constants. As shown in the
derivation of the solutions for the NLS equation, specific conditions have to be
met in order to produce these solitons, which can be difficult to achieve in the real
world.

In hydrodynamics, solitons can accurately model tsunamis and tidal bores due to
the fact that they can travel long distances without changing shape (Marin, 2009).
In quantum and particle physics, solitons can be applied to explain the behavior
and properties of elementary particles. Specifically, in the context of quantum
field theory, solitons are non-perturbative solutions to the field equations. These
solutions represent stable and localized packets of energy that can’t be dispersed.
In essence, they can be viewed as “knots” of energy that exhibit particle-like
properties which can interact with other particles and fields.

This concept can be applied to the theory of quarks. The idea is that solution
solutions to the equations governing quantum chromodynamics, the theory that
describes the strong force that holds quarks together, could provide a possible ex-
planation for the confinement of these quarks and the fact that they are never iso-
lated. Lastly, solitons also appear in matter physics, particularly in bose-einstein
condensates (BEC). For very cold temperatures (close to absolute zero), the wave-
function of the BEC system can be modeled by the NLS equation which therefore
enables solitonic solutions. In experimental results, these solitons can be distin-
guished as “bright” and “dark” solitons (Becker et al, 2008). Unlike the regular
“bright” solitons shown in Figure 3, “dark” solitons are stable dips in intensity as
shown below.

These experimental results not only confirm the prediction of solitons in the NLS
equation but also open paths for further research between the nonlinearity and
dispersion of these quantum systems.
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Figure 4: Propogation of dark solitons in the BEC. (Taken from Figure 2 in
Becker et al, 2008)

6 Conclusion

We have derived solutions for the KdV equation and the nonlinear Schrödinger’s
equation and showed that solitonic solutions exist for specific initial conditions.
The mathematical framework, particularly the concept of inverse scattering trans-
form, provides insights into the solutions of these equations. Additionally, solitons
arise from the balance between the dispersion term and the non-linear term that
holds the wave together. We also plotted the one-soliton and two-soliton solutions
that arise from the KdV equation and showed that because of the nonlinearity,
the collision of the two solitons does not result in superposition. On the contrary,
they seem to collide and return back to their original shape, thus illustrating their
stability.

Beyond applications in hydrodynamics, quantum, and matter physics, solitons
have paved the way for breakthroughs in optical fiber communications. Due to
their stability, they can travel long distances without dispersing and losing valuable
information, thus making them a intriguing topic of research. Beyond practical
uses, solitons continue to be valuable in abstract and mathematical areas such as
quantum chromodynamics, where they are theorized to play an important role in
the understanding of the strong force.
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Appendix

Listing 1: Inverse Scattering Transform Methodology

The inverse scattering transform begins with a transformation of u called a Miura
transformation (initially found by R. Miura, 1968) (Gardner, C.S., Greene, J.M.,
Kruskal, M.D. and Miura, R.M. (1967) Method for Solving Korteweg-Devries
Equation. Physical Review Letters, 19, 1095-1097.).

The transformation is: u = λ − v2 − vx for a constant λ. If v satisfies vt +
6(−v2)vx + vxxx = 0, then the u given by the transformation is a solution to the
KdV equation. This method works by reversing this implication, that is to say: if
there is a known solution u to the KdV equation, then it can be used to solve for
v given the equation of the transformation. Letting v = x, the problem becomes
one of solving:

Ψxx + uΨ = λΨ

This equation is also known as the time-independent Schrödinger equation for
the Sturm-Liouville problem. Taking a brief historical detour, at the time of
the research being conducted, interest was peaked in such equations. This is
the quantum mechanical equation for a particle in a potential of -u. A lot of
research had gone into the Schrödinger equation, and much was known about
their solutions. Thus, it is a pleasant surprise that this equation can allow us to
find soliton solutions.

Overview and Remarks: The inverse scattering transform has 3 main steps.
Each are quite lengthy so a summary of the important results of each step is
provided along with a description of the methodology. The ultimate goal is to
construct time-dependent solutions. For further reading of the underlying math-
ematical machinery see (Abel, S. 2006 Pages 77-106)

Step 1 - Disassembly: Begin with initial data u(x, 0) playing the role of the
potential. This yields a different eigenfunction Ψ for each λ. Each eigenfunction
describes the scattering of a particle off the potential. This description is given
through the asymptotic values of Ψ at x → ±∞, which is contained in transmission
and reflection coefficients. These coefficients make up what is known as initial
scattering data. To illustrate, recall that a fourier transform of u(x, t) is given by:

û(k, t) =

∫ ∞

−∞
u(x, t)e−ikxdx

In the scattering data, λ is analogous to k in the Fourier transform, and the
transform itself has been replaced with determining the components of v from u.

Step 2 - Time Evolution: A very nice feature of the KdV equation simplifies
this step greatly is the following: for any u which satisfies the KdV equation,
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λ is time-independent and thus constant in the realm of time evolutions of the
scattering data. Therefore, all that needs to be done is to evolve the scattering
data.

Step 3 - Inverse Scattering: As the name suggests, the last step requires the
reassembly of u(x, t) at t. It is already known that this is possible for the Sturm
Liouville equation.
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Listing 2: Non-Linear Schrödinger Equation Solution Derivation

As described in section 2.3.1, we look for solutions of the form

Ψ = Φ(x, t)eiθ(x,t) (8)

Where Φ and θ are real functions.

Substituting (8) into (3) and seperating the real and imaginary parts leads to the
following system of equations:

−Φθt + PΦxx − PΦθ2x +QΦ3 = 0 (9)

Φt + 2PΦxθx + PΦθxx = 0 (10)

We look for solutions in which both the carrier wave θ and the envelope Φ are
permanent profile solutions with different propagation velocities up for θ and ue

for Φ.

Φ(x, t) = Φ(x− uet) (11)

θ(x, t) = θ(x− upt) (12)

Substituting these 2 relations into (9) and (10) gives:

upΦθx + PΦxx − PΦθ2x +QΦ3 = 0 (13)

−ueΦx + 2PΦxθx + PΦθxx = 0 (14)

Multiplying (14) by Φ and integrating gives:

−ueΦ
2

2
+ PΦ2θx = C

For spatially localized solutions, we assume that Φ and Φx tend to zero as |x| → ∞.
Therefore C = 0.

PΦ2θx =
ueΦ

2

2
(15)

Isolating for θx gives:

θx =
ue

2P
(16)

Integrating gives:

θ =
ue

2P
(x− upt) (17)

Substituting (17) into (13) and multiplying by PΦx gives:

ueup

2P
PΦΦx + P 2ΦxΦxx −

u2
e

4P
PΦΦx + PQΦ3Φx = 0

Integrating the above equation gives:

P 2

2
Φ2

x + Veff(Φ) = 0 (18)
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Figure 5: Pseudopotential Plot

where

Veff(Φ) =
PQ

4
Φ4 − (u2

e − 2ueup)

8
Φ2

As Φ is a real number, Φ2
x ≥ 0, so (18) implies that Veff ≤ 0 for all Φ values which

correspond to a solution.

Figure 5 shows the plot of the pseudo-potential for positive and negative values
of PQ. For positive values of PQ, the plot shows a bell-shaped curve with Φ
bounded between two intervals. The motion stars at Φ = 0, reaches Φ = Φ0 where

Φ0 =

√
(u2

e − 2ueup)

2PQ

and then comes back to the starting point. On the other hand, for negative values
of PQ, there are no such bounds. Therefore, this potential shows that the NLS
equation can only have localized soliton-like solutions if PQ > 0.

Integrating (18) using the change of variable Φ = Φ0 sech(v) gives:

Ψ = Φ0 sech

[√
Q

2P
Φ0(x− uet) + arcsech

(
Φ(0, 0

Φ0

)]
(19)
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Listing 3: Python Code Used to Generate Figure 1

import numpy as np
import matp lo t l i b . pyplot as p l t
t1 = −1.0
t2 = 0
t3 = 1 .0
x = np . l i n s p a c e ( −10 ,10 ,1000)
y1 = 2∗ 1/(np . cosh (x−4∗t1 ))∗∗2
y2 = 2∗1/(np . cosh (x−4∗t2 ))∗∗2
y3 = 2∗1/(np . cosh (x−4∗t3 ))∗∗2

f i g , ax = p l t . subp lo t s ( )
p l t . p l o t (x , y1 , l a b e l = ’ $t  = −1.0$ ’ )
p l t . p l o t (x , y2 , l a b e l = ’ $t  = 0$ ’ )
p l t . p l o t (x , y3 , l a b e l = ’ $t  = 1 .0 $ ’ )

p l t . x l a b e l ( ”$x$” )
p l t . y l a b e l ( ”$u (x , t ) $” )

l e g = ax . legend ( ) ;

p l t . s a v e f i g ( ’ S i n g l e S o l i t o n S o l . eps ’ , format=’ eps ’ )

Listing 4: Python Code Used to Generate Figure 2

import numpy as np
import matp lo t l i b . pyplot as p l t

t = [ −0 .5 , −0 .25 , −0 .1 , −0 .05 ,0 ,0 . 05 ,0 . 1 , 0 . 25 ,0 . 5 ]
x = np . l i n s p a c e ( −10 ,10 ,1000)
y= [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]
for i in range ( 9 ) :

y [ i ] = 12∗(3+4∗np . cosh (2∗x−8∗t [ i ])+np . cosh (4∗x−64∗ t [ i ] ) ) /
(3∗np . cosh (x−28∗ t [ i ] ) + np . cosh (3∗x−36∗ t [ i ] ) )∗∗2

f i g , ax = p l t . subp lo t s (3 , 3 , f i g s i z e =(10 ,10))
count=0
for i in range ( 3 ) :

for j in range ( 3 ) :
ax [ i , j ] . p l o t (x , y [ count ] )
ax [ i , j ] . s e t t i t l e ( ’ $t=$ ’ + str ( t [ count ] ) )
ax [ i , j ] . s e t x l a b e l ( ”$x$” )
ax [ i , j ] . s e t y l a b e l ( ”$u$” )
count+= 1

f i g . t i g h t l a y o u t ( pad=1)
p l t . show ( )
f i g . s a v e f i g ( ’ Two Sol iton Prop . eps ’ , format=’ eps ’ )
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Listing 5: Python Code Used to Generate Figure 5

import matp lo t l i b . pyplot as p l t
import numpy as np
v = np . l i n s p a c e ( −5 ,5 ,50)
y1 = 1/4∗v∗∗4 − 4∗v∗∗2
y2 = −1/4∗v∗∗4 − 4∗v∗∗2
p l t . subplot ( 1 , 2 , 1 )
p l t . p l o t (v , y1 )
p l t . x l a b e l ( ”$\phi$ ” )
p l t . y l a b e l ( ” $V ef f$ ” )
p l t . t i t l e ( ”PQ>0” )
p l t . subplot ( 1 , 2 , 2 )
p l t . x l a b e l ( ”$\phi$ ” )
p l t . y l a b e l ( ” $V ef f$ ” )
p l t . p l o t (v , y2 )
p l t . t i t l e ( ”PQ<0” )
p l t . t i g h t l a y o u t ( pad=1)

p l t . s a v e f i g ( ’ P o t e n t i a l . eps ’ , format=’ eps ’ )
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