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Abstract. Artificial neural networks are algorithms which have been devel-
oped to tackle a range of computational problems. These range from modelling
brain function to making predictions of time-dependent phenomena to solving
hard (NP-complete) problems. In this introduction we describe a single, yet
very important, type of network known as a feedforward network. This network
is a mathematical model which can be trained to learn an arbitrarily complex
relationship between a data and a parameter domain, so can be used to solve
interpolation and classification problems. We discuss the structure, training
and interpretation of these networks, and their implementation, taking the
classification of stellar spectra as an example.
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1. Biological neural networks

Artificial neural networks were originally introduced as very simplified models of brain
function, so it is initially instructive to consider the broad analogies between artificial
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neural networks and biological ones. Of course, the latter are considerably more complex,
and many artificial neural network models today bear very little resemblance to biological
ones. For a history of the development of artificial neural networks, see, for example, the
introduction of Hertz, Krogh and Palmer (1991).

The human brain consists of billions of interconnected neurons. These are cells which
have specialized membranes which allow the transmission of signals to neighbouring
neurons. Fig. 1 shows the structure of a neuron. A single azon extends from the basic cell
body. This is the output from the neuron, and typically divides into many sub-branches
before terminating at a synapse. Electrical pulses are transmitted along the axon to the
synapses by the transfer of Nat ions. The arrival of a voltage pulse stimulates the release
of neurotransmitting chemicals across the synaptic cleft towards the postsynaptic cell,
which is the receiving part of the next neuron. This postsynaptic cell passes the signal
via the dendrite to the main part of the neuron body. The inputs from the different
dendrites are then combined to produce an output signal which is passed along the axon,
and so the process continues. However, a signal is only produced in the axon if there
are enough inputs of sufficient strength to overcome some threshold value, and then the
output 1s some nonlinear function of the input stimuli.

nucleus

dendrites

dendrite to
next neuron

axon from )
synaptic postsynaptic cell

previous neuron cleft (leading to dendrite)

Figure 1. Structure of a single neuron in the brain. Information is passed into the neuron from other
neurons via the dendrites to the left. Given appropriate input stimuli, the cell sends an output signal

along the axon to the synapses, where the signal is transmitted to other neurons.

The human brain consists of about 10'! neurons, and each neuron has between a
few and a few thousand synapses on its dendrites, giving a total of about 10 synapses
(connections) in the brain. The ‘strength’ of the synaptic connection between neurons
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can be chemically altered by the brain in response to favourable and unfavourable stimuli,
in such a way as to adapt the organism to function optimally within its environment.
The synapses are therefore believed to be the key to learning in biological systems.

2. Artificial neural networks

“Artificial neural networks” is a relatively loose term referring to mathematical models
which have some kind of distributed architecture, that is, consist of processing nodes
(analogous to neurons) with multiple connections (analogous to dendrites and axons).
These connections generally have adaptable parameters which modify the signals which
pass along them. There are numerous types of artificial neural networks for address-
ing many different types of problems, such as modelling memory, performing pattern
recognition, and predicting the evolution of dynamical systems. Most networks therefore
perform some kind of data modelling, and they may be split into two broad classes:
supervised and unsupervised. The former refers to networks which attempt to learn the
relationship between a data and a parameter domain, while the latter refers to networks
used to find “natural” groupings with a data set independently of external constraints.
What they have in common is the idea of learning about a problem through relation-
ships intrinsically present in data, rather that through a set of predetermined rules. An
introduction to several types of neural networks (but by no means all) is given by Hertz,
Krogh and Palmer (1991). A less mathematical overview is provided by Beale & Jackson
(1990).

In this article we introduce what is one of the most important types of supervised
neural networks, called a feedforward multilayer perceptron. The term perceptron is his-
torical, and refers to the function performed by the nodes. Feedforward means that there
1s a definite input and output, and a flow of data in one direction. This is in contrast to
recurrent neural networks in which data flows in a loop: these are important when time
plays a relevant role in the problem (see, e.g., Bailer-Jones 1998a). A comprehensive
treatment of feedforward networks is provided by Bishop (1996), where more details on
many of the themes discussed below can be found.

Fig. 2 shows a feedforward neural network with several inputs, two hidden layers,
and several outputs. Each node in the input layer holds a value, #;. In our example
application, the input vector, (x1,®2,...,2;,...), is a stellar spectrum, and the output
vector, (Y1,Ya, .-, Yi,--.), 1S a set of stellar parameters, e.g. Tegr, log g and [M/H]. Each
of the input nodes connects to every node in the next layer of nodes, the first ‘hidden’
layer, and each of these connections has a weight, w; ;, associated with it. A node in
the hidden layer forms a weighted sum of its inputs, and passes this through a nonlinear
transfer function, such that the output from the jt* hidden node is

p; = tanh (Z wuxi) . (1)

These values are passed to a second hidden layer which performs a similar processing,
the output from that layer being the vector q
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Figure 2. Feedforward artificial neural network architecture. This particular example shows two hidden
layers. Not explicitly shown are the bias nodes: each layer has an extra node that holds a constant value
(and has no inputs) and provides an offset to the subsequent layers. These are necessary for the network

to model functions properly.

qr = tanh Z Wj kPj . (2)
J

The output layer then performs a simple sum of its inputs, so that the network output,
y, is

Y= Zwk,IQk . (3)
k

The tanh function in the hidden layers provides the nonlinear capability of the network.
Other nonlinear functions are possible; the sigmoidal function (1/(1 — exp[— > wz])) is
often used. Both functions map an infinite possible input range onto a finite output
range, —1 to +1 in the case of tanh. This imitates the transfer function of neurons.
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3. Network training

The weights, w, appearing in equations 1-3 are the free parameters of the network.
Clearly, in order for the network to yield appropriate outputs for given inputs, the weights
must be set to suitable values. This is done by training the network on a set of input
vectors for which the ideal outputs (or targets) are already known. This is supervised
learning. The idea is that the network will encapsulate the relationship between, in our
example, a wide range of types of stellar spectra and their associated physical parameters.
The network does not come up with a new classification system, but rather will interpolate
the training data to give a generalization of the relationship between spectra and their
classifications. We can then use this trained network to obtain reliable classifications for
unclassified spectra.

Supervised learning proceeds by minimizing an error function with respect to all of
the network weights. The error function typically used is the sum-of-squares error, which
for a single input vector, n, is

n 1 n n
el }=§;myf Pty (4)

where T is the target output value for the I*? output node. The §; terms allow us to assign
different weights to different outputs, and thereby give more priority to determining
certain outputs correctly.

The most popular method for training the network is with the backpropagation algo-
rithm (Rumelhart, Hinton and Williams 1986a,b), in which we determine the gradient
of the error function with respect to each of the weights in the network. The network is
first initialized by setting the weights to small random values. We then pass one of the
training vectors (spectra) through the network and evaluate the outputs, y, as well as
all the intermediate node values in the network (the vectors p and q). Differentiating
equation 4 with respect to a weight, wy ;, in the final weights layer and substituting for
y; from equation 3 gives

Oc =Gy —T1)ar (5)

Owy

where we have used the fact that the weights are causally independent of one another and
of the node values. (We have dropped the n superscript to make things less crowded.)
We can determine the gradient of e with respect to a weight, w; ¢, in the previous weights
layer in the same way, but now ¢, is a function of w; ,

0 0
Z/Bl v —T1) 8ylk_8qu Zﬁl w—Twe, - (6)
wy, gk

8w]’

The remaining partial derivative can then be evaluated from equation 2. Thus we see
that the error gradient with respect to any weight in the network can be evaluated by
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propagating the error dependency back through the network to that weight. This can be
continued for any number of layers, up to the input layer, giving us the complete error
gradient vector, de/Ow, where w is the set of all network weights.

Having evaluated the error gradient vector, there are a number of ways in which it
can be used to train the network. The most common is the gradient descent process, in
which we adjust the weight vector in the direction of the negative of the gradient vector,
le.

Oe
Aw = —Hye (7)
The factor u determines how large a step is made, and typically has a value between 0.1
and 1.0. The gradient is then recalculated using the new values of the weights, and over
many iterations the weights should move towards a value which represents a small value
of the error, e. For training to strictly converge (i.e. reach an exact minimum), p would
have to decrease to zero during training, although in practice a sufficiently small error
can often be achieved without this.

Of course, we are generally interested in getting the network to generalize its input—
output mapping for a range of types of objects (e.g. different classes of stars), so we
must correspondingly use a range of objects which are representative of the problem.
We therefore apply the above training algorithm successively to each vector in a training
sample. We may either update the weights after each vector is passed, or we can keep
the weights fixed and update only after the errors have been calculated for all vectors in
the training set. In this latter case, known as batch training, we update using the the
average error,

n=N
1
- {n}
E= v nil e , (8)

and the corresponding average error gradient vector.

The network training is a nonlinear minimization process in W dimensions, where
W is the number of weights in the network. As W is typically large, this can lead
to various complications. One of the most important is the problem of local minima.
Clearly, training using the gradient descent technique will stop upon reaching the bottom
of a minimum, but this may only be a local minimum, not the global minimum, and
may correspond to a much larger error. To help avoid local minima, a momentum
term is sometimes added to the weight update equation 7, in which a fraction, v, of
the previous weight update is added to the current one. This provides some ability
to “escape” from small local minima: the larger is v the larger are the minima which
can be ignored, although possible at the expense of slower convergence. A brute force
approach to avoiding local minima is to retrain the network several times from different
initial random weights, and see whether each case converges to the same solution. If the
majority do, this could be taken as the best solution. Alternatively, we could use all
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of these networks together in a committee, in which the outputs from the networks are
averaged.

A common difficulty is knowing when to stop training, as true convergence in all but
very simple (or fortuitous) cases is rarely achieved. Without searching the entire weights
space, it is generally impossible to know whether the minimum reached is the global one
or just a local one, and if local, how much better the global minimum is. Furthermore,
the minimum may have a long, almost horizontal bottom (thinking analogously in three
dimensions), so it will often be necessary to terminate training when the gradient falls
below some small value. Setting the convergence gradient too small will slow convergence;
too large and the search may terminate prematurely.

Fig. 3 shows several examples of how the error in equation 8 changes during training.
The dotted line shows the error on the actual training data. However, we really want
to test whether the network has generalized its mapping, rather than “memorized” the
specific training data. The solid line therefore shows the error evaluated on a separate
test data set, which is not used to modify the weights. Under certain circumstances it is
possible for the network to fit the noise in the training set, in which case it is said to have
overtrained. This can be seen in Fig. 3c, where the error on the test data starts to rise at
some point, although the error on the training data continues to fall. Frequently, both
errors continue to drop monotonically until levelling out (Fig. 3a), which is desirable. (A
difference in the errors finally achieved may reflect differences in the training and test
data sets.) Fig. 3b shows an example of where the error on the test data rises briefly, and
then drops: we should not, therefore, cease training at the first sign of a rising test error.
In certain cases the error can be very noisy (Fig. 3d), oscillating around a minimum
value, probably due to p in equation 7 being held constant. Anecdotal evidence suggests
that this is more likely to occur when multiple outputs are used, although it depends on
the minimization algorithm used.

Gradient descent only uses knowledge of the local gradient, which will not, in general,
point towards the global minimum, thus requiring many steps to reach this minimum.
Numerous other optimization techniques exist to overcome this problem. One is the
method of conjugate gradients, in which a more efficient gradient is defined using the
second order derivatives (albeit implicitly) of the error with respect to the weights. Sev-
eral other methods make direct use of the second derivatives (or Hessian matrix) to
obtain more rapid convergence. We refer the interested reader to any number of books
on optimization techniques for further details.

The mapping produced by a neural network is an interpolation of the training data.
Whenever data are interpolated, there needs to be some kind of complexity control to
prevent overfitting the data. For example, if we imagine fitting a curve through five noisy
data points in a two-dimensional space, then — unless the data are co-linear — a fourth
order polynomial model will give a better fit (a perfect one in fact) than a straight line.
This is unlikely to be appropriate, though, as the data contain noise. Hence there is a
trade off between obtaining a good fit and not fitting the noise, and a compromise can
be achieved through the use of a regularization technique. A very basic approach is to
split the training sample into two parts, and during training on one half, monitor the
total error on the other half. As seen in Fig. 3, the test error may start to rise after some
number of iterations, indicating that the network has begun to fit the noise (or overfit
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Figure 3. Examples of the evolution of the network error during training. The dotted (solid) line is
the error evaluated on the training (test) data (except in case D where the lower error is for the training
data). (A),(B) and (C) are for networks with a single continuous output. (D) is for a 50:5:5:3 network
with probabilistic outputs. All cases used gradient descent with constant 1 and v terms. See Bailer-Jones
(1996) for more details.

the data). Training could then be stopped just before the error starts to rise. However,
experience shows that in some cases the training error never rises, even after a very large
number of iterations have occurred and a small error has been achieved.

Another approach to regularization is weight decay. A high order fit to data is char-
acterized by large curvature of the mapping function, which in turn corresponds to large
weights. We can penalise large weights by adding the following term to the training error
in equation 8

Q%Zw? , (9)

where the sum is over all weights in the network and « is some constant.

Many neural network applications in astronomy have used gradient descent for train-
ing, to the extent that some people think gradient descent and neural networks to be
synonymous. This is not the case: the feedforward neural network is a general means
of representing a nonlinear relationship between two domains, with the feature that the
error gradient is easily calculable in terms of the free parameters (the weights) of the
model. What optimization technique is then used to determine the best solution for the
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weights is really a separate issue. Gradient descent is often used because it is easy to
code, but it may not be the best choice.

4. A Bayesian perspective

A rather different approach to interpolating data with a feedforward network is provided
within a Bayesian probabilistic framework. If we go back to first principles, then we
see that the problem we are trying to answer with the neural network is fundamentally
probabilistic: Given the set of training data, D, and some background assumptions, H,
what is the most probable output vector, y*, for some given input vector, x (not in
D)? When phrased this way, we see that we are not really interested in the network
weights, and, moreover, an “optimal” set of network weights is not actually required.
For example, if we have trained a network and found a good mapping, we may retrain
it and find a different set of weights which give a mapping which is almost as good.
Thus, while a given input will yield much the same output as before, the weights may
be very different. In the optimization approach we ignore all but one solution (except
when using committees), whereas in a Bayesian approach we combine all such solutions
by the process of marginalization. Specifically, if the output of the network with weights
w and input x is written y(x, w), then

v :/y(x,w)P(w|D,H)dw . (10)

In other words, we weight each possible output by the probability, P(w|D, H), that the
training data would produce those weights. This posterior probability for the weights is
given by Bayes’ Theorem

P(w|D,H) < P(D|w,H)P(w|H) . (11)

The first term on the right hand side of this equation is the likelithood. Tt is the probability
that a network with a given set of weights produces the targets in the training data, D,
when the inputs from these data are fed in. If we assume a Gaussian error model for the
discrepancies between outputs and targets, this is just

P(D|w,H) xexp—F |, (12)

where F is the sum of squares error from equations 8 and 4. The other term in equation
11 is the prior probability over the weights, and represents our prior belief of what the
weights should be. In this Bayesian framework, the weight decay regularizer mentioned
earlier (equation 9) is naturally incorporated into this prior.

From equations 11 and 12 we can evaluate all of the terms under the integral in
equation 10. However, this integral must usually be evaluated numerically with Monte
Carlo methods. This involves replacing the integral with a summation over y(x, w) for
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a large number of values of w drawn from the distribution P(w|D, H). In this Bayesian
approach, the optimization of the weights is replaced with the integration over all possible
weight values, so no “optimum” weight vector is (or has to be) calculated. While this
approach 1s theoretically more satisfying than an optimization, it is time consuming, as
the marginalization must be carried out for each new input vector we wish to classify.
Partly for this reason there exists an approximation to this approach which, although
still within the Bayesian framework, returns the problem to one of optimization. There
are several advantages to the Bayesian approach, such as automatic complexity control
(avoidance of overfitting) and a natural way for determining the uncertainty in each
network output. More on the Bayesian approach for feedforward neural networks can be
found in (MacKay 1995). For a general introduction to Bayesian methods, Sivia (1996)
is recommended.

5. Implementation issues

Now that the basic principles of neural networks have been laid out, it is necessary to
ask how they are used in practice to solve a problem. We illustrate this with the problem
of stellar spectral classification.

5.1. Training and testing data

The first thing which must be specified is the training data set, consisting of spectra
preclassified on the classification system of interest. It must be emphasized that the
network cannot be more accurate than these preclassifications, so considerable effort
must often be spent in assembling the training data. We must also ensure that the
examples in the training data set cover the full range of types to which we will want
to apply the trained network: We cannot expect a network trained only on B stars to
classify M stars well, as the characteristic features of M stars are not present in B star
spectra. Conversely, we do expect a network trained only on early and late B stars to
classify mid-B stars well, as B stars all have qualitatively similar spectra.

Once a network has been trained, we want to evaluate its performance, and this must
be done using a separate data set. As mentioned earlier, it is possible for a network to fit
the noise and thus memorize the specific training data set rather then generalize from it.
This can be a particular problem if the data are noisy or if the network 1s very complex
(i.e. has many hidden nodes so is flexible to model many nonlinearities). We can test for
this by training the network on only a subset of the available data and then evaluating
it on the rest, ensuring that the two data subsets have similar distributions of objects.

5.2. Form of the inputs

The input to the network is some measured feature vector. In the case of stellar classi-
fication this will be a spectrum or a list of fluxes through various filters, or both. We
could also input other measurements we believe to be relevant, such as the parallax or
interstellar extinction. The inputs need not be contiguous or in any particular order. A
stellar spectrum typically contains a large amount of redundant information (from the
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point of view of general classification), so using the entire spectrum as the input may
not be necessary. If we can reduce the number of input nodes, we reduce the number
of weights and hence the dimensionality of the mapping function. This results in faster
training, and may reduce the chance of getting stuck in local minima. It also increases
the data/weights ratio (see section 5.5) and density of the data, thus providing a more
reliable mapping. There are a number of approaches to dimensionality reduction. The
simplest is to remove any inputs which we know, or suspect, to have little or no influence
on the problem in hand. A more sophisticated approach is with Principal Component
Analysis (PCA), which finds the most discriminatory linear combinations of the inputs.
By removing the less significant principal components, we can compress the data with
negligible loss of discriminatory information, and filter out some noise too. PCA is
discussed in the article by Singh, Bailer-Jones & Gupta in these proceedings.

5.3. Output modes

The output vector is the set of classifications. For example, we may have one output for
MK spectral type (SpT) and another for luminosity class (LC). We could alternatively
use separate networks for each parameter. As the network outputs are real numbers,
these classes are represented on a continuous scale. Thus the network will be able to
produce intermediate classes. This 1s useful for the spectral type parameter, as spectral
types are simply points on what is really a continuous scale (closely related to effective
temperature). We refer to this way of representing the outputs as continuous mode.
Luminosity classes, on the other hand, have more claim to being discrete, for which we
may want to use the network in probabilistic mode, whereby each class is represented by
a separate output. By confining each output to the range 0-1 (e.g. by replacing equation
3 with the function 0.5 x [1 4 tanh]), we can interpret the output as the probability that
the input is of that class. For a five class problem, the target vector for an object in
class 2 would be (0, 1,0,0,0). When we apply the trained network to new data, we would
assign the class with the largest probability, although if that probability is below some
threshold, or not much larger than the probability of some other class, then we may
prefer to label this object as uncertain.

Clearly, the probabilistic mode offers more information than the continuous one. For
example, if the input is a composite of two classes (e.g. two stars of different brightnesses),
we can represent both in the target vector (e.g. 0,0.25,0,0.75,0). Thus if the network
thinks an input is composite, it can (in principle at least) tell us this. The only way we
could model binary star spectra in continuous mode is to have two spectral type outputs,
although then we also need some means of knowing when the input spectrum is just
a single star. See Weaver (2000) for an attempt to classify binary spectra with neural
networks. A disadvantage of the probabilistic mode is that it may result in many more
network weights that a network in continuous mode.

5.4. How many hidden nodes and layers are required?

Deciding upon the appropriate number of hidden nodes and layers is largely a matter of
experience. With many problems, sufficient accuracy can be obtained with one or two
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hidden layers and 5-10 hidden nodes in those layers. There is a theorem which states that
a network with one hidden layer can approximate any continuous function to arbitrary
accuracy, provided it has a sufficient number of hidden nodes (Hornick, Stinchcombe and
White 1990). In practice, such a large number of nodes may be required that it is more
efficient to go to a second hidden layer. This can be seen in the work of Bailer-Jones et
al. (1998b). Fig. 4 shows how the error in determining the spectral type (in continuous
mode) varies as a function of the number of hidden nodes in a network with just one
hidden layer. The error is already reasonably small for a network with just one hidden
node, which is equivalent to a network with no hidden layer. Adding a few hidden nodes
improves the error, but once there are 5-10 nodes, the error does not decrease further.
However, if we add a second hidden layer, then a network with 5 nodes in each of these
layers produces a ogg error of 0.85 SpT, a statistically significant improvement. A similar
improvement using a second hidden layer was seen again in a related (but more complex)
problem (Bailer-Jones 2000).

External error / SpT

P TS R
0 10 20 30 40 50
Number of hidden nodes, q

0.5 PRI S R S S|

Figure 4. Variation of the network classification error as a function of the number of hidden nodes,
g. The solid line is for ogs and the dotted line for o rpsg; they represent the core and outliers of the
error distribution respectively (see Bailer-Jones et al. 1998b). The network architecture is 50::1 with a
continuous spectral type output. The error bars are 3 x §, where § is the standard deviation in ogg due

to a finite sample size. The mean RMS error in the target classifications themselves is 0.65 SpT.

5.5. Ensuring a well-determined network solution

An important consideration in setting up the network is the ratio of data to weights. If
we train a network with one output using N training vectors, we have a total of N error
measurements with which to determine the W weights. Thus we have a system of N
equations with W unknowns, and, if the weights and training vectors are independent of
each other, we require N > W to find a solution. With fewer data the solution for the
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weights will be underdetermined. Thus a 10:5:5:1 network (indicating 10 inputs, 5 nodes
in each of two hidden layers, and one output) has 91 weights (including the bias nodes),
so will require at least as many training examples. The data/weight ratio estimation is
more complex with multiple outputs (especially if they are correlated, as will be the case
in probabilistic mode), but if there are two independent outputs, then the number of
error measures is 2N .

In practice, this “overdetermination” requirement may not be so strict. For example,
Gulati et al. (1994) used only 55 training examples to train a 161:64:64:55 probabilistic
network. This network has about 18,000 free parameters (each output is parametrized by
about 15,000 weights), yet only of order 55 error measures were available to determine
them. In spite of this, a reasonably small error on a test data set was obtained. We
suspect that many weights were essentially not trained, and, by staying at their small
initial values, played no role in the network. Additionally, correlations between the inputs
(flux bins of stellar spectra) could result in correlated weights in the input—hidden layer.
Both of these reduce the effective number of free parameters. Other cases of apparently
good results with formally underdetermined weights appear in the literature, implying
that correlated or unused weights are not uncommon. Nonetheless, in many of these
cases simpler networks could probably have been used without loss of accuracy.

6. Example Applications

The paper by Gupta et al. in these proceedings gives an application of a 93:16:16:17
network to classify 2000 bright sources from IRAS LRS spectra.

Fig. 5 shows the performance of a committee of ten 50:5:1 networks applied to the
spectral classification problem, trained using gradient descent. It shows the correlation
between the network classifications and the “true” classifications (those from the training
catalogue), and the histogram of the error residuals, for a test data set. There is an even
scatter about the ideal classifications in the left hand plot, except for the hottest (early
type) stars, where the network assigns cooler classes.

A similar plot to that in Fig. 5 is not very useful for a network used in probabilistic
mode when there are only a handful of classes. In such cases it is more useful to look
at the confusion matriz. Examples are shown in Fig. 6 for networks with three outputs,
corresponding to the three luminosity classes III; IV and V. In probabilistic mode, we
can also examine the confidence with which the network classifies objects. An example
is shown in Fig. 7, where we plot the cumulative fraction of objects classified with a
probability greater than some amount. This plot is for the 50:5:5:3 network with the
line+continuum spectra from Fig. 6. Thus while 98.1% of the class V objects were
correctly classified (i.e. a fraction 0.981 were classified with a probability, p > 1/3), only
77.5% have a probability of over 0.90. Part of the reason for this is that a network with
sigmoidal outputs can never produce an output of exactly 0.0 or 1.0, as that requires
very large weights, something which regularization tries to avoid. (See Bailer-Jones 1996
and Bailer-Jones et al. 1998b for more details on these examples.)

7. Understanding the network
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Figure 5. Results from a committee of ten 50:5:1 networks with a single continuous spectral type output.
The left plot shows the correlation between network and catalogue classifications (perfect classifications
would fall on the diagonal line), and the residuals from this are plotted on the right. The spectral types
03 to M9 have been coded by the integers 1 to 57. The summary results are ogg = 1.03 SpT and
ocrms = 1.35 SpT. The internal error of the networks is 0.41 SpT. This is a measure of the average

differences in classifications which members of the committee assign to a given spectrum.

The underlying principle of a neural network is that it learns its input-output mapping
from the relationship intrinsically present in a preclassified data set. Unlike rule-based
classification algorithms, the networks are not explicitly told anything about the relevance
of certain inputs in determining the output. This relevance information is expressed in
the optimized weight vectors, and in principle we can look at the values of the weights
to find out which inputs are significant in determining the outputs. In practice, however,
this may be rather difficult on account of there being more than one hidden node (which is
necessary to get a nonlinear mapping). For example, weights leading from a relevant input
to different nodes in the hidden layer could be both small and large in magnitude. There
is no constraint on the network training to provide easily-interpretable weights, although
such a one may be possible. Furthermore, there may be many minima in the weights
space which have approximately equal errors, and the corresponding “optimal” weight
vectors may give conflicting opinions about the relevance of the inputs. A degeneracy
in the weights is made more likely if there are redundant, or correlated, inputs, which is
often the case with stellar spectra. Ultimately, obtaining both an accurate model of a
complex problem and a good understanding are conflicting demands, as understanding
often requires simplification.

We can nonetheless get some idea of how a network produces its classifications. Fig. 8
shows the correlations between the values on the hidden nodes of a network and the
outputs from that network. Looking at the first hidden layer, we see that no single
node shows a low-scatter, monotonic relationship with spectral type. If one did, then
that alone could be used for spectral type classification and we could dispense with the
network altogether. Generally, the correlations are nonlinear, and with large scatter.
However, node 1 does show linearity over a limited part of the spectral range (SpT =
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25:5:5:3, line+cont. spectra 25:5:5:3, line-only spectra
Network Class Network Class
111 v \ 111 v v
2 1]
< <
o | W 92.0% 2.1% 5.9% o 91.4% 2.7% 5.9%
QJ %)
B IV | 438% 11.4% 44.9% BV | 427% 14.1% 43.2%
= s
5 \% 1.5% 0.8% 97.7% 3 \% 1.6% 1.2% 97.2%
50:5:5:3, line+cont. spectra 50:5:5:3, line-only spectra
Network Class Network Class
111 v v 11T v v
o 92.6% 1.7% 5.8% o I 90.9% 3.4% 5.7%
O) %)
B IV | 443% 9.7% 46.0% B IV | 422% 141% 438%
= =
S| v 1.3% 0.6% 98.1% S| v 2.0% 1.6% 96.4%

Figure 6. Confusion matrices for four different network models differing in the number of PCA inputs
and whether or not the continuum has been subtracted from the spectra. Each matrix lists the percentage
of spectra which have been classified correctly and incorrectly: in the top-left matrix the network classifies
1.5% of spectra which are class V in the catalogue as class ITI, whereas it correctly classifies 97.7% of
class Vs. In all four cases the networks’ do not believe in the existence of luminosity class IV (random

assignments would lead to about 33% in the middle row).

28-42, or FO-KO0). This in interesting, as it means that for classes F and G this node
could serve as the output node and we would get reasonable classifications. Looking back
at equation 1, we see that if we were to re-parametrize the spectral type as tanh™! SpT,
we could classify F and G stars using a simple linear regression on the spectral indices (as
tanh=! is monotonic over the range of interest). Nodes 3-5 also show linear correlations
over small portions of the spectral type range. However, all nodes show either some
insensitivity (due to saturation of the node values) or large scatter in the correlation, for
at least some part of the spectral type range.

When these values are passed to the second hidden layer, the situation is somewhat
different. The correlations are still nonlinear, but there is much less scatter. Furthermore,
node 5 has a low scatter, linear correlation for spectral types earlier than about F3 (SpT
= 30), and node 4 shows a linear correlation for types later than about KO (SpT =
42). Node 2 (or 3) alone could reasonably classify all intermediate types. Thus we see
that there is some localization in the network, with certain nodes taking on the job of
identifying certain ranges of the target variable. There is, of course, no significance in
the numbering of the nodes within a layer, as the nodes could be shuffled with no change
in the final output.
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Figure 7. Confidence of correct network classifications based on network output probability. Each
figure is a cumulative plot of the fraction of spectra which have been classified with a probability > p,
for the luminosity classes I11, IV and V.

8. Summary

We have introduced the basic concepts of feedforward neural networks. Although the type
introduced, the multilayer perceptron, is only one of many types, it is very important as
judged by its wide and numerous applications. We have described the backpropagation
algorithm for training the network, as well as some of the ways in which it can be
implemented to optimize the weights. We also briefly looked at a Bayesian approach to
modelling with a network, which marginalizes over the weights rather than optimizing
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Figure 8. Correlation between the node values and outputs for a network trained to give spectral types
in continuous mode. The column on the left (right) represents the first (second) hidden layer of nodes
in a 50:5:5:1 network. Each point is the node value produced by one input vector in an test data set.
The transfer function in each layer (including the subsequent output layer) is a sigmoid function, which

restricts the node values to the range 0-1.
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them. A number of implementation issues were discussed and example applications were
presented.

Although it is interesting to see how these models were originally inspired by attempts
to model brain behaviour, these artificial neural networks really have very little in com-
mon with biological neural networks, and, in our opinion, are better understood in purely
mathematical terms. Whilst they may be powerful models; there is nothing “mysteri-
ous” about them. They are simply parametrized nonlinear models: the input output
function of a two-hidden layer model is described entirely by equations 1-3. They are no
more a “black box” than is a straight line fit to two-dimensional data. The nonlinearity
and multidimensionality of neural networks are present because real-world problems are
often complex. If we have difficulty understanding how they work, then it is because an
accurate description of real-word problems often requires that we avoid the simplifying
assumptions which typically make easily-understood descriptions only approximate.

We finish by stressing that the purpose of these models is to generalize the relation-
ship between a data domain and a parameter domain which is intrinsically present in a
preclassified data set. They are useful because they can model complex relationships in a
large number of parameters, and generalize this to areas of the input space where training
data are sparse. This has potential applications to large, multiparameter astronomical
surveys (see Bailer-Jones, these proceedings). But the models can only be as good as the
data on which they are trained (although they can be a lot worse if trained badly), so
construction of an accurate and relevant training data set is of fundamental importance.
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