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Abstract

Failure by petalling occurs when thin plates are struck by cylindro-conical projectiles. Similar deformation
mode is produced by a localized explosion on a plate. In either case, high circumferential strains induced in
the target material cause radial cracking and the subsequent rotation of the a!ected plate material resulting
in a number of symmetric petals. A new analytical method of treating this problem is proposed by developing
a simple and realistic velocity and displacement "elds. The progressive tearing is quanti"ed using the CTOD
criterion while bending deformation of cylindrical petals is described by the propagating hinge line with
decreasing local curvature. The above two modes are coupled through the local bent radius of the petal.
Closed form solution is derived for the total energy absorbed by the system, the number of petals, and the
"nal deformed shape of the plate as a function of plate #ow stress, thickness, and parameters of the external
loading. The present solution compares well with experimental results of Nurick and Radford (In: Reddy BD
(editor) Recent developments in computational and applied mechanics. A volume in honour of John B.
Martin. 1997: p. 276}301) and Landkof and Goldsmith (Int J Solids Struct 1993;21:245}66) as well as
empirical equations published in the literature. ( 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Petalling of thin plates is a common failure mode of thin plates subjected to localized high-
intensity loading. A perfect illustration of the physical phenomenon of petalling is provided by the
high speed photograph of a pierced apple, Fig. 1, Wierzbicki and Moussa [1]. Multiple symmetric
petals are formed on both the entrance and exit of the projectile. Note that petals are much longer



Fig. 1. Multiple petals in the apple skin produced by a combination of a piercing projectile and a hydrodynamic pressure
wave.

than required to "t the projectile. It is clear that they are formed as a combined e!ect of impact and
`explosiona. The ogival shape projectile drives an initial hole in the apple's skin. Then the pressure
generated by the shock wave and the cavity inside the apple opens up the apple's outer shell to
a much larger radius.

The above example proves that petalling may occur under both impact and explosive loading.
Indeed, a large volume of research has been generated over the past several decades on the
perforation of thin plates by cylindro-conical projectile [2}5]. In all of the above analyses the
petalling problem was described by the hole enlargement models. Such models are computation-
ally relatively simple. The "rst and only available rigorous analytical treatment of the petalling
problem was due to Landkof and Goldsmith [6], who also performed a thorough experimental
study. Their solution was based on an energy balance in which the energy absorbed by the plate
consists of that due to crack propagation, petal bending, and plate dishing. These fractional
energies were assumed to be independent of each other.

A major contribution of the present paper is a development of a new model in which all of these
three energies are coupled. The tearing fracture energy is related to the bending energy through the
local radial curvature of the petal. In turn, the bending energy is related to the circumferential
curvature of the dish. The new model predicts with great realism the spiral shape of the petal
* a feature observed in most experiments with cylindro-conical projectiles and explosively loaded
plates.
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Fig. 2. Subsequent stages in the formation of a petalling failure of a steel plate subjected to a localized explosive loading.
This is not high speed photography but a picture of "nal deformed shapes with increasing weight of the explosive charge
(after Nurick and Radford, 1997).

Recently, Atkins et al. presented a detailed analysis of petal formation in thin plates impacted by
conical and spherical projectiles [7]. By considering the energy of hoop stretching and radial
cracking the number of potential necks and then radial cracks was evaluated using a relatively
simple analytical expression. Their prediction compares well with test results published earlier in
the literature. The present analysis carries the analysis of the initiation process further into the
propagation stage of radial cracks. It captures the process of curling away the petals from the #at
plate with the associated expenditure of bending energy.

The petalling failure in its purest form can be produced in explosively loaded plates. Fig. 2
illustrates the deformation and failure process of a thin, "rmly clamped circular plate of a radius
R subjected to impulsive loading [8,9]. The explosive material was placed over a central circular
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Fig. 3. Tearing fracture of a plate by a wedge resembles petal formation.

portion of the plate with a radius a"0.25 R. A sequence of the 10 photos show the "nal deformed
shapes of the plate under increasing amounts of explosives. For a small weight G of the explosive
charge dishing of the plate is observed. At G"4.25 g "rst necking occurs and soon after
(G"4.75 g) tensile fracture blows away a small circular plug. With increasing amounts of
explosives radial cracks run outward from the central hole and a set of six to seven petals develop.
At G"10}11 g radial cracks reach the clamped boundary of the plate. At this point the amount of
charge was two and a half times larger than that needed to initiate the initial holing process.
A considerable amount of energy is then dissipated in the petalling process.

The most important element of the present theory is a proper description of the tearing process
of thin metal sheets which, until recently, was lacking. An understanding of this process was gained
quite unexpectedly in the unrelated study of tearing of plates by a wedge performed for the ship
grounding problem [10,11]. As can be seen from Fig. 3, the tear produced in the steady-state
cutting of plates has all the characteristics of fracturing and tearing in the multiple petals formation.

The new theory of tearing fracture is explained "rst followed by application to projectile impact
and explosion.

2. Mechanics of the petalling process

2.1. Geometry and kinematics

Suppose that n radial cracks develop from a point in an in"nite plate dividing it into n symmetric
petals, Fig. 4. The central angle of the petal is denoted by 2h so that

h"
p
n
. (1)

Denoting the instantaneous length of the crack by a, the height of a triangle OAB is

l"a cos h. (2)

Either a or l can be considered as the process parameter.
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Fig. 4. Initial and current geometry of the plate with six radial cracks.

As the radial cracks grow, the line AB sweeps through the material leaving behind a curled
triangular segment of the plate. This curled segment is referred to as the petal. The condition
of kinematic continuity imposes a relation between the velocity of hinge propagation dl/dt"lQ ,
the instantaneous rate of rotation at the hinge / and the instantaneous bent radius o of
the petal

/"

lQ
o

. (3)

According to Eq. (3) the process of curl formation can be considered as winding-up of a triangular
plate segment over a cylinder. It will be shown in the sequel that the rolling radius is an increasing
function of the crack length.

2.2. Bending energy

It is assumed that the material is rigid* perfectly plastic characterized by the average #ow stress
p
0
. In a #at metal sheet the fully plastic bending moment per unit length is M

0
"1

4
p
0
t2 (for the

Tresca yield condition), where t is the plate thickness. A curved element develops a larger bending
resistance M"gM

0
, where the moment ampli"cation factor g depends on the circumferential

curvature of the plate (see Section 3).
The rate of bending energy per one petal is de"ned by

EQ
"
"2M/Q l

AB
, (4)
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where l
AB

"2l tan h. Using Eq. (3), the rate of bending energy is expressed as

EQ
"
"4M

lQ
o

l tan h. (5)

It is seen that EQ
"

is inversely proportional to the so far unknown rolling radius o.

2.3. Tearing and CTOD parameter

Consider a widening gap between two adjacent petals. In a perfectly brittle material the crack
would extend all the way to the intersection point of the axes of two cylinders, Fig. 5. Let x be the
distance along the symmetry line between two petals measured from that point. It follows from the
geometry of the problem that the gap between two neighboring petals (crack width) is given by
the following function

d(x)"
1
3

x3

o2
sin h cos3 h. (6)

The above function is valid for small x so that the bending radius can be locally treated as constant.
In a real-ductile material the ligament will hold up the point when the gap reaches the crack tip

opening displacement parameter (CTOD), d
t
[12]. From Eq. (6) the length of the plastic zone is (see

[10])

x
1
"1.44d~1@3

5
o2@3(sin h)~1@3(cos h)~1. (7)

By considering only circumferential stretching, the membrane rate of energy in the plastic zone
near the crack tip EQ

.
was calculated by Wierzbicki and Thomas, [10]

EQ
.
"2

3
p
0
tx

1
lQ (sin h)~1 (8)

or using Eq. (7) and the de"nition of M
0

EQ
.
"3.84M

0
t~1d1@3

5
o2@3lQ (sin h)~4@3(cos h)~1. (9)

2.4. Total energy and bending radius

The energy dissipated per petal is the sum of bending energy and membrane energy
EQ "EQ

"
#EQ

.
. Thus, the total rate of energy, normalized with respect to M

0
lQ becomes

EQ
M

0
lQ
"4g

l
o

tan h#3.84dM 1@3A
o
t B

2@3
(sin h)~4@3(cos h)~1, (10)

where dM "d
5
/t is the dimensionless CTOD parameter. It can be seen that the bending term is

inversely proportional to the instantaneous bending radius o. At the same time the membrane term
increases with o. It is reasonable to expect that for a given l, the bending radius adjusts itself so as to
minimize the total rate of energy

d(EQ /lQ )
do

"0. (11)
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Fig. 5. Illustration of cylindrical bending of a petal and
plastically deforming zone near the crack tip.

Fig. 6. A minimum petal semi angle h calculated by
two di!erent models.

Indeed, the analytical minimum exists and it is reached at

o
.*/

"1.3g0.6l0.6t0.4dM 0.2(sin h)1.4. (12)

Substituting this expression back in Eq. (10) the normalized rate of energy per petal becomes

EQ
lQM

0

"7.65A
lg
t B

0.4
dM 0.2(sin h)~0.4(cos h)~1. (13)

It is easy to see that the above function attains a minimum for h+303, see Fig. 6. According to
Eq. (1), six petals should be formed. It seems more appropriate to minimize the total rate energy
(per n petals).

The rate of energy per n petals is

A
EQ

lQM
0
B
n

"7.65pA
l
tB

0.4
dM 0.2f (h), (14)

where

f (h)"g0.4[h(sin h)0.4cos h]~1. (15)

Taking g as being independent of h, the function f (h) attains a minimum at h"+503 giving
approximately n"4. Thus, according to the present theory the failure process should produce four
petals. However, because the minimum of the rate of energy is rather weak, a large number, i.e. "ve
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or six petals, can be produced as well. In the experiments discussed by Atkins et al. [7], the number
of experimentally measured petals varied between three and six with four being the most common.

Substituting h"p/4 in Eqs. (12) and (14), the minimum normalized rate of energy becomes

A
EQ

lQM
0
B"49.74A

lg
t B

0.4
dM 0.2 (16)

and

o
.*/

"0.8g0.6l0.6t0.4dM ~0.2. (17)

It can be observed that both of the above expressions depend on the dimensionless CTOD
parameter raised to the power !0.2. For ductile material this parameter is of an order of unity.
For brittle material the present theory does not strictly apply. Introducing dM 0.2

5
+1.0, Eqs. (16) and

(17) can be further simpli"ed to

A
EQ

lQM
"
B
.*/

"49.74A
lg
t B

0.4
(18)

and

o
.*/

"0.8(gl)0.6t0.4. (19)

3. Bending resistance of a dished plate

A fully plastic bending moment at the root of a petal of width 2b depends on the circumferential
curvature of the plate. When petals are formed from a #at plate with zero circumferential curvature,
the bending resistance is given by

M
0
"

1
4

p
0
t22b. (20)

If dishing of the plate occurs before fracture, the bending resistance may be substantially greater.
This is illustrated in Fig. 7a showing an element AB of the actually curved plate. Using a simple
computational model shown in Fig. 7b, the bending moment is

M"M
0
#2p

0
tcb2, (21)

where the angle c is de"ned in Fig. 7a and rh is the circumferential radius of curvature.
The so-called bending ampli"cation factor is

g"
M
M

0

"1#2c
b
t
. (22)

The following geometrical relation holds (see Fig. 6b)

hr"rhc, b"rh. (23)
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Fig. 7. E!ect of circumferential curvature on the bending moment magni"cation factor.

Substituting Eq. (23) into Eq. (22) one gets

g"1#2h2
r2
trh

. (24)

The circumferential curvature of the plate is de"ned as

Kh"
1
rh

"

w@
r

. (25)

It was shown by Wierzbicki et al. [13] that the de#ection of the locally loaded plate is described by
a logarithmic function

w"w
0

ln r
1
/r

ln r
1
/r

1

, (26)

where w
0

is de#ection amplitude and r
1

the reference radius at which the transverse de#ection
vanishes.

Calculating the slope and the maximum slope at r"r
1

w@"
!w

0
ln r

1
/r

1

1
r
, w@D

r/r1
"

!w
0

r
1

ln r
1
/r

1

. (27)
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In order to calculate an upper bound on the amount of dishing, consider a di!erent failure mode
without petalling but with a circumferential crack running along the supported edge r"r

1
. The

fracture will then be caused by a radial strain e
3
. Assuming that the plate fractures when the

maximum radial strain equals to the fracture strain

e
3
"1

2
[w@

.!9
]2"e

&
. (28)

Eqs. (27) and (28) yield

w@"J2e
&

r
1
r

.

Thus, the change of the maximum circumferential curvature with the plate radius is described by
a simple relation

1
rh

"J2e
&

r
1

r2
. (29)

Eliminating rh from Eqs. (24) and (29) gives

g"1#2 J2e
&
h2

r
1
t

. (30)

The moment ampli"cation parameter g is seen to depend on the petal angle h and therefore should
participate in the minimization procedure (see Eqs. (14) and (15)). One would expect that more
petals should be formed with larger bending resistance. However, it was found the function g(h)
does not substantially change the optimum value of h, which is still equal approximately to
h
015

"p/4. With this value Eq. (30) is further simpli"ed to

g"1#1.74 Je
&

r
1
t

. (31)

The local loading radius r
1

should be interpreted di!erently depending on the problem. Because
radial cracks will most certainly appear before the circumferential cracks, the actual value of the
ampli"cation factor will be smaller than that predicted by Eq. (31).

f For impulsively loaded plate r
1

is the outer radius of the explosive disk. For example, taking
after Nurik and Radford [8] r

1
"12.5 mm and t"1.6 mm and e

&
"0.3, one gets g"8.4. In

subsequent calculations, the value g"8 will be taken.
f In the projectile impact problem with a #at or hemi-spherical nose r

1
should be understood as

the radius of the projectile R.
f In the case of a cylindro-conical projectile, the initial radius of the tip of the projectile is zero so

that g"1. This conclusion is con"rmed by Landkof and Goldsmith [6], who found that the
dishing energy is insigni"cant at high projectile velocity above the ballistic limit.
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4. Determination of shape of petals

It is convenient to normalize all linear quantities with respect to the plate thickness

oN "
o
.*/
t

, lM"
l
t

, s6"
s
t

. (32)

Equation (19) is now rewritten as

oN "0.8(glM )0.6. (33)

For the purpose of deriving a closed-form solution, the above function is approximate by a square
root function

oN "0.8JglM . (34)

As mentioned before, the parameter g depends on the circumferential curvature of the plate.
Usually the petalling mode is preceded by dishing of the plate. Therefore, the bending hinges
propagate in a curved rather than #at plate. This problem was analyzed in the preceding section.
From Eq. (31) it transpires that the bending resistance of the dished plate is much larger than that
of a #at plate. For the purpose of comparing the present analysis with Nurick's experiments, it is
assumed that g"8 giving

oN "2 JlM . (35)

Fig. 8 shows the cross-section along the symmetry plane of the petal. The local slope of the curl at
point A(x, z) in the rectangular coordinate system is denoted by a, while l is the total length of the
curl (arc OB). The curvilinear coordinate of the point A, measured from the point O, is denoted by
s. From the de"nition of curvature

l
o
"

da
ds

. (36)

Combining Eq. (35) with lMPs6 and Eq. (36) one gets a di!erential equation.

da
ds6

"

1

2 Js6
(37)

whose solution is

a"Js6#C. (38)

The integration constant is found from the initial condition at s6"lM , a"0, giving

a"!(JlM!Js6 ). (39)

Transforming into the rectangular coordinates

dx"cos a ds"cos(JlM!Js6 ) ds, (40)

dw"sin a ds"!sin(JlM!Js6 ) ds. (41)
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Fig. 8. De"nition of geometrical parameters describing the curling process of petals.

The solution of the above system, satisfying the initial conditions at

s"l, x"0 and w"0

is

x"2[cos(JlM!Js6 )!Js6 sin(JlM!Js6 )!1], (42)

w"2[JlM!sin(JlM!Js6 )!Js6 cos(JlM!Js6 )]. (43)

The above equations de"ne the shape function of the petals in a parametric form with s6 as
a parameter. A plot of the shape for several values of the petal length lM is shown in Fig. 9. A 3-D
view of the set of four and six petals of the length l"5, 10, and 20 t is shown in Fig. 10a and b. This
should be compared with the photograph presented in Figs. 1 and 2. It can be concluded that the
present theory predicts with great realism the process of petalling of thin plates.

5. Application to explosive loading

Consider an explosive material uniformly distributed over the disc of radius r
1
. Denoting by

I the impulse per unit area, the velocity imparted instantaneously to the plate is

<
0
"

I
m
"

I
ot

, (44)
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Fig. 9. A sequence of petal formation with fully plastic tearing fracture.

where o is the mass density of the plate. For small magnitudes of the impulse the plate undergoes
dishing. This problem has been fully analyzed by Suliciu and Wierzbicki [14]. Dishing occurs until
tensile necking and fracture take over at the critical velocity

<
#3
c

"2.83Je
&
, (45)

where e
&
is the uniaxial fracture strain. The detonation blows out a central cap of the radius r

1
. This

occurs at central de#ection w
&

w
&
"2.47r

1
Je

&
. (46)

If the impulse is above the critical value, the remainder of the initial kinetic energy goes into the
petalling process.

1
2

pr2
1
to(<2!<2

#3
)"P

t

t#

EQ dt. (47)

Substituting the expression EQ (Eq. (18)) and integrating, one gets

1
2

pr2
1
t
1
o(<2!<2

#3
)"8.9p

0
g0.6t1.6(l!r

1
)1.4. (48)

The above equation should be solved for the unknown radius of the hole as a function of a given
initial velocity and other known parameters of the process.

Using the de"nition of the speed of plastic #exural wave c2"p
0
/o (see Ref. [14]), Eq. (48) can be

put into

A
<

#3
c B

2

CA
<
<

#3
B
2
!1D"5.2g0.6A

t
r
1
B
0.6

A
l
r
1

!1B
1.4

. (49)
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Fig. 10. (a) A 3-D view of the predicted "nal shape of petals for n"4 and three di!erent values of lM"l/t"5, 10, 15;
(b) A 3-D view of the predicted "nal shape of petals for n"6 and three di!erent values of lM"l/t"5, 10, 15.
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In order to validate the present theory, consider the example reported by Nurick and Radford
[8] and Fig. 2. The following data are given

Plate thickness, t"1.6 mm,
Radius of explosive, r

1
"12.5 mm,

Moment ampli"cation parameter, g"8,
Strain to rupture, e

&
"0.3,

Flow stress, p
0
"330 MPa.

From Eq. (49), one gets

A
l
r
1

!1B
1.4

"0.34CA
<
<

#
B
2
!1D. (50)

Also from tests the critical impulse to blow out the central plot was G
#
"3.5 g. The task is to "nd

the size of the hole at the magnitude of charge G"11 g. This is the largest amount of explosive
used in the reported series of experiments. The amount of impulse imparted to the plate is
proportional to the mass of the explosive

G
G

#

"

I
I
#

"

<
<

#

"

11.0
3.5

"2.4. (51)

Solving Eq. (50) for l/r
1

one gets

l"2.41r
1
"30.12 mm (52)

which gives the cracked radius a"lJ2"42.6 mm.
From the photograph shown in Fig. 2, it is seen that the cracks in the petalling mode have just

reached the outer radius of the plate R"50 mm. The agreement between the theory and
experiments appears to be good.

6. Application to projectile impact

Consider a cylindro-conical projectile, R being a radius of the cylindrical part. As discussed in
Section 3, the moment ampli"cation parameter should be set equal to unity, g"0. In order for the
projectile to penetrate the plate, the radius l of the inscribed circle into an n-side polygon should be
equal to l"R. As seen from Fig. 8, the curved petals have to rotate by the angle b around
a stationary hinge line

tan b"
wH
xH

. (53)

This would increase the energy dissipation by a small amount as follows: The coordinated (wH, xH)
of the mostly intruding point C can be found from the analysis presented in Section 4. The point
C has a vertical slope so that a"!p/2.

T. Wierzbicki / International Journal of Impact Engineering 22 (1999) 935}954 949



Thus from Eq. (39) we "nd Jl!Js"p/2. Substituting this value into Eqs. (42) and (43) one
"nds

xH"2CJl#1!
p
2D ,

wH"2[Jl!1]. (54)

According to Eq. (53)

tan b"
JR!1

JR!0.57
. (55)

Thus, an upper bound for the rotation angle b is p/4. The additional bending energy of n petals
rotating by the angle p/4 over the hinge lines of the length 2R tan h each is

E
1
"

p
h

2R tan hM
0

p
4
+1.23p

0
t2R. (56)

The total energy dissipated in the perforation process is obtained by integrating Eq. (19) in time
and adding the new term

E
505!-

"P
R

0

EQ dl#E
1
"p

0
t2RC1.23#8.9A

R
t B

0.4

D . (57)

For realistic values of the radius-to-thickness ratio R/t'5, the additional energy of bending about
stationary hinge lines E

5
is less than 10% of the total dissipation energy. The principal component

of energy dissipation is thus equal to

E"3.37p
0
t1.6D1.4, (58)

where D"2R is the projectile diameter.
The above expression compares favorably with many empirical formulas developed over the

years by various research groups and critically evaluated by Corbet et al. [15]. In a dozen of
expressions existing in the literature, the thickness parameter being raised to the power m"1.4}1.7
while the diameter being raised to the power 3!m"1.6}1.3. The present solution falls within
those ranges. It should be pointed out that the present paper does not consider the initial phase of
petal formation which was mainly the subject of the recent work by Atkins et al. [7]. Therefore, the
`pointa angle and the `pointa radius of the conical projectile does not enter the solution.

7. Comparison with experiments and conclusions

Landkof and Goldsmith [6] performed a series of tests on perforation of t"3.175 mm thick
2024-0 aluminum plates with D"12.7 mm cylindro-conical projectile of a mass of M"29.5 g.
Measured in experiments were the initial velocity <

*
and "nal (exit) velocity <

&
. The drop in the

kinetic energy of the projectile must be equal to the work done on plastic deformation and fracture

1
2

M[<2
*
!<2

&
]"E. (59)
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The ballistic limit <M
"

is understood as a minimum impact velocity at which perforation occurs,
which occurs at <

&
"0.

1
2

M<2
"
"E. (60)

Eliminating E between the above equation yields

<
&
"J<2

*
!<2

"
. (61)

It is seen that for initial velocities well above the ballistic limit (<
*
'<

"
), the function (61)

approaches the linear asymptote <
&
"<

*
. De"ning the volume of the projectile K by

K"

M
o

(62)

and substituting Eq. (58) for E in Eq. (60), the ballistic limit can be put in a simple form

<
"
"cS

6.75t1.6D1.4

K
. (63)

Using the experimental values, Eq. (63) yields:

<
"
"0.62c,

where

c"S
p
0

o
(64)

is the velocity of propagation of #exural plastic wave in plates. The parameter c depends on the
average #ow stress of the material which in turn depends on the average strain in the deformation
process. Determination of strains and strain histories in the present problem is a separate task. This
task was undertaken in a related problem of shear plugging of plates under #at nose projectile
impact [16]. Here a simpli"ed approach is adopted initially developed by Wierzbicki et al. [17]
where p

0
is calculated from

p
0
"S

p
:
p
6

1#p
. (65)

Here p
:

is the yield stress, p
6

is the ultimate stress, and p is the exponent in the power-type
stress}strain law. The aluminum alloy 2024-0 is characterized by

p
:
"100 MPa,

p
6
"240 MPa,

p"0.2.

With the above values the average #ow stress is calculated to be p
0
"141.4 MPa. The correspond-

ing wave speed becomes c"228.5 m/s. The corresponding ballistic limit is <
"
"130 m/s which is

larger than the experimentally measured ballistic limit of <M
"%91

"90 m/s.
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Fig. 11. Comparison of the predicted and measured terminal velocity as a function of initial projectile velocity.
Experimental points reported by Landkof and Goldsmith (1983), denoted by j.

The value of the ballistic limit predicted by Landkof and Goldsmith [6] was <
"
"70 m/s. Thus

the present theory overpredicts the ballistic limit while Landkof and Goldsmith underpredicted it.
The di!erence is in the treatment of the fracture process. In the present formulation it is assumed
that fracture is preceded by considerable amounts of plastic deformation and necking. Under these
conditions the approximation of the CTOD parameter dM "d

5
/t"1 is correct. Landkof and

Goldsmith on the other hand treated the fracture process in the realm of elastic fracture mechanics.
Following Atkins and Mai [12] the speci"c work of fracture R in tearing is related to the
d
5
parameter by R"J3p

0
d
5
where p

0
+p

6
.

In the above-mentioned experiments on projectile impact fracture properties were not directly
measured. Estimating R"100 kJ/m2 for aluminum, the dimensionless CTOD parameter becomes
dM "0.075.

Now retaining the e!ect of dM in Eq. (16) gives a modi"ed expression for the ballistic limit

<
"
"cS6.75dM 0.2t1.6

D1.4

"
.

Repeating the calculations with dM "0.075 gives an improved predicted value of the ballistic limit
<

"
"100.4 m/s. The agreement with test results is considered to be good. A plot of the entrance
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velocity versus the exit velocity is shown in Fig. 11. It is seen that the experimental points lie right
on the theoretical curve.

It can be concluded that the present theory provides a good qualitative and quantitative
description of the plate damage in the petalling mode. New factors not reported previously in the
literature include:

f prediction of very realistic intermediate and "nal shapes of petals.
f determination of the extent of radial cracks in the local explosion problem.
f calculation of the ballistic limit of cylindro-conical projectiles taking into account the fracture

properties of the material.

The present theory was validated using experimental data on explosion and impact loading
showing consistently good agreement.

Acknowledgements

The author is grateful to Mr. Heung-Soo Kim and Mr. Ji Young Kim for producing a 3-D view
of the petalling failure and to Ms. Sheila McNary for technical preparation of the manuscript. The
"nancial support of the O$ce of Naval Research through Grant No. N00014-98-1-0241 is
gratefully acknowledged.

References

[1] Wierzbicki T, Moussa NA. Deformation and rupture of an aircraft fuel tank under hydraulic ram pressure loading.
Proceedings of the 63rd Shock and Vibration Symposium, Vol. 2, Las Cruces, New Mexico, 1992.

[2] Zaid M, Paul B. Mechanics of high speed projectile perforation. J Franklin Inst 1958;265:317}35.
[3] Taylor GI. The formation of enlargement of circular holes in thin plastic plates. Q J Mech Appl Math 1948.
[4] Paul B, Zaid M. Normal perforation of a thin plate by truncated projectiles. J Franklin Inst 1957;264:117}26.
[5] Johnson W, Chitkara NR, Ibrahim AH, Dasgupta AK. Hole #anging and punching of circular plates with conically

headed cylindrical punches. J Strain Anal 1973;8(3):228}41.
[6] Landkof B, Goldsmith W. Petalling of thin, metallic plates during penetration by cylindro-conical projectiles. Int

J Solids Struct 1993;21:245}66.
[7] Atkins AG, Khan MA, Liu JH. Necking and radial cracking around perforations in thin sheets and normal

incidence. Int J Impact Engr 1998;21(7):521}39.
[8] Nurick GN, Radford AM. Deformation and tearing of clamped circular plates subjected to localised central blast

loads. In: Reddy BD (editor) Recent developments in computational and applied mechanics. A volume in honour of
John B. Martin, 1997: p. 276}301.

[9] Wierzbicki T, Nurick GN. Large deformation of thin plates under localised impulsive loading. Int J Impact Engn
1996;18(6):899}918.

[10] Wierzbicki T, Thomas P. Closed-form solution for wedge cutting force through thin metal sheets. Int J Mech Sci
1993;35(3/4):209}29.

[11] Simonsen BC, Wierzbicki T. Plasticity, fracture and friction in steady-state plate cutting. Int J Impact Engn
1997;19(8):667}91.

[12] Atkins AG, Mai YW. Elastic and plastic fracture. Chichester: Ellis Horwood, 1985 and 1988.

T. Wierzbicki / International Journal of Impact Engineering 22 (1999) 935}954 953



[13] Wierzbicki T, Hoo Fatt M. Deformation and perforation of a circular membrane due to rigid projectile impact.
Proceedings of the Symposium on the Dynamic Response of Structures to High-Energy Excitations, PVP-vol. 225,
112th ASME Winter Annual Meeting, Atlanta, Georgia, 1997. p. 73}84.

[14] Mihailescu-Suliciu M, Wierzbicki T. Wave solution for an impulsively loaded rigid-plastic circular membrane.
Quart J Mech Appl Math, 1999, submitted for publication.

[15] Corbett GG, Reid SR, Johnson W. Impact loading of plates and shells by free-#ying projectiles: a review. Int
J Impact Engn 1996;18(2):141}230.

[16] Wierzbicki T, De la Cruz A, Hoo Fatt MS. Impact and energy absorption of sandwich plates with crushable core.
Impact, Waves and Fracture, AMD-205, New York: ASME. p. 391}411.

[17] Wierzbicki T, Schneider F. Energy equivalent #ow stress in crashworthiness calculations. Impact and Crashworthi-
ness Lab, MIT, Report d15, May 1999.

954 T. Wierzbicki / International Journal of Impact Engineering 22 (1999) 935}954


