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Summary—A closed form solution to the problem, of steady-state wedge cutting through a ductile metal plate is
presented. The considered problem is an idealization of a ship bottom raking process, i.e. a continuous cutting
damage of a ship bottom by a hard knife-like rock in a grounding event. A new kinematic model is proposed for the
strain and displacement fields and it is demonstrated that the analysis is greatly simplified if the strain field is
assumed to be dominated by plastic shear strains and moving hinge lines. Also, it is shown that the present shear
model offers the basis for a convenient extension of the presented plate model to include more structural members as
for example the stiffeners attached to a ship bottom plating. The fracture process is discussed and the model is
formulated partly on the basis of the material fracture toughness. The effect of friction and the reaction force
perpendicular to the direction of motion is derived theoretically in a consistent manner. The perpendicular reaction
force is of paramount importance for predicting the structural damage of a ship hull because it governs the vertical
ship motion and rock penetration which is strongly coupled with the horizontal resistance and thus with the damaged
length. The derived expressions are discussed and compared with previously published experimental results and
formulas. © 1997 Elsevier Science Ltd.

Keywords: plate cutting, ship grounding, ship bottom raking, crashworthiness.

NOTATION
E. rate of energy dissipation in tip zone
En rate of energy dissipation for membrane deformation
Ey rate of energy dissipation for bending
F total resistance force in the direction of motion
FP_ . plastic and fracture resistance force
Fy reaction force perpendicular to direction of motion
g friction factor, g=F/Fp,
G, material fracture toughness
k vertical to horizontal force ratio, k=F/F
R radius of plate curls at the side of the wedge
R, radius of plate curls at the front of the wedge, R,=R cos ¢
N surface area of plate element
t plate thickness
u displacement in direction of £
Uy gap opening at the wedge shoulder (Fig. 6)
v displacement in direction of 7
Vo half gap opening at the wedge tip (Fig. 6)
a angle between cutting edge normal to plate
X scaling parameter, (energy in farfield)/(energy in crack-tip zone)
& strain to fracture
n coordinate perpendicular to material streamline
A geometric scaling factor
n coulomb coefficient of friction
ay initial yield stress
Oy ultimate stress
oo energy equivalent flow stress
(4 semi wedge angle, half of total angle between front sides
13 coordinate in the direction of material streamline
Others defined where used
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1. INTRODUCTION

One of the primary energy absorbing mechanisms in a grounding or collision event is the so-called
plate cutting process. Most authors use the terms “‘cutting” or “tearing”” although some of the observed
failure modes are quite complex and have little resemblance to the original meaning of these words. The
mechanics of the cutting process is complicated and involves plastic flow of the plate in the vicinity of
the wedge tip (and, some would argue, fracture processes there) friction between wedge and plate,
membrane deformation of the plate, and large scale bending of the plate “flaps” remote from the wedge
tip into various scroll motifs and other folding patterns.

In this paper, the plate cutting phenomenon is described qualitatively, some of the most significant
previous work is discussed and summarized, and new theories are derived for steady-state plate cutting
by a wedge.

Depending on the deformation mode which develops, the plate cutting phenomena described in
literature can be divided into three categories (see Fig. 1):

(1). Stable or clean curling cut. The plate is separated at the tip or in front of the wedge and rolls and
folds to the same side during the entire process.

(2). Braided cut. The plate separates at the wedge tip as in the clean curling cut but the deformed flaps
fold back-and-forth.

(3). Concertina tearing. The plate folds back-and-forth in front of the wedge while it is torn at remote
boundaries.

The experimental and theoretical analyses of these three classes fall into two main categories:

(1). Initiation or transient wedge penetration. The wedge penetration is considered from the point of
initial contact between wedge tip and plate edge to the point where the mean resistance force
reaches a constant level. Normally the initiation phase can be assumed to terminate when the
shoulders of the wedge enter the plate [13]. Since the maximum width of the penetrator in the plate
increases with penetration, the reaction force is also an increasing function of the penetration. This
process was initially considered as an idealization of a rigid ship bow penetrating into the deck-
plating of another ship in a collision, but recently it has also been applied to groundings. Several
authors (for example [18,5,] and [19]) have applied results or models for this process as an
approximation to problems of ‘“‘steady-state penetration” described below.

(2). Steady-state penetration. If the penetrator has a finite width, the plate reaction force will reach a
constant mean level after a certain penetration and the process is then said to be in steady-state. This
process is considered an idealization of a rock pinnacle or ice reef cutting through a ship bottom in a
grounding or ice collision event.

For each of the three examples shown in Fig. 1, the deformation was large enough for the steady-state
to be reached so the figure shows the deformation and the reaction in both the initiation and the steady-
state phases.

The present paper is concerned with the clean curled cutting so whenever the term ““cutting” is used in
the following without further explanation it refers to this specific cutting mode.

2. PREVIOUS WORK

A thorough literature review was presented by Lu and Calladine [13], but since then the list of relevant
publications has been expanded. A brief summary of literature pertinent to the field of plate cutting is
given below.

The basic geometrical features of the cutting set-up used in the reported experimental work is shown
in Fig. 2.

The definition of the inclination angle, c, varies; some perform experiments with an inclined plate and
some incline the cutting edge as shown in Fig. 2.

Earlier experiments were performed with drop-hammer tests but to eliminate dynamic effects—which
are difficult to interpret—most recent work is all based on quasi-static testing.

Several authors developed simple formulas giving the energy absorbtion, W, as a function of the
penetration, /, in the plate. The reaction force, F, is then calculated from W(/) as F(})=dW/d! with a
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Fig. 1. Photographs of three cutting modes: clean curling cut, braided cut and concertina tearing with correspondence force—
displacement (F,l)-digrams.
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Fig. 2. Cutting set-up.

correction factor when needed due to the inconsistency of dimensions. In the next section the formulas
are compared.
The notation used in the paper is given below.

F reaction force from plate on wedge (N)
w absorbed energy (Nm)
length of penetration into plate (mm)
t plate thickness (mm)
b crack-tip opening displacement (mm)
[ non dimensional crack-tip opening displacement, &, = & /¢
26 wedge angle, i.e. angle between wedge faces
2B shoulder width of wedge
b spacing between longitudinal stiffeners
7 coefficient of friction
a angle between cutting edge normal to plate
ay initial yield stress
0o energy equivalent flow stress

Not all of the empirical formulas listed in the following are dimensionally consistent, i.e. they are not
independent of the dimensions of the involved parameters. If not defined otherwise, F is in N, W is in
Nm(=J), and /¢ is in mm.

Akita, Ando, Fujito and Kitamura [2,3] conducted tests with penetration of a rigid wedge (6=30°,40°)
into a 3.2 mm steel plate to analyze the response of a ship side in a collision. They proposed a simple
conceptual model in which the plate exerts a normal compressive stress of o, onto the plate over the
nominal contact area. From static equilibrium the plate resistance force becomes

F =200ytltan®. )

Since the portion of the plate in contact with the wedge is deformed due to tearing and denting, it was
proposed to reduce the resistance force by 20%. However, the analysis does not take the actual
deformation mode of rolling plate flaps consistently into account and as it is shown in Fig. 3; the
proposed formula, Eqn (1), overpredicts the actual plate resistance.

Vaughan [29,30] used the experimental data of Akita and Kitamura [3] together with Minorsky’s
formula [17] to estimate the damage suffered by a ship bottom cut by a reef or ice. Vaughan assumed
that the energy would be absorbed in two mechanisms, plastic deformation and creation of new surfaces
by fracture, and thus came up with a two term empirical expression for the energy absorbtion:

W = 33.311+ 0.093tan 6 )
F =333007+0.19/¢tan 8 3)

Vaughan subsequently performed 64 drop-hammer experiments with plates of mild steel [30], with
1=0.752, 0.958, 1.181, 1.867 mm and §=5°, 15°, 30°. Based on the same idea of two major energy
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Comparison of Formulas for Initial Cutting
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Fig. 3. Comparison of several formulas proposed in the literature with the result of one of Lu and Calladine’s [13] experiments.

absorbing mechanisms, he obtained an expression for the energy absorption:
W =551 4 0.0044 21 tan 0 @)
F =5500¢'" + 8.8+ tan#. (5)

All experiments were performed with the plate tilted an angle, ®=10°, because it was discovered that
with this orientation, the cutting of the plates occurred by flaps rolling up on one side (“clean curling
cut”), in contrast to the more complicated back-and-forth bending (‘“braided cut”) which is
characteristic when a=0°.

The expression for the reaction force, Eqn (5), is seen to have a finite value at zero penetration so for
small penetrations, these formulas do not correspond to actual reaction forces.

Woisin [34] analysed drop-hammer tests reported by GKSS in Germany. In a series of 13 tests, two
equal plates (/=2-10 mm) cut into each other and Woisin proposed the following formula for the energy
absorption:

W =481¢7 ©)

F =4800¢"7. Y

In a series of 19 tests, rigid wedges (¢=0°, #=15°,35°,50°) were forced into plates of mild steel with
thicknesses between 2 and 4 mm. In seven of these tests the plate did not rupture although penetration

amounted up to /¢ = 30. The resistance of a plate of mild steel before fracture was found to be well
approximated by the expression

F = 60007 (8)

when 12 < //t < 30 and 5 mm < !/t < 10 mm.
In the remaining cases where the plate ruptured the proposed expressions are:

n o 6—20° !
W=25 1:2{0.5 +30 (1) e (0.05 +0.002 ;> } ©)
F= 2500:2{0.5 42 ;5%0 (o.os +0.004 i) } (10)

for 20° < 8 < 50° and 24 < I/t < 60.
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By considering the cutting response of plates of different thicknesses the complexity of scaling was
noted.

Jones, Jouri, and Birch [9,11,12] performed drop-hammer tests on plates of mild steel. In the most
recent work [11] 84 specimens were cut with a=0°, t=1.501-5.95 mm, and 26=30°,45° and 60°. The
energy absorbing mechanisms—cutting, bending, elasticity and friction—were identified and an attempt
was made to partition the energy delivered between them. Bending and friction energy was found
amounting to about 10% each, elasticity effects were neglectable, and the remaining, i.e. the energy
absorbed in cutting was found to be given by the formulas:

W =394 (11)

F =3900¢"4 (12)
for t=1.501 mm and (=255 MPa and

W =721¢3% (13)

F = 7200¢'303

for t=3.25, 4.955, 5.95 mm and 0;=398.5 MPa.

It is seen that the reaction force is not a function of the penetration. This does not correspond to
observations from quasi-static tests where the reaction force is a continuously increasing function of the
penetration (see Fig. 1).

It is argued that material strain rate effects are insignificant for the test results. Scaling is discussed
and it is illustrated that the geometrically similar scaling principles are not satisfied for the plate cutting
problem.

Atkins [6] presents the scaling laws for bodies undergoing simultaneous plastic flow and crack

propagation. Assuming rigid-plastic behaviour the energy scaling for prototype (p) and model (m)
follows

W _XOx+1)
Wm_ X+l

where A is the geometrical scale factor and x is the ratio between the rate of energy dissipation in the far
field deformation and the rate of energy in the crack-tip zone in one scale (provided the energy
dissipation at the crack tip is proportional to the length scale squared and the energy dissipation in the far
field is proportional to the length scale cubed).

It is argued that fracture is a governing parameter for the plate cutting process, [8]. By analysing the
results of Jones, Jouri and Birch, [11,12], and Lu and Calladine [13], Atkins made an attempt to separate
the energy dissipating mechanisms and find the variance of y. Several difficulties were encountered
though, and it seems that more experimental data would be needed before an approach of scaling is
applicable to practical problems. It should be noted that in the work outlined below (for example Lu and
Calladine [13]) all energy is assumed to be dissipated in plastic flow so the scaling of energy, Wp/Wh,
follows A* corresponding to x=ooc.

Lu and Calladine [13] performed quasi-static cutting tests with 35 case hardened plates of mild steel
(1=0.72-2.0 mm, o=0°,10°,20° and 26=20°,40°) and by using Buckingham’s dimensional analysis they
found the formula:

15)

W = Cy 30,3417 for 5 < I/t < 150

F = 13Cy 30,7 for 5 <1/t <150 a6

where C| 3 is a purely empirical constant which depends on the cutting conditions such as wedge and tilt
angles. Unlike Eqns (2-14), the formulas by Lu and Calladine are seen to be dimensionally consistent.
As it will be discussed in more detail later, Lu and Calladine made valuable contributions to the field
by discussing the effect of friction, fracture and dynamics. Also, the first attempt to investigate the effect
of a finite shoulder width and thus the phase of steady-state cutting is presented in Ref. [13].
Wierzbicki and Thomas [33] developed an analytical model for prediction of the cutting force and
derived an expression, identical in form and characteristics to the results presented by Lu and Calladine:

F =328 gou’* °4 416 5702 am
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for a coefficient of friction, 0.1 < g < 0.4 and a wedge angle, 10° < < 30°. It is the first publication
where a coefficient of friction, y, and a fracture parameter, &, enters the expression explicitly.

Paik [19,20] investigated the cutting response of stiffened steel plates. In Ref. [19], the analysis is
based on dimensional analysis, 50 cutting experiments (=3.4-7.8 mm, 26=15°,45°,60°), and the
hypothesis that longitudinal stiffeners can be included by using an area equivalent plate thickness, f.q.
By applying a least-square best fit to the experimental data, Paik expressed the energy absorption and the
cutting force as

W = Ci5Cr ooty 1 (18)
F =15C5Croot) 1 (19)
with the coefficient, C, s, being a function of wedge angle alone:
C1s5 = 1.112 — 1.1560 + 3.7606* (20)
and the dynamic correction factor, Cy, expressed as a function of the initial impact velocity, V, as
C; = 1.0 — 0.042V + 0.001V2. @2n

In accordance with Lu and Calladine [13], Paik considered inertia effects to be negligible whereas
strain rate effects tend to raise the load level and dynamic effects on friction tend to lower the load.
However, it is interesting to note that Cy is found to be a decreasing function of the impact velocity, for
example Cr=1 at V=0 m/s and Cy=0.67 at V=8 m/s. It should be noted that the correction factor C is
found from the drop-hammer results of Jones and Jouri [11]. In drop-hammer tests the velocity decreases
from V to zero but this change in velocity has not been taken into account in the derivation of C; so
Eqn (21) cannot necessarily be used in Eqn (19) for an instantaneous velocity.

In Ref. [20], Paik and Lee discuss the effect of transverse stiffeners and it is proposed that these should
be included in the analysis in a discrete manner (as opposed to the continuous ‘smearing’ technique
proposed for longitudinal members). ‘

Wierzbicki [31] developed a closed form solution for the reaction force when a concertina tearing
deformation mode develops (see Fig. 1). By assuming a deformation mode and applying the principle of
virtual work, the mean resistance force was found to be

2 /\'? g,
F = 2\3008 {ﬁ (;) +7}. (22)

Experimental results with plates of mild steel (+=0.74—1.14 mm) are presented for validation of the
model.

Astrup [5] conducted experiments (26=60°, a=10°, 2B=250 mm, t=15,20 mm) to investigate the
cutting of thick plates with a wedge of finite width. The observed failure modes were quite complex, in
that both stable plate cutting and concertina tearing modes were seen. It is noted in Ref. [5] that the
measured reaction force was generally 60-75% higher than that predicted by the formula of Lu and
Calladine. It is argued that this difference is due to strain rate effects and frictional effects. Another
reason is that the test wedge had a finite shoulder width whereas the formula of Lu and Calladine is
based on the initial penetration. This means that after the wedge shoulders have entered the plate a
cutting mode different to that observed in Lu and Calladine’s experiments will develop. Large scours
were observed on the cut specimens and it is argued that a coefficient of friction equal to 0.5-0.55 seems
reasonable. By comparing the energy absorbtion in the initial deformation with the drop-hammer tests of
Jones et al. [11], it is found that there are no significant size effects in the cutting phenomenon.

Zheng and Wierzbicki [36] developed a closed form solution for the reaction force after steady-state is
reached. It is assumed that the cutting process consists of three different energy absorbing mechanisms:

1. ductile fracture in a small zone in front of the wedge;
2. bending of the plate in moving hinge lines; and
3. membrane deformation.

A suitable model was postulated for the kinematics with one free parameter, the so-called plate rolling
radius R. The rate of energy dissipation in each of the three mechanisms listed above is expressed as a
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function of this rolling radius. In compliance with the idea of a least upper bound, the total resistance is
found by minimizing the total resistance force with respect to the rolling radius.

The resistance force is given by

B+R
R

R ,cos(8/2) (R + B)®
+1.27tcos(9+1.280 osf R (1 4 pcosb) 23)

_oof

F
4

2

with the rolling radius,

2
R— B\/ 2(t/B) + 1.2862 cos(6/2) /cos 8 24)

1.27 cos 8 + 1.2862 cos(6/2) /cos §

Ohtsubo and Wang [18] present an analysis method somewhat similar to that of Wierzbicki and
Thomas [33]. A kinematic model is proposed and the energy dissipation of the plastic flow in the tip
zone and in rolling hinge lines is calculated. The proposed expression for the cutting force is

F = 1.5100r"5P5sin®5 (6) (1 + ﬁ) (25)

3. COMPARISON OF FORMULAS FOR INITIATION CUTTING

As a general comparison of the proposed formulas is difficult this section compares the formulas for
two specific setups; cutting of a thin (0.9 mm) plate of mild steel and cutting of a high-strength steel
plate with a thickness (15 mm) relevant for ship building. It should be noted that a few of the formulas
are shown outside the proposed range of validity.

Fig. 3 shows a comparison of the proposed formulas with the results of one of the experiments
reported in Ref. [13]. The input data for the calculations are given in Table 1.

It is seen that overall there is significant difference between the formulas. However, the latest formulas
proposed by Lu and Callidine [13], Wierzbicki and Thomas [33], Paik [19], and Ohtsubo and Wang [18]
show a similar trend which corresponds quite well with the experimental result.

Fig. 4 shows a comparison of the proposed formulas with the results of one of the experiments
reported in Ref. [5]. The input data for the calculations are given in Table 2.

As in Figs 3 and 4 shows a considerable scatter between theoretical predictions. It is seen that up to
the point (/=216 mm) where the wedge shoulders enter the plate there is a fair correspondence between
most of the formulas and the experimental curve.

Table 1. Main data for comparison example with experiment of Lu and Calladine

Plate thickness, ¢ 0.9 mm
Wedge angle, 26 40°

Flow stress, og=a, 272 MPa
Coefficient of friction, p 0.3
Nondimensional crack opening displacement, &, 1

Length of penetration, ! 0-80 mm

Table 2. Main data for comparison example with experiment Astrup [5]

Plate thickness, ¢ 15.0 mm
Wedge angle, 20 60°
Yield stress oy, 417 MPa
Flow stress, og=0, 544 MPa
Coefficient of friction, y 0.3
Nondimensional crack opening displacement, &, 1

Length of penetration, ! 0432 mm
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Comparison of Formulas for Initial Cutting
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Fig. 4. Comparison of several formulas proposed in the literature with the result of one of Astrup’s experiments [5] for a 15 mm
plate. The wedge shoulders enter the plate at /=216 mm.

4. PREDICTION OF STEADY-STATE CUTTING FORCE

Lu and Calladine [13], Paik and Lee [20], Astrup [5], Yahiaoui et al. [35], and Zheng and Wierzbicki
[36] performed tests with wedges of finite width; however, the only formula in which the wedge width
enters explicitly is due to Zheng and Wierzbicki [36]. The experimental results of Lu and Calladine [13],
Yahiaoui et al. [35] and Astrup [5], are summarized in Table 3. In all of the reported tests the wedge
angle was inclined an angle a=10° in order to obtain the clean curling cutting mode shown in Fig. 1.

Lu and Calladine [13] observed that the main features of the physical behaviour and of the resulting
load-deformation curve are of the same kind as initiation cutting until the upper edge of the plate reaches
the shoulder of the wedge, whereupon the resisting force remains practically constant as the wedge
penetrates further. On the other hand Thomas [27] found that the initiation phase goes beyond the point
where the shoulders enter the plate—it is rather twice as long, as suggested by Lu and Calladine. The
experimental curve of Astrup shown in Fig. 4 does not show a distinct penetration at which steady-state
is reached because the deformation initiates a mode of braided cutting (see Fig. 1). Based on the
observations of Thomas [27] and Lu and Calladine [13], it seems realistic to use the proposed formulas
for initiation cutting up to a certain point of penetration, /, and assume that the load level is retained from
this point of penetration throughout the rest of the deformation. This penetration, /, is then

; 2B

= Kjpj ——
™ tan @
with Kip; = 1 — 2. Table 4 presents results of this approach, i.e. the penetration, /, of Eqn (26) is used in

the formulas for initiation cutting, Eqns (16,17,19,25). Corresponding to the findings of Lu and
Calladine and Thomas the value of x;y; is taken as, respectively, 1 and 2 in Table 4. Clearly, the approach

(26)

Table 3. Experimental results for steady-state cutting. In all experiments the wedge was inclined an angle, a=10°

Experiments by Jo [/ 2B t F
(MPa) (@) (mm) (mm) (kN)

1. Lu and Calladine [13] 272 10 10 1.6 6.0

2. Yahiaouli er al. [35] 270 45 19 0.75 25

3. Astrup [5]} 526 30 250 20 2250
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Table 4. Theoretical prediction of steady-state cutting for the experimental results of Table 3. The following abbreviations are used
for the formulas: L/C: Lu and Calladine [13], W/T: Wierzbicki and Thomas [33], O/W: Ohtsubo and Wang [18], Z/W: Zheng and
Wierzbicki [36]

Theoretical prediction:x;,;=1 Theoretical prediction: k=2

Experiments by L/C WIT Paik oW ZIwW L/C WIT Paik o/w
Eqn Eqn (17) Eqn (19) Eqn (19) Eqn (23) Eqn (16) Eqn(17) Egn (19) Eqn(25)
(16)(kN)  (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN)

1. Lu and Calladine [13] 5.81 5.88 6.37 7.05 3.81 7.15 7.76 9.01 9.97

2. Yahiaoui et al. [35] 1.14 1.12 2.89 1.26 3.28 1.41 1.48 4.08 1.78

3. Astrup [5] 1514 1459 2258 1588 1580 1864 1925 31.93 2246

is approximative because the deformation pattern shifts from a mode of cutting and curling in the
initiation mode to a mode of cutting, curling and membrane deformation in the steady-state phase. The
particular deformation mode of the steady-state phase was considered by Zheng and Wierzbicki [36]
who derived Eqn (23).

The input values to the formulas used in Table 4 (B, ¢ etc.) are taken corresponding to the experimental
results presented in Table 3. The coefficient of friction is assumed to be p=0.3.

As in Figs 3 and 4, the difference between various theoretical predictions is seen to be quite
remarkable. It is interesting to note that the formula of Paik Eqn (19) corresponds well with all of the
observed results when k;;;=1 is used. It should be noted that if the coefficient of friction is increased to
1=0.55 as proposed by Astrup [5], the theoretical prediction for Astrup’s results of Ohtsubo/Wang
(kii=1) and Zheng/Wierzbicki rise from 1588 kN, 1580-2041 kN and 2030 kN, respectively. These
results are seen to correspond quite well to the experimental value of 2250 kN.

5. PROBLEM STATEMENT AND BASIC IDEA OF MODEL

The remainder of the present paper is concerned with derivation and verification of a theoretical
model for analysis of steady-state cutting of a metal plate by a prismatic wedge.

The ultimate goal of these studies is to analyse an assembled ship bottom structure which is
significantly more complex than just a bare plate. The approach taken here is to postulate the
displacement and strain fields and then, by use of the principle of virtual work, find the resisting force of
the plate. The advantage of this type of approach over a purely experimental one is that once the major
deformation and energy dissipating mechanisms are identified, it is possible to consistently add
stiffeners to the plate and find the energy dissipation and resisting force of the total assembled structure,
(see Ref. [23]). To derive general expressions for the resistance of such a hull bottom assembly from
experimental data alone seems to be an overwhelming task. The idea of smearing longitudinal stiffeners
presented by Paik [19] is promising, but for use in design of complex structures it would seem unable to
capture all the effects of structural details.

The basic idea of the present approach is illustrated below. A prismatic wedge cuts through a ductile
plate which is assumed to deform as shown in Fig. 5. Since the process is considered to be in steady-
state, this picture of the deformation does not change in time. Dynamic effects are not included in the
present analysis, although it is recognized (see e.g. Jones [10]) that these could be significant for full
scale grounding problems where the impact speed may be up to 45 knots (23 m/s).

There are three energy dissipating mechanisms in the considered deformation mode:

e moving hinge lines;
e membrane deformation of the plate; and
e material separation in the crack-tip zone.

In reality, there is no clear distinction between these mechanisms but it has been shown in several
areas of sheet metal deformation and fracture that such a separation of energy absorbing mechanisms
often adequately represent the observed behaviour leading to great simplifications of the theoretical
analysis, (see e.g. Atkins [6], Alexander [4], and Wierzbicki and Abramowicz [32]).

It is worth to note that the material flows through the deformation zone shown in Figs 5 and 6 in
contrast to many structural problems where the volume of deformation is stationary within the structure.
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Fig. 6. Necessary straining illustrated by gap width.

The present deformation pattern resembles one of fluid flow around a blunt body. Similar to most fluid
flow solutions, a Eulerian description of motion is used. As illustrated in Fig. 5 the material flow is
described in a (£, n) coordinate system where £ follows the streamlines and 7 is in the perpendicular
direction. As a material element moves along a streamline it experiences bending as it passes the OP-line
followed by a continuous increasing shear deformation as it moves towards the wedge shoulder. If the
material element is close to the centerline, it experiences an additional tensile deformation in the
perpendicular (n—) direction as it passes the zone of plate separation in front of the wedge.

5.1. Moving hinge lines

The moving hinge line OP in Fig. 5 changes the curvature of the undisturbed plate from 0-1/R, and the
hinge line CD reverts the curvature back to zero so that there is a straight plate flap conforming to the
wedge sides. The rolling radius, R, is kept as a variable in the formulation and taken as the value which
gives the lowest rate of energy dissipation. In the wake of the wedge, the rolling radius is R = R, /cos .
The assumed mode of deformation with plane flaps conforming to the wedge corresponds well to the
experimental observations of Astrup [5], Yahiaoui [35], Rodd and MacCampbell [22], and Lu and
Calladine [13].

5.2. Membrane deformation

Figure 6 shows the geometry that is seen if the plate was cut at the center line and along the edges PT,
PQ and folded without membrane deformation of the plate (this could be done with a piece of paper and
a pair of scissors). Then, the gaps between the plate edges PT and PQ are indicative of the amount of
membrane straining necessary for material continuity during the cutting process. In the large scale tests
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of Astrup [5], a few lateral cracks were also observed (along line PT in Fig. 6) but for thin plates this is
not seen.

The necessary straining can be accommodated by an infinite number of possible strain fields. The
actual strain rate field is the one that minimizes the instantaneous rate of energy dissipation of material
flow, fracture and friction. Little is published about the strain field in steady-state cutting, but useful
information can be obtained from inspection of cut specimens. The cut plate will transmit direct tensile
(or compressive) stresses in the & direction, and likewise tensile strains will develop. This can be
deduced from Fig. 1 for the curled cut where the deformed plate is seen to be buckled. During the
cutting process the longitudinal plate fibres are stretched in the deforming zone at the wedge front, and
instead of recompressing back to the original length leaving straight flaps in the wake, the plate buckles.
As mentioned, however, the plating of a ship structure has stiffeners attached to it and the presence of
longitudinal stiffeners which are often quite substantial tend to prevent the development of tensile
deformation in the longitudinal direction of the hull structure when the deformation is large enough for
the longitudinal to be involved.

The hull plating will rather deform in a mode where longitudinal fibres are sheared with respect to
each other. Such a deformation mode predominantly shear of in the (&, 1) coordinate system (see Fig. 5)
was reported by Turgeon [28] for small scale tests without fracture and by Rodd and MacCampbell [22]
for large scale grounding tests with a double bottom being deformed by a conical rock. Fig. 7 shows the
failure mode of the test reported by Rodd and MacCampbell [22]. Significant shear bands are observed
in the bottom plating.

Also, in the large scale cutting tests of Astrup [5], the deformed plate flaps were seen to be nearly
plane, indicating shear rather than tensile deformation. Based on these observations, the present
formulation for the membrane deformation rests on the assumption that the in-plane strains in the far

Fig. 7. Failure mode of ship bottom observed in NSWC Test No. 1 [22], (frog’s eye view).
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field are all shear strains. It is recognized that this is not always the case but as it will be argued later this
assumption greatly simplifies the analysis. Since longitudinal fibres are not stretched, the present model
also provides a realistic basic deformation pattern model for the case of a longitudinally stiffened plate.

5.3. Near tip plate separation

Although the process of the near tip crack zone has been considered explicitly by several authors, no
one has yet applied a theory to the problem of plate cutting which covers in detail and generality the
material splitting process. Lu and Calladine [15] argue that the cutting process can be described at a
sufficient level of accuracy with the flow stress as the only material parameter. A discussion on this topic
is given by Atkins and Lu [8] and Calladine [14]. Stronge et al. [25,26] performed an experimental and
theoretical study on the problem of tube splitting and concluded that the relative contribution of the
tearing energy to the total energy dissipation is small. This supports the presented analyses in Section 2
where fracture parameters are not included. Several authors leave material fracture parameters out of the
analysis based on the observation that the crack tip stays right at the wedge tip so that the separation
process is one of plastic flow rather than fracture. For highly ductile specimens as those thin plates of
mild steel used in several of the reported model tests are being cut by a sharp wedge is true and not too
surprising that the plate separates at the cutting edge. However, for less ductile specimens—for example
thick hull plating [5], or other types of material [13]—or blunt nosed wedges [22,16], the crack was
observed to run ahead of the wedge and a general theory should therefore cover this situation and thus
consider the fracture toughness of the material.

In the large scale double bottom grounding tests reported in Ref. [22], an unstable crack was seen to
unzip a part of the structure in front of the wedge. A stable crack in the outer bottom propagated with the
penetration of the rock, but at a certain point of penetration the crack suddenly propagated through a
transverse bulk head far into the inner hull plating. To capture this complex type of behaviour would
require very detailed elasto-plastic calculations. Theoretically, the finite element method would be
applicable but for practical use in design it is too labour intensitive so the present approach is based on a
less accurate rigid-plastic analysis.

The question of whether fracture should be included or not is handled in our mathematical model by
choosing between purely plastic flow or fracture depending on which of the two alternative modes gives
the lowest energy dissipation. This corresponds to normal fracture criteria for ductile materials (see for
example Atkins [7]).

6. BASIC EQUATIONS FOR PLASTICITY, FRACTURE AND FRICTION

When external loads are applied to a deformable structure, the power of these loads must be equal to
the incremental energy stored elastically or dissipated in the structure. Assuming a rigid-plastic
structure, no elastic energy can be stored and the power of the external loads thus equals the rate of
energy dissipated by plastic deformations, fracture and frictional effects on the structure surface. This
can be expressed as

F-V=E,+E. +E =Fp,-V+ / puVeds, Q@7
S

where:

the resisting force of the structure in the direction of V

the relative velocity between ship and rock

the rate of plastic energy dissipation

the rate of energy dissipation in the crack-tip zone

the rate of energy dissipated by frictional forces on the surface of the structure
the so-called plastic resistance which here includes both plasticity and fracture
the Coulomb coefficient of friction

the normal pressure on the rock from the plate element, dS

denotes the contact area between rock and plate

Viel the relative velocity between rock and plate element, dS

©% E 3 <
(2}
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In the present model, the internal energy dissipation and frictional effects are considered separately
without coupling. Kinematically admissible displacement fields are constructed according to Fig. 6
and from the assumed deformation fields, the corresponding rates of energies, Ep, E. and Ef are
calculated. The assumed kinematics of the deformation has one free parameter, the plate rolling radius
R, and it is postulated that the actual deformation mode is the one that minimizes the total rate of energy
dissipation.

Supporting our approach, Atkins [6,7] has shown that the rigid-plastic approximations to tearing
problems of ten adequately represent observed behaviour when fracture is accompanied by, or preceded
by, extensive plastic flow. Examples (other than plate cutting) which include both fracture and far field
deformation are tensile tearing of a deep double edge notched (DEN) specimens and trouser tearing. The
basic idea of the methods for finding the specific work of fracture, G., is to perform experiments to
determine all parameters, but E, in Eqn (27). Then, from £, and the kinematics of the specific problem,
G. can be determined. As mentioned, the distinction between a crack-tip zone and the far field presented
by Atkins is also applied in the present analysis.

6.1. Plastic energy dissipation in far field

With rigid-plastic material obeying von Mises yield criterion the plane stress yield condition can be
written as

F =02 + oxx0yy + 02 + 305, — 05, =0 (28)

X

where ay is the uniaxial yield stress. For real construction materials oy is a function of strain history and
strain rate. Here, oy is considered constant and equal to an average flow stress for the considered process.
Thus, the flow stress is higher than the initial yield stress but lower than the ultimate stress, o,.
Following Abramowicz and Wierzbicki [1], an estimate of the energy equivalent flow stress is
00 =092 0y

For a deforming plate of area S, the rate of internal energy dissipation can be expressed as

Ey=En+E,= / NogeapdS + / M 540548 (29)
s S

where N, 3, M, are components of the membrane force and bending moment tensors, and £a.3, a3 are
the corresponding generalized strain and curvature rates calculated in the deformed configuration. The
two terms in the above equation represent the rate of membrane and bending energy dissipation, Eq and
Eb, respectively. In general N,5 and M,; in Eqn (29) are related by the yield condition, Eqn (28).
However, this interaction between moments and membrane forces is very cumbersome to handle
analytically and it is neglected in the present analysis.

It is assumed that the deformation zone consists of a series of discrete moving hinge lines and a
number of deforming plate elements. Taking the rock to be stationary, the hull deformation can be
thought of as a steady-state flow of hull material past the rock. Since the material moves through a
deformation zone, it is convenient to introduce a spatial-Eulerian coordinate system (£,n), where £ is
directed along the material stream lines and 7 is perpendicular to them (see Figs 5 and 6).

The material derivative of a given quantity [ ] is, in general, composed of two parts;

D] _ [}
E_§+V[]'V° 30)

where the components of the gradient vector, V and velocity vector, V,, are:

_[o/0¢] y _ [9€ on
V= [a/an] Vo = [Bt ’az]' S

For a steady-state process, the time change of any quantity, [ ], at a given location is zero. Therefore,
the first term in Eqn (30) vanishes. Furthermore, since material points follow the stream lines with a
velocity of V, &n/8t = 0 and 9¢/8t = V. Therefore, for steady-state flow Eqn (30) reduces to

ofj _ a0
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The rate of membrane energy dissipation in Eqn (29) for a plate strip of width dn can be expressed as
&

dEm =1 / Capéapdbdn (33)
&

where (£,, &,) are boundaries of the local plastically deforming zone. By using the yield condition,
Eqn (33) can be written as

&b
. 2 K R .. .
dE, = ﬁaot / \/ €5 + €2, + Egclny + £5,dEdN. (34)
&

For a steady-state process Eqn (32) can be used to transform the timely strain derivatives of Eqn (34)
into space derivatives. Then, by assuming proportional strain paths and performing the integration over
the length of the deformation zone from £, to &, the expression for the rate of membrane energy
dissipation becomes

dEy = o Vileegldn (35)

where [e.q] is the change in equivalent strain of a material element from entering to leaving the
deformation zone. The equivalent strain is given by

€3 + €2+ egeem + €, (36)

2
Ecq=7§

Using Eqn (32) it can be shown [24], that the rate of bending energy dissipation, dE, for a plate strip of
width dn is

dEy, = VaMy[Knn]dL = VMo[knn]dn 37

where dL is the length of the hinge line, [k,,] is the jump in curvature over a hinge line, V,, the
normal velocity of the hinge line, and M, is the plane strain fully plastic bending moment per unit
length:

_ 2o
V34

Expression (37) should be integrated over all hinge lines appearing in the given problem.

My (38)

6.2. Energy dissipation in crack-tip zone

As mentioned in Section 5 several different views on how to treat the tip zone process theoretically
have been presented. One approach is to use the ductile fracture toughness, G, giving a rate of energy
dissipation in the tip zone of

E.=G.A=GuV (39)

where A = ¢V is the rate by which new area is generated.

One disadvantage with use of Eqn (39) G. is highly dependent on the actual strain history up to the
point of fracture. For mild steel, Atkins [17] reports values of G, ranging from 200-1000 kJ/m?
depending on the fracture mode, so carefully planned experiments have to be carried out to determine
the actual values of G..

For very ductile materials or narrow sharp wedges the plate does not separate in a true fracture mode
but the material is rather forced to flow around the wedge making the use of a fracture toughness
parameter questionable. The rate of energy dissipation for this alternative mode of purely plastic flow is
an integral over the volume of the tip zone:

Ec = /Uoécqzdstip zone- (40)

s
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The choice of deformation mode in the present formulation is based on the standard fracture
mechanics approach of choosing the deformation mode Eqn (39) or Eqn (40) that gives the lowest rate
of energy dissipation.

7. ENERGY DISSIPATION IN PLASTICITY AND FRACTURE

The basics for the development of the expressions for the rate of energy dissipation in the tip zone and
in the far field has been described in Sections 5 and 6. The final expressions are derived below. The
deformation in the far field is divided into membrane deformation and bending.

7.1. Tip zone

The energy dissipation rate for this process is given by Eqns (39) and (40). In order to evaluate the
integral of Eqn (40) we assume that the strain field is dominated by tensile strains in the lateral ()
direction. This is not fully consistent with the assumption that the PT-PQ gap in Fig. 6 is accommodated
by shear strains alone, but estimates indicate that the effect of shear in the tip zone is small. Indeed, due
to symmetry, the shear must be zero at the center line. Following Eqn (40) it is sufficient to consider the
total equivalent strain of the material in the wake of the cutting edge. With e.=¢.,=0, the final
expression is found as an integral over the width of the plastic zone in the wake of the cutting edge:

E.= 200Vt/[eeq]d7] (41)
a2
= 20Vt / [75 5,,”] an “2)
m
=2 sovivg @3)

V3

where 7, and 7, denote lower and upper boundaries for the strain field in the lateral direction on one side
of the center line and vy is half of the maximum gap width between the plate curls in front of the wedge.
In Appendix A it is shown that

vy = 0.16 Reos?0(1 + 0.556%) (44)
giving the final expression as
. 0.64
E. = —— 0Vt Rcos?60(1 + 0.556%). 45
(4 \/§ 0 ( ) ( )

7.2. Far field, membrane deformation

As discussed in Section 5, we assume that material over the PT-PQ gap shown in Fig. 6 is
accommodated by shear strains; the plate deforms as a bundle of longitudinal inextensible chords.

From Eqn (35) the rate of energy dissipation is found as an integral of the equivalent strain over the
width of the plastic zone in the wake of the wedge, for example along the PT-line (see Fig. 6):

7
. 2
Ey, = 20'th/|:——€£,,:| dn (46)
" v
21 0u o
u v
2oors 555 (5 5e) o “
e
2 2
ﬁl)’()vt[up — uT] = ﬁa()Vtuo (48)

where i is the distance between Q and T in Fig. 6. In Appendix A it is shown that u =~ B 8 so the final
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expression becomes

E, = laovma. (49)

V3

7.3. Far field, bending

As illustrated in Fig. 6, the steady-state cutting process involves several areas of bending. The relevant
bending radii are the radius at the side of the wedge, R, and the radius in front of the wedge, R,. For point
T to be at the shoulder wedge, the relation between these radii becomes:

R; = Rcos#. (50)
The three primary bending mechanisms are:

1. initial curling—the curvature of the undeformed plate changes from 0 to 1/R, (hinge line OP);

2. hinge lines at wedge front—the plate is straightened out so that the curvature is reverted from 1/R,
back to O for a part of the plate (hinge line CD); and

3. bending around the wedge shoulder (line PT).

The hinge lines of point 2 and 3 above are in areas of high membrane straining so if the true
interaction on the yield curve Eqn (28) was taken into account these hinges would give very limited
resistance and they are therefore neglected in the following.

Since the jump in curvature is (., = 1/R, = 1/Rcosf and the total width of the hinge line
perpendicular to the direction of motion is B+R, the final expression for the rate of energy dissipation
due to bending becomes (see Eqn (37)):

E, = 2/ V My[Kna]dn (51)
0012(3 +R)V

== = " 52

V3R cos 8 62)

8. FRICTION AND PERPENDICULAR REACTION
Friction is an important energy dissipating mechanism. Wierzbicki and Thomas [33] and Ohtsubo and
Wang [18] use a factor for the effect of friction on the plate resistance:
_F ik
" Fp,  tand

g (53)
which indicates that friction increases the resistance by 52% for the example of 4=0.3 and 6=30°. In a
study of tube splitting on a flat die, Stronge et al. [26] use a friction factor of g=1/(1— ). For the case of
aluminium against a steel die they measure a coefficient of friction of 4=0.56 giving a friction factor of
g=2.27.

As indicated by Eqn (27) we assume a Coulomb type of friction where the frictional stress at the
interface between plate and wedge is proportional to the normal pressure and it is shown below that the
friction factor, g, can then be consistently derived from Eqn (27) and requirement of equilibrium. Noting
that the surface S in Eqn (27) is plane and assuming that Vi is constant over this surface gives the
expression:

F-V=Fp, - V+2uN Vg (54)

where N is the normal force on one of the front wedge sides.

The relative velocity, V,.; between the plate and the wedge at the contact area is assumed to be inclined
an angle, ¢, from the plane of the plate (Fig. 8). This angle depends on the rolling of the plate curls on
the wedge and it can be shown that ¢ must be bound by 0 and 8, 0 < ¢ < 6.

Pippenger [21] reports scouring traces on a §=45° wedge to have (=22.5° and (=17.9° for
experiments with «=70° and a=45°, respectively. As an estimate we will thus use (=6/2 which also
makes sense intuitively.
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Fig. 8. Definition of direction of relative velocity and free body diagram for wedge.

The tangential friction force on the wedge is in the same direction as V.. Figure 8 shows the direction
of V. and a free body diagram of the wedge.
It is seen that horizontal equilibrium can be expressed as

F
EZNSing-I-uNCOSHCOSC (55)
F
N= _
2(sin@ + pcos fcos () (56)
Inserting into Eqn (54) gives
-1
7
= F —_ .
F=Fr (1 sin @ + pcosfcos C) 57

If we use considering the example of #=7/2 and (=n/2, corresponding to the tube splitting process,
the friction factor becomes g=1/(1—u) which is the same expression as used by Stronge et al. [26].
Inserting (=6/2 in Eqn (56) gives the final expression for the friction factor:

F m -l
8(k.0) = Fp. (l " sin@ + pcos 0cos(6/2)) ' (58)

It is seen that this expression is different from that used by Wierzbicki and Thomas [33], and Ohtsubo
and Wang [18] Eqn (53). Equation (53) gives lower values for g than our Eqn (58). At y=0.3 and
0=10°,30°, 45° the difference is 3.2%, 9.0% and 13%, respectively.

The reaction force, Fyon the plate perpendicular to the direction of motion is the vertical component
of the friction force uN:

—2psin

Fy = —2uNsin{(=F .
v pNsin ¢ 2(sin 6 + pcos @ cos ) (59)
With (=6/2 the ratio between the vertical reaction and the horizontal resistance thus becomes
F —psin(0/2
k() = FY = —wsinif/2) (60)

F ~ sinf + cosfcos(6/2)°

Using the approach described above, Pippenger [21] has derived the relations corresponding to
Eqns (58) and (60) for the case of a wedge which is inclined an angle, « (see Fig. 2), from the direction
perpendicular to the plate. Keeping the relations in their most general form but modifying Pippenger’s
expressions according to the assumption V=V, we get:

-1
L eub.0) = (1 - ) : (61)

Fp. ~ sinBsin@ + p(cos @' cos ¢ + sin { cos Bsin &)
Fy cos 3 — usin(sin 3
— = k(. 8 = 62
F (1,8, 0) sin Bsin @ + p(cos @ cos ¢ + sin { sin 6 cos 3) ©2)
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Friction factor, g
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Fig. 9. Friction factor, g (u=0.3, 0.45, 0.6 and a=10°).

where ¢ is the projected wedge angle and 3 is an intermediate value:

(8, ) = tan"! (tan 6 cos o) (63)
B(8, @) = tan~'(1/tan @ tan o). (64)
For a=0, it is seen that # = 6, S==/2 and with (=6/2 Eqns (61) and (62) reduce to Eqns (58 and 60)

as expected.

Fig. 9 shows the friction factor, g, as a function of wedge angle, 8, for ©=0.3, 0.45, 0.6 and a=10°.
Taking 4=0.3, @=10°, and #=10°, 30° and 45° gives friction factors, g, of 2.8, 1.7 and 1.5, respectively
indicating a very significant contribution of friction to the total plate resistance.

It should be noted that the effect of friction comes as a factor which is independent of the rolling
radius, R. Likewise, the plastic/fracture resistance derived in the previous section was found to be
independent of y so the radius which minimizes the resistance force becomes independent of y. This
does not probably reflect reality for the tube splitting process, Stronge et al. [26] use an expression for
the plate rolling radius which is a strong function of 4 but at present there is not sufficient information
available about this problem to improve the model in this respect.

Also, it should be noted that all of the contact pressure is assumed to be on the front plane sides of
the wedge. However, the cornerpoint at the shoulders and the front tip might transmit some force. The
effect of the shoulders will tend to increase the friction factor whereas the force on the front tip tends to
lower it. For wedges with sharp edges the effect of these edge irregularities is believed to be small but for
some types of idealized rocks, like for example the cone shaped rock analyzed by Rodd and
MacCampbell [22], these effects are dominating and prediction of g and k& becomes a cumbersome
task.

Fig. 10 shows k as a function of wedge inclination angle, ¢, for 6=45° and $=0.3, 0.45, 0.6. For small
inclination angles, «, the vertical component of the frictional force dominates over the normal force, and
the total vertical force is thus negative.

9. TOTAL REACTION AND VERIFICATION

The problem of two alternative deformation modes in the tip zone in front of the cutting
edge was described in Sections 5 and 6. The resistance force is derived for both alternative modes
below.
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Fig. 10. Ratio between vertical and horizontal force, k (#=45° and p=0.3, 0.45, 0.6).

Combining Eqns (27, 45, 49, 52 and 61) gives the plastic/fracture resistance force on the plate for the
mode where the crack does not run ahead of the wedge:

p +E.+ E
F:g(u,g,a)fL‘;n‘F_E
0.64 2 oo*(B+R)
= g(p, 8, 0){ —agtRcos? §(1 + 0.556%) + —=oot B + ————— 65
£l ){\/500 ( )+ oo+ 2 (65)
1
=1.75B. (66)

R<B—
- ow/2-1

The limit of R (Eqn (66)) comes from the general kinematic requirement that the deformed plate flaps
must be in contact with the wedge. The rolling radius, R, which gives the lowest resisting force becomes

[ B
R= ,
0.64(1 + 0.556%)cos’0 €7

In the alternative crack-tip deformation mode where the crack runs ahead of the wedge, the rate of
energy dissipation in the tip zone is not a function of R and the total rate of energy dissipation therefore
does not have a mathematical minimum as above; it is a monotonically decreasing function of the rolling
radius. Using the maximum allowable rolling radius for kinematic consistency, Eqns (27, 39, 49 52 and
61) then gives the resistance force as

2 57a0t?
F= g(p,,G,a){Gct—{——aotBO-i— 15700 } (68)

V3 V3cosf

In order to verify the derived equations, the experimental results showed in Section 2 are considered

again. Application of Eqn (68) imposes the difficulty that the fracture parameter, G is unknown. Lu

et al. [15] performed an experimental study on tearing energy in splitting metal tubes and presented an

expression and test results for mild steel plates which seems to be independent of plate thickness (at least
for thicknesses between 0.5 and 1.5 mm):

G, = 8.8 mmoy¢y. (69)
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Table 5. Steady state cutting: theoretical predictions and experimental results for three tests

Experiments by g from Eqn (58) R (mm) Egn (67) F (kN)Eqn (65) F (kN) Eqn (68)  F (kN) Measured
1. Lu and Calladine [13] 2.81 3.59 5.58 572 6.0

2. Yahiaoui et al. {35] 1.50 4.85 3.53 3.58 25

3. Astrup [5] 1.67 72.3 2372 1722 2250

Table 6. Partitioning of energy between deformation mechanisms and friction. Calculation model assumes a purely plastic flow at
wedge tip, By =E.+Ep+Ep,

Experiments by Friction %‘ Front tip £= Shear £= Bending £ Enthy
1. Lu and Calladine [13] 64% 29% 22% 49% 2.5%
2. Yahiaoui et al. [35] 33% 10% 74% 16% 8.7%
3. Astrup [5] 40% 17% 56% 27% 4.9%

Assuming that the separation process in plate cutting resembles that of tube splitting, this relation is
applied below. However, as also stated by Lu et al. [15], the parameter G, is a crude one to use in other
problems than the specific one considered in the test, because the tearing energy is highly dependent the
detailed stress—strain state in the process. This was also noted by Atkins [7], who reported values for G,
ranging from 200-1000 kJ/m? depending on the type of tearing process. Therefore, to apply expressions
like Eqns (68) and (69) really requires further work on the detailed ductile separation process.

The friction factors, g, in the following verification examples are calculated from Eqn (61) using
1#=0.3 and a=10°. The fracture strains of the three experiments are assumed to be 0.25, 0.25 and 0.15,
respectively giving fracture toughnesses of 600, 600 and 700 kJ/m?.

Table 5 shows a comparison between the theoretical prediction of the two presented models and the
experimental results which were also presented in Table 3.

The theory, Eqn (65) with Eqn (67), over-predicts the forces of the three reported tests by —7%, 41%
and 5%. Thus, except for the test of Yahiaoui [35], there is seen to be very good agreement between
theory and experiments even though the scale of the problems is different by an order of magnitude.
Also, it is noted that the difference between the two calculation models, Eqns (65) and (68) is small. If
values for the fracture toughness G, were sufficiently accurate the relative magnitude of the numbers in
column four and five would indicate which of the two presented models would develop. The actual
numbers in Table 5 indicate that the plate was cut (purely plastic flow) in the two experiments with thin
plates but it fractured in the experiment of Astrup [5]. Actually, this seems to be in accord with the
reported experimental results.

Table 6 shows how the energy dissipation is distributed between deformation mechanisms and friction
when the plate resistance is calculated from Eqn (65).

It is interesting to note how differently the energy is distributed in the three examples due to different
wedge angles, plate thicknesses and wedge width, and it indicates why it is difficult to derive formulas
that capture all dependencies on a purely empirical basis. Also, it is noted that the effect of friction is
significant. The last column in Table 6 shows the importance of the far field deformation relative to the
tip zone process. It is clear that the far field energy dissipation is dominant in these examples. The
corresponding values for the alternative model with material fracture instead of plastic flow at the
crack tip are x=1.12, 4.31 and 72.5. These values of x are the ones to be used if we were to scale the
results according to the scaling formula presented by Atkins Eqn (15), assuming a fracture process at the
crack tip.

10. CONCLUSIONS

The paper presents a literature review and develops new formulas for calculating the resistance of a
ductile plate being cut by a wedge of finite width.

Most of the published results on plate cutting is concerned with initiation cutting rather than the
steady-state cutting which develops if the wedge has a finite width. Analysis of previously published
work shows a significant difference between proposed formulas and attempts to use the proposed
formulas for predicting published experimental results did not show a convincing overall agreement.
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The presently proposed theoretical model is based on the energy dissipation rate in an assumed
deformation mode consisting of a plastic-tip zone, moving bending hinge lines and a membrane
deformation zone. It is shown how the analysis simplifies if the membrane deformation zone is assumed
to be dominated by plastic shear strains. Attempts were made to model the tip zone both by a purely
plastic flow mode and by a plastic fracture mode governed by the material fracture toughness. However,
it is recognized that more work is needed to fully understand contribution of the tip zone in cutting and
tearing deformation mode. Dynamic effects are not included, so far, for application to real scale
groundings the presented analysis model should be extended to cover at least strain rate effects. Friction
was taken into account and formulas were derived both for the so called friction factor and for the
vertical to horizontal force ratio.

A comparison of the proposed formulas with experiments of Lu and Calladine [13], Astrup [5], and
Yahiaoui et al. [35] shows a good overall agreement.
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APPENDIX A. MODEL GEOMETRY

The objective of this section is to find the gap openings up and 2vy, shown in Fig. 6, expressed in terms of the rolling radius
R(=R/cos ), the wedge shoulder width, 2B and the wedge semi angle, .

A.l1. Gap opening at wedge front

It is convenient to introduce two coordinate systems, a global system, (X,¥,Z) and a local system,(x,y,z);, both with origin at
point O. The z-and Z-axes point vertically upwards, the Xs-axis is in the symmetri line pointing towards the wedge tip and the x;-
axis is in the bending hinge line, OP. The y,~Ys-axes are defined from the other axes. An arc line coordinate, s, which follows the
curling edge of the plate is also introduced (see Fig. 11). The s-axis also has the origin at point O.

A point on the edge with the arc line coordinate, s, has the local coordinates

x = scosé

ind
n=-R sin(ssm ) (A1)
R,

sin @
= R,(l —cos(s R ))

The general relation between local and global coordinates is given by the transformation:

Xg = xcosf — y,sinf
Y = xsinf + y; cos 6 (A2)
Zg = 7.

Fig. 11. Definitions used for finding the gap width at the wedge tip.
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Inserting Eqns (A.1 and A.2) gives the global coordinates for a point on the plate edge with coordinate s:

X = (scos@)cos § — <7R, sin (s sin Ri))sin() (A3)
1
. . [ssiné
Yo = (scosf)sin @ + (—R, sm( R ))cosa (A4)
1
Zg =z (A5)

Since the gap opening is 2vp =2Y it is now given from Eqn (A.4) as a function of s, R and &:
- ing— 20 sin(
2vg = 2(scos€sm9 Rcos 9s1n(R tanﬁ)) (A.6)

The objective is to find the gap width at the cutting edge, i.e. at the point where Xg=0,=R/sin § =R/tan § (see Fig. 11). Eqn (A.3)
is too complex to be solved in a closed from for s, otherwise this value of s should be inserted into Eqn (A.6) giving a the final
expression sought. It has to be done numerically.

As an initial guess we could calculate the gap width at s= /,=R/tan 6. From Eqn (A.6) the expression becomes:

2vp = 2R cos?0(1 — sinl) = 0.317 Rcos?6. (A7)
By comparing this expression to the exact solution found from numerical solution of Eqns (A.3) and (A.6) it is found that the
expression for the gap width, 2v, at the cutting edge is very well approximated by the expression:
2vp = 0.317 Rcos?8(1 + 0.556%). (A8)
The error of Eqn (A.8) at 10°, 30°, 45° is, respectively, 0.25%, 1.3% and 0.18%.

A.2. Gas opening at wedge shoulders

It is convenient to define a coordinate, (X,Y,Z), at the shoulder in the plane of the undeformed plate. The Z-axis points vertically
upwards along the shoulderline, the Y-axis is in the plane of the undeformed plate and it is perpendicular to the Z-axis and to the
wedge sides. The X-axis is defined from the Y-and Z axes (see Fig. 12)

The total width of the deformed plate on one side of the symmetry line is R+B and the length of the curved part of the flap is
mR/2 so the width of the straight part of the flap at the wedge sides becomes

by =(R+B)—7nR/2=B-—R(n/2-1) (A.9)
Likewise, it can be shown that the width of the straight part of the flap at the wedge front becomes
bir = cos6(B — R(w/2 — 1)). (A.10)
We require the tangent of the deformed plate flaps to conform to the wedge as shown in Fig. 12 giving the requirement
b >0 (A.11)
R< L = 1.75B. (A.12)
m/2 -1

The position of point T is

X
Y
z

0
- 0 , (A.13)
+ \B+R2-7/2)

Fig. 12. Definitions used for finding the gap width at the wedge sides.
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1 Evaluation of gap width at wedge sides
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Fig. 13. Variation of the gap width with rolling radius.
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Fig. 14. Variation of the gap width with wedge angle.

X Bsinfcos§
Y| = —Bsin’8
zZ/, (B+ R(2 — m/2))cos @

The distance between T and Q is then given by:

Figs 13 and 14 show the variation of the gap width with rolling radius and wedge angle from Eqn (A.15).

uo

= ((Xr — Xo)* + (Yr — Yo)? + (Zr — Zo)")™
= (B*sin®6 + (1 — cos6)*(B + R(2 — 7/2))*)**

(A.14)

(A.15)
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It is seen from Fig. 13 that uy/B is a very weak function of the rolling radius and Fig. 14 illustrates that Eqn (A.15) is well
approximated by the expression

up = B (A.16)

for the considered ranges of 6 and R.
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